

1008 - 5050 6050 - 12100

BTL Taper bushing produced by YQ are made of GG25 cast iron. With precision machining, they are fixed with set screws imported from Japan and packed separately in nice cartons. They are truly the excellent choice for taper bushings.

Specifications for the series of BTL Taper Bushings:

1008-5050 items can be sold off the shelf based on the stock with immediate delivery. At the same time, we can make BS, UNC tap holes, inner bore and keyways for taper bushing in metric and standard calculations. They are very suitable to the European, U.S. and Japanese markets.

6050-12100 are produced against orders with prompt delivery. Bore and keyways of taper bushing can be in metric and standard dimensions according to BS and UNC standards.

Taper bushing is a new type of component used for joining mechanical transmissions. It changed traditional designs. It's easy on and easy off, compact in construction and with high standardization .The grip is tightened through its taper surface. They have excellent concentricity and non clearance joint; its transmission efficiency can be increased.

The sizes of the taper bushings are designed in a standard series. The bore, keyway and thread are machined in accordance with ISO standards. It is interchangeable and the customers can make their own choice in accordance to their own purpose and usage . This new design is widely used.

Grey cast iron is the common material for BTL taper bushings. If high tensional bushing is required, ductile iron, steel and forged steel can be used. Bushing made of stainless steel can be used together with sprockets, clutches, gears and other transmission parts that are also made of

When taper bushings are used with other transmissions parts, the starting and frequent inversions will cause damages to the bore and keyway; degrade precision due to pressing loads. If the case is a severe one, the whole transmission part will be ruined.

This can be largely reduced if BTL taper bushings are used. In case the bore and keyway are damaged, it will resume service so long as you remove the old bushing and reassemble a new one in its place. The lifetime of the transmission part can be raised so the maintenance expenses are reduced.

BTL taper bushing includes: taper bushing itself and tightening screws (including packing).

The range for its uses can be enlarged if a weld on taper hub is used.

If more detailed information about taper bushing is required, please contact the manufacturer.

- 3. Bushings' Type and Loading Capacity3.1 General Type
- 3.1.1 Dimension series: this type is divided into three series according to its load bearing capacity and number of tapped holes.
- 1.Light Series: Type 1008-3030 has two untapped half holes for tightening screws and one semi tapped hole for unloading.
- 2.Medium Series: Type 3535-5050 has three half holes for tightening screws and two half tapped holes for unloading. 3.Heavy Series: Type 6050-120100 has four half holes for tightening screws and two half tapped holes for unloading.
- 3.1.2 Taper and nomenclatures. For each type of bushing there will be different standard shaft sizes for selection. Written in four numbers, e.g. 2517, the initial two are divided by ten indicating max bore of the bushing(in inches); the

other two are divided by ten indicating length through bore (in inches). For example, the max bore of the bushing is 2.5 inches(2.5x 25.4mm) and length through the bore is 1.7 inches (1.7x25.4mm).

Written in six numbers, e.g. 120100, the initial three divided by ten indicates the max bore of the bushing (in inches) and the other three are divided by ten, indicating the length through bore (in inches). For example, 120 indicates that the max bore of the bushing is 12 inches (12x 25.4mm) where 100 indicates the length through bore is 10 inches (10x 25.4mm).

Written in five numbers, the initial three indicates through bore. For example,10085.

3.1.3 Rating load-bearing capacity. See torque capacity parameters for general type in the following table:

Bush.No	Torque C	apacity	Bush.No	Torqu	e Capacity
	1bf.in	N.m		Lbf.in	N.m
1008	1,200	136	3535	44,800	5,060
1108	1,300	147	4040	77,300	8,740
1210	3.600	407	4545	110,000	12,400
1215	0,000	407	4040	110,000	12,400
1310	3.850	435	5050	126,000	14,200
1315	0,000	400	0000	120,000	14,200
1610	4,300	486	6050	282,000	31,900
1615	4,000	100	7060	41 <u>6</u> ,0 <u>00</u>	47,000
2012	7 , 1 50	808	8065	456,000	51,500
2517	11,600	1,310	10085	869,000	98,200
2525	11,000	1,010	10003	000,000	30,200
3020	24,000	2.710	120100	1.520.000	172,000
3030	24,000	2,710	120100	1,520,000	172,000

Chin = 0.118N. Transmissions

It should be noted that bushings load bearing capacity has some relations with screw tightening torque and shaft size. In this catalogue, the related tightening torque has been given. The load bearing capacity increases as the shaft increases. Rease consult with the factory if more detail is needed.

3.2 Flange type (Q Bushing)

3.2.1 Dimension Series: **Q** Bushings can be divided into two series according to whether they can be reversed mounted or not.

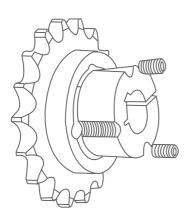
1).Reversible Mounting Series: Type JA-J.

There are three screws and three bores on the flange.

2).Un-reversible Mounting Series: Type M-W. Only with four tapped holes on the flange, with no untapped holes.

