

UNCONTROLLED DOCUMENT

tor otherwise reproduced without the prior permission in writing of BSI

erheater tubes

specified carbon ated temperature properties alloy and austenitic stainless

TIFF To PDF trial version, to remove this mark, please register this software.

à propriétés spécifiées aux températures élevées

der austenitischem Stahl

//www.adultpdf.com

Foreword

This Part of BS 3059 has been prepared under the direction of the Iron and Steel Standards Policy Committee and supersedes BS 3059: Part 2: 1978, which is withdrawn. As with the previous edition this standard is published in two Parts to assist users of the standard in selecting tubes for particular duties. Part 1 is 'Specification for low tensile carbon steel tubes without specified elevated temperature properties' and Part 2 is 'Specification for carbon, alloy and austenitic stainless steel tubes with specified elevated temperature properties'.

The main technical differences between this edition and the previous edition are that changes have been made to the specified ladle analysis to take into account current steelmaking practice, and an additional grade, 316S52 steel with a specified boron content has been included. The estimated average stress rupture values have been amended for both grades of steel 316.

This Part of BS 3059 is aligned as far as possible with corresponding material requirements and test procedures now agreed for incorporation in documents by the International Organization for Standardization (1SO).

The designations of steel tubes in this specification and their nearest equivalent designations in ISO 2604: Parts and III are given in appendix A for information.

Most of the dimensions for tubes and also the tube tolerances are taken from ISO 1129 but the range of dimensions in this standard is wider than that in ISO 1129. The specified elevated temperature yield or proof stress values are those derived by the procedure described in BS 3920. Additionally, provision is made for the application of the related procedure for verifying that a product consistently meets specified levels of elevated temperature values. Average stress rupture values are shown in appendix

It is recommended that the results of elevated temperature tests together with information on the product thickness, the room temperature tensile properties, heat treatment details and the chemical composition of the material, sixuald be sent to Secretariat of ISM/73/-/1, British Standards unfinstitution, 3 York Street, Manchester M2 2AT, UK soot that, for future revisions of this standard, minimum elevated temperature proof stress values can be derived from a continuously updated data bank.

The steels covered by this Part of BS 3059 are generally regarded as being weldable. However, care should be taken and welding should be carried out in accordance with the requirements of the appropriate British Standards for welding.

The appropriate British Standard for the design and construction of boilers should be consulted for requirements relating to the application and permissible design stresses for products made in accordance with this Part of BS 3059. Purchasers ordering to this Part of BS 3059 are advised in specify in their purchasing contract that the supplier operates a quality system in compliance with BS 5750: The Part 2 to assure themselves that products claimed to comply with BS 3059: Part 2 consistently achieve the sequired level of quality.

It is outside the scope of this standard to specify formals qualifications for personnel engaged in testing but it is emphasized that the operation of all equipment should be supervised by competent, frained personnel.

For the purposes of this Part of BS 3059, no difference is intended in the meaning between 'pipe' and 'tube' though idiomatic use prefers sometimes the one and sometimes the other.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

B. Typical physical properties of the steels are given in appendix C for information only.

....

http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

Contents

		Page				Page
Fore	word Inside	front cover	9		esignation of steel tubes in BS 3059:	
	mittees responsible	Back cover		d€	ert 2: 1990 and the nearest equivalent esignations in BS 3059: Part 2: 1978 and	4.4
•	ification -	2	10		SO 2604: Parts II and III stimated average stress rupture values for	14
1 :	Scope	7		Cá	arbon and ferritic alloy steels	16
2	Information to be supplied by the purchases	2	10a	a Es	stimated average stress rupture	. /
	and options to be documented	2		va	lues for steel 91.	
	Designation Manufacture of the steel	3	11	Ë	stimated average stress rupture values for.	4=
_	Manufacture of the product	3		at	ıstenitic steels	17
	Chemical analysis	3	12	2 PI	hysical properties of steel type number	
	Final supply condition	6		3	60 and 440	18
	Mechanical properties	6	13	3 P	hysical properties of steel type number	40
	Visual inspection and appearance	9		2	43, 620-460 and 622-490	18
	Tolerances	9	14	4 P	hysical properties of steel type number	
11	Tests	10		6	29 470, 629 590 and 762 -	19
12	Number, selection and preparation of samp	les	15	5 P	hysical properties of steel type number	
	and test pieces	10		3	04851, 316851, 316852, 321851 (1010),	
	Test methods	11		3	21S51 (1105), 347S51 and 215S15	19
14	Retests	12	10		referred outside diameters and thicknesses	
- +	Test certificate	12		f	or carbon, carbon manganese and ferritic	
	Protective coating	12		a	slioy steel boiler and superheater tubes	
	Marking	12			appropriate to this Part of BS 3059 and	20
17	MIGINING			1	nasses per unit length	20
A m.	pendices		1		Preferred outside diameters and thicknesses	
Ahl					for austenitic stainless steel boiler and	
Α	Designations of steel tubes in BS 3059:				superheater tubes appropriate to this	01
	Part 2: 1990 and the nearest equivalent	H			Part of BS 3059 and masses per unit length	21
	designations in BS 3059 : Part 2 : 1978 and	14			Drill diameter sizes for method A	22
	ISO 2604 : Parts II and III	16	: 1	19	Notch dimensions for method B	22
В	Estimated average stress rupture values	18	2		Reference notch dimensions and tolerances	23
С	Physical properties of steels		2	21	Parameters for lower confidence lines:	or
D	Preferred outside diameters and thicknesse	75 NEO			steel 360	25
	for tubes appropriate to this Part of BS 30	20	, 2	22	Parameters for lower confidence lines:	05
	and masses per unit length				steel 440	25
E	Eddy current testing of tubes for verificat	22	, :	23	Parameters for lower confidence lines:	05
	of leak tightness	_			steel 243	25
F	Ultrasonic testing of tubes for the detection	2:	2	24	Parameters for lower confidence lines:	
_	of longitudinal imperfections	2.			steel 620-460	25
G	Procedure for verification of elevated	2	3	25	Parameters for lower confidence lines:	· 25
	temperature values	2.			steel 622-490	25
_	• • •			26	Parameters for lower confidence lines:	25
12	bles				steel 629-470	25
1	Method of manufacture of tube, tolerand	e .	2	27	Parameters for lower confidence lines:	26
	class and reference	•	2 3		steel 629-590	26
2	Steel type and type number	•	3	28	Parameters for lower confidence lines:	26
3	Chemical composition and mechanical		A		steel 762	26
	properties at room temperature		4	29	Parameters for lower confidence lines:	200
4	Permitted deviations of the product analy	Asi 2	-		steel 304S51	26
	from the specified ladle analysis		5	30	Parameters for lower confidence lines:	
į	Steel type number and tube manufacturi	ng			steel 316S51 and 316S52	26
	process, final supply condition and		_	31	Parameters for lower confidence lines:	
	temperature of heat treatment		6		steel 321S51 (1010) and 321S51 (1105)	. 26
į	6 Minimum proof stress values $(R_{p0.2})$ for	1		32	Parameters for lower confidence lines,	
	carbon, carbon manganese and ferritic at	юу	→		steel 347S51	27
	steels at elevated temperatures		1	33	Parameters for lower confidence lines,	
•	7 Minimum proof stress values (R p1.0) for				steel 215S15	27
	austenitic stainless steels at elevated		_			
	temperatures	r	8	Fi	gure	
	8 Tests for test category 1 and test categor	'y Z	10	1	Example of lower confidence lines (for	
				1	steel 762)	2
arde Inchi	tution.					

http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

Specification

1 Scope

This Part of BS 3059 specifies requirements for plain end, seamless and welded, carbon and alloy steel tubes and for cold finished seamless austenitic steel tubes, not exceeding 127 mm outside diameter and not exceeding 12.5 mm thickness for use in boilers and superheaters.

Tubes manufactured in accordance with this Part of BS 3059 have specified room temperature properties and specified proof stress values at elevated temperatures.

In addition to the definitive requirements, this Part of BS 3059 requires the items detailed in 2.1 to be documented. It also requires options selected by the purchaser from those detailed in 2.2 to be documented. For compliance with this Part of BS 3059 both the definitive requirements and the documented items have to be satisfied.

This Part of BS 3059 provides for two categories of room temperature test procedure, designated category 1 and category 2 (see clause 11).

NOTE 1. The preferred outside diameters and thicknesses appropriate to this standard are given in appendix D and masses per unit length are included in this appendix for information.

NOTE 2. The titles of the publications referred to in this standard are listed on the inside back cover.

2 Information to be supplied by the purchaser and options to be documented

2.1 Information to be supplied by the purchaser

The following information shall be supplied by the purchaser and fully documented:

- (a) the designation of the tubes, i.e. the number of this Part of BS 3059, the method of manufacture of the tube and the tolerance class where applicable, the grade of steel and the category of test specified (see clause 3). e.g. BS 3059: Part 2: ERW 1 620-460: Cat 1;
- (b) the tube outside diameter and thickness (see appendix B) for seamless tubes class 2, electric resistance welded tubes, and cold finished seamless tubes, or the outside or inside diameter and thickness for seamless tubes class 1 and cold finished electrical resistance welded tubes (see 10.2);
- (c) the tube length, if exact (see 2.2(e) and 10.3);
- (d) the quantity in metres or number of lengths.

2.2 Options to be documented

A number of options are permitted by this Part of BS 3059 as listed below, and the purchaser shall identify the options required. Both the definitive requirements specified throughout this Part of BS 3059 and the following documented items shall be satisfied before a claim of compliance with this Part of BS 3059 can be made and verified. In the event that the purchaser does not indicate his requirements at the time of enquiry and order the manufacturer shall select the options where appropriate.

- (a) The steelmaking process (see 4.1).
- (b) Whether a product analysis is required (see 6.2 and 15(1)).
- (c) Whether selected chemical elements additional to those specified are to be reported (see 6.3 and 15(3)).
- (d) The final supply condition of the tubes (see clause 7).
- (e) Whether lengths other than random lengths are required (see 10.3).
- (f) Whether the method of leak tightness test to be carried out on test category 2 tubes is the hydraulic test or the eddy current test (see 12.4 and 15(5)).
- (g) Whether the hydraulic test, if specified, is to be carried out at a pressure in excess of 140 bar* and the pressure required (see 13.4 and 15(5)).
- (h) Whether additional non-destructive testing is required (see 13.7).
- (i) Whether verification of elevated temperature proof stress values is required (see 13.8).
- (j) Whether verification of elevated temperature proof stress values by testing is required and the temperature selected from table 6 at which this is to be carried out (see 13.8.2).
- (k) Whether the tubes are to be supplied uncoated or with the manufacturer's normal mill coating (see clause 16).
- (I) Whether marking requirements in accordance with BS 5383 are required (see 17.1 and 17.4).

3 Designation

The tubes shall be designated by the number and Part of this British Standard, i.e. BS 3059: Part 2, from table 1 by the reference which indicates the method of manufacture (see clause 5), the tolerance class (see 10.2) and, from table 2, by a number which indicates the type of steel.

Table 1. Method of manufacture of tube, tolerance class and reference

Method of manufacture and tolerance class*	Reference
Seamless, class 1	S1
Seamless, class 2	S2
Electric resistance welded, class 1	ERW 1
Electric resistance welded, class 2	ERW 2
Cold finished electric resistance welded	CEW
Cold finished seamless (applicable only to austenitic stainless steel	
types)	CFS

^{*}Tolerance class is not applicable to CEW and CFS.

^{*1} bar = 10^5 N/m² = 100 kPa.

http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

Table 2. Steel type and type number	·
Steel type	Type number
Carbon and carbon manganese steels Carbon Carbon manganese	360 440
Ferritic alloy steels	
0.3 % molybdenum 1 % chromium 0.5 % molybdenum 2.25 % chromium 1 % molybdenum	243 620-460
(normalized and tempered) 9 % chromium 1 % molybdenum	622-490*
(annealed) 9 % chromium 1 % molybdenum	629-470*
(normalized and tempered)	629-590*
9 % chromium 1 % molybdenum, vanadium, niobium, nitrogen	91
12 % chromium 1 % molybdenum, vanadium	762*
Austenitic stainless steels*	204054
18 % chromium 10 % nickel 18 % chromium 12 % nickel,	304S51
molybdenum 18 % chromium 12 % nickel,	316851
molybdenum, boron 18 % chromium 12 % nickel,	316S52
titanium (solution treated at 950°C to 1070°C) 18 % chromium 12 % nickel,	321S51 (1010)†
titanium (solution treated at 1070°C to 1140°C) 18 % chromium 12 % nickel,	321S51 (1105)†
niobium	347S51
15 % chromium 10 % nickel 6 % manganese, niobium, vanadium	215S15

*Only seamless tubes are available in these alloys. †The mean of the permissible solution treatment temperature range is given.

The lower solution treatment temperature range results in higher yield strength values and the higher solution treatment temperature range gives higher stress rupture values.

Example. BS 3059: Part 2: CEW 620-460: Cat 1 denotes cold finished electric resistance welded tube made from steel 620-460 tested to category 1.

NOTE. The designations for tubes in this Part of BS 3059 and their nearest equivalent designations in BS 3059 : Part 2 : 1978 and in ISO 2604: Parts II and III are tisted in appendix A for information.

4 Manufacture of the steel

4.1 Steelmaking process

The steel shall be produced by an electric process or one of the basic oxygen processes at the option of the manufacturer unless otherwise specified by the purchaser (see 2.2(a)).

4.2 Cackidation

All steals shou be fully-killed

5 Manufacture of the product

The tubes shall be manufactured by one of the following processes.

(a) Seamless. The tubes shall be manufactured by a seamless process.

Carbon and ferritic alloy seamless tubes shall be hot or cold finished (see note 1). Austenitic stainless steel seamless tubes shall be cold finished (see note 1).

(b) Electric resistance welded (see note 2). The tubes shall be manufactured from hot or cold, flat-rolled strip longitudinally welded continuously by the passage of an electric current across the abutting edges or along the edges prior to the closure under welding pressure without the addition of filler metal. The tubes shall be as welded, hot finished or cold finished (see note 1). The finished tubes shall not include welds used for joining lengths of the hot or cold, flat-rolled strip prior to tube forming.

For tubes of both test categories ultrasonic or other suitable non-destructive testing method shall be used for the continuous examination of the weld area (see note 3).

NOTE 1. The terms 'as welded', 'hot finished' and 'cold finished' apply to the condition of the tubes before they are heat treated, if required, in accordance with clause 7.

NOTE 2. Electric resistance welded tubes cover those produced by both high and low frequency techniques using either direct contact or induction.

NOTE 3. For welded tubes, ultrasonic or other suitable nondestructive testing is used for the purpose of quality control during the process of manufacture by a method and at a place chosen by the manufacturer.

