Ce 对烧结钕铁硼磁体永磁性的影响

饶晓雷,钮 萼,胡伯平

(中科三环研究院,北京 102200)

胡伯平

摘 要: Ce 在镧系元素中是具有特殊性质的一员,其根源在于它的混合价特性。在 Ce₂Fe₁₄B 化合物中,Ce 表现出强烈的+4 价倾向,不仅自身 4f 电子缺失无法贡献稀土离子磁性,而且离子半径 过小导致 Fe - Fe 间距缩减,使 Ce₂Fe₁₄B 居里温度和饱和磁极化强度都以较大的幅度地下降。另外,在 Ce - Fe - B 三元合金中,Ce 倾向于生成 Laves 相 CeFe₂,而非富稀土低熔点晶界浸润相,不能在烧结磁体中产生使主相晶粒退磁耦合的矫顽力机制,烧结 Ce - Fe - B 难以实现高矫顽力。尽管 如此,Ce₂Fe₁₄B 仍具有优良的内禀磁性,通过快淬方法可制备出性能适中的(Ce,Nd) - Fe - B 各 向同性磁粉,而通过贫 Ce 富 Nd 和贫 Nd 富 Ce 双合金或双主相烧结的方法,用富 Nd 相承担分割主 相晶粒提高矫顽力的功能,也实现了高性价比(Ce,Nd) - Fe - B 烧结磁体的商品化。综合阐述了 元素 Ce 影响钕铁硼磁体内禀磁性和矫顽力方面的研究工作。

关键词: Ce 混合价; CeFe₂; 钕铁硼; 烧结; 快淬; 双合金; 双主相 中图分类号: TM273 文献标识码: A 文章编号: 1674-3962(2017)01-0063-12

Effects of Cerium on Permanent Magnetic Properties of Sintered Nd-Fe-B Magnets

RAO Xiaolei , NIU E , HU Boping (Zhong Ke San Huan Research , Beijing 102200 , China)

Abstract: Cerium is a very special element in Lanthanide , originating from its mixed valence characteristics. Ce exists in $Ce_2Fe_{14}B$ as Ce^{4+} ion. The lack of 4f electron leads Ce^{4+} to make no contribution to magnetism. Small ion radius shrinks the Fe-Fe distances and decreases the Curie temperature and saturation polarization of $Ce_2Fe_{14}B$. In addition , it is in favor of $CeFe_2$ Laves phase instead of Ce-rich phase to magnetically decouple $Ce_2Fe_{14}B$ grains. Sintered Ce-Fe-B magnet has very poor coercivity. Rapidly quenched isotropic (Ce, Nd) -Fe-B powder can realize reasonable H_{cJ} for certain applications. By dual-alloy or dual-main-phase techniques , using Ce-rich/Nd-lean alloy and Nd-rich/Ce-lean alloy as starting materials , sintered (Ce, Nd) -Fe-B magnet is commercialized with high ratio of performance to cost. The key point is to let Nd-rich phase decouple (Ce, Nd) $_2Fe_{14}B$ grains. This article reviews the effects of Cerium on the intrinsic and extrinsic magnetic properties of Nd-Fe-B permancent magnets.

Key words: Ce mixed valence; CeFe₂; Nd-Fe-B; sinter; rapidly quench; dual-alloy; dual-main-phase

1 前 言

Ce 是全球已探明稀土储量中含量最高的元素,除了 我国南方独有的离子吸附矿以及马来西亚和广东的磷钇 矿外,白云鄂博、美国、澳洲、俄罗斯和印度的氟碳铈、

第一作者: 饶晓雷, 男, 1963 年生, 研究员

独居石和磷灰石矿中的 Ce 含量(以氧化物计)都位居第 一,从43%~50%不等,而位居次席的 La 仅在 17%~ 25%之间,烧结钕铁硼的主要稀土原材料 Pr 和 Nd 的总 和与 La 相当。白云鄂博氟碳铈矿典型的稀土含量(氧化物,wt%)为: La - 23.0、Ce - 50.0、Pr - 6.2、Nd -18.5。烧结钕铁硼磁体作为稀土功能材料的最大组成部 分,如果能有效应用元素 Ce 或 La,可以显著改善稀土 资源的平衡利用状况,大幅度降低磁体成本。如果能直 接应用稀土矿分离的中间产物一混合稀土(MM),还能 节省繁复的轻稀土分离过程,环保成本也会大幅下降, 使磁体成本更低。自 1983 年钕铁硼问世以来,多项研究