3.2.2 Type and load-bearing capacity According to the dimensions and load bearing capacity, **Q** bushings have thirteen specifications. See torque capacity and related screw tightening torque in the table below:

Bush.No Torque Capacity Screw Tightening Toro									
Bush.No	Torque (Capacity	Screw Tighte	ening Torque					
	1bf.in	N.m	Lbf.in	N.m					
JA	1,000	113	54	6.1					
SH	3,500	396	108	12.2					
SDS	5,000	565	108	12.2					
SK	7,000	791	180	20.3					
SF	11,000	1,243	360	40.8					
E	20,000	2,260	720	81.4					
F	30,000	3,390	900	102					
J	45,000	5,090	1,620	183					
M	85,000	9,600	2,700	305					
N	150,000	17,000	3,600	408					
Р	250,000	28,300	5,400	610					
W	375,000	42,400	7,200	814					
S	625,000	70,600	9,000	1,020					


4.Selection

After selecting bushing type according to the bushings' features under different usage conditions, the selection of the

type mainly depends on the torque and loading force. See loading coefficient K for bushing connection below:

	K	Load type	
	1.0	light loading start, work even	
	1.5	light loading start, work uneven	
	2.0	medium loading start,work even or uneven	
	2.5	light or heavy loading start,medium shock	
C	3.0	lighty or heavy loading start, heavy shock or rotating	15

BUSH	SCREW	SCRE	W
NO	TIGHTENING TORQUES(Nm)	QUANTITY	SIZE
1008			1/4"
1108	5.6	2	BSW
1210			3/8"
1215	20	2	BSW
1310			3/8"
1315	20	2	BSW
1610			3/8"
1615	20	2	BSW
2012			7/16"
2012	31	2	BSW
2517			1/2"
2317	48	2	BSW
3020			5/8"
3030	90	2	BSW
3535			1/2"
3333	112	3	BSW
4040			5/8"
4040	170	3	BSW
4545			3/4"
4040	192	3	BSW
5050			7/8"
5050	271	3	BSW

The BTL Taper Bushings are a registered patent product. Any production and sales should be authorized and permitted.

-Special Note

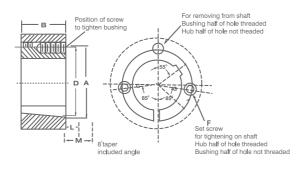
BTL Taper Bushings are made of GG25 case iron. We can also offer other materials according to customers' requirements.

We can do surface coating according to

BTL TAPER BUSHING INSTALLATION INSTRUCTIONS

TO ASSEMBLE:

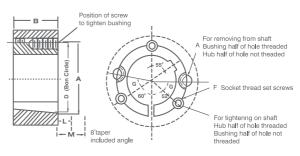
- 1. Clean and degrease the bore and taper surfaces of the bush and the tapered bore of the pulley. Insert the bush into the pulley hub and line up holes (half thread holes must line up with half unloading holes).
- 2. Lightly oil the grub screws (bush size 1008-3030) or oil the cap screws (bush size to 5050) and screw them in but do not tighten yet.
- 3. Clean and degrease the shaft. Fit pulley with taper bush on shaft and place in your desired position.
- 4. When using a key, it should first be fitted in the shaft keyway. There should be a top clearance between the key and the keyway bore.
- 5. Using a hexagon socket wrench (DIN911) gradually tighten the grub cap screws in accordance with the torques listed in the schedule.
- 6. When the drive has been operating under-load for a short period of time (roughly half an hour), check and ensure that the screws remained at the appropriate tightening torque.
- 7. In order to eliminate the ingress of dirt, fill all empty holes with grease.


REMOVAL

1.Loosen and remove all screws and place them in the holes of the bushing.
2.Tighten the screws alternatively till the hub's grip on the bushing is loosened. The inner bore of the bushing can be slid on the shaft.

3. Remove the bushing from the shaft.

the customer' requirements (i.e. painting, black phosphate, black oxidizing, etc.). Each part is individually boxed. BTL Bushing come with high quality screws made in Japan.



3535 thru 5050 sizes

Dimensions for 1008 thru 3030 BTL Taper Bushings

BUSH NO	Α	В	D	Set Screws
1008	1.386	7/8	1 21/64	1/4x1/2
1108	1.511	7/8	1 29/64	1/4x1/2
1210	1 7/8	1	1 3/4	3/8x5/8
1215	1 7/8	1 1/2	1 3/4	3/8x5/8
1310	2	1	1 7/8	3/8x5/8
1610	2 1/4	1	2 1/8	3/8x5/8
1615	2 1/4	1 1/2	2 1/8	3/8x5/8
2012	2 3/4	1 1/4	2 5/8	7/16x7/8
2517	3 3/8	1 3/4	3 1/4	1/2x 1
2525	3 3/8	2 1/2	3 1/4	1/2x1
3020	4 1/4	2	4	5/8X1 1/4
3030	4 1/4	3	4	5/8 x1 1/4

Dimensions for 1008 thru 5050 BTL Taper Bushings

BUSH NO	Α	В	D	Set Screws	G
3535	5	3 1/2	4.83	1/2x 1 1/2	40°
4040	5 3/4	4	5.54	5/8x1 3/4	40°
4545	6 3/8	4 1/2	6.13	3/4x2	40°
5050	7	5	6.72	7/8x2 1/4	37°