6 Chemical analysis

6.1 Ladle analysis

6.1.1 The steel shall show on ladle analysis the composition given in table 3, appropriate to the steel type specified.

6.1.2 For steel types 360 and 440 the steelmaker shall report the following additional elements to enable a carbon equivalent value to be calculated: chromium, nickel, molybdenum, vanadium and copper.

6.2 Product analysis

If a product analysis for acceptance purposes is required by the purchaser this shall be stated in the enquiry and order (see 2.2(b)).

When an analysis on the product is carried out, the permitted deviations given in table 4 shall apply to the specified ladle analysis in table 3.

The number of samples to be taken shall be one per cast. The samples shall be taken either from the test pieces used for the verification of the mechanical properties or from the whole thickness of the tube at the same location as for the mechanical test samples.

In cases of dispute, the methods of chemical analysis shall be in accordance with British Standard Handbook No. 19 or BS 6200: Part 3, as appropriate.

Provided by IHS under license with BS! No reproduction or networking permitted without license from IMS Table 3. Chamical comparision and machinizal properties at soom temporari

Steel type	Type no.	Chec	micat col	mpositi	on (ladk	anslys	is) (see n	0185 1 10	3)		_						Mechani	cel propen	ies at room	m tempe	rature (see no	 te 51		
vw.adultpdf.com by TIFF To PDF t	rial ver	c	a to	SI	love	Mn		k n	\$	Cr reo	ister	Mo thi	; ;	NI ftx/	ore.	Others 'see notes 3, 4 and 6'.	B	R _{en} (see no	 _	A	Flattening test constant	Drift	Me In D	ing test
		I .	max.	I .	max.	4 .	mar,	mak,	1	min.	Mux,				max.		mh.	min.	max.	min,	C		>0.6) >0, 8
		%	*	*	76	*]%	*	%	*	*	*	*	*	%	*	N/mm³	N/mm³	N/mm²	*		*	*	*
Carbon	360	_	0,17	0.10	0.35	0.40	0.80	0.035	0.035	-] -		_	. <u>-</u>			235	360	500	24	0.10	12	15	19
Carbon manganese	440	0,12	0.18	0.10	0.35	0.90	1.20	0,035	0.035	-	_	<u> </u>	<u> </u>		-	_	246	440	680	21	۵,07	10	12	17
0.3 % malybdenum	243	0,12	0,20	0,10	0.35	0.40	0,80	0.035	0.035	_		0.25	0.35		_	Al _{met} 0.012 mex.	276	480	630	22	0,07	8	10	15
1 % chromium 0,5 % molybdenum	620-460	0.10	0,15	0.10	0,35	0.40	0.70	0.030	0.030	0.70	t.10	0.45	0.65	1	~-	Al _{met} 0.020 max.	180	460	610	22	0.07	В	10	15
2.25 % chromium 1 % molybdenum (normalized and tempered)	622-490	80,0	0.15	-	0.50	0.40	0.70	0,030	0,030	2.00	2.50	0.90	1.20	.	_	Al _{met} 0,020 max,	275	490	640	20	0.07	8	10	15
9 % chromium 1 % molybdenum (annexied) .	629-47D											2000					185	470	620	20	0.07	6	10	15
9 % chromium 1 % molybdenum (normalized and tempered)	629-590	-	0.15	0.25	1.00	0,30	0.60	0.030	0.030	8.00	10.00	0.30	.10	-	_	Al _{mat} 0,020 max.	400	590	740	18	G,07	8	10	16
9 % chromium I % molybdenum, vanadium, niobium, nitrogen	Βſ	0,08	0.12	0.20	0.50	0.30	0.60	0.020	0.020	6.00	9.50	0.85	1.06	. 1	0.40	V 0.18 to 0.25 Alms 0.030 max, N 0.030 to 0.070	450	630	830	18			:	
12 % chromium 1 % molybdenum, vanedium	762	0.17	0.23	1	0.60	_	1.00	0,030	0.030	10,00	12.50	0.80	1,20	0.3	0.8	Vecedium 0.25 min. 0.35 max.	470	720	870	15	0.08	6	8	12
18 % chromium 10 % nickel	304551	0.04	0.10		1.00	1	2.00	0.040	0.030	17,0	19.0	1		8.0	11.0	_	230	490	690	35	0.09	9	15	17
18 % chromium 12 % nickel, molybdenum	316\$51	0.04	0,10	-	1,00	- 1	2.00	0,040	0.030	16.5	18.5	2,00	2.50	10,5	13,5	_	240	510	710	35	90,0	9	15	17
18 % chromium 12 % nickel, molybdenum, boron	316552	0.04	0.10		1.00		2.00	0.040	0,030	16.5	18.5	2.00	2,50	10.5	13,6	Boron 0.0015 min. 0.006 mex.	240	510	710	35	0,09	9	15	17
18 % chromium 12 % nickel, titanium (solution treated at 950 °C to 1070 °C)	321\$51 (1010l	0.04	210	1	1.00		2.00	0.040	0,030	17.0	19.0			9.0	12.00	Titanium 5 X C min.	235	510	710	35	0.09	9	15	17
18 % chromium 12 % nickel, titanium (solution treated at 1070 °C to 1140 °C)	321551 (11 05)	0.04	0.10	-	,		2,00	J.0-10	5,030	,0	1414		-	5.0		0,80 max.	190	490	690	35	0.09	9	15	17
18 % chromium 12 % nickel, niobium	347551	0.04	0.10	-	1.00	-	2.00	0,040	0.030	17,0	19.0	1	1	9.0	13.0	Niobjum 10 x C min. 1.2 max.	240	610	710	36	0.09	9	15	17

NOTE 1. Elements not quoted in the table shall not be intentionally added without the agreement of the purchaser other than for the purpose of finishing the heat. Elements edded for the purpose of finishing the heat shall be reported. All reasonable precautions shall be taken to prevent the addition of such elements from scrap or other materials used in the manufacture.

215515

NOTE 2. For permissible deviations on product analysis, see table 4.

NOTE 3. Where a maximum metallic aluminium content Al_{met} of 0.020 % or 0.012 % is specified, determination of the total aluminium content provided it does not exceed the specified value is deemed to meet this requirement. In cases of dispute the metallic aluminium content is determined.

NOTE 4. For steel types 243, 620-460, 622-490, 629-470 and 629-590 the content of the following residual incidental elements shall not be greater than : nickel 0.30 % max.

copper 0,25 % max. tin 0.03 % mex.

"This applies also to steel type number 91 with the excention of nickel content.

NOTE 5. Re is the yield strength. For acceptance purposes for carbon and farritle alloy steels either the upper yield strength RaH or the 0.5 % proof stress (total elongation) At0.5 of 0.26 % and a maximum tin content of 0.03 % may be requested may be used: for austenitic stainless steels the 1 % proof stress (non-proportional alongation) $R_{01,0}$ or the 1 % proof stress (total elongation) $R_{11,0}$ is used (see 13.1).

Vacadium

Niobium

Beron

0.15 to 0.40

0.75 to 1.25

0.003 to 0.009

270

is the inside dismeter;

5.50 7.00 0.040 0.030 14.0

- 0 is the outside diameter;
- $R_{\rm m}$ is the tensile strength:
- A is the percentage elongation after fracture on a gauge length L_0 :

16.0 | 0.80 | 1.20 | 9.0 | 11.0

Lo is the original gauge length and it given by the expression: L₀ = 5.65 √S₀

,where S_{α} is the original cross-sectional area of the gauge length.

NOTE 6. For steel type number 91 a maximum copper content by the purchaser in order to facilitate subsequent operations of forming.

NOTE 7. For steel type number 91, a maximum tensile strength of 780 N/mm² may be requested by the purchaser.

15 % chromium

6 % manganese, niobium,

10 % nickel

varradium

0.06 0.15 0.20 1.00

Table

Permitted deviations

analysis from

the specified ladle analysis

Permitted deviations from the specified limits

Æ

្រើម៉្មី/www.adultpdf.com

DF tri	al v	ersi	ion	, to	rem	10V	e t	his n	nai	ck ,]	plea	ase	reg	iste	er th	is	sof	ftw	are).								**.*.*	******					
*The deviations app deviations shall not							•		5015	<u>ہ</u> جو	321551/1105)	310052	316851,	762, 304851,		•				,			and 91.	629-590	629.470	622-490,	243, 620-460,					360,440		
ly either above the specified be applied to different sample	Vanadium	Titanium and niobium		Nickel	Molybdenum		Chromium	Phosphorus		Sulphur		Manganese	Silicon	Carbon	Copper	Nitrogen	Aluminium	Vanadium	Niobium	Nickel	Molybdenum	Chromium	Phosphorus	Sulphur	Manganese	Silicon	Carbon	Phosphorus	Sulphur	Manganese	Sílicon	Carbon		
aximum or below the from the same cast.	< 0.04	All ranges	△	>5.0 ≪ 10.0	> 1.0	>15.0 <20.0	>10.0 <15.0	\$ 0.030 > 0.030 \$ 0.040	> 0.030		2.0 ≪	> 1.0	1.0	> 0.03	≤ 0.25	≤ 0.070	≤ 0.045	≤0.35			× 0.35 × 1.5	<10.0	< 0.050	≪ 0.050	≤ 2.0	< 1.0	< 0.25	≤ 0.050	≪ 0.050	≰ 2.0	▲ 0.50	≰ 0.25	%	
specified minimum but	0.03*	0.05*	0.15*	0.10*	0.05*	0.20*	0.15*	0.003	0.004	0.003	0.10*	0.04	0.05	0.01*	0.05	0.010	0.005	0.03	0.005	0.07	0.04*	0.10*	0.005	0.005	0.10*	0.05*	0.03*	0.005	0.005	0.10*	0.05*	0.03*	8	Greater than maximum
both	0.03*	0.05*	0.15	0.10*	0.05	0.20	0.15*	j 1	l	ı	0.10*	0.04	0.05	0.01*	0.05	0.010	0.005	0.03	0.005	0.07	0.04*	0.10*	1	1	0.10*	0.05*	0.03*		ı	0.10*	0.05*	0.03*	%	minimum

http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

6.3 Content of elements

If required by the purchaser (see 2.2(c)), the content of elements selected by the purchaser, in addition to those specified in table 3 and in 6.1.2 for steel types 360 and 440 shall be reported.

7 Final supply condition

The tubes shall be supplied in the final supply condition as given in table 5 unless otherwise specified by the purchaser (see note 1). For seamless hot finished tubes in steels 360 and 440, unless otherwise specified by the purchaser on the enquiry and order (see 2.2(d)), the manufacturer shall have the option of supplying in either of the final supply conditions given in table 5.

Heat treatment temperatures shall be selected from within the temperature ranges specified in table 5 and shall refer to the metal temperature (see note 2).

NOTE 1. In the event that the tubes are required for subsequent manipulation, the purchaser may request delivery of the tubes in a condition other than the final supply condition given in table 5. In this case the purchaser should be informed of the heat treatment necessary to give the required properties (see clause 8).

NOTE 2. The supplier should demonstrate if required that the appropriate heat treatment cycle has been achieved.

8 Mechanical properties

8.1 Mechanical properties at room temperature

The mechanical properties at room temperature* to be obtained on test pieces selected, prepared and tested in accordance with clauses 12 and 13 shall be as specified in table 3.

NOTE. If heat treatments different from, or additional to, the normal reference heat treatment (which may have an adverse effect on the mechanical properties) are to be carried out after the delivery of the tubes, the purchaser may request, at the time of the enquiry and order, additional mechanical tests on samples that have been given heat treatments different from, or additional to, those given in table 3. The heat treatment of the samples, and the mechanical properties to be obtained from tests on them should be agreed between the purchaser and the manufacturer at the time of the enquiry and order.

8.2 Elevated temperature minimum proof stress values

The elevated temperature minimum proof stress values shall be as specified in table 6 and table 7 when sampled as described in 12.6 and tested or verified as described in 13.8.

NOTE. The values are not normally subject to verification except for steel type number 91.

1050 to 1150

Table 5.	Steel	type num	iber and tu	be manufa	cturing proces	s, final	supply	condition a	nd temperatu	re of heat
treatmen	i t									

Steel type number and tube manufacturing process	Final supply condition	Temperature of heat treatment
		°C
_	Hot finished	_
360, 440 (seamless hot finished)	i l	
	Normalized	880 to 940
360, 440 (seamless cold finished)	Normalized	880 to 940
360, 440 (welded, hot finished)	Hot finished	-
360, 440 (as welded, welded hot finished, welded cold finished)	Normalized	880 to 940
243 (all manufacturing conditions see clause 5)	Normalized	900 to 960
620-460 (all manufacturing conditions see clause 5)	Normalized	900 to 960
622-490 (seamless see clause 5)	Normalized and tempered	Normalizing: 900 to 960 Tempering: 680 to 750
629-470 (seamless see clause 5)	Annealed	850 to 950
629-590 (seamless see clause 5)	Normalized and tempered	Normalizing: 900 to 1000 Tempering: 700 to 800
91 (seamless, see clause 5)	Normalized and tempered	Normalizing: 1040 to 1090 Tempering: 730 to 790 Tempering: 700 to 800
762 (seamless see clause 5)	Normalized and tempered	Normalizing: 1020 to 1070 Tempering: 730 to 780
304S51 (seamless see clause 5)	Solution treated	950 to 1100
316S51 (seamless see clause 5)	Solution treated	1000 to 1100
316S52 (seamless see clause 5)	Solution treated	1000 to 1100
321S51 (1010) (seamless see clause 5)	Solution treated	950 to 1070
321S51 (1105) (seamless see clause 5)	Solution treated	1070 1140

Solution Resaised

** * ** ** **

No reproduction or networking permitted without license from IHS2 5)

#P2054:

PART*2

<u> </u>		register this software. $(R_{p0,2})$ for carbon manganese a	nd ferrit	ic alloy	steels at	elevate	d temper	ratures (see note)	
Steel type	Туре по.	Final supply condition			erature (°					
			250	300	350	400	450	500	550	600
		•	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm ²	N/mm²
Carbon	360	Hot finished and normalized	150	132	120	112	108	_		
Carbon manganese	440	Hot finished and normalized	195	173	158	150	140			-
0.3% molybdenum	243	Normalized	221	192	180	176	172	166	_	
1 % chromium 0.5 % molybdenum	620–460	Normalized	<u>-</u>		187	180	174	169	166	_
2.25 % chromium 1 % molybdenum	622-490	Normalized and tempered		_	224	218	204	190	168	
9 % chromium	629_470	Annealed	_		121	117	115	112	_	
1 % molybdenum	629-590	Normalized and tempered	_		322	316	311	290	235	_
9 % chromium 1 % molybdenum, vanadium, niobium, nitrogen	91	Normalized and tempered	-	351	344	331	311	286	250	207
12 % chromium 1 % molybdenum, vanadium	762	Normalized and tempered		_	345	337	324	296	-	_

[AMD 8707]

Table 7.	Minimum proof	stress values (/	የ _{p1.0}) for	austeniti	c stainless stee	is at elevated	temperatui	res (see n	ote)
vw adultn	df com			·····		<u> </u>			

vw.adultpdf.com by TIFF To PDF trial version, to rer	Type no. nove this mark.	Final supply condition please register this software.	R _{p1.0} m	in. at a ter	nperature	(° C) of:					
,		product 1081stor this sort ware.	250	300	350	400	450	500	650	800	650
			N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²
18 % chromium, 10 % nickel	304851	Solution treated	139	132	125	120	117	115	112	109	104
18 % chromium, 12 % nickel molybdenum	316S51) 316S52	Solution treated	150	143	137	133	129	125	121	119	116
18 % chromium, 12 % nickel titanium	321551 (1010) 321551 (1105)	Solution treated 950 °C to 1070 °C Solution treated 1070 °C to 1140 °C	164 125	1 <u>58</u> 118	1 <u>62</u> 114	148 110	144 107	140 105	138 104	135 102	130 100
18 % chromium, 12 % nickel niobium	347851	Solution treated	172	166	162	159	157	155	153	151	-
15 % chromium, 10 % nickel, 8 % manganese, niobium, vanadium	215\$15	Solution treated	190	187	184	182	179	178	175	170	165

http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

8.3 Stress rupture properties

The stress rupture properties shall not be subject to verification.

