

Homeka Ion Exchange Resins

More than just a product supplier

Ion Exchange Resins

Ion exchange resins are polymer materials capable of exchanging ions, typically presented as small, spherical beads with specific physical structures and chemical properties. They consist of three primary components, an insoluble three-dimensional mesh structure, functional groups attached to the structure, and exchangeable ions of opposite charges carried by these functional groups. Due to their high efficiency, environmental friendliness, and ease of operation, ion exchange resins play a crucial role across various industries. They contribute to the rational use of resources and environmental protection, aligning with the principles of sustainable development.

Homeka offers three main types of ion exchange resins: cation exchange resins, anion exchange resins and chelating exchange resins. To meet diverse customer needs, Homeka also offers adsorption tanks and automatic control systems. These products are widely regarded as economical and effective solutions across various applications, including: Water treatment, Water purification, Pharmaceuticals industry, Food industry, Metal recovery and fermentation industry.

- A hundred range of specifications to choose;
- High-quality and economical resins;
- Focused solutions for Customers

1 Cation exchange resins

Homeka offers three main categories of cation exchange resins, including poly(St-DVB)-based gel type resins (SG-SAC), macroporous type strong acidic cation exchange resins (SM-SAC) and polyacrylate based gel (PG-WAC) and macroporous type weak acidic cation (PM-WAC) exchange resins.

2 Anion exchange resins

- Excellent resistance to oxidation and physical breakage.
- High capacity, superior selectivity and easy elution.
- Optimized for floating bed with high flow rate.

Homeka offers four categories of anion exchange resins, including poly(St-DVB)-based gel type resins (SG-SBA), macroporous type strong base anion exchange resins(SM-SBA), weak base anion exchange resins(WBA), and polyacrylate-based gel (G-SBA) and macroporous type (M-SBA) strong base and weak base anion exchange resins.

- Excellent kinetic properties and high working capacity.
- Uniform particle sizes and low pressure drop.
- Superior resistance to oxidation and physical breakage.

3 Chelating exchange resins

Homeka specializes in selective and chelating ion exchange resins with specially designed functional groups (SCI), such as -SH groups, thiouronium, and iminodiacetate.

- High thermal stability
- With specially designed functional groups
- Highly selective for multi-valence metals and High capacity

1.1 Water treatment

Ion exchange resins are extensively used in water treatment for diverse applications. Homeka's ion exchange resin systems are designed to be highly efficient and can be customizable, meeting specific water treatment needs and proving to be a versatile solution in the water treatment industry.

- > Suitable for floating bed with high flow rate.
- High resistance to oxidation, physical breakage, osmotic shock fracture and organic fouling.
- ▶ High selectivity and high thermal stability.

Homeka	Specification	Ionic form	Mass capacity meg/g	Volume capacity meq/m	Moisture %	Bulk density g/ml	Specific density g/ml	Particle size %	Effective diameter mm	Uniformity coefficient	Remarks
SG-SAC	001x8	Na	≥4.5	≥2.0	43-48	0.78-0.88	1.26-1.30	0.315-1.25 mm ≥95	0.4-0.7		
SG-SAC	001x8FC	Na	≥4.5	≥2.0	43-48	0.78-0.88	1.26-1.30	0.45-1.25 mm ≥95	≥0.5	≤1.6	softening and demineralization
SG-SAC	001x8MB	Na	≥4.5	≥2.0	43-48	0.78-0.88	1.26-1.30	0.5-1.25 mm ≥95	0.55-0.9	≤1.4	
SM-SAC	D001	Na	≥4.35	≥1.8	45-50	0.77-0.85	1.25-1.28	0.315-1.25mm	≥0.5		
SM-SAC	D001H	Н	≥4.80	≥1.7	48-58	0.74-0.80	1.16-1.24	≥95	≥0.5	≤1.6	water and
SM-SAC	D001FC	Na	≥4.35	≥1.8	45-50	0.77-0.85	1.25-1.28	0.45-1.25 mm ≥95	≥0.5		chemical treatment
SM-SAC	D001MB	Na	≥4.35	≥1.8	45-50	0.77-0.85	1.25-1.28	0.5-1.25 mm ≥95	0.4-0.7	≤1.4	
SCI	D401	Na	1.95 Cu ⁽²⁺⁾	0.6 Cu ⁽²⁺⁾	52-58	0.72-0.78	1.15-1.25	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Highly selective for multi-valence metals.
SCI	D406	Al	1.5	0.5	50-55	0.72-0.80	1.15-1.25	0.315-1.25mm ≥95	0.4-0.7	≤1.6	F(-) removal.
SCI	D407	Cl	3.0	0.8	52-60	0.65-0.75	1.05-1.1	0.315-1.25mm ≥95	0.4-0.7	≤1.6	nitrate removal from fresh water.