W

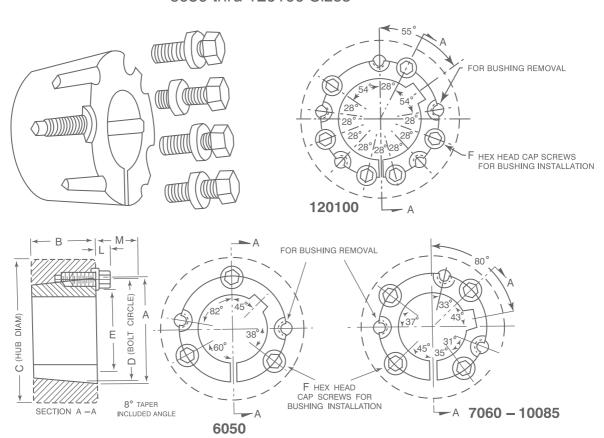
Two screws required

BTL Taper bushing KEYWAY

DIN 6885 JIS B 1301-1976 UNI 6604-1969 GB 1095-1979

															GB		5-1979
Bush	Bore	Bushing	1	Bore	Bushing		Bore	Bushing	Bush	Bore			Bore	Bushing		Bore	Bushing
No		Keyway	No		Keyway	No		Keyway	No		Keyway	No	Ш	Keyway	No		Keyway
-	10	3x1.40		14	5x2,30		20	6x2,80		25			35	10x3.30		55	16x4.30
	11	4x1.80		16			22	0/12.00	-	28	8x3.30		38		-	60	18x4.40
-	12			18			24			30			40	12x3,30		65	10/11/10
	14	5x2.30		19 20	6x2.80		25	8x3.30		32	10.000		42		-	70	20x4.90
1000	16			22			28			35	10x3.30		45	4 4 . 0 00		75	
1008	18			24			30		-	38 40		-	48	14x3.80		80	22x5.40
	19	6x2.80		25			35	10x3.30		40	12x3.30		50 55	16x4.30	+	85 90	
	20 22			28	8x3.30		38	10x3.30		45		1	60	1004.30	+	95	25x5.4
-	24	8x2.00	4040	30			40		-	48	14x3.80		65	18x4.40		100	
A	25	8x1.30	1610	32			42	12x3.30		50	1470.00		70		+	105	28x6.40
Δ	10	3x1.40		35	10x3.30		45		1	55	16x4.30	1	75	20x4.90		110	LOXOTTO
-	11	0/11/10		38			48	14x3.80		60		1	80		1		
	12	4x1.80		40	12x3,30		50			65	18x4.40		85	22x5.40			
-	14		Δ	42	12x2,20		55	16x4.30		70	00 4 00	1	90	25x5.40	1		
	16	5x2.30	_			2517	60	18x4.40	3020	75	20x4,90	3535			4545		
	18								1			1					
1180	19																
-	20	6x2.80															
	22																
	24	0,40,00		14													
.	25	8x3.30		16	5x2,30												
	28	8x2.00		18													
	11	4.4 00		19	6x2,80												
	12	4x1.80		20	0,2,00												
	14	5x2,30		22													
	16	372,00		24													
	18			25	8x3,30												
	19	6x2,80	1015	28													
1210	20		1615	30													
-	22			35	10x3.30		20	6x2.80		25			40	12x3.30		60	18x4.40
	24			38	1000.00		22	OXEIOO		28	8x3,30		42	TEXOIOO		65	1024.40
	25	8x3,30		40	12x3.30		24		-	30	0,0,00		45		1	70	20x4.90
	28		Δ	42	12x2,20		25			32		1	48	14x3.80		75	200,4100
-	30	10x3.30					28	8x3.30		35	10x3.30		50			80	22x5,40
$\overline{}$	11	10x3.30					30			38			55	16x4.30	1	85	
	12	4x1.80					32			40	40.000	1	60	18x4.40	1	90	25x5.40
	14						35	10x3.30		42	12x3.30		65			95	
	16	5x2.30		18			38			45		1	70			100	
+	18			19	6x2,80		40	12x3.30		48	14x3.80		75	20x4.90		105	28x6.40
	19	0.00-		20	UAE,00		42			50			80			110	
1215	20	6x2.80		22			45			55	16x4.30	-	85	22x5.40	1	115	
	22			24			48	14x3.80		60	18x4.40		90	25x5.40		120	32x7.40
İ	24			25	8x3.30		50	40 1 22	-	65		-	95	00.0::	-	125	
	25	0.000		28		2525	55	16x4.30	3030	70	20x4,90	4040	100	28x6.40	5050		
	28	8x3.30		30			60	18x4.40		75		.5.10					
	30			32								V /	? =				
İ	32	10x3.30		35	10x3.30				1 _			10-		7			
	14	5x2,30	2012	38								7					
	16	JAZ,JU		40	12x3,30												
Ī	18			42													
	19	6x2,80		45													
	20	UAZ.00		48	14x3,80												
1310	22			50	M- 9-												
	24							75	ne	11	nis	81		ne			
	25	0.00		4							110						
			1				1		1		I	1	1		1	1	
	28	8x3,30											'				
	28 30	8X3,3U															
	28	10x3,30															