NOTE. For tubes complying with this Part of BS 3059 the estimated average stress rupture values are shown in appendix D and can be used for design purposes.

8.4 Flattening test properties

- 8.4.1 When tested in accordance with 13.2 the ring shall withstand being flattened without showing any cracks or flaws in the metal, except as specified in 8.4.2, until the distance between platens, H, is equal to or less than the value calculated using the constant specified.
- 8.4.2 The test pieces are normally tested without preparation of the cut edges and, in this condition, cracks originating at the edges of the test piece which are less than 6 mm long and which do not penetrate through the wall shall be deemed not to affect compliance with this Part of BS 3059.

8.5 Drift expanding test properties

When tested in accordance with clauses 12 and 13 no cracks shall appear in the test piece.

9 Visual inspection and appearance

- 9.1 The tubes shall be clean and free from such defects as can be established by visual inspection in accordance with this Part of BS 3059 (see clause 11).
- 9.2 Visual inspection shall be carried out on the external and internal surfaces. In the case of the internal surface, the tube shall be viewed from each end.
- NOTE 1. Visual inspection should be carried out in suitable lighting, i.e. an illuminance of 500luxor greater,
- NOTE 2. It is recognized that the ability to visually examine the inner surface from the tube ends is limited in the case of small diameter tubes.
- 9.3 The tubes shall have a finish and surface condition which permits surface imperfections or marks requiring dressing to be identified.
- NOTE, Any special requirements for surface condition should be agreed between the purchaser and manufacturer at the time of enquiry and order.
- 9.4 It shall be permissible to dress by grinding or machining surface marks and imperfections such as scabs, seams, tears, laps, slivers or gouges provided that the thickness of the tube after dressing does not fall below the nominal thickness by more than the tolerance specified in this Part of BS 3059.
- 9.5 Surface imperfections which encroach on the minimum wall thickness shall be considered defects and shall be deemed not to comply with this Part of BS 3059.
- 9.6 All dressed areas shall blend smoothly into the contour of the tube.
- 9.7 The tubes shall not deviate from straightness by more than 1 in 600 at the centre of the tube length.
- 9.8 The ends shall be cut nominally square with the axis of the tube and shall be free from excessive burrs.

9.9 Any non-ferrous metals or their compounds coming into contact with the tubes during manufacture shall not be deposited so as to be harmful during subsequent fabrication and operation.

10 Tolerances

10.1 General

The maximum tolerances on the dimensions of the tubes shall be as specified in 10.2 and 10.3.

NOTE. Seamless tubes, class 1 and cold finished electric resistance welded tubes are produced to outside diameter and thickness or inside diameter and thickness dimensions. Seamless tubes, class 2, electric resistance welded tubes and cold finished seamless tubes are produced to outside diameter and thickness dimensions.

10.2 Diameter, thickness and size of weld upset

The tolerances on outside diameter or inside diameter shall include ovality and those on thickness shall include eccentricity.

(a) Seamless class 1 (S1)

The outside or inside diameter and the thickness shall be subject to the following tolerances:

outside diameter or inside diameter: ± 0.5 % with a minimum tolerance of \pm 0.10 mm;

thickness: ± 7.5 %.

(b) Seamless class 2 (\$2)

The outside diameter and the thickness shall be subject to the following tolerances:

outside diameter: ± 0.75 % with a minimum tolerance of \pm 0.30 mm;

thickness: ± 10.0 %.

(c) Electric resistance welded class 1 (ERW 1)

The outside diameter and the thickness shall be subject to the following tolerances:

outside diameter: ± 0.5 % with a minimum tolerance of ± 0.10 mm;

thickness: ± 7.5 % (excluding the weld area).

The minimum thickness in the weld area shall be not less than that permitted in the body of the tube.

The external weld upset (flash) shall be removed completely, i.e. flush with the outside surface of the tube. Where practicable the internal weld upset shall be trimmed throughout the length of the tube so that its maximum height shall not exceed 0.25 mm.

(d) Electric resistance welded class 2 (ERW 2)

The outside diameter and the thickness shall be subject to the following tolerances:

outside diameter: ± 0.75 % with a minimum of ± 0.30 mm;

thickness: ± 10 % (excluding the weld area).

1990 BS 3059: Part 2

ΒSΙ

The minimum thickness in the weld area shall be not less than that permitted in the body of the tube.

tube. Where practicable the internal weld upset shall be tube so that its completely, i.e. flush with the outside surface of the The external weld upset (flash) shall be removed maximum height shall not exceed 0.25 mm. trimmed throughout the length of the

(e) Cold finished electric resistance welded (CEW)

The outside or inside diameter and the thickness shall be subject to the following tolerances:

outside diameter or inside diameter: \pm 0.5 % with a minimum tolerance of \pm 0.10 mm;

thickness: ± 7.5 %.

(f) Cold finished seamless (CFS) (austenitic steels)

The outside diameter and the thickness shall be subject to the following tolerances:

outside diameter: ± 0.5 % with a minimum tolerance of ± 0.15 mm;

up to and including 3.25 mm thick: ± 10 %; g thickness:

over 3.25 mm thick: ± 7.5 %

10.3 Length

Unless otherwise specified by the purchaser (see 2.2(e)) tubes shall be supplied as random lengths.

NOTE, The actual range of the random lengths may be the subject of agreement between the manufacturer and the purchaser.

Where the length is specified as 'exact length' or 'cut length', the permissible deviation shalf be +3, -0 mm for lengths up to and including 6 m. For every 3 m increase it length above 6 m, the plus tolerance shall be increased by 1.5 mm with a maximum of 12.0 mm.

Tests

The tubes shall be subjected to the tests specified in table 8 appropriate to the test category.

The elevated temperature properties (see 8.2 and 8.3) shall apply to tubes of both test category 1 and test category 2.

http://www.adultpdf.com

as determined by 12.2 includes a charge in a batch-type furnace.

Created by TIFF To PDF trial version, to remove this mark, please register this software.

Mechanical tests at room

1 the number of tubes on which shall be 2 % of the

which nechanical

For the flattening test, a

the drift expanding test, a ring equal in length the outside diameter of the tube, but not less diameter times the outside diamete 0 mm long, shall be taken outside

Table 8. Tests for test category 1 and test category 2	
Test category 1	Test category 2
Visual inspection (see clause 9 and 12.3) Tensile test (see 8.1, 12.2.4 and 13.1) Flattening test (see 8.4, 12.2.5 and 13.2) Drift expanding test (see 8.5, 12.2.6 and 13.3) Ultrasonic test (see 12.5 and 13.6)	Visual inspection (see clause 9 and 12.3) Tensile test (see 8.1, 12.2.4 and 13.1) Flattening test (see 8.4, 12.2.5 and 13.2) Drift expanding test (see 8.5, 12.2.6 and 13.3) Leak tightness test (see 12.4)

ပွဲ *In cases of dispute room temperature is to be taken as 20 ± 5

at the option of the with 13.4 or This shall be either eddy a hydraulic

It defects extending an appreciable depth into the tube out complete penetration. The test specified in 13.4 should arded as a test of strength since the maximum pressure will develop only limited stress in the wall of tubes having hydraulic leak tightness test is capable of detecting

2. Both the hydraulic test and the eddy current test short length at each end of the tube incompletely to ested at the time of enquiry and order, the length aft be determined by the manufacturer and reported to ser. Furthermore, if requested at the time of enquiry

Ultrasonic testing

All tubes to category 1 shali be tested ultrasonically

ted by TIFF To PDF trial version, to remove this mark, please register this software. and order, the length affected should be manufacturer and reported to the purchaspecified at the time of the enquiry and NOTE. Ultrasonic testing may the tube incompletely tested.

temperature proof stress testing

testing is carried out test pieces

NOTE

13.1

The BS 1 tensile test shall be accordance with

yield strength $R_{
m e}$

strength shall be the

//www.adultpdf.com

The percentage elongation shall be reported with reference to a gauge length of $L_o = 5.65 \checkmark S_o$, where S_o is the original cross-sectional area of the gauge length. If other gauge lengths are used, the corresponding percentage elongation on $5.65 \checkmark S_o$ shall be obtained by reference to BS 3894: Part 1 for carbon and ferritic alloy steels or BS 3894: Part 2 for austenitic steels. In cases of dispute, a gauge length of $5.65 \checkmark S_o$ shall be used.

<u>3</u>2 Flattening test

The test piece shall be flattened at room temperature* between parallel flat platens until the distance between the platens H (in mm), measured under load, is not greater than the value given by the equation:

$$H = \frac{(1+C)a}{C+a}$$

where

- is the specified tube thickness (in mm);
- is the specified tube outside diameter (in mm);
- is the flattening test constant (see table 3).

For electric resistance welded including induction welded tubes the weld shall be positioned at 90° to the direction of flattening.

13.3 Drift expanding test

The test piece shall be expanded by a tapered mandrel having an included angle of 45° or 60° (at the option of the manufacturer) and the outside diameter shall be increased by not less than the amount specified in table

Hydraulic test

For test category 2 tubes which are hydraulically tested for verification of leak tightness (see 12.4), the test pressure P (in bar) shall be calculated from the equation:

$$P = \frac{20Sa}{D}$$

- is the specified tube outside diameter (in mm);
- Ø is the specified tube thickness (in mm);
- is a stress (in N/mm²), which shall be taken as 80 % temperature for carbon and ferritic alloy steels, and ture for austenitic stainless steels. 70 % of the minimum yield strength at room tempera the specified minimum yield strength at room

The test shall be carried out at the pressure P or at 140 bar, whichever is lower, but when 140 bar is lower than P, the purchaser has the option (see 2.2(g)) to specify that the test shall be carried out at a pressure higher than 140 bar, but not greater than the value P determined from equation (2).

The test pressure shall be maintained sufficiently long for any leakage to be observed. Any tube failing to withstand the hydraulic pressure test shall be deemed not to comply with this Part of BS 3059.

http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

13.5 Eddy current test

For test category 2 tubes that are eddy current tested for verification of leak tightness (see 12.4) the eddy current test and the assessment of results shall be carried out in accordance with appendix E.

13.6 Ultrasonic testing

For test category 1 tubes, ultrasonic testing for longitudinal imperfections and assessment of results shall be carried out in accordance with appendix F.

13.7 Additional non-destructive testing

The purchaser has the option to specify additional nondestructive tests. The additional methods of test and the basis of acceptance shall be as stated on the enquiry and order (see 2.2(h)).

13.8 Elevated temperature proof stress tests or verification procedure

13.8.1 if the purchaser requires verification of elevated temperature proof stress values, this shall be carried out in accordance with 13.8.2 or 13.8.3 (see 2.2(i)). The method of verification shall be at the option of the manufacturer unless the purchaser specifies verification in accordance with 13.8.2 in the enquiry and order (see 2.2(j)).

13.8.2 When the purchaser requires verification of elevated temperature proof stress values by testing, the tests shall be carried out in accordance with BS 3688: Part 1 at a temperature selected by the purchaser from table 6 or table 7 and specified at the time of enquiry and order (see 2.2(h)).

NOTE. The specified strain rate in BS 3688 . Part 1 is 0.001/min. to 0.003/min.

13.8.3 For verification of elevated temperature proof stress values without testing, the values shall be verified by the procedure given in BS 3920 (see appendix G).

14 Retests

Should a tube selected for testing fail in any of the tests specified in 13.1, 13.2, 13.3 or 13.8 the tube and the batch of tubes it represents shall be deemed not to comply with this Part of BS 3059 unless:

- (a) two further tests of the same kind as produced the failure are made from the same tube, and both of these further tests prove satisfactory; or
- (b) the first tube tested is rejected and all the tests specified in 13.1, 13.2, 13.3 and 13.8 are carried out on two further tubes from the batch and all these tests are satisfactory; or
- (c) if either of the further tests required by (a) or (b) proves unsatisfactory, the tubes represented are suitably heat treated or re-heat treated and samples are selected and tested in accordance with all the tests specified in 13.1, 13.2, 13.3 and 13.8 and all these tests are satisfactory.

15 Test certificate

A manufacturer's test certificate shall be supplied giving the following information:

- (a) the designation (see clause 3);
- (b) the ladle analysis for elements specified in table 3 for each cast used;
- (c) the mechanical test results for each batch tested;
- (d) the purchaser's order number or other appropriate mark (see 17.2(c));
- (e) the steelmaking process used (see 4.1).

The test certificate shall also give the following information where appropriate for options selected by the purchaser (see 2.2):

- (1) the product analysis (see 6.2);
- (2) the final supply condition (see clause 7);
- (3) the content of selected elements in addition to those specified in table 3 and 6.1.2 (see 6.3);
- (4) the elevated temperature test results (see 13.8.2) or statement of verification of values (see 13.8.3);
- (5) for category 2 tubes the method of verification of leak tightness, either by eddy current or hydraulic test and, in the latter case, the pressure applied (see 13.4);
- (6) the results of additional non-destructive testing (see 13.7).

16 Protective coating

The tubes shall be supplied either uncoated or with the manufacturer's normal mill coating at the option of the purchaser (see 2.2(k)).

NOTE. If the purchaser requires additional measures for protection during delivery or storage then this should be the subject of agreement between the purchaser and the manufacturer.

17 Marking

- 17.1 Before despatch from the manufacturer's works, the tubes shall be marked in accordance with 17.2 or, if specified by the purchaser in the enquiry and order (see 2.2(I)), in accordance with 17.4.
- 17.2 Except as provided for tubes that are bundled, each tube shall be legibly marked at one end, commencing not more than 300 mm from the end, by stencilling or other indelible marking.