SCI	D411	-	-	35g Cu ⁽²⁺⁾	40-50	0.65-0.75	1.05-1.15	0.45-1.25mm	0.5-0.7	≤1.6	capture transition metal ions from solutions
PM-WA C	D113	H → Na 65%	≥10.8	≥4.3	42-52	0.72-0.8	1.14-1.20	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Excellent resistance to physical breakage, osmotic shock fracture and organic fouling. High total and working capacity

1.2 Pharmaceuticals industry

Ion exchange resins play a pivotal role in the pharmaceutical industry for processes such as separation, purification, decolorization, removal of impurities, and pH adjustment.

- > Excellent kinetic properties and organic fouling resistance
- ▶ High capacity, superior selectivity and easy elution
- High color adsorption capacity

Homeka	Specification	Ionic form	Mass capacity meg/g	Volume capacity meq/m	Moisture %	Bull densi g/m	
SG-SAC	001x4H	Н	≥5.0	≥1.25	58-65	0.72-0	
SG-SAC	001x7H	Н	≥5.0	≥1.8	51-56	0.73-0	
SG-SAC	001x16	Na	≥4.0	≥2.4	28-38	0.83-0	
PM-WAC	SQD-85	Н	≥10.5	-	50-60	0.7-0	

Homeka	Specification	Ionic form	Mass capacity meg/g	Volume capacity meq/m	Moisture %	Bulk density g/ml	Specific density g/ml	Particle size %	Effective diameter mm	Uniformity coefficient	Remarks
SG-SAC	001x4H	Н	≥5.0	≥1.25	58-65	0.72-0.78	1.10-1.20	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	antibiotic extraction
SG-SAC	001x7H	Н	≥5.0	≥1.8	51-56	0.73-0.83	1.17-1.22	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	, glutamate and other amino acids recovery
SG-SAC	001x16	Na	≥4.0	≥2.4	28-38	0.83-0.93	1.30-1.35	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	
PM-WAC	SQD-85	Н	≥10.5	-	50-60	0.7-0.8	1.10-1.20	0.315-1.25mm ≥95	0.4-0.7	≤1.6	antibiotic adsorption.
PM-WAC	SQD-88	Н	≥10.0	-	42-52	0.7-0.8	1.10-1.20	0.315-1.25mm ≥95	0.4-0.7	≤1.6	vitamin B12 extraction.
PM-WAC	SQD-112	Н	≥10.5	-	50-60	0.7-0.8	1.10-1.20	0.315-1.25mm ≥95	0.4-0.7	≤1.6	extraction of co listine sulfate
SG-SBA	201x4	Cl	≥3.7(3.9)	≥1.2	50-60	0.66-0.71	1.06-1.10	0.315-1.25 mm≥95	0.45-0.7	≤1.6	pharmaceutical and
SG-SBA	201x4OH	ОН	≥3.8(4.0)	≥1.00	60-70	0.65-0.70	1.05-1.09	0.315-1.25 mm≥95	0.45-0.7	≤1.6	either.
P-WAC	SQ-122	Н	≥4.0	0.9	60-80	0.70-0.80	1.05-1.15	0.315-2.0 mm ≥95	0.4-1.0	≤2.0	discoloration and purification of streptomycin, terramycin, tetracycline and etc.