收稿日期: 2016-10-08

通信作者: 胡伯平,男,1957年生,研究员,Email: bphu@sanhuan.com.cn

DOI: 10.7502/j. issn. 1674 - 3962. 2017. 01. 09

表明^[1]: 除 Pm 以外的稀土元素 R 都能形成与烧结钕铁 硼主相具有相同晶体结构的 R₂Fe₁₄ B 化合物, 且稀土元 素彼此间的固溶度没有限制,这对以稀土元素 R 置换 Nd 来调整磁体性能、提高磁体性价比带来了巨大的便利。 过去 30 多年来, Pr 和 Nd 几乎无差别地相互替换成为常 态($Pr_{2}Fe_{14}B$ 和 Nd₂Fe₁₄B化合物二者内禀磁性相近),最 值得关注的是添加部分 Dy 和 Tb 提升磁体内禀矫顽力和 最高使用温度的重要作用($Tb_2 Fe_{14}B$ 和 $Dy_2 Fe_{14}B$ 化合物 的室温磁晶各向异性场比 Nd₂ Fe₁₄ B 化合物高出一倍以 上), 而蕴藏量丰富的 La 和 Ce 的应用价值被严重忽视 (La, Fe14 B和 Ce, Fe14 B化合物的室温饱和磁化强度略低于 Nd, Fe₁₄B化合物,磁晶各向异性场为后者的五分之二)。 其实,在Nd-Fe-B问世前,Koon等人^[2,3]对稀土元素 影响快淬及晶化 Fe - B 合金永磁特性的研究工作,就是 从 La 和 Tb 开始的,并在(Fe0.82 B0.18) 0.9 Tb0.05 La0.05 快淬合 金中实现了突破,磁性能达到: $B_r = 0.48$ T (4.8 kG) 和 H_{e1} =798 kA/m (10 kOe),这项工作拓展到全稀土 R 系列, 成为第一批 Nd - Fe - B 专利和文章的重要组成部分。 不同稀土元素与过渡族元素的成相倾向各异,其它稀土 元素替代 Pr 或 Nd 会增加产生新相的机会,敏感地影响 到烧结磁体的显微结构和永磁特性, Ce 就是这样一个典 型实例。虽然人们对 Ce 替代烧结钕铁硼磁体开发进行了 尝试,但采用常规烧结工艺路线制备的磁体内禀矫顽力比 较低,达不到实际应用的要求。自2010年稀土原材料价 格巨幅波动以来,La、Ce和 MM 重新引起了研究人员的 关注^[4 5],广泛深入的研究和开发工作开始应运而 生^[6~8], 人们对 La 和 Ce 在稀土家族中的特殊性质有了 更深刻的认识,尤其是 Ce 的混合价特性及其对烧结钕铁 硼磁体内禀磁性和永磁性的影响,成为人们开发低成本烧 结钕铁硼磁体的重要指南,并在产业化方面取得了不菲的 实际效果。本文将从 $Ce_{2}Fe_{14}B$ 的内禀磁性、Ce 的混合价 特性以及Ce-Fe-B 三元系的成相特性等角度,综合分析 Ce 替代 Nd 对烧结钕铁硼永磁特性的影响规律。

2 $Ce_2Fe_{14}B$ 的晶体结构和内禀磁性

2.1 $R_2 Fe_{14} B$ 的晶体结构和内禀磁性

除了放射性元素 Pm 以外,人们合成了其它镧系元素 的 $R_2Fe_{14}B$ 相和 $Y_2Fe_{14}B$ 化合物,并系统研究了它们的晶 体结构和内禀磁性^[9-13]。图 1 展示了 $R_2Fe_{14}B$ 相的晶格 常数 a 和 c 与 R 的关系,它们呈现出典型的镧系收缩现 象,且 c 的变化趋势尤为显著,变化量超过 a 的 4 倍,表 明稀土离子半径的变化更敏感地影响到 $R_2Fe_{14}B$ 单胞c 轴 的长短。这个变化特征与 $R_2Fe_{14}B$ 单胞的结构密切相关: 在 $R_2Fe_{14}B$ 单胞中,Fe 次晶格以畸变的六边形层状结构形 成骨架,稀土离子在z = 0和z = 1/2层占据 Fe 六边形的中心,镧系收缩对 Fe – Fe 间距产生一定的影响,表现在 a 的变化之中,但更主要的是影响 Fe 层的间距,即 c 的大小。