The marking shall consist of the following in the sequence indicated:

- (a) the manufacturer's name or identification mark;
- (b) the designation as given in clause 3, e.g. BS 3059: Part 2 : CEW 620-460: Cat 1*:
- (c) the purchaser's order number or other appropriate mark to identify it with the test certificate.

Copyright British Standards Institution
Provided by IHS under license with BS!
No reproduction or networking permitted without license from IHS

Not for Resale

^{*}Marking BS 3059: Part 2 on or in relation to a product represents a manufacturer's declaration of conformity, i.e. a claim by or on behalf of the manufacturer that the product meets the requirements of the standard. The accuracy of the claim is therefore solely the responsibility of the person making the claim. Such a declaration is not to be confused with third party certification of conformity, which may also be desirable.

146

BS 3059 : Part 2 : 1990

r tubes that are bundled the information given in (a), d (c) shall be either stamped on one or more metal or ner durable tags, or printed on banding clips or straps, ich shall be securely attached to each bundle.

Not more than one steel grade shall be included in one bundle.

OTE. If traceability of cast identity is required this should be to be properties of an agreement between the manufacturer and the surchaser at the time of the enquiry and order.

'3 The quality of the paint or ink applied shall be such at it shall have a life of at least one year in unheated brage under cover.

The dried film shall contain not more than 0.025 % (m/m) of any of the following metals:

lead, tin, copper, zinc.

NOTE. For certain applications limits may be required on the levels of sulphur and halogens in the paint. These limits should be the subject of agreement between the supplier and the purchaser.

17.4 If specified by the purchaser in the enquiry and order (see 2.2(I)) each tube shall be marked in accordance with BS 5383 and shall include the information specified in 17.2 (a), (b) and (c).

NOTE Colour coding is an optional requirement in BS 5383 and if

NOTE, Colour coding is an optional requirement in BS 5383 and if required should be specified by the purchaser in the enquiry and order.

Not for Resale 3

Example://www.adultpdf.com

Care ated by TIFF To PDF trial version, to remove this mark, please register this software.

Appendices

BS 3059: Part 2: 1990

••••

Appendix A. Designations of steel tubes in equivalent designations in BS 3059: Part 2

Table 9 lists the designations for tubes in this Part of BS as in ISO 2604: Parts II and III.

Designations of steel tubes in BS 3059: Part

Table 9.

NOTE. The designations are indicated as nearest equivalents and

SS 3059 : Part 2 : 1990 Designation In secondance With BS 5383 S1 360 Carl S2 360 Carl S1 360 Carl S2 360 Carl S1 360 Carl S1 360 Carl S1 360 Carl S1 360 Carl S2 360 Carl S1 360 Carl S2 360 Carl S1 340 Carl S2 460 Carl ERW 2 440 Carl ERW 2 440 Carl S2 620	65 3059 : Part 2 : 1978 and 150 2604	: rarts II and III		
Colour code Designation In accordance In accordance St 360 Cat 1	3059 : Part 2 :			ISO 2604 : Parts 11 and 111
Stransport Strate	អំព្វាក្សដល់ព	Colour code in accordance with BS 5383	Designation	Designation
360 Cat 1	360 Cat 360 Cat			TS 5 Cat V (cold finished) TS 5 Cat V
360 Cat 1 0 Cat 2 0 Cat 2 360 Cat 1 360 Cat 2 360 Cat 1 440 Cat 1 440 Cat 2 3 Cat 1 440 Cat 2 3 Cat 1 3 Cat 1 3 Cat 1 3 Cat 1 3 Cat 2 3 Cat 2 3 Cat 2 3 Cat 1 3 Cat 2 3	360 360		ERW 360 Cat 1	TW 5 Cat V
\$0 Cat 2 \$0 Cat 2 \$0 Cat 2 \$0 Cat 2 \$1 360 Cat 2 \$2 360 Cat 2 \$2 360 Cat 2 \$3 560 Cat 2 \$4 40 Cat 1 \$4 40 Cat 1 \$4 40 Cat 2 \$4 40 Cat	360 C	White	CEW 360 Cat 1	TS 5 Cat V (cold finished)
1360 Cat 2 2 360 Cat 2 1440 Cat 1 440 Cat 1 440 Cat 2 1440 Cat 2 15440 Cat 1 1543 Cat 1 1543 Cat 1 1543 Cat 2 1543 Cat 1 1543 Cat 2 1543 Cat 1 1543 Cat 2 1543 Cat 2 1543 Cat 2 15440 Cat 1 15440 Cat 2 15440 Cat 1 15440 Cat 2 15440 Cat 3	360 Cat 360 Cat		S1 360 Cat 2 S2 360 Cat 2	TS 5 Cat III (cold finished) TS 5 Cat III
240 Cat 2 10 Cat 1 1440 Cat 1 1440 Cat 1 1440 Cat 2 1243 Cat 1 1243 Cat 1 1243 Cat 2 13620 Cat 1 1400 Cat 2 1400 Cat 1 1400 Cat 2 1400 Cat 3 14	1360		ERW 360 Cat 2	TW 5 Cat III
0 Cat 1 0 Cat 1 1440 Cat 1 2 440 Cat 1 2 440 Cat 1 2 440 Cat 1 1440 Cat 1 2 440 Cat 1 2 440 Cat 2 1 Cew 440 2 440 Cat 2 1 Cew 440 2 2 440 Cat 2 1 Cew 440 2 2 440 Cat 2 1 Cew 440 2 2 440 Cat 2 2 2 2 2 2 2 2 3 Cat 1 3 Cat 1 2 2 2 3 Cat 1 3 Cat 2 2 2 2 3 Cat 1 2 2 3 Cat 3 3 Cat 2 3 Cat 3 3 Cat 2 3 Cat 3 4 Cew 243 5 Cew 243 6 Cat 3 5 Ca	360 Cat		CEW 360 Cat 2	TW 5 Cat [[] (cold finished)
1440 Cat 1 2440 Cat 1 2440 Cat 1 440 Cat 2 10 Cat 2 10 Cat 2 10 Cat 2 10 Cat 2 1440 Cat 1 1440 Cat 2 1440 Cat 1 1440 Cat 2 1440 Cat	944 044		S1 440 Cat 1 S2 440 Cat 1	1 [
7 vellow CEW 440 Cat 2 0 Cat 2 0 Cat 2 0 Cat 2 0 Cat 2 1440 Cat 2 1440 Cat 2 3 Cat 1 243 Cat 1 243 Cat 1 243 Cat 1 243 Cat 1 244 Cat 2 3 Cat 1 243 Cat 1 243 Cat 1 243 Cat 1 243 Cat 2 243 Cat 1 243 Cat 2 243 Cat 1 244 Cat 2 3 Cat 3	1 440	•	ERW 440 Cat 1	
0 Cat 2 0 Cat 2 1 440 Cat 2 1 440 Cat 2 2 440 Cat 2 3 Cat 1 2 243 Cat 1 2 243 Cat 2 3 Cat 2 3 Cat 2 2 243 Cat 2 3 Cat 2 2 243	440 C.	Yellow	CEW 440 Cat 1	•
1 440 Cat 2	440 Cat		S1 440 Cat 2	i
2440 Cat 2 3 Cat 1 3 Cat 1 1243 Cat 1 1243 Cat 1 243 Cat 2 3 Cat 2 1243 Cat 2 2243 Cat 2 2243 Cat 2 3 Cat 2 1 Cat 2 2243 Cat 2 2243 Cat 2 2243 Cat 2 3 Cat 2 1 Cat 2 2243 Cat 2 3 Cat 2 2243 Cat	1 440		52 440 Cal 2	
3 Cat 1 3 Cat 1 2 2 4 3 Cat 2 2 2 4 3 Cat 2 2 2 2 3 Cat 2 2 2 2 3 Cat 2 2 2 2 3 Cat 2 3 Cat 2 2 2 2 3 Cat 2 3 Cat 2 2 2 2 3 Cat 2 2 2 2 3 Cat 2 3 Cat 2 3 Cat 2 2 2 2 3 Cat 2 3 Cat 2 3 Cat 2 3 Cat 2 5 Cat 2 6 Cat 1 6 Cat 1 6 Cat 1 6 Cat 2 5 Cat 2 6 Cat 1 6 Cat 2 6 Cat 2 7 Cat 2	√ <		CEW AAA Cat 2	
3 Cat 1 243 Cat 2 3 Cat 2 3 Cat 2 3 Cat 2 3 Cat 2 2 243 Cat 2 2 2243 Cat 2 2 225 Cat 2 2 2	13 Cat 1		S1 243 Cat 1	TS 26 Cat V (cold finished)
1 243 Cat 1	3 Cat		243 Cat	26 Cat V
243 Cat 1 3 Cat 2 3 Cat 2 3 Cat 2 1 243 Cat 2 2 243 Cat 2 2 243 Cat 2 0 460 Cat 1 6 20 460 Cat 1 6 20 460 Cat 1 6 20 460 Cat 2 2 6 20 460 Cat 2 2 6 20 460 Cat 2 2 6 20 460 Cat 2 3 Cat 2 5 6 20 460 Cat 2 5 6 20	1 243 2 243	•	ERW 243 Cat'1	TW 26 Cat V
3 Cat 2 3 Cat 2 3 Cat 2 1 243 Cat 2 2 243 Cat 2 0 460 Cat 1 1 620 460 Cat 1 2 620 460 Cat 1 2 620 460 Cat 2 1 620 460 Cat 2 2 620 460 Cat 2 3 Cat 2 3 Cat 3 5 Cat 460 Cat 2 5 Cat 460 Cat 3 5 Cat 460 Cat 4 6 Cat 460 Cat 4 7 Cat	50	Plum	CEW 243 Cat 1	Cat
1 243 Cat 2 ERW 243 243 Cat 2 ERW 243 243 Cat 2 CEW 243 Cat 2 CEW 243 Cat 1 CEW 243 Cat 1 C20 460 Cat 1 C20 460 Cat 1 CEW 620 Cat 1 CEW 620 Cat 2 CEW 620	243 Cat 243 Cat		S1 243 Cat 2 S2 243 Cat 2	TS 26 Cat III (cold finished)
243 Cat 2 243 Cat 2 0-460 Cat 1 1 620-460 Cat 1 2 620-460 Cat 1 6 620-460 Cat 1 1 620-460 Cat 2 1 620-460 Cat 2 1 620-460 Cat 2 2 620-460 Cat 2 2 620-460 Cat 2 2 620-460 Cat 2 3 620-460 Cat 2 5 620-460 Cat 2 6 620-460 Cat 2 6 620-460 Cat 2 7 620-460 Cat 2 7 620-460 Cat 2 8 620-460 Cat 2	1 243		ERW 243 Cat 2	26
0-460 Cat 1 1 620-460 Cat 1 2 620-460 Cat 1 620-460 Cat 1 10-460 Cat 2 1 620-460 Cat 2 1 620-460 Cat 2	243 C		S E	TW 26 Cat III (cold finished)
1 620-460 Cat 1	620-460		S1 620 Cat 1	TS 32 Cat V (cold finished)
2 620-460 Cat 1	1W 1 620-460			185 56 50 56 50 50 56 50 56 50 50 56 50 50 50 50 50 50 50 50 50 50 50 50 50
620-460 Cat 1 0-460 Cat 2 1 620-460 Cat 2 2 620-460 Cat 2	2 620-460		EHW 620 Cat 1	32 Cat V
0-460 Cat 2 0-460 Cat 2 1 620-460 Cat 2 \ 2 620-460 Cat 2 \	620-	Red	CEW 620 Cat 1	32 Cat V (cold
1 620-460 Cat 2 \ 2 620-460 Cat 2 \	0.460			TS 32 Cat III (cold finished) TS 32 Cat III
	1 620-460 Cat		ERW 620 Cat 2	TW 32 Cat !!!
620-460 Cat 2) CEW 620	2 020-460 Cat 2 620-460 Cat 2		CEW 620 Cat 2	TW 32 Cat III (cold finished)

No reproduction of the bandar ted by TIFF To PDF trial version, to remove this part of the bandar institution of the banda

BS 3059 : Part 2 : 1990		BS 3059 : Part 2 : 1978	ISO 2604 : Parts II and III
Designation	Colour code in accordance with BS 5383	Dasignation	Designation
S1 622-490 Cat 1		S1 622-490 Cat 1	TS34* Cat V (cold finished)
072	Liaht blue		9
S1 622-490 Cat 2		S1 622-490 Cat 2	TS34* Cat III (cold finished)
2 622-490	·	622-490 Cat	Cat III
S1 629-470 (or 629-590) Cat 1)		S1 629-470 (or 629-590) Cat 1	TS38* Cat V (cold finished)
629-590)	<u>.</u>		Cat V
ပ္သ	Ć i e	S1 629-470 (or 629-590) Cat 2	TS38* Cat III (cold finished)
629-470 (or 629-590)		629-470 (or 629-590) Cat	Cat [1]
Cat 1		S1 762 Cat 1	TS40 Cat V (cold finished)
S2 762 Cat 1		S2 762 Cat 1	TS40 Cat V
	Orange		
S2 762 Cat 2		S2 762 Cat 2	TS40 Cat (1) (cold finished)
CFS 304S51 Cat 1	Light blue	CFS 304S59 Cat 1	TS48 Cat V (cold finished)
304851		304S59 Cat	Cat III
6S51 Cat	Light green	CFS 316S59 Cat 1	TS 63 Cat V (cold finished)
CFS 316S51 Cat 2		CFS 316S59 Cat 2	TS63 Cat III (cold finished)
CFS 316S52 Cat 1	Light green	t	1
CFS 316S52 Cat 2		1	1
CFS 321S51 Cat 1		CFS 321S59 Cat 1	TS54 Cat V (cold finished)
CFS 321S51 Cat 2	Yellow	CFS 321S59 Cat 2	TS54 Cat III (cold finished)
CFS 347S51 Cat 1		CFS 347S59 Cat 1	TS56 Cat V (cold finished)
347S51 Cat		347559	Cat III
215S15 Cat		CFS 1250 Cat 1	ľ
CFS 215S15 Cat 2		CFS 1250 Cat 2	
*Annealed or normalized and tempered.	đ.		
NOTE. Steel type number 91 is not included as it does not fall	ided as it does not		
the groups in the table,	and is not yet referenced in	ced in	