Т

Т

1.3 Food industry:

The application of ion exchange resins in the food industry enhances product quality, extends shelf life, and ensures compliance with stringent food safety regulations.

- Superior kinetic properties and color adsorption capacity
- Excellent organic fouling resistance
- High exchange capacity and chemical stability

Homeka	Specification	Ionic form	Mass capacity meg/g	Volume capacity meq/m	Moisture %	Bulk density g/ml	Specific density g/ml	Particle size %	Effective diameter mm	Uniformity coefficient	Remarks
SG-SBA	201x4	Cl	≥3.7(3.9)	≥1.2	50-60	0.66-0.71	1.06-1.10	0.315-1.25 mm ≥95	0.45-0.7	≤1.6	pharmaceutical and
SG-SBA	201x4OH	ОН	≥3.8(4.0)	≥1.00	60-70	0.65-0.70	1.05-1.09	0.315-1.25 mm ≥95	0.45-0.7	≤1.6	either.
SM-SBA	D296	Cl	≥3.5	≥1.1	50-60	0.65-0.75	1.05-1.10	0.315-1.25mm ≥95	0.4-0.7	≤1.6	used as organic scavenger.
SM-SBA	DOC2001	Cl	≥3.8	≥0.8	55-65	0.63-0.73	1.03-1.08	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Suitable for food processing.
SM-SBA	D208	Cl	≥3.5	≥0.55	70-85	0.6-0.7	1.04-1.08	0.315-1.25mm ≥95	0.4-0.7	≤1.6	separation and purification of Heparin.
PG-WBA	SQD-816	Free amine	(≥7.0)	≥2.2	55-65	0.65-0.75	1.05-1.12	0.315-1.25mm ≥95	0.4-0.7	≤1.6	used in food industries to de-acidify.
G-WBA	SQ-338	Free amine	≥9.5	≥2.5	75-85	0.63-0.73	1.02-1.10	0.315-2.0 mm ≥95	0.4-1.0	≤2.0	used to remove acid and colors in food and pharmaceutical industries.

1.4 Water Purification

Ion exchange resins are instrumental in water purification processes, such as softening, selective ion removal, demineralization, organic contaminant adsorption, and pH adjustment. They ensure high-quality water for various uses.

- Low contamination
- > Excellent mechanical strenght and no oligo-agglomeration
- Superior kinetic properties and high working capacity

Homeka	Specification	Ionic form	Mass capacity meg/g	Volume capacity meq/m	Moisture %	Bulk density g/ml	Specific density g/ml	Particle size %	Effective diameter mm	Uniformity coefficient	Remarks
SG-SAC	SQ-68	Na	≥4.35	≥1.9	45-50	0.78-0.88	1.25-1.29	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	suitable for drinking
PG-WAC	112	Н	≥10.0	4.3	40-50	0.72-0.82	1.15-1.25	0.315-1.25mm ≥95	0.4-0.7	≤1.6	water softening
SG-SBA	201x4	Cl	≥3.7(3.9)	≥1.2	50-60	0.66-0.71	1.06-1.10	0.315-1.25 mm ≥95	0.45-0.7	≤1.6	For demineralization
SG-SBA	201x4OH	ОН	≥3.8(4.0)	≥1.00	60-70	0.65-0.70	1.05-1.09	0.315-1.25 mm ≥95	0.45-0.7	≤1.6	and silica removal.
SCI	D407	Cl	3.0	0.8	52-60	0.65-0.75	1.05-1.1	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Specific for nitrate removal from fresh water.
SCI	SQ407	FeO (OH)	-	0.5	55-65	0.75-0.85	1.2-1.3	0.315-1.25mm ≥95	0.4-0.7	≤1.6	drinking water treatment,Specific for Arsenic removal.
PM-WAC	D113	H → Na 65%	≥10.8	≥4.3	42-52	0.72-0.8	1.14-1.20	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Suitable for softening and dealkalization
PM-WBA	D301	OH → Cl 20%	≥4.8	≥1.45	48-58	0.65-0.72	1.03-1.06	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Very high working capacity for demineralization.