BTL Taper bushing KEYWAY



B.S.46:Part:1958 KEYS AND KEYWAYS

Bush	Bore	Keyv	/ay	Bush	Bore	Keyw	/ay	Bush	Bore	Keyw	ay	Bush	Bore	Keyw	ay	Bush	Bore	Keyw	/ay	Bush	Bore	Keyw	ay
No		WIDTH		No			DEPTH				DEPTH	-			DEPTH	No			DEPTH	-			DEPTH
	1/2	0.125	0.062		1/2	0.125	0.062		1/2	0.125	0.062		7/8				1 3/16	0.312	0.125		1 15/16	0.50	0.156
	9/16				9/16				5/8	0.187	0 000		15/16	0.25	0.125		1 1/4			-	2		
	5/8	0.187	0.093		5/8	0.187	0.093		11/16	0.107	0.093		1 1/8				1 3/8 1 7/16	0.275	0.125		2 3/16	0.605	0.218
1008	11/16 3/4				11/16 3/4				3/4 13/16			1	1 3/16	0.312	0.125		1 1/16	0.375	0.125		2 7/16	0.025	0.210
1000	13/16				13/16				7/8				1 1/4	0.012	0.120		1 5/8			1	2 5/8		
	7/8	0.25	0.125		7/8				15/16	0.25	0.125		1 5/16				1 11/16	0.437	0.156		2 3/4		
\wedge	15/16				15/16	0.25	0.125		1				1 3/8	0.375	0.125		1 3/4				2 7/8	0.75	0.25
Δ	1	0.25	0.062		1				1 1/16			1	1 7/16				1 7/8			1	2 15/16		
	1/2	0.125	0.062	1610	1 1/16				1 1/8	0.312	0.125		1 1/2				1 15/16	0.50	0.156		3		
	9/16				1 1/8	0.312	0.125		1 3/16	0.012	0.120		1 9/16				2				3 1/8		
	5/8	0.187	0.093		1 3/16				1 1/4				1 5/8	0.437	0.156		2 1/8				3 3/16		
	11/16				1 1/4				1 5/16				1 11/16				2 3/16			45.45	3 1/4		
1100	3/4				1 5/16				1 3/8	0.375	0.125		1 3/4				2 1/4	0.605	0.010	4545	3 3/8	0.075	0.010
1108	13/16				1 3/8 1 7/16	0.375	0.125		1 7/16 1 1/2				1 13/16	0.50	0.156		2 5/16 2 3/8	0.625	0.218		3 7/16	0.875	0.312
	7/8 15/16	0.25	0.125		1 1/2			2517	1 9/16			3020	1 15/16	0.50	0.130	3535	2 7/16				3 5/8		
	1			\triangle	1 9/16				1 5/8				2			0000	2 1/2				3 3/4		
Δ	1 1/16			\triangle	1 5/8	0.437	0.125		1 11/16	0.437	0.156		2 1/16				2 5/8				3 7/8	1.0	0.375
Δ	1 1/8	0.312	0.078		1/2	0.125	0.062		1 3/4				2 1/8				2 11/16				3 15/16		
	1/2	0.125	0.062		9/16				1 13/16				2 3/16				2 3/4	0.75	0.05		4		
	9/16				5/8	0.187	0.093		1 7/8	0.50	0.156		2 1/4	0.625	0.010		2 7/8	0.75	0.25		4 1/8		
	5/8	0.187	0 093		11/16	01101	0.000		1 15/16	0.50	0.150		2 5/16	0.625	0.218		2 15/16				4 3/16	1.25	0.437
	11/16	0.107	0.000		3/4				2				2 3/8				3				4 1/4		
	3/4				13/16				2 1/16				2 7/16				3 1/8			\Box	4 3/8		
	13/16				7/8	0.25	0.125		2 1/8	0.625	0.218		2 1/2				3 3/16	0.875	0.312	$ \triangle $	4 7/16	1.25	0.25
1210	7/8	0.25	0.125		15/16				2 3/16				2 5/8	0.75	0.050	_	3 1/4			$\downarrow \downarrow$	4 1/2		
	15/16			1015	1 1 1 1 1 1 1 1 1			\wedge	2 1/4			1	2 11/16	0.75	0.250	$ \rightarrow \rangle$	3 5/16				4 3/4	0.005	0.010
-	1-1/16			1615	1 1/16				2 5/16 2 3/8				2 3/4			+	3 3/8 3 7/16	0.875	0.25		2 7/16	0.625	0.218
	1-1/16				1 3/16	0.312	0.125	\square	2 7/16	0.625	0.187	$ \times $	2 7/8	0.75	0.218		3 1/2				3 3/8		0.23
	1-3/16	0.312	0.125		1 1/4			$ \Delta $	2 1/2				2 15/16	0.75	0.210		0 1/2				3 7/16	0.073	0.012
	1-1/4				1 5/16				3/4	0.187	0.093		3				1 7/16			1	3 5/8		
	1/2	0.125	0.062		1 3/8	0.375	0.125		7/8				15/16	0.25	0.125		1 1/2	0.375	0.125		3 3/4		
ľ	9/16				1 7/16	0.575	0.123		1	0.25	0.125		1				1 5/8			5050	3 7/8	1.0	0.375
	5/8	0.187	ก กดร	_	1 1/2				1 1/8			1	1 1/8				1 11/16	0.437	0.156		3 15/16		
	11/16	0.107	0.000	\rightarrow	1 9/16	0 437	0.125		1 3/16	0.312	0.125		1 3/16	0.312	0.125		1 3/4				4		
-	3/4			\triangle	1 5/8				1 1/4				1 1/4				1 7/8				4 1/4		
	13/16				1/2	0.125	0.062		1 3/8				1 5/16				1 15/16	0.50	0.156		4 3/8	1.25	0.437
1215	7/8	0.25	0.125		9/16				1 7/16	0.375	0.125		1 3/8	0.375	0.125		2			-	4 7/16		
	15/16 1				5/8	0.187	0.093		1 1/2 1 5/8			-	1 7/16				2 1/8 2 3/16			_	4 1/2		
H	1 1/16				11/16 3/4				1 11/16	0.437	0 156		1 1/2 1 9/16			-	2 1/4			\rightarrow	4 15/16	1.25	0.312
	1 1/8				13/16				1 3/4	0.107	0.100		1 5/8	0.437	0.156		2 3/8	0.625	0.218		5	1.20	0.012
	1 3/16	0.312	0.125		7/8	0.05-	0.405		1 13/16			1	1 11/16				2 7/16						
	1 1/4				15/16	0.25	0.125		1 7/0	0.50	0.156		1 3/4				2 1/2						
	1/2	0.125	0.062		1				1 15/16	0.50	0.156		1 13/16				2 5/8						
	9/16				1 1/16	/			2				1 7/8	0.50	0.156	_	2 11/16						
	5/8	0.187	0.093		1 1/8	0.312	0.125	2525	2 1/8				1 15/16		-	4040	2 3/4	0.75	0.25				
	11/16				1 3/16				2 3/16	0.625	0.218	3030			7 /2		2 7/8	0.70	0.20				
-	3/4			2012	1 1/4			\wedge	2 1/4				2 1/16				2 15/16						
	13/16				1 5/16			7	2 5/16				2 1/8			K	3			-			
	7/8	0.25	0.125		1 3/8	0.375	0.125	Δ	2 3/8	0.625	0.187		2 3/16				3 1/8						
	15/16 1				1 7/16				2 7/16 2 1/2				2 1/4 2 5/16	0.625	0.218		3 3/16						
1310					1 1/2 1 9/16				2 1/2				2 3/8				3 1/4	0.875	0.312				
.010	1 1/18				1 5/8	0.00	0.450		-				2 7/16				3 7/16						
	1 3/16	0.312	0.125		1 11/16	0.437	0.156	8		6		3	2 1/2	13	3	0	3 1/2	3					
	1 1/4				1 3/4	44	4			-	4	-	2 5/8	4			3 5/8			1			
-	1 5/16				1 13/16	0.5-							2 11/16	0.75	0.250		3 11/16	1.0	0.375				
	1 3/8	0.375	0.125	,	1 7/8	0.50	0.156						2 3/4			\wedge	3 3/4			1			
				\wedge	1 15/16	0.50	0.125					🔆	2 7/8				3 7/8						
				\triangle	2	0.50	0.120					$ \rightarrow \rangle$	2 15/16	0.75	0.218		3 15/16	1.0	0.25				
		1											3			/\	4			1	I		
													0			//	4 7/16		0.25	+			