/www.adi ed by TII	FTo	.cor	F fria	99 05	.9¢ .8¢ 07 2TS1O1	65 59	rem	98	.59 .29 £(115 11 Z6 Z01	-92 -08 98 121 211	96. 101 Ples 132 132	EST	991 991 991 921 921 961	991 191 291 Cr th	12. 13. 18. 18. 18. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	180. 180. 202. 212 213 240 240 240 240	.91Z .92Z .92Z .92Z .92Z .99Z .99Z	545. 542. 522. 522 583 583 583	511. 531. 584. 584 311 324 320	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-		-	-	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	111 111	200 000 200 000 100 000 20 000 30 000 10 000	29 t	12 % chromium 1 % molybdenum muibenum
	- - - - - - - - - - - - - - - - - - -	48 (33) (34)	22).		124). 22. 22. 32.	31. 31. 32. 31. 31.	28. 21. 23. 32. 32. 36.	96 96 96 66 69	41. 43. 44. 64. 64.	98 99 601	.Z9 .99 11 81 16 001 611	561 58 58 58 57	16 98 100 100 100 130 146	100. 111 111 110 121 121 140 140	153 153 153 163 163 163	140 144 120 120 121 181 181	163 163 177 181 191 201 202	138 138 138 138 212 222 242	200. 200. 211 211 220 220 240 240 210	239 239 239 242 242 242 298 298	251 263 263 203 203 203 233	384 584 384 394 335 332 392	312. 323. 323. 340 323 323 (404)	324. 320. 320. (381) (405)	-	- - - -		- 11	111 111	\$20,000 \$00,000 \$0,000 \$0,000 \$0,000 \$0,000	059-629	muthomid munebdylom ä besilermo (besegnes b
				38 - - - -	9† - - - (1E) SE C+	95 	99 - (31) •(9E) •(7) •(2)	.9E .6C .**	38. 38. 40. 41. 41. 24	. 67 . 67 . 69	.95 .95 .99 .99	.29 .49 .25 .19 69 94 68	.6% .19 .19 .69 .82 .98	.01 -01 -01 -01	.08 .08 .09 .06 .06	.88 .25 .26 .104 .104 .104	103. 103. 113. 120. 120. 143. 143.	124. 120. 128. 128. 128. 121.	138. 143. 148. 125. 185 185	160. 131. 138. 138. 304 304	183. 184. 184. 503. 518. 528	\$20. \$30. \$30. \$38. \$42. \$20. \$20. \$20. \$20.	-	-	-	-	-	- 	1:1 1 11	200 000 1 20 000 1 20 000 20 000 30 000 10 000	O£ ► 6Z9	k chromam S munsbdenum Inesied)
	- - - -	-	-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - - - - - -	- - -	25 - - - - - - - - -	- - 29 29 83	- - - - - - - - - - - - - - - - - - -	- 95 19 94 98 100	. 65 . 89 . 89 . 24 . 98 . 96 . 811	.91 .91 .96 .91 .91	.82. .83. .88. .88. .113 .113	103 103 115 128 128 128	115 611 821 951 961	123. 128 138 148 148 148	141 141 182 182 185 185	.781 901 921 981 512	181 181 188 188 242 242 242	-	-	- - - -	-	- - - -	- - -	- - -	- - -	111 111	000 092 000 002 000 001 000 001 000 00 000 00	067-529	muimosha % 25 munshdylom 4 basilemió (benegmat b
	111	- - -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - - 22		- EE	 	34. 34. 34. 92	25. 24. 26. 40. 41. 24	.0+ .0+ .0+ .0+ .0+ .0+	.91 .25 .25 .25 .69 .62 .501	20. 20. 20. 20. 20. 20.	841 801 78 -27 -81	-16 -16 -16 -16 -16	108. 113. 150. 131 120 168 168	147 147 148 148 148	169. 123. 183 253 253 264	-961 -202 -012 -222 -++2 -260 -260	231. 248 248 228 280 230 235	230. 282 282 282 282 282 388	311. 325 325 325 311.	-	- - -		1 1 1 1 1	- 1 - 1 - 1	111	111 1 111	200 000 200 000 1 PO 000 1 00 000 20 000 10 000	950 ∢90	munabdylom %
	111111			1 1 1			11111	-	-	-	- - - -	- - - - - - - - - - - - - - - - - - -	- - (45). 23 91	.(ZÞ) .SÞ .BÞ	.79 .59 .09 .09 .08 .08	.69 .69 .74 19 66 Ett 49t	-08 -16 101 611 611 134	.001 .001 .114 .123 .123 .128	130. 130. 130. 148 148 148	121- 128- 128- 128- 300 318 343	.90Z .981 .90Z .90Z	210- 210- 210- 210- 210- 210- 210- 210-	-	-		- - - -	- - - -	- -	1111 131	200 000 200 000 120 000 100 000 20 000 10 000	E#Z	шонъданош ж
	111		- - -	111	1111	111 111	111 1 111		-	- - -	- - - -	-	111	<u>-</u>		98	- - 09 49	(LP) (S 99 18	99 99 94 96	-(8) -25 -25 -29 -22 -28 -21 -110	66 66 68 -08 -95	.99 .07 .97 .59 .201 .112	135 135 135 136 137	.16 -26 90t 41t 90t 19t 19t	108. 129 129 129 120 131	128. 109 121 121 185 185	120. 121. 181 128 200 314 243	127. 181. 180. 180. 202. 253. 234. 288.	188, 306, 312 231 231 248 262 281	200 000 200 000 120 000 100 000 20 000 10 000	0+>	əsəveğusın yoq
	-	- - - -		1 1 1 1 1	; - 1	11111211	111 1 111	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	-		- - -	1 1 1 1 1	-			- (5E) - (5E) 25 49	- (9E) - (9E)	. (100) . (20) . (10) . (10)	.97 .87 .29 .29 .29	.55 .89 .29 .29 .29	98 98 98 98 98 98	80. 80. 100 100 103	.68 .26 .96 .201 .211 021	101 104 104 101 101 101	113. 121. 121. 121. 141. 142.	134- 134- 141- 141- 181	761 751 751 •941 •941	122. 123. 164. 111. 183	200 000 200 000 100 000 20 000 20 000	096	voq
670 680 670 680	, Μννιμ 099	059 mm/N	6+0 *mm\N	ocs ocs	620 fmm/N	018 ¹ ππ\Ν	000 ²mm\W	ωω/N 	OBS	0£9	~ 	,ww/N	14/ww.j P10	,ww/N	620 E20	OI3	002 fmm/N	067 fmm\N	490 (490	OTA Imm\N	(C) of:	057	097	420	01 et on •• 05.≱ €mm\N	01*	00>	380	390	emia e	eonesete fi	14

C) Fi

Estimated average stress rupture values are shown in tables 10 and 11 for design purposes.

Appendix B. Estimated average stress rupture values

Table 10. Estimated average attess rupture values for carbon and festitic alloy steels

82 3029: Part 2: 1990

MOTE. Notes to this table are located at the and of table 11.

hat by its //www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

--^.^^-^-,,,,,,,,,,,,

able 10a Estimated average stress rupture values for steel 91

NOTE. Notes to this table are located at the end of table 11.

teel	Reference	Rupture	Estima	ited ave	rage st	ress for	ruptur	eatat	empera	ture in	OI:		r	 	<u> </u>	-	200	0.40	650	660	670	680	690
		time	490	500	510	520	530	540	550	560	570	580	590	600	610	620	630	640				<u> </u>	ļ—
						2 2	N/- 2	N/2	N/mm ²	N/mm²	N/mm²	N/mm ²		_ ,	N/mm ²	1							
		h	N/mm²	N/mm ²	ł	I			4		166	151	137	124	1	99	89	79	71	63	55	48	41
chromium	91	10 000	302	283	265	248	230	214	197	182	L	135	122	109	97	87	77	68	60	53	46	37	1-
molybdenum		30 000	284	266	248	231	213	197	181	165	150		115	102	91	81	72	64	56	49	41	<u> </u>	\ -
radium		50 000	276	258	240	223	205	189	173	157	142	128	110	102	"-			1	,	ļ	ļ	ļ	
bium			1			Ì]]			190	118	105	94	83	74	65*	57*	50*	42*			
rogen		100 000	265	247	229	212	194	178	162	146	132	110	100	~~					1		,]	
ogen						1		1	ļ]	100	89	78	69	61*	54*	46*	37*	\	\ <u>-</u>	\ <u> </u>
	İ	150 000	259	240	222	205	188	171	155	140	126	112	100	1	75*	67*	58*	51*	43*		<u> </u>	\ <u> </u>	-
		200 000	254*	236*	218*	200*	183*	167*	151*	136*	121*	108*	96*	85*	73*	64*	56*	49*	41*	 	\ —]-
		250 000	250*	232*	214*	197*	180*	163*	147*	132*	118*	105*	93*	83*	19.	104		1	1	<u> </u>	<u> </u>	<u></u>	-بــــــــــــــــــــــــــــــــــــ

[AMD 8707]

They are subject to greater discretainty than other values.

Assertance of besolves are not allowed by extending the parametric meeting to accept the parametric meeting of besolves and besolves an

asidat gologenol edt ei stjinstas na fliw befram bos andfelogenske amit bebratza ta beditzteb ets noiteub muminim evoda arit zamit éestir ylstemixosogie. Exceeding a certain minimum duration. The confidence which can be placed upon such properties will be related to the except of assessment of this standard extended to the confidence which can be placed upon such properties will be related to the exception and for the purposes of this standard extended to the confidence which can be placed upon such properties of the confidence which can be placed upon the confidence and the confidence which can be placed upon the confidence and the c Experience suggests that reliable extrapolations may be made covering a range of a 25 °C about each test to make of tests of tests from a feet state of tests of test

Asteriaks and perentheses indicate that values have been ubtained by sither extended time or extended stress extrapolation respectively. Where esterible and parenthese have been ubtained by sither extended time or extended tries esterible and parenthese and parenthese are used together this holicates that values

NOJE: Attnet optitised by existing

1																										noitetoa	entxe vd ber	NOTE, Valuet obtein
=	-	7	-	-	35.	35. 32.	12 39 31.	.27 £9 97	.9* 8* 09	.19 29 99	.95 85 19	95. 99	92 24 19	88 82 78•	.06 26 901	130 118 108*	#C1 2#1 #S1	891 991 941	061 681 771	-	-	- - -	-		1 1 1	\$20,000 \$00,000 \$20,000		mulbanas
-	_	_	_	.0€	30.	-0+	St	67	19	69	99	P.C.	₩B	100	132	201	191	186	661	-	-]	-	-1	-	-	000 OUL	515312	esenegnem # 8 muidoin
- 34	9¢	25 45	35. 33 40	-15 19	-14 94 99	- 99 20 21	67 69	94 99 99	19 19	201 27 58	96 98 7 8	201 201	781 24 201	221 891 881	191 8 6 1	130 182 310	122 200 181	301 311 331	313 353 541	- - -	-	 - -	. =	=	1 1 1	000 09 000 00 000 01	31331.0	mulmouta # 8f (salsin # 0f
-	-	1 1 1	- - -	-	-	-	-	- -		- - -	=	- -	- -	1 1 1		-19 -19	.99 .21 .80•	•24 •29 •88	.98 .28 .86	-96 -101 -801	.901 .011 .111	112.	.921 .121 .128	138. 145. 148.	162*	200 000 200 000 120 000		
1 -	-	-	-	-	- [-	-1	- 1	-	-	_	-	-	.89	.12	*08	.68	-96	-403	-211	.221	.281	.871	-191	.+41	000 001	15SL7E	fastyn % Sf muidoin
	-	- -	- - -	-	- - -	<u>-</u> -	- - -	- - 19	-	cs 	- 29 88	28 33 86	10t 18	84 06 Eli	121 88 18	181 101 101	901 911	114 152 121	153 132 162	133 146 174	181 181 144	122. 163. 303	812 183* 167*	-181 -261 962	186. 514. 528	000 09 000 0E 000 01		mulmouts # Bf
-		-			- - -	_	- -	=	=	-[68] - -	.(Sy) .(9y) 8y	.87 67 19	21. 22 22	.95 .29	409 29 99	-99 29 12	11. 14. 18	86 81 •	-48 -06 96	-25 -001 901	115° 115°	.0Z1 .9Z1 1E1	134. 138. 148	.6+1 .+91	971 -071 -881	520 000 500 000 120 000		10.001.01.0.001
_	_	-	_	-	-	-	_]	-	(SÞ)	848	21	149	69	₽ 9	69	9 4	EB	ZB	501	P 11	٤Z١	071	991	061	981	000 001	(\$011) 351221	fithering treated at (\$0,00)
	-	=	=	1	- -	 -	(64) (54)	(48) 20 20	67 63 89	25 75 07	99 19 19	79 19	90 72 86	84 88	801 84 87	err 8e 88	96 901 96	143 116 108	211 821 991	158 141 169	182 122 143	691 981	163 163	196 196 196	301 313 331	000 OF 000 OS		mulmouto # Bf ?sasin # Sf
-		-	- -	-	-	1 - 1	-	=	_	=	- (125)	(58) (58) 31.	30. 35.	.9E .90	.8E 43.	48. 23.	.15 .99	.69 .69	-21 -51 67•	91.	.98 .15 -(6	.95 .101 .801	-10L	121. 123. 118.	130. 130. 143.	320 000 300 000 120 000		
-	_		_	_ [_]	_	_	_	_	133).	.18	32.	-0+	.94	.29	+09	-89	+11	₽8•	•96	103•	.811	158.	145.	.691	120 000	(0101)	mulnesis re beteast noisulos! ID "OCOT or D "038
-	-	- - -	<u>-</u>	111	-	- 1	96 (27) -	1591 30 43	58- 38 48	34. 38 28	38. 42 63	16 52 44	69 69	19 19	59 94 96	80t 84 E1	118 93 62	26 101 159	105 114 140	113 132 182	154 13 8 162	.901 8+1 8/1	.471 191 261	160. 114 306	114. 188 232	10 000 30 000 20 000	133066	muimonto # Bf textoin # Cf
	- - -	-		-	-	1		T.	-	- (21)-	(23). (23). 9 4	. (99) 69	.69 19 19	.¥9 99 04	71. 74 78	89 83 79*	-06 16 101	601 601 *103	.711 611 132	136• 131 138	120 140	.191 .295 195.	164. 169. 178.	.971 .181	190. 192. 201.	\$20 000 \$00 000 120 000		
-	_	_] _	1	_		_	_	(1.0)	.(1+5)	T.	£9	69	9£	98	96	011	155	134	. 9+1	65r	.121	.181	•161	-112	100 000	*CC0+P	12 % nickel molybdanum boxon
-	- -		<u>-</u>	1 1	-	 	 (25) 09	(29) (99) 99	(99) 69 LL	65 19 08	₽9 1.1 30	1.C 5.C 1.O1	84 68 211	06 100 154	101 241 101	113 154 142	126 126 126	461 841 841	149 149 149	102 113 169	123 184 508	727 761 981	188 511 538	513 552 521	892 238 722	000 00 000 09 000 09	Sèsare	muimouds # 8t
- -			- -	:	- - -	F : 1	1	-	_ _ _	- -	-(CF) (4E)	.(9)) .24 .09	.09 .29 .99	.99 .89	.19 .58 .69	-69 -24 -14	98 18 77	.28 16 26	*26 201 201	106• 113 130	150. 150 133	133. 138. 148.	*821 *121 *8*1	129. 124. 135.	.£2t .82t .88t	320 000 300 000 120 000		
	-	_	_	-	-	-	_	-	-	-{pp)	-67	# S	09	L 9	94	# 8	₩6	501	911	138	L∳L	.124.	167.	•181	.161	000 001		muldeln
	- - -	=	- -	: :	- - -	_ _ _	(Z†) Z9	(29) 9 9 23	9# 19 89	19 99 01	99 79 28	29 69 48	78 87 07	904 87 78	611 18 18	46 401 061	211 911 901	150 131 150	191 193	991 991 981	681 891 781	181 208	182 550 550	233 208 187	310 335 343	20 000 30 000 10 000	195910	nukmonda % Br 12 % olekei
- -		- -		-	-	1 , 1	-	-36°	38. 38.	.0+ .1+ .C+	44.	.9b -15	29. 23. 22.	-55 -49 -09	.09 .09 .09	.99 .69	.2£ .26 .18	.64 .28 98	.98 .06	-46 -101	.201 .901 601	.011 .011 .118	122.	15).	-	320 000 300 000 120 000		
	- [_	-	_	_	-	•TE	•01	43.	.97	102	1/5	69	58	1.E	84	99	85	66	201	911	15¢	132	E ≯l	-	000 001	195700	18 % chromium 10 % osckel
	-		- 6ε 	76 70	36 33 42	86 14 5*	49 44 22	44 48 29	89 25 93	29 96 89	99 79 14	18 79 29	₹8 £7 ₹ð	60 08 67	102 78 80	901 38 78	66 101 211	105 108 159	461 611 011	144 321 811	921 931 183	136 136	47t 43t 84t	881 881 881	1 1	000 0\$ 000 00 000 01		
, mm/M	' та(И	ľmm\N	,ww/N	_ww/N	'mm\/	I/mm³	fmm/N	*mm\M	term\M	₹mm\W	tmm/M	fmm\W	[‡] ጠጩኒጰ	*mm\M	fmm\M.	א/ששי	*mai/M	mm/K	₹mm\M	⁵ mm\H	[*] ការក\អ	'mm\N	_լ աա/իլ	'mm\N	fmen\M	ų		
790	087	011	054	094	01/2	064	OZŁ	OIT	300	069	089	018	099	099	059	009	oze	610	009	059	089	0(9	095	023	079	•mir		
	· · · · · ·																	:po (o'ni mu	innegmet i)m (mou n			egeneve b		munguM	eonereta FI	14412
																						\$je:	est altina	stue tot t	auler stu	itqui atanta	eganevs be	Table 11. Estimate