1.5 Metal recovery

Ion exchange resins are widely used for the selective extraction and concentration of valuable metals from industrial wastewater, process streams, and spent solutions, making them essential in metal recovery.

- Outstanding oxidation resistance
- High thermal and chemical stabilities
- Highly selective for multi-valence metals

Homeka	Specification	Ionic form	Mass capacity meg/g	Volume capacity meq/m	Moisture %	Bulk density g/ml	Specific density g/ml	Particle size %	Effective diameter mm	Uniformity coefficient	Remarks
SM-SAC	SQD-69	Н	≥4.60	≥2.2	35-45	0.8-0.9	1.20-1.30	0.315-1.25mm ≥95	0.4-0.7	≤1.6	recover Cu and V from the production of dicarboxyl.
SM-WBA	SQD-96	amine	≥7.5	≥2.20	55-65	0.65-0.72	1.03-1.06	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	acid removal and heavy metal adsorptions.
SCI	D401	Na	1.95 Cu ⁽²⁺⁾	0.6 Cu ⁽²⁺⁾	52-58	0.72-0.78	1.15-1.25	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Highly selective for multi-valence metals.
SCI	D405	Н	-	0.8 Hg ⁽²⁺⁾	45-50	0.72-0.78	1.02-1.08	0.315-1.25mm ≥95	0.4-0.7	≤1.6	highly selective for various kinds of
SCI	D405- II	Cl	-	1.0	52-60	0.65-0.77	1.03-1.10	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Mercury removal.
SCI	SQ407	FeO (OH)	-	0.5	55-65	0.75-0.85	1.2-1.3	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Specific for Arsenic removal. Mainly used in drinking water treatment.
SCI	D409	Cl	3.5-4.0	0.8	55-66	0.68-0.78	1.05-1.15	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Adsorb Gallium from aqueous solution
SCI	SQD-74	Cl	3.0	0.8	52-60	0.66-0.73	1.04-1.10	0.315-1.25mm ≥95	0.4-0.7	≤1.6	Selectively remove Fe(³⁺) from concentrated hydrochloric acid
SCI	D411	-	-	35g Cu ⁽²⁺⁾	40-50	0.65-0.75	1.05-1.15	0.45-1.25mm	0.5-0.7	≤1.6	capture transition metal ions from solutions

1.6 Fermentation industry

In the fermentation industry, ion exchange resins are primarily used for feedwater purification, nutrient solution preparation, product purification, wastewater treatment and strain mutation prevention, enhancing product quality and ensuring fermentation process stability.

- High-quality glucose treatment
- ➢ High capacity and easy elution.
- > Excellent resistance to organic fouling?

Homeka	Specification	Ionic form	Mass capacity meg/g	Volume capacity meq/m	Moisture %	Bulk density g/ml	Specific density g/ml	Particle size %	Effective diameter mm	Uniformity coefficient	Remarks
SG-SAC	SQ-605	Н	≥5.0	≥1.75	51-56	0.70-0.80	1.17-1.22	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	amino acid recovery,
SM-WBA	D301-M	amine	≥4.8	≥1.60	45-55	0.65-0.72	1.03-1.07	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	high quality Glucose treatment.
PM-SBA	D319	amine	(≥8.5)	≥2.6	50-60	0.65-0.75	1.05-1.15	0.315-1.25mm ≥95	0.4-0.7	≤1.6	L-lactic acid & other organic acid adorption
SM-WBA	D301-FD	amine	≥4.7	≥1.4	50-60	0.65-0.72	1.03-1.09	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	remove acid and color from natural extracts or fermentation broth.
NPA	DA201-A	-	-	-	50-60	0.65-0.70	1.03-1.07	0.315-1.25 mm ≥95	0.4-0.7	≤1.6	enzyme adsorption and purification.