TAPER BUSHING DIMENSIONS(Con t.) 6050 thru 120100 Sizes

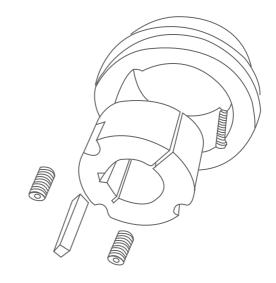
Dimensions for 6050 thru 120100 BTL Taper Bushings

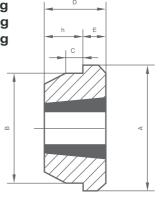
Bush.No.	А	В	D	Socket Head Cap Screws	E	L	M
6050	9 1/4	5	9	3-1 1/4x3 1/2	6 3/4	1 5/8	4 3/8
7060	10 1/4	6	10	4-1 1/4x3 1/2	7 3/4	1 5/8	4 3/8
8065	11 1/4	6 1/2	11	4-1 1/4x3 1/2	8 3/4	1 5/8	4 3/8
10085	14 3/4	8 1/2	14 1/2	4-1 1/2X4 1/4	11 3/4	2	5 3/8
120100	17 1/4	10	17	6-1 1/2X4 1/4	14 1/4	2	5 3/8

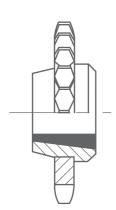
Dimensions for TAPER Bushings Metric.Inches Bore

1	Bush.No	inche	s bore	metric	c bore	
	Dusii.NO	Min.	Max.	Min.	Max.	Instruction is sheet packed into
ı	6050	4 7/16	6	80	150	each bushing box.
ı	7060	4 15/16	7	90	175	and the second second
ı	8065	5 7/16	8	110	200	
ı	10085	7	10	175	250	nsmissions
ı	12100	8	12	200	300	
ı						

Bore and keyway dimensions conform to ISO standard recommendation R773. for "free" fit


TBore W/WH weld-on hubs

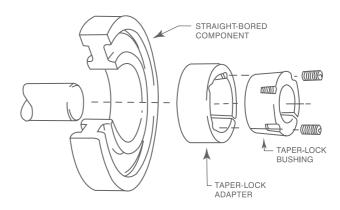

BTL


This type of taper bore weld-on bubs adopt the Europe standards.

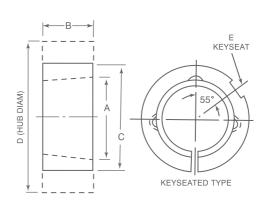
Taper Bore Weld-on Hubs are made of steel; drilled, tapped and taper bored to receive standard taper bushes. The extended flange provides a convenient means of welding hubs into fan rotors, steel pulleys, plate sprockets, impellers, agitators and many other devices which must be firmly fastened.

These are entirely suitable for severe operating conditions. Tightening the screws will contract the bores of the bush thereby locking it to the shaft with the equivalent of a press fit. This type of construction eliminates mounting difficulties. It also prevents loosening and wearing that may occur during operation.