85 3059 : Part 2 : 1990

BS 3059: Part 2: 1990 http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

Appendix C. Physical properties of steels

Tables 12 to 15 have been compiled on the basis of data obtained from a number of sources. The properties are believed to be typical for the various steels and are given for information only.

Temperature	Physical pro	operty				
	Dansity	Modulus of elasticity	Coefficient of thermal expansion from 20 °C to temperature	Electrical resistivity	Specific heat capacity from 20 °C to temperature	Thermal conductivity
°C	kg/dm ³	kN/mm²	K ⁻¹ × 10 ⁻⁶	μΩ-m	J/(kg·K)	W/(m-K)
20	7.85	212	_	0.210		54.7
100	 	206	11.9	0.248	468	53.8
200	i —	198	12.6	0.310	492	50.5
300		191	13.1	0.394	516	47.0
400	\ -	183	13.7	0.496	541	43.5
500		174	14.1	0.610	566	40.0
600	_	165	14.4	0.756	594	36.5

Temperature	Physical p	roperty								
-t -maged trains	Density	Modulus of elasticity	Coefficient of thermal expansion from 20 °C	Electric resistivi	-		Specific heat capacity from 20 °C	Thermal conductivi	ty	
· .			to temperature	243	620-460	622-490	to temperature	243	620-460	622-490
°C	kg/dm³	kN/mm²	K ⁻¹ x 10 ⁻⁶	μΩ•т	μΩ·m	μΩ·m	J/(kg-K)	W/(m⋅K)	W/(m⋅K)	W/(m-K
20	7.85	212		0.210	0.240	0.300	_	49.3	44.6	37.0
100	_	206	11.9	0.248	0.280	0.340	468	48.3	43.7	37.4
200	_	198	12.6	0.310	0.350	0.410	492	46.2	42.2	37.2
300	-	191	13.1	0.394	0.430	0.497	516	43.7	40.1	36.5
400	 	183	13.7	0.496	0.524	0.590	541	41.0	38.0	35.0
500	-	174	14.1	0.610	0.632	0.690	566	38.3	35.8	33.2
600	-	165	14.4	0.756	0.770	0.810	594	35.3	33.5	31.0

http://www.adultpdf.com Created by TIFF To PDF

Table 14. Physical properties of stee	ysical proper		type number 629-470, 629-590 and 762	0, 629-590 a	nd 762			n F tria
Temperature	Physical property	perty						l ve
	Density	Modulus of elasticity	Coefficient of thermal expansion from	Electrical resistivity	:	Specific heat capacity	Therma! conductivity	rsion, to
			temperature	629-470 629-590	762	temperature	629-470 629-590	re m e
ပ္	kg/dm ³	kN/mm²	K ⁻¹ × 10 ⁻⁶	μΩ·m	ա∙Ջո	J/(kg·K)	W/(m·K)	√(m·K)
20	7.73	214	l	0.520	0.622	I		en HR
100	1	211	10.7	0.571	0.680	475		₹3.6
200	1	205	11.2	0.648	0.749	494		84.3 8.4
300	1	197	11.6	0.727	0.817	516		25.5
400	1	188	11.9	0.810	0.885	593		5.7
200	1	178	12.2	0.895	0.995	570	27.8	0.98
009	1	165	12.5	0.980	1.021	612		26.5
								egi
					i			İS

te:	:\ <u>\</u> S0:	hi	S
	321851 (11		
	(1010),		
	52, 321851		
	S51, 316S		
	of steel type number 304S51, 316S51, 316g		
	number 30		
	steel type		
	~		
	Physical properties	1 215515	
	Table 15. P	347S51 and	
	_	•	

							SS
Temperature	Physical property	.					oft
	Density	Modulus of	Coafficient	Electrical	Specific	Thermal conductivity	war Mar
			expension from 20 °C to temperature		from 20 °C to to to temperature	304S51 316S51 316S52 321S51 347S51	215815
ာ	kg/dm³	kN/mm²	K ⁻¹ × 10 ⁻⁶	րΩ.m	J/(kg·K)	W/(m·K)	W/(m·K)
20	7.97	200	1	0.730	1	14.3	12.5
100	1	193	15.9	0.790	490	15.5	14.0
200		185	16.6	0.870	510	17.0	15.5
300	i	176	17.2	0.930	522	18.4	17.0
400		168	17.7	0.690	533	20.0	18.6
200	1	159	18.3	1.044	544	21.5	20.1
009	1	151	18.7	1.090	553	23.0	21.7
700	!	142	19.1	1.125	260	24.5	23.0
800		134	19.3	1.146	563	26.0	24.2

tech by efferred Totalde Gibrioteve said thicknesses otoetubes apartopriate at cethis glatter 1918 3059 and masses per unit length are given in tables 16 and 17.

Table 16. Preferred outside diameters and thicknesses for carbon, carbon manganese and ferritic alloy steel boiler and superheater tubes appropriate to this Part of BS 3059 and masses per unit length

Outside diameter	ļ		<u> </u>		tube thick			4.5	5.0	5.6	6.3	7.1	8.0	8.8	10.0	11.0	12.5
	2,0	2.3	2,6	2.9	3.2	3.6	4.0			-			kg/m	kg/m	kg/m	kg/m	kg/m
mm	kg/m	kg/m	kg/m	kg/m	kg/m	kg/m	kg/m	kg/m	kg/m	kg/m	kg/m	kg/m	Kg/III	Kg/***	Kg////	iva,	, , , , , ,
25.4	1.15	1.31	1.46	1.61	1.75	1.94	2.11	2.32	2.52	2.73	2.97		<u> </u>	-	<u> </u>	-	<u> </u>
26.9	1.23	1.40	1,56	1.72	1.87	2.07	2.26	2.49	2.70	2.94	3.20				<u> </u>		
31.8	1.47	1.67	1.87	2.07	2.26	2.50	2.74	3,03	3.30	3.62	3.96	4.32	4.70			-	 -
33.7	1.56	1.78	1.99	2.20	2.41	2.67	2.93	3.24	3.54	3.88	4.26	4.66	5.07	5.40	-		
38	1.78	2.02	2.27	2,51	2.75	3.05	3.35	3.72	4.07	4.47	4.93	5.41	5.92	6,34		ļ 	 -
42.4		2.27	2.55	2.82	3.09	3.44	3.79	4.21	4.61	5.08	5.61	6.18	6.79	7.29		<u> </u>	<u> </u>
44.5	 	2.39	2.69	2.98	3.26	3.63	4,00	4,44	4.87	5.37	5.94	6.55	7.20	7.75	8.51		 -
48.3	 	2.61	2.93	3.25	3.56	3.97	4.37	4.86	5.34	5.90	6.53	7.21	7.95	8.57	9.45		 -
51	-	2.76	3.10	3.44	3.77	4,21	4.64	5.16	5.67	6.27	6.94	7.69	8.48	9.16	10.1		
57			3.49	3.87	4.25	4.74	5.23	5.83	6.41	7.10	7.88	8.74	9.67	10.5	11.6	12.5	-
60.3		_	3.70	4.11	4,51	5.03	5.55	6.19	6.82	7,55	8.39	9.32	10.3	11.2	12.4	13.4	 -
63.5			3.90	4.33	4.76	5.32	5.87	6.55	7.21	8.00	8.89	9.88	10.9	11.9	13.2	14.2	<u> </u>
70	<u> </u>	_	4.32	4.80	5.27	5.90	6.51	7.27	8.01	8.89	9.90	11.0	12.2	13.3	14.8	16.0	
76.1	- -			5.24	5.75	6.44	7.11	7.95	8.77	9.74	10.8	12.1	13.4	14.6	16.3	17.7	19.6
82.5		 	 	 	6.26	7.00	7.74	8.66	9.56	10.6	11.8	13.2	14.7	16.0	17.9	19.4	21.6
88.9	 	 		 	6.76	7.57	8.38	9.37	10.3	11.5	12.8	14.3	16.0	17.4	19.5	21.1	23.6
101.6	1_		 _			8.70	9.63	10.8	11.9	13.3	14,8	16.5	18.5	20.1	22.6	24.6	27.5
		 	 		 	 	10.9	12.2	13.5	15.0	16.8	18.8	21.0	22.9	25.7	28.0	31.4
114.3 127	_			- ···· - ·				13.6	15.0	16.8	18.8	21.0	23.5	25.7	28.9	31.5	35.

NOTE. For alloy steel types 629-470, 629-590 and 762 the above mass values multiplied by a factor of 0.985 apply.

---,----,,-,-,-,-,-,-

i	· ·	dtpagl time non
	torsess for austenitic stainless steel boiler and superheater tubes appropriate to this Part of BS 3059 and masses	Table 17. Preferred outside diameters and the
	•	

‡ <u>‡</u>				\bigcirc			ı	,			\bigcirc						
http://www.adultpdf.com	•								•						· <u></u>		
Created by TIFF To PDF tri	al version, to 7'82	remoy c Se: ا	e this n 53°5	rark, pk	ease reg	ister thi	is softw	are L'El	12.4	1,11		_	_				114.3
t e	25.0	22.9	20.4	8.81	7.81	15.0	13.5	12,1	0.11	<i>LL</i> '6	£8.8	-					9.101
	21.4	8.61	7.71	16.2	14.5	13.0	7.11	3.01	19'6	13.8	89.7	88.8					6.88
3059	0.81	16.5	14.8	13.6	12.3	0.11	68.6	06.8	70.8	7.22	79 .9	48,8	55.3				1.97
E SS	16.2	16.0	13.5	12.4	2,1,1	0.01	9,02	£1,8	85.7	ເອ.ອ	66.3	98,8	78.4	4.38			- 07
	þ'þl	13,4	12.1	l'il	10.0	S0.6	8.12	7.32	6 9.8	96.3	04.8	4.83	4.39	36.5	<u> </u>		63.5
<u>L</u>	13'8	9.21	4.11	9.01	97.6	8.52	89.7	6.92	82.8	59.3	11.8	89'7	71.4	37.5			6.09
, ru	7, ½ 1	8.11	7.01	28.6	78.8	00.8	12.7	13.3	26.3	15.3	18.4	15.4	3.93	3.54			<u> </u>
→	-	1.11	96'6	9.22	££,8	Z9.7	87.8	£1.8	₹9 .8	00.8	4.54	70.A	3.70	3:35	-		<u>79</u>
2 II S		10.3	9:30	19.8	18.7	⊅ 0'∠	95.3	9 7 .8	5.24	17.4	4.27	58.5	3.49	3.15	08.2		19
		69'6	07.8	70.8	7.32	££.8	66'9	5,42	£6'\$	サ サ'サ	4.03	19,6	3,30	76,2	2,65	-	48'3
고 다		49.8	78.T	1E.7	39.9	£0.8	54.8	46.4	13.4	90.4	89.£	3,31	3.02	2.73	2.43		9'55
크 	<u> </u>	_	04.7	68.9	72.8	69.3	91,8	89'7	7 2. 4	3.85	3.49	3.14	98.2	2.59	2:30		42.4
년 			78. 8	04.8	5 8.5	5.32	4.82	4'38	00,4	3.60	3.28	2.94	69.2	2,44	2,17		<u> 0</u> 7
			44.8	10.8	67.3	90.8	4.54	ะเ'ช	37.8	3,40	3.10	2.79	2.55	2.30	2.05	18.1	38
			87.3	F.41	96'7	4.53	Z1.4	37.6	3.43	3.11	2,83	2.55	2,33	2.11	88.1	39.1	32
			84.8	91.8	£7.4	4.32	3.94	69'E	3.29	76.2	17.2	2.45	2.23	20.2	18.1	83.1	7,66
Ω		-	·-	18,4	£p.4	4'02	3,70	3.38	3.10	2.80	2.56	2.30	11.2	1,92	17.1	1.50	35
E-				ζζ. Φ	85.4	4,02	₹9,€	3:35	80.£	87.2	2.54	2.29	2.10	06.1	0۲.1	94,1	8.15
□				_	-	3.74	3,42	3,13	78.2	2,60	2'38	2,14	76.1	67.1	69.1	04.1	30
5				-	<u> </u>	3,25	86,2	2.74	2.53	62,2	2,10	06,1	97.1	83.1	ZÞ' 1	32.1	26.9
5.0	<u></u>					10.5	2.77	2,56	2.35	2.14	76.1	87.f	€9.1	84.1	1.33	41.1	5.65
m × ロ	κ ∂ \ω	κ∂∖ա	κð\w	- κ მ/ω	κ∂\m	₩/6Ŋ	₩/6 ¾	w/By	к 8/ш	ш/вҳ	κ∂\m	κ∂\w	κđ\w	kā∖m	κ∂\m	κ∂\w	ww
	0.11	0.01	8.8	0.8	1.7		9,2	0.8	9.4	4.0	3.6	3.2	6.5	2.6	2.3	0.5	Tetemsib
BSI		1						L-,	L	:to (m	m ni) ssen:	apirt edut	s tot dign	el jinu teq	ttem leno	Conventi	Outside
	<u></u>		<u> </u>	······································					-,	<u> </u>			 			.dtgn	of tinu 19q

BS 3059 • • 1990

Ş Appendix E. verification of leak tightness Eddy current testing of tubes

E1 General

E.2 and E.3 and with the modification to BS 3889 : Part 2A as specified in The tubes shall be tested in 2A, with the options of BS E 4 tested in accordance with BS 3889 : Pans of BS 3889 : Part 2A as specified in Part

E2 Test procedure

using a concentric coil or a rotating tube/rotating coil The tubes shall be addy current technique as described for methods A and B of BS 3889 : Part 2A. tested for verification of leak tightness

E ω Reference standards

The equipment shall be calibrated using reference standards prepared in accordance with 5.2.4(a) for method A and 5.2.4(b) for method B of BS 3889: Part 2A: 1986. The dimensions of the reference hole (method A) and the reference notch (method B) shall be as specified in tables 18 and 19 of this Part of BS 3059.