图 2a、2b和 2c分别是 $R_2Fe_{14}B$ 的居里温度、低温及 室温饱和磁极化强度和室温磁晶各向异性场。与其它稀 土 – 过渡金属化合物一样,居里温度 T_{a} 在 R = Gd 时最高 (图 2a),这是相邻稀土离子 4f 电子 RKKY 交换作用的典 型表现,其交换耦合常数J_{RKKY}正比于德吉尼斯(De Gennes) 因子 $G = (g_1 - 1)^2 J(J + 1)$,图 2a 中同时展示了 不同稀土离子的 G 因子, 可见 T。与 G 存在强关联关系。 另外,稀土 – 过渡金属化合物的 T_{a} 还取决于稀土 R 和过 渡金属 T 次晶格之间的交换作用,其交换场系数 nm 也被 描绘在图 $2a + p^{[14]}$,在 Gd 以上的中重稀土中, n_{BT} 接近 常数,对T。与G的关联趋势影响较小;但在轻稀土一 侧, Pr, Nd 的 $n_{\rm BT}$ 大约是中重稀土的 2 倍, Sm 的 $n_{\rm BT}$ 则是 中重稀土的 1.5 倍,在很大程度上弥补了这些元素 G 因 子偏小的缺陷, T_c 在 G 因子的变化趋势上有了大幅度的 提升。 $R_2 Fe_{14}B$ 的饱和磁极化强度 J_5 同样由 R 和 T 次晶 格的贡献叠加而成,如果将T = 4.2 K的 J_s 与+3 价稀土 离子依照洪德法则计算的磁矩 $\mu_1 = g_1 [J(J+1)]^{1/2} \mu_R$ 相比 较,并考虑到轻稀土磁矩与 Fe 次晶格磁矩平行耦合、中 重稀土磁矩与 Fe 磁矩反平行耦合的实情,令中重稀土磁 矩取负值,由图 2b 可以看出, $J_s = \mu_1$ 的变化趋势极为相 近, 说明稀土离子局域化以及 R、T 次晶格磁矩叠加的假 设可以很好地描述 R₂Fe₁₄B 的饱和磁极化强度与不同稀土 元素 R 的关系。由于热扰动对交换作用的影响,室温附近 稀土离子磁矩的绝对值相对于低温数值而言都有较大幅度 的降低,而Fe次晶格磁矩对温度的敏感度相对较低,两 者叠加的结果使轻稀土合金的 Js 整体下降,而中重稀土 的1。反倒上升,在室温附近表现出正温度系数,因此

轻稀土和中重稀土以适当比例混合可以有效调节 J_s 和剩磁 B_i 的温度系数,制备出温度系数接近于零的永磁体。图 2c 展示的是不同 R 的 R_2 Fe₁₄B化合物的室温磁晶各向异性场 μ_0H_a ,可见 R = La, Ce, Gd 和 Lu 化合物都处在同一水平, 在 2 ~ 3 T 之间; Pr, Nd 和 Ho 化合物的数值相当,分别 为 8.7,7.6 和 7.5 T; 而 Tb 和 Dy 化合物以 22 T 和 15 T 高 居榜首,分别是 Nd 的近 3 倍和 2 倍,这正是 Tb, Dy 替代 Nd 大幅度提升 Nd – Fe – B 磁体内禀矫顽力 H_{cl} 和最高使用 温度的根本原因,对新能源汽车、节能家电等耐高温应用 而言具有重大的意义,是其它稀土元素不可企及的优异特 性。图 2 的数据表明, R_2 Fe₁₄B 具有优良的内禀磁性,这

- 图 2 不同镧系元素 R 对应 R₂Fe₁₄ B 相的居里温度 T_e(a),温度
 4.2 K 与 300 K 下的饱和磁极化强度 J_s和0 K 下的稀土离
 子 R³⁺磁矩μ_J(b)和 300 K 下的磁晶各向异性场μ₀H_a(c)
- Fig. 1