WH WELD-ON HUBS


Hub Rel	Bush No	A	В	С	D	E	h
WH1210	1210	73	60	10	25	9	16
WH1215	1215	76	60	11	38	16	22
WH1610	1610	83	70	10	25	9	16
WH1615	1615	83	70	11	38	16	22
WH2012	2012	96	90	12	32	10	22
WH2517	2517	127	110	13	45	19	26
WH3020	3020	152	130	18	51	24	27
WH3030	3030	152	130	19	76	25	51
WH3525	3525	184	155	25	65	-25	40
WH3535	3535	184	155	25	89	32	57
WH4040	4040	225	195	35	102	32	70
WH4545	4545	254	220	40	114	38	76
WH5050	5050	276	242	40	127	38	89

TB Adapters

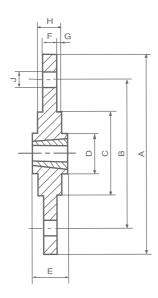

BTL

Adapters for Taper Bushings are recommended for usage where it is more convenient to use a straight bore rather than to drill and tap to accommodate the bushings.

The adapter is a taper bored sleeve of grey cast iron which fits into the straight bore of a hub. The bushing simply fits inside the adapter which is tapped for the bushing screws. When tightening the locking screws, the adapter is expanded against the hub bore, pressing the bushing tightly upon the shaft.

TAPER ADAPTERS

Adaptor	Bush					D		E	
Adapter No.	No.	Α	В	С	class 20	Class30	Steel	Keyseat	Wt
110.	NO.				Gray Iron	Gray Iron	Steel	Reyseat	٧٧٤
1215B	1215	1 7/8	1 1/2	2 3/8	3 5/8	3 3/8	3 1/4	1/4x1/8	0.7
1615B	1615	2 1/4	1 1/2	2 3/4	4	3 3/4	3 1/2	3/8x1/8	0.9
2517B	2517	3 3/8	1 3/4	4 1/8	5 7/8 △	5 1/2	5	5/8x1/8	2.2
2525B	2525	3 3/8	2 1/2	4 1/8	5 1/2 △	5 1/4	5	5/8x1/8	3.2
3030B	3030	4 1/4	3	5 1/8	7 3/8 △	6 7/8	6 1/4	3/4x3/16	5.8
3535B	3535	5	3 1/2	6 1/4	9 1/8	8 3/8	7 7/8	7/8x3/16	11.3
4040B	4040	5 3/4	4	7 1/4	11 1/8	10 1/8	9 3/8	1x3/16	17.3
4545B	4545	6 3/8	4 1/2	7 7/8	12	11	10 1/4	1x3/16	21.9
		Gn	ina	rein	SM	1331	ons)	



Taper Bolt-on-hubs

BTL

Taper Bolt-On Hub is one type of bolt-on hubs that are specially designed for bushes. It's characteristics are simple structures with easy on and easy off capabilities and the ability to use on both sides simultaneously. It applies to vane wheels, fans and other parts which must be fixed closely with shafts.

Taper Bolt-On Hubs are made of high standard grey cast iron GG25 which have enough intensity. The surface is phosphate, attractive and anti-rust. They are a standardized product and highly interchangeable which will lower stock costs.

TAPER BOLT - on - HUBS

specification	Bush No.		screw hole							
opeomeanor.	200111101	A	В	Ch9	D	Е	F	G	Н	nxj
SM1200	1210	180	135	90	75	25	6.5	2.5	11.5	6xφ7.5
SM1600	1615	200	150	110_	85	_38	7.5	2.5	12.5	6xφ7.5
SM2000	2012	270	190	140	110	32	8.5	2.5	13.5	6xφ9.5
SM2500	2517	340	240	170	125	45	9.5	2.5	14.5	8xφ11.5
SM30-1	3020	430	300	220	160	51	13.5	2.5	18.5	8xφ13.5
SM30-2	3020	485	340	250	160	51	13.5	2.5	18.5	8xφ13.5
SM1210	1210	120	100	80	75	25	6.5	2.5	11.5	6xφ7.5
SM1610	1610	130	110	90	85	25	7.5	2.5	12.5	6xφ7.5
SM2012	2012	145	125	r115	110	32	8.5	2.5	13.5	6xφ7.5
SM2517	2517	185	155	130	125	45	9.5	2.5	14.5	8xφ11.5
SM3020	3020	220	190	160	160	51	13.5	-	13.5	8xφ13.5

JA - S

QTL Taper Bushings are made of GGG40 ductile iron and the surface is phosphate. They are fixed with UNC bolts (12.9 grade) and packed individually.

QTL Taper Bushing and JA-E with inner bore and keyways in standard measurements can be sold off the shelf with immediate delivery. F-S are produced against orders with prompt delivery.

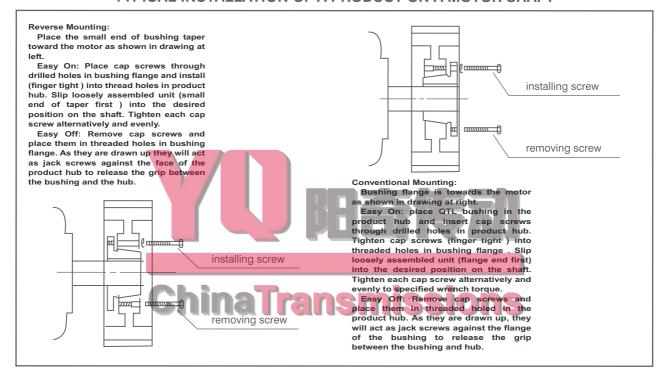
ChinaTransmissions

QTL Taper Bushing in metric measurements can also be produced.