E,4 Assessment of results

shall be repuzaced by the following. The results of the test shall be assessed in accordance with OF BS 3889 : Part 2A : 1986, except that

thickness tolerance either: tube thickness within the dressed area remains within the 'Explore the suspect area of the tube by dressing. If the

- method an accordance with this appendix and if no signals are obtained that give a trigger/alarm condition the tubeshall be deemed to have passed the test; or (1) retest the tube using the selected eddy current
- dressing has resulted in complete removal of the imperfection; the tube shall then be deemed to (2) subject the suspect area to magnetic particle inspection in accordance with BS 6072 to ensure passed the test. 6072 to ensure that

that give a rigger/alarm condition, using the eddy current test method signals are obtaine remain within the thickness tolerance or if If the tube thickness within the dressed area does not either: on retesting

- deemed to have passed the test; or \equiv cut of the suspect area, the remaining length being
- **≘**: Com # PDF #ri deemed not to have passed the test."

Outside of tube ĦĦ Table 18. <u>>1</u>8 25 25 45 සු ≤127 <u>^</u> 8 Si 5 **Drill diameter sizes** diameter Drill 3 2.20 1.70 1.20 3.20 2.70 ģ method A

Table 19. Notch dimensions for method B	sions for method B
Depth	12½ % of the specified tube thickness
Minimum depth	0.6 mm
Maximum depth	1.5 mm
Tolerance on depth	± 15 % of notch depth
Width	Not greater than the notch depth with a minimum of 0.5 mm
Length	A convenient length selected by the manufacturer for calibration and checking purposes

for the detection of longitudinal imperfections Appendi X Ultrasonic testing of tubes

Ξ, Gene erai

The tube shall be tested as specified in F.2 and F.3 and with the modification to clause 9 of BS $3889: Part\ 1:1983$ as specified in F.4.

F.2 Test procedure

Part 1 axis of the tube in accordance with method A of BS 3889 Part 1. Scanning shall be carried out in both directions of beam travel in accordance with figure 1(a) of BS 3889 : The tube si are : 1983. ဌ iented predominantly hall be tested for the detection of imperfections fongitudinally to the 3889: major

BS 3059: Part

Reference standards

tube, 3S 3889 The equipment shalf be calibrated using longitudinal reference notches parallel to the major axis of the tuin accordance with 7.1, 7.2.1, 7.2.2 and 7.2.5 of BS and 1.983. The dimensions of the reference notch shall be as given in table 20.

Table 20. Reference no	Table 20. Reference notch dimensions and tolerances
Depth	5 % of specified tube thickness
Minimum depth	0.3 mm
Maximum depth	1.5 mm
Tolerance on depth	± 15 % of notch depth or ± 0.05 mm whichever is the larger
Maximum width	1.5 mm
Length	A convenient length selected by the manufacturer for calibration and checking purposes

Assessment of results F.4

F.4.1 Any tube that does not produce signals giving a trigger/alarm condition shall be deemed to have pa the test. F.4.2 Any tube that produces signals giving a trigger/alarm condition shall be designated 'suspect' or, at the manufacturer's option, shall be retested on the same automatic equipment as used in the original test.

have If upon retesting no signal giving a trigger/alarm condition is obtained, the tube shall be deemed to hav passed the test. Tubes giving a trigger/alarm condition upon retesting shall be designated 'suspect'.

or item one or more of the following F.4.4 For 'suspect' tubes, one or more of the follo actions specified in items (a) to (e) shall be taken, (f) shall apply.

(b) For inside surface imperfections, the 'suspect' area shall and the tube shall then be deemed to have passed the test. of the purchaser that the trigger/alarm condition arises from a combination of minor imperfections, individually not serious enough to cause a trigger/alarm condition, an ultrasonic shear wave method using equipment with the same ultrasonic parameters and calibrated to give the same test sensitivity as used in the original ultrasonic test. If no signals are obtained that give a within tolerance, the suspect area shall be retested by ethod (a) The manufacturer shall show to the satisfaction be explored by dressing, using an acceptable methorand, after checking that the remaining thickness is

(c) For outside surface imperfections, the 'suspectians shall be explored by dressing, using an acceptable method, within tolerance, the 'suspect' area shall be retested non-destructively using the magnetic particle inspection method in accordance with BS 6072, until it can be shown that the imperfection has been completely removed.

The 'suspect' area shall then be retested by an uitrasonic shear wave method using equipment with the same ultrasonic parameters and calibrated to give the same test sensitivity as used in the original ultrasonic test. If no signals are obtained that give a trigger/alarmetondition, the tube shall be deemed to have passed

condition, the tube shall be deemed to have passed the automatic equipment as that used in the original test. (d) The full circumference of the surface of the tube shall be dressed using an acceptable method, either completely or locally along its length to include the 'suspect' area and, after checking that the thickness is within tolerance, the tube shall be retested on the If no signals are obtained that give a trigger/alarm

(e) The 'suspect' area shall be cropped off, the refaining length being deemed to have passed the test.

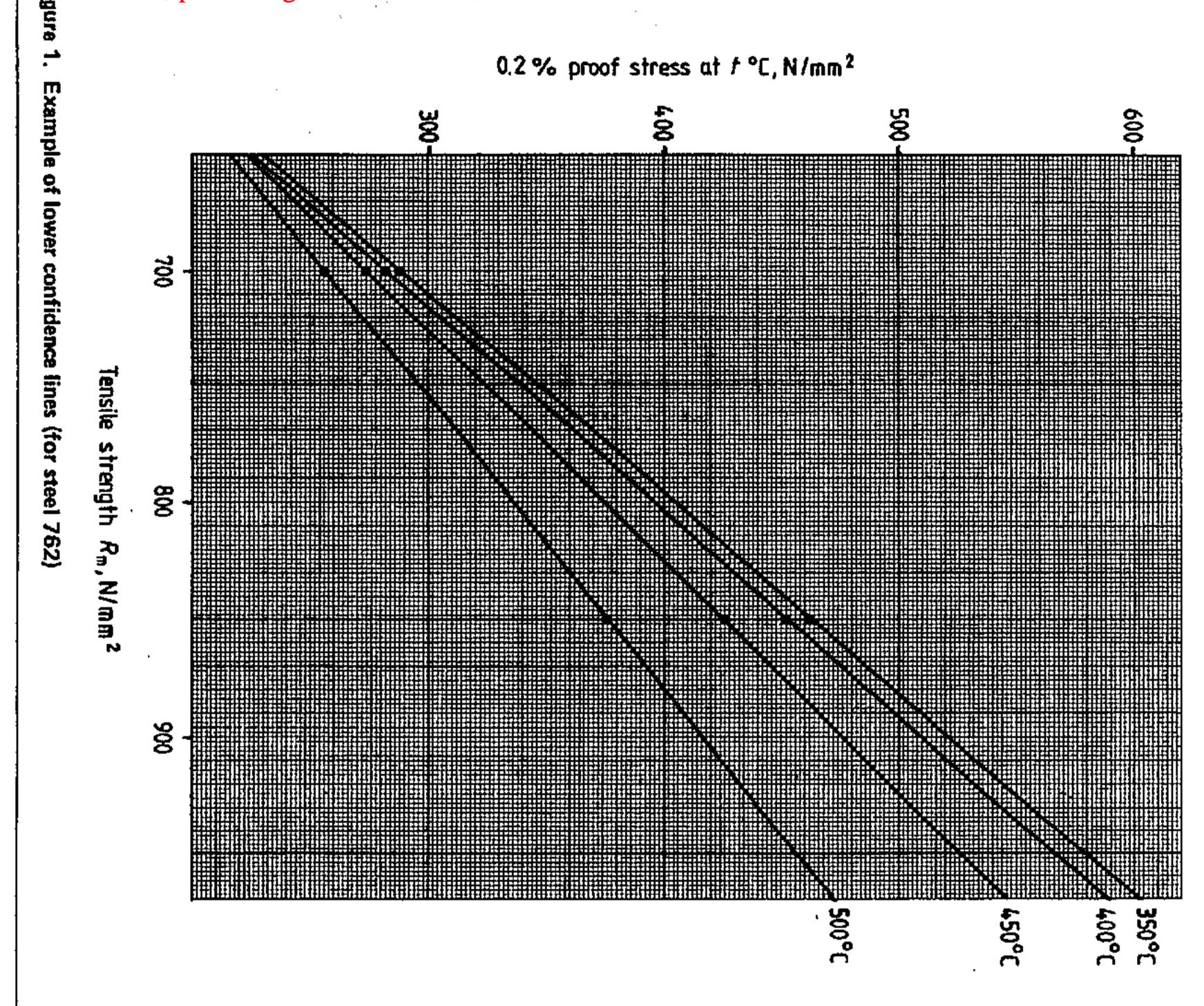
(f) The tube shall be deemed not to have passed

Appendix G. Procedure for verification of elevated temperature values

testing at elevated temperatures the manufacturer, unless otherwise specified by the purchaser, may verify that his temperature proof stress values given in the specification As an alternative to verification of individual casts by for the relevant steel type by adopting the procedure product consistently meets the minimum elevated described in BS 3920.

compares appropriate data relating to his product with derive the specification minima given in this standard. confidence lines that have been determined from the analysis of a large body of data that has been used to The basis of the procedure is that the manufacturer analysis of a large body of data

for the application Information required for the construction of the lower 21 to 33. confidence lines which are necessary of the procedure are given in tables 2


An example of confidence lines for steel type 762 is shown To achieve the appropriate degree of accuracy in figure 1. To achieve the appropriate ucyrum ... ____however it is necessary to construct the confidence lines _____ the done the coon a larger scale. To enable this to be done the co-ordinates of two suitably spaced points on the lines, appropriate to the various grades of steel at each temperature, are given in tables 21 to 33.

med to

a trigger/alarm condition, the tube shall be dee

have passed the test.

heter/www.adultpdf.com
Carated by TIFF To PDF trial version, to remove this mark, please register this software.

BS*3059:

BSI

https://www.adultpdf.com Created by TIFF To PDF BS 3059: Part 2

> 500 N/mm² 0.2 % proof stress at two levels of room temperature tensile strength N/mm² Parameters for lower confidence lines: 199 183 169 161 153 300 N/mm² N/mm² 79 72 70 8 108 Temperature **Table 21.** steel 360

steel 620-460	eters tor lower contidence lines:	
Temperature	0.2 % proof stress at two levels of room temperature tensile strength	rt two levelsion. re tensile
	460 N/mm²	560 N/mm
ာ	N/mm²	rem ₂ шш/N
350	174	218
400	168	e th
450	163	nis
200	159	ma
250	156	rk,
		plea
Table 25. Parameters steel 622-490	eters for lower confidence lines:	e regi
Temperature	0.2 % proof stress at two level of room temperature tensile strength	at two levelsate ire tensile this
	440 N/mm²	S40 N/mmS
၁	N/mm²	N/mm ²
350	134	re.
400	130	240

300

250

350

400

450

Table 22. Parameters for lower confidence fines: steel 440	or lower confiden	çe tines:	Table 25. Parameters for lower confidence li steel 622-490	for tower confident	Se li
Temperature	0.2 % proof stress at two levels of room temperature tensile strength	t two levels re tensile	Temperature	0.2 % proof stress at two of room temperature testrength	t tw e te
	360 N/mm²	550 N/mm²		440 N/mm²	3
ာ့	N/mm²	N/mm²	၁့	N/mm²	Z
250	155	225	350	134	24
300	124	209	400	130	24
350	104	197	450	118	22
400	66	186	200	110	21
450	85	180	250	100	82

Table 26. Parameters for lower confidence lines: steel 629-470	or lower confiden	ce lines:
Femperature	0.2 % proof stress at two levels of room temperature tensile strength	t two leveis e tensile
	460 N/mm²	620 N/mm²
٥٦	N/mm ²	N/mm ²

Table 23. Parameters for lower steel 243		confidence lines:	Table 26. Pa steel 629-47(
Temperature	0.2 % proof stress at two levels of room temperature 1.0 % pro stress	oof stress at two levels temperature 1,0 % proof	Temperature
	450 N/mm²	550 N/mm²	
၁့	N/mm²	N/mm²	၁့
250	188	244	350
300	154	216	400
350	138	208	450
400	134	204	200
450	128	200	
200	125	193	

Table 26. Parameters f steel 629-470	ameters for lower confidence lines:	ce lines:
Temperature	0.2 % proof stress at two levels of room temperature tensile strength	t two leveis e tensile
	460 N/mm²	620 N/mm²
၁့	N/mm²	N/mm²
350	96	195
400	93	192
450	06	189
200	87	187

Table 27. Parameters for lower confidence lines: steel 629-590	for lower confiden	ce lines:
Temperature	0.2 % proof stress at two levels of room temperature tensile strength	nt two levels re tensile
	620 N/mm ²	720 N/mm²
°C	N/mm²	N/mm²
350	322	416
400	316	408
450	310	396
500	290	352
550	235	298
•		

