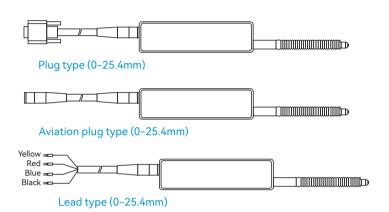
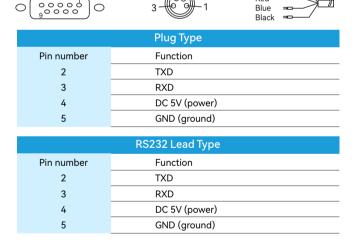

Contact-Type Displacement Sensor Manual

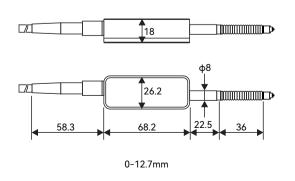

Yellow Red

Safety Precautions


When using this instrument, please comply with the specifications, functions and precautions in the manual. Exceeding the scope of use will affect the safety performance of this instrument.

Specification type

Port Output Description



Aviation Plug Type						
Pin number	Function					
1	DC 5V (power)					
2	RXD					
3	TXD					
4	GND (ground)					
RS485 Lead Type						
Pin number	Function					
1	DC 5V (power)					
2	RXD					

TXD

GND (ground)

Dimensions

Technical indicators _

Measuring range	0-12.7 mm				0-25.4 mm			
Resolution	5μm	1μm	0.5µm	0.2μm	5μm	1μm	0.5µm	0.2µm
Accuracy	≤10μm	±2μm(≤4μm)	≤2µm	≤1.4µm	≤10μm	±3μm(≤6μm)	≤3µm	≤1.8µm
Waterproof grade	IP65							

Detection system	Grating measurement system, image sensor
Response time	DC 5V
Working current	<50mA
Voltage	50ms
Signal output	DB9 pin / aviation plug type / lead type
Communication	2m

Note:

- 1. In the above example of communication between the host and the displacement sensor, the host sends an 8-byte data acquisition command, and the displacement sensor responds with 9 bytes of data, with the high bit first, and data words 1-2 are the displacement sensor measurement data.
- 2. The measurement data is 4 bytes, the first byte is the sign bit, representing the positive and negative signs, and the 2nd to 4th bytes are hexadecimal measurement data.
- 3. The measurement data in the case are converted into decimal: 4665. Since the sign bit is 01H, it is expressed as a negative number. The actual displacement length corresponding to the high-precision 10,000 displacement sensor is -0.4665mm; the displacement length corresponding to the high-precision 1000 and 1,000 displacement sensors is -4.665mm.
- 4. Accessing the register first address 0000H means reading the measurement data! Accessing the register first address 1000H means reading the maximum value data; accessing the register first address 2000H means reading the minimum value data; accessing the register first address 3000H means reading the extreme value data.
- 5. The local CRC verification code uses a 16-bit CRC verification code, the polynomial is $X^16+X^15+X^2+1$, and an example of the table lookup algorithm is shown in the appendix.

Set the displacement sensor function protocol _____

Host clear command 01 06	08 00 AB 56 74 A4	Displacement sensor response 01 06 08 00 AB 56 74 A4		
Address code	01H	Address code	01H	
Function code	06H	Function code	06H	
Access register first address	08H	Access register first address	08H	
	00H	Access register first address	00H	
Writing Data	ABH	Weiting Data	ABH	
	56H	Writing Data	56H	
CRC (lower 8 bits)	74H	CRC (lower 8 bits)	74H	
CRC (higher 8 bits)	A4H	CRC (higher 8 bits)	A4H	

- 1. Writing data of ABH and 56H indicates the reset function.
- 2. Writing data of 00H and 04H indicates the restart of the extreme value measurement function.
- 3. This command can reset the micrometer.

The CRC check code of this machine adopts a 16-bit CRC check code, and the polynomial is X^16+X^15+X^2+1. See the appendix for an example of the table lookup algorithm.

```
Appendix 1: CRC algorithm example
unsigned short CRC(unsigned char frame[],int n)
//Array frame is the object of CRC check, n is the number of bytes to be checked
    int i, j;
    unsigned short crc,flag;
    crc=0xffff;
    for(i=0;i<n;i++)
          crc^=frame[i]:
         for(j=0;j<8;j++)
               flag=crc&0x0001;
               crc>>=1;
              if(flag)
                    crc&=0x7fff;
                    crc^=0xa001;
              }
         }
    return(crc);
```

Note: MODBUS CRC check code transmission is low bit first, high bit last.

- Note: Please read this manual carefully before using this product.
- Our company reserves the final right of interpretation and will not notify you of any changes.