QTL Taper bushing QTL

The QTL bushing is used throughout the industry offering convenience and design flexibility. They are made of quality grey or ductile iron and are installed by tightening several cap

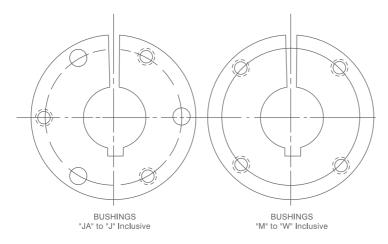
This draws the bushing into the taper bore of the product which compresses the bore of the bushing, gripping the shaft so that no external keys or dowels are required. QTL bushings are easily removed by using the cap screws as jack

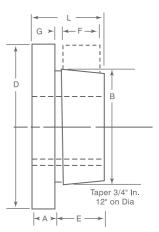

Double drilled holed are furnished in QTL bushing which permit the mounting of the product in the conventional or reverse positions. This allows cap screws to be installed through the product hub or bushing flange, whichever is most convenient. No matter which way the product is installed, cap screws are always inserted from the outside where they are easily assembled.

QTL bushing are available from stock with all popular bores within the range of each size bushing.

Some of the power transmission products which use QTL bushing are pulleys, sprockets, sheaves and couplings. Used in unlimited fans, impellers or any product which needs to be shaft mounted.

TYPICAL INSTALLATION OF A PRODUCT ON A MOTOR SHAFT



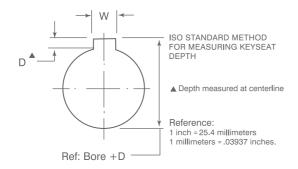


The "QTL" Bushing easily fits over the tapered hub and a tight press can be produced on the shaft by tightening capscrews. The bushing is easily removed from the hub by using the pull-up bolts as jack bushing in the holes tapped in the rim of bushing .All hubs "JA" through "J" are drilled for REVERSE MOUNTING.

- * F = Length of Mating Bore
- * * G = Gap Between " QTL " Bushing and Mating Hub

STOCK QTL BUSHINGS DIMENSIONS

				DIMENSIO	Cap STOCK BORE RANGE				Average				
Bush-	А	В	D	E	* F	* * G	L	Bolt Circle	Screws Required	Mini- mum	Standard	Shallow	Weight
JA	5/16	1.375	2	11/16	9/16	0.20	1	1.656	3-10x1	3/8	Keyway 1	13/16	(Approw.)
SH	7/16	1.871	211/16	7/8	13/16	0.23	1 5/16	21/4	3 1/4x1 3/8	1/2	13/8	15/8	1
SDS	7/16	2.187	31/8	7/8	3/4	0.23	1 5/16	211/16	3 1/4x1 3/8	1/2	15/8	1 15/16	1
SD	7/16	2.187	31/8	13/8	11/4	0.23	113/16	211/16	3 1/4x1 3/8	1/2	15/8	1 15/16	1.5
SK	9/16	2.812	37/8	13/8	11/4	0. 23	1 15/16	35/16	3 5/16x2	1/2	21/8	21/2	2
SF	5/8	3.125	45/8	17/16	11/4	0.23	21/16	37/8	3 3/8×2	1/2	21/4	27/8	4
E	7/8	3.834	6	17/8	15/8	9/32	23/4	5	3 1/2x23/4	7/8	27/8	31/2	10.5
F	1	4.437	65/8	23/4	21/2	11/32	33/4	55/8	3 9/16x35/8	1	- 31/4	315/16	15
J	11/8	5.148	71/4	31/2	33/16	5/16	45/8	61/4	3 5/8x41/2	11/2	313/16	41/2	23
М	11/4	6.494	9	51/2	53/16	11/32	63/4	77/8	4 3/4x63/4	2	411/16	51/2	55
N	11/2	6.992	10	65/8	61/4	9/16	81/8	81/2	4 7/8x8	27/16	51/16	57/8	73
P+	13/4	8.242	113/4	75/8	71/4	5/8	93/8	10	4 1x91/2	215/16	513/16	7	120
W+	2	10.437	15	93/8	9	11/16	113/8	123/4	4-11/8x111/2	4	71/2	81/2	250
S+	31/4	12.125	173/4	121/2	12	3/4	153/4	15	5-11/4x151/2	6	81/4	10	400


+Consult Factory

QTL BUSHING DIMENSIONS AND RANGES FOR INNER BORES AND KEYWAYS

Bushing	Bores Key Seat	Bushing	Bores	Key Seat	Bushing	Bores	Key Seat	
	3/8-7/16	None		1/2-21/4	Std.	М	2-411/16	Std.
IA	1/2-1	Std.		25/16-21/2	5/8x3/16	1	43/4-51/2	1 1/4x1/4
JA	11/16-13/16	1/4x1/16	SF	29/16-23/4	5/8x1/16		27/16-51/16	Std.
	11/4	None		213/16-27/8	3/4x1/16	N	51/8-51/2	1 1/4x1/4
	1/2-13/8	Std.		215/16	None	1	59/16-57/8	1 1/2x1/4
SH	17/16-15/8	3/8x1/16		7/8-27/8	Std.	P	215/16-513/16	Std.
	111/16	None	E	215/16-31/4	3/4x1/8		57/8-61/2	1 1/2x1/4
	1/2-15/8	Std.		35/16-31/2	7/8x1/16	1	69/16-7	1 3/4x1/8
SDS	111/16-13/4	3/8x1/8		1-31/4	Std.	W	4-71/2	Std.
SD	113/16	1/2x1/8	F	35/16-33/4	7/8x3/16	1	79/16-81/2	2x1/4
SD	17/8-115/16	1/2x1/16		313/16-315/16	1x1/8			
	2	None		4	None			
	1/2-21/8	Std.	J	11/2-313/16	Std.			
SK	23/16-21/4	1/2x1/8		37/8-41/2	1x1/8			
	25/16-21/2	5/8x1/16						
	29/16-25/8	None						