*		
Table 28. Parameters steel 762	Parameters for lower confiden	nce lines:
Temperature	0.2 % proof stress a of room temperatu strength	at two levels ura tensile
	700 N/mm²	850 N/mm²
c re.	N/mm²	N/mm²
350 wa	287	462
o ft	281	451
450 S	273	424
500 <u>£</u>	256	376
tei		

	gi		
	Table 29. Parameters for	lowar co	nfidence lines:
- 7	stee 5 304S51		
	Temperature	of proof	stress at two levels of
	ark	stress	rature 1.0 % proof
	is n	260 N/mm²	350 N/mm²
	ငိ e th	N/mm²	N/mm²
	250 <u>0</u>	138	207
	300em	132	199
	3500 1	126	190
	400 n,	120	184
	450 S1C	117	180
	500 ver	115	177
	550ial	112	173
	600	109	168
,	OFF OFF	104	155
	lfa o P	99	138
	adultpe		
	www d by		
pyright Br wided by reproduc	pyright Brilish Standards Institution wided by IHS under license with BSI reproduction of Retworking permitted without license from IHS	iom (HS	
	ht		-

Table 30. Parameters for lasteels 316S51 and 316S52	Parameters for lower confidence lines: 51 and 316S52	nce lines:
Temperature	1.0 % proof stress at two levels of room temperature 1.0 % proof stress	at two levels ure 1.0 %
	250 N/mm³	350 N/mm ²
°C	N/mm²	N/mm²
250	143	215
300	136	207
350	131	200
400	126	194
450	122	190
500	118	184
550	115	180
600	113	177
650	110	173
700	108	168

Temperature	1.0 % proof stress at two levels of room temperature 1.0 % proof stress	ss at two levels hture 1.0 %
	250 N/mm²	350 N/mm²
၁°	N/mm²	N/mm²
250	160	247
300	153	240
350	148	233
400	144	227
450	139	220
500	136	215
550	134	211
600	131	204
650	127	194
700	121	180

http://www.adultpdf.com Created by TIFF To PDF t

Temperature .	1.0 % proof stress at two levels of room temperature 1.0 % proof stress	s at two levels ture 1.0 %
	250 N/mm²	350 N/mm²
ာ့	N/mm²	N/mm²
250	164	254
300	158	248
350	153	242
400	150	238
450	149	232
200	148	228
550	146	221
900	145	210

steel 215\$15	neters for jower confidence	
Temperature	1.0 % proof stress at the of room temperature 1 proof stress	ure 1.0 % Siou
	230 N/mm²	330 N/mm³
၁့	N/mm²	N/mm ² a
250	146	223 VOI
300	143	e tl
350	141	216 218
400	139	213 ma
450	137	rk,
200	136	507 204
550	135	eas
009	133	
650	131	egis
		ter this softwa
		are.

Sa 3059 : Part 2 : 1990

the is British Standard, having been prepared under the direction of the tron and Steel Standards Policy Committee, was published under authority of the Board of BSI and comes into effect on August 1990

© British Standards Institution, 1990

First published, as part of BS 3059, December First revision August 1968
Second revision, as BS 3059: Part 2, September Third revision August 1990
ISBN 0 580 17547 2 1958

Part 2, September

1978

The following BSI references relate to the work on this standard: Committee reference ISM/73/1 Draft for comment 87/40959 DC

British Standards Institution. Incorporated by Royal Charter, 8SI is the independent national body for the preparation of British Standards. It is the UK member of the International Organization for Standardization and UK sponsor of the British National Committee of the International Electrotechnical Commission.

In addition to the preparation and promulgation of standards, BSI offers specialist services including the provision of information through the BSI Library and Standardline Database; Technical Help to Exporters; and other services. Advice can be obtained from the Enquiry Section, BSI, Milton Keynes MK14 6LE, telephone 0908 221166, telex 825777.

Copyright. Users of British Standards are reminded that copyright subsists in all BSI publications. No part of this publication may be reproduced in any form without the prior permission in writing of BSI. This does not preclude the free use, in the course of

implementing the standard, of necessary details such as symbols and size, type or grade designations. Enquiries should be addressed to the Publications Manager, BSI, Linford Wood, Milton Keynes MK14 6LE. The number for telephone enquiries is 0908 220022

quirements, irements. A British Standard does not purport to necessary provisions of a contract. Users of British responsible for their correct application.

Revision o possession ant that users British Standards. of the ards. British Standards are revised, when ther, of amendments or of revised editions, of British Standards should ascertain that latest amendments ç

Automatic and automa updating service. BSI provides an economic, individual atic standards updating service called PLUS. Details are rom BSI Enquiry Section at Milton Keynes, telephone 166, telex 825777. individual

supplement subscribing ambiguity, the matter revisions, Informatio may ted each ng use of mendments endments and withdrawn standards. Any use of a British Standard, encounters an requested to notify BSI without delay in Ö all BSI publications is in investigated and month by BSI News which is available to s of BSI and gives details of new publications and withdrawn appropriate action the BSI Catalogue inaccuracy person who, taken. order that

Committees responsible for this

The preparation of this British Standard was entrusted by the Iron and Steel Standards Policy Committee (ISM/-) to Technical Committee (ISM)/3, upon which the following bodies were

Associated Offices Technical Committee
BEAMALtd. (Power Generation Association)
British Compressed Air Society
British Sas pic
British Scel Industry
Electricay Supply Industry in England and Wales
Engineering Equipment and Materials Users' Associa
High Pressure Pipework Consultative Committee
Lloyd's Hegister of Shipping

British Standard

Water-tube Welding In: Process Pla Boilermakers' nt Association teel Tube Asso ciation
Association

nrough

The follow

ing bodies were also represented in the

drafting of the

British Fluid Power Association
British Forging Industry Association
British Industrial Truck Association
British Welded Steel Tube Association
Confederation of British Industry Councit

ember

Amendments issued since

f.con	n F tı	ial v	ersio	-4018 8029	Amd. ao.	V
				19/9/95	Date of issue	
				Sturg-Fasian-1:		

UEEL: A TIBY: ECUE CO

British To Institution Park Street London WIA 28 Telephone 071-629 9000 Telex 266933

ht British Standardstind by IHS unferliceos 901

ISM/73

t)	
_	
ations referred	
ublica	

http://www.ad Created by TII	Mperature properties Lo PDE trial Positions for wrought iron steef tube	d temperature yield or proof stress prop alloy tubes by continuous character m	l and other ferrous metals limensions, tolerances and conventional masses per un	ease register this software
Publications referred to	Methods for tensile testing of metals Steel boiler and superheater tubes Part 1 Low tensile carbon steel tubes without specified elevated te Methods for mechanical testing of metals at elevated temperatures Part 1 Tensile testing Non-destructive testing Part 1 Methods of automatic ultrasonic testing for the detection of Part 2A Eddy current testing of ferrous pipes and tubes	s for steel tion to au and verify n of steel,	Quality systems Part 2 Specification for manufacture an Method for magnetic particle flaw detection for manufacture and Sampling and analysis of iron, steel and Part 3 Methods of analysis k No. 19 Methods for the sampling and Steel tubes for boilers, superheaters and Steel tubes for boilers, tubes Part II Wrought seamless tubes Part III Electric resistance and induction	
Publicati	BS 18 BS 3059* BS 3688 BS 3889	BS 3894 BS 3920 BS 5383	BS 5750* BS 6072 BS 6200 BS Handbool ISO 1129*† ISO 26041	

*Referred to in the foreword only.

Copyright British Standards Institution hed by the International Organization for Stand
Provided by 1HS under license with BSI
No reproduction or networking permitted without license from IHS

BSI

AMD 8707

to BS published and effective Amendment No. 3059: Part 2 ** 1990 from 5 September 1995

Steel boiler and superheater tubes

steel tubes Part 2. Specification for carbon, with specified elevated temperatur alloy and austenitic stainless e properties

Revised text

Contents

After the entry for table 10a Estimated average s 10, insert the rupture following. steel 91.

AMD 8707/September 1995

Table 2 Steel type and type number

following new entry. Immediately after the seventh entry (for steel type number 629--590) insert the

vanadium, niobium, nitrogen	9 % chromium 1 % molybdenum,	
7.0	2	
•		

AMD 8707/September 1995

temperature Table 3 Chemical composition and mechanical properties at room

See attached.

AMD 8707/September 1995

Table 4 specified ladle analysis Permitted deviations of the product analys is from the

In Column i delete 629 470 and 629 590' and substitute '629 470, 629--590 and 91'.

In the second block of steels, below the entries for molybden following in columns 2, 3, 4 and 5. um, insert the

Nickel	≤5.0	0.07	0.07
Niobium	≤0.20	0.005	0.005
Vanadium	≤ 0.35	0.03	0.03
Aluminium	≤0.045	0.005	0.005
Nitrogen	≤0.070	0.010	0.010
Copper	≤0.25	0.05	0.05

AMD 8707/September 1995

Ciguse 8.2 Elevated temperature minimum proof s tress values

Delete the existing note and substitute the following

E CO values are not normally subject to verification except pe number 91.

adultpdi TIFF 8707/September 1 1995

-0.47k-P

Product code 00505577

ISE/73

BSI

ufacturing process, final treatment supply condition and temperature of heat Steel type number and tube man Table 5

Created by TIFF

230) umber 629 Immediately after the ninth entry (for steel type n following (headings given for information only).

1040 88 Normalizing: J Tempering: 75 Final supply condition Normalized and tempered Steel type number and tube manufacturing process 91 (seamless, see clause 5)

To PDF trial version to remove this mark, please register this software. http://www.adultpdf.com 0.2 values (R_p) steels at elevated temperatures Minimum proof stress AMD 8707/September 1995 Table

d table 6 attached

Delete the existing table and substitute the revise

AMD 8707/September 1995

Clause 9.2

In note 1, line 2, delete '1x' and substitute 'lux'.

AMD 8707/September 1995

designations and the equivalent 3059 Table 9. Designation of steel tubes in BS in BS 3059: Part 2: 1990 and the nearest

2604: Parts II and III

퉏 Insert the following new note at the end of the tal

NOTE. Steel type number 91 is not included as it does not fall within any of the groups in the table, and is not yet referenced in ISO 2604 or BS 5383.

AMD 8707/September 1995

rupture values for steel 91 Estimated average stress New table 10a

After table 10 insert the attached new table 10a.

AMD 8707/September 1995

---,**,*,**,**,-,-,,*,*,--

hដ្ឋាទ្ធី//www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.

Table 3. Chemical composition and mechanical properties at room temperature After the seventh entry (for steel type number 629–590) insert the following new entry (headings given for information only).

Tier the seventin chary (hemical composition (ladle analysis) (see notes 1 to 3)															Mechanical prope temperature (see		
Steel type	no.	Cnemi	 		Si		Mn		s	Cr		Мо		Ni		Others (see notes 3 and 4)	$R_{\mathbf{e}}$	R _m		A
		min.	max.	min.	max.	min.	max.	max.	max.	min.	max.	min.	max. %	min. %	max. %	%	min. N/mm²	min. N/mm²	max. N/mm²	min. %
9 % chromium 1 % molybdenum, vanadium, niobium,	91	0.08	0.12	0.20	0.50	0.30	0.60	0.020	0.020	8.00	9.50	0.85	1.05			Nb 0.06 to 0.10 V 0.18 to 0.25 Al _{met} 0.030 max. N 0.030 to 0.070	450	630	830	18

In the column headed ' $R_{\rm m}$ ', insert '(see note 7)' after the column heading.

At the end of note 4 insert the following: 'This applies also to steel type number 91 with the exception of nickel content.'

In the column headed 'Others' delete 'see notes 3 and 4' and substitute 'see notes 3, 4 and 6'.

At the foot of the table insert the following new notes 6 and 7:

NOTE 6. For steel type number 91 a maximum copper content of 0.25 % and a maximum tin content of 0.03 % may be requested by the purchaser in order to facilitate subsequent operations of forming. NOTE 7. For steel type number 91, a maximum tensile strength of 780 N/mm² may be requested by the purchaser.

AMD 8707/September/1995

http://www.adultpdf.com
Characted by TIFF To PDF trial Tables 611, Minimum proof stress values (See note)

Steel type	Type no.	Final supply condition	$R_{ m p0.2}$ min	. at a temp	erature (°	C) of:				
	<u> </u>		250	300	350	400	450	500	550	600
			N/mm²	N/mm²	N/mm²	N/mm²	N/mm ²	N/mm²	N/mm ²	N/mm²
Carbon	360	Hot finished and normalized	150	132	120	112	108		_	
Carbon manganese	440	Hot finished and normalized	195	173	158	150	140		<u> </u>	-
0,3% molybdenum	243	Normalized	221	192	180	176	172	166	_	
1 % chromium 0.5 % molybdenum	620-460	Normalized		_	187	180	174	169	166	
2.25 % chromium 1 % molybdenum	622-490	Normalized and tempered	_	-	224	218	204	190	168	-
9 % chromium	629-470	Annealed	_	-	121	117	115	112	_	_
1 % molybdenum	629-590	Normalized and tempered	_		322	316	311	290	235	-
9 % chromium 1 % molybdenum, vanadium, niobium, nitrogen	91	Normalized and tempered		351	344	331	311	286	250	207
12 % chromium 1 % molybdenum, vanadium	762	Normalized and tempered		_	345	337	324	296	_	-

NOTE. All values are based on tests carried out in accordance with BS 3688; Part 1 at the specified strain rate of 0.001/min to 0.003/min.

[AMD 8707]

dray TIFF Testhateial wersige, so remove this wantes please enginter this software.

NOTE. Notes to this table are located at the end of table 11.

Steel	Reference	Rupture	Estima	ated ave	rage st	ress for	ruptur	e at a t	empera	ture in	°C of:	•										····	
		time	490	500	510	520	530	540	550	560	570	580	590	600	610	620	630	640	650	660	670	680	690
		h	N/mm ²	N/mm ²	N/mm ²	N/mm²	N/mm²	N/mm ²	N/mm ²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm²	N/mm ²	N/mm ²	N/mm²	N/mm²	N/mm ²	N/mm²	N/mm ²	N/mm ²
9% chromium	91	10 000	302	283	265	248	230	214	197	182	166	151	137	124	111	99	89	79	71	63	55	48	41
1 % molybdenum		30 000	284	266	248	231	213	197	181	165	150	135	122	109	97	87	77	68	60	53	46	37	
vanadium	į	50 000	276		240	223	205	189	173	157	142	128	115	102	91	81	72	64	56	49	41		
niobium					222			160	100		100	110	105	~	83	74	65*	57*	50*	42*	_		
nitrogen		100 000	265	247	229	212	194	178	162	146	132	118	105	94	•	14	100		100	42	<u> </u>		
		150 000	259	240	222	205	188	171	155	140	126	112	100	89	78	69	61*	54*	46*	37*			-
		200 000	254*	236*	218*	200*	183*	167*	151*	136*	121*	108*	96*	85*	75*	67*	58*	51*	43*				
		250 000	250*	232*	214*	197*	180*	163*	147*	132*	118*	105*	93*	83*	73*	64*	56*	49*	41*			<u> </u>	<u> </u>

[AMD 8707]

http://www.adultpdf.com

Created by TIFF To PDF trial version, to remove this mark, please register this software.