STANDARD KEYWAY & KEY DIMEMSION

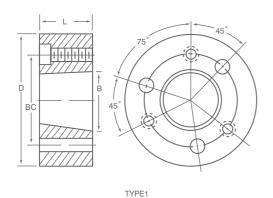
Bores	Key Seat	Key
1/2-9/16	1/8x1/16	1/8x1/8
5/8-7/8	3/16x3/32	3/16x3/16
15/16- 1 1/4	1/4x1/8	1/4x1/4
15/16-13/8	5/16x5/32	5/16x5/16
17/16-13/4	3/8x3/16	3/8x3/8
113/16-21/4	1/2x1/4	1/2x1/2
25/16-23/4	5/8x5/16	5/8x5/8
213/16-31/4	3/4x3/8	3/4x3/4
35/16-33/4	7/8x7/16	7/8x7/8
313/16-41/2	1x1/2	1x1
49/16-51/2	11/4x5/8	11/4x11/4
59/16-61/2	11/2x3/4	11/2x11/2
69/16-71/2	13/4x7/8	13/4x13/4

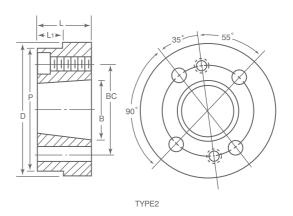
Dimensions:inch

BORE RANGE FOR QTL BUSHING

	Min.	M	ax.Bore wi	th:					
Bush.	Bore	Full Keyway	Shallow Keyway	No Keyway		SHA	LLOW KE	Y DIMENS	SION
JA	3/8	1	1 3/16	1 1/4		Key Seat	Key	Key Seat	Key
SH	1/2	1 3/8	1 5/8	1 11/16		3/8x1/16	3/8x1/4	7/8x3/16	7/8x5/8
SDS	1/2	1 5/8	1 15/16	2		3/8x1/8	3/8x5/16	1x1/16	1x9/16
SD	1/2	1 5/8	1 15/16	2		1/2x1/32	1/2x9/32	1x1/8	1x5/8
SK	1/2	2 1/8	2 1/2	25/8 29/16		1/2x1/16	1/2x5/16	11/4x1/4	11/4x3/
SF	1/2	2 1/4	2 7/8	2 15/16		1/2x1/8	1/2x3/8	11/4x1/4	11/4x7/
E	7/8	2 7/8	3 1/2			5/8x1/16	5/8x3/8	11/2x1/8	11/2x1
F	1	3 1/4	3 15/16	4		5/8x3/16	5/8x1/2	3/4x3/8	13/4x3/
J	1 1/2	3 13/16	4 1/2			3/4x1/8	3/4x1/2	13/4x3/8	13/4x1
M	2	4 11/16	5 1/2			7/8x1/16	7/8x1/2	2x5/16	2x1
N	2 7/16	5 1/16	5 7/8		'	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,581/2	2,13/10	2/(1
Р	2 15/16	5 13/16	7						
W	4	7 1/2	8 1/2						
S	6	8 1/4	10						

Dimensions:inch


TB Bolt-on-hubs


QTL

QTL WELD-ON HUBS

QTL weld-on hubs are suitable in many applications, such as welding to steel plate wheels. Weld-on hubs are made of steel. Drilled, taped and taper bored to receive QTL bushing

QTL TYPE 1 AND TYPE 2 WELD- ON HUBS

Catalog Number		Di	mension	s-Inches			Type Drill <u>i</u> ng					
INUITIDE	D*	L	В	P+	P+ L1		BC	6.000	9.000	12.000	Pounds	
SH-A	3.000	13/16	1.871	_		2 1/4	1	950	1,425	1,900	1	
SDS-A	3.500	3/4	2.188			2 11/16	1	1,130	1,695	2,260	1.30	
SK-A	4.375	1 1/4	2.813	1		3 5/16	1	2,400	3,600	4,800	3	
SF-A	5.000	1 1/4	3.125	- 1	-	3 7/8	1	4,060	6,090	8,120	4	
E-A	6.250	1 5/8	3.8 32	- 1	-	5		9,240	13,860	18,480	9	
F-A	7.000	2 1/2	4.437		- 1	5 5/8		13,960	20,940	27,920	16	
J-A	7.750	3 3/16	5.140			6 1/4	1-	19,550	29,325	39,100	25	
M-A	9.500	5 3/16	6.494	9.250	3 9/16	7 7/8	2	49,000	73,500	98,000	50	
N-A	10.500	6 1/4	6.990	10.250	4 1/2	8 1/2	2	73,200	109,800	146,400	75	

*Tolerance of "D" - "SH" thru "J" = (+.000 -.002) +Tolerance of "P"- "M" and "N" = (+.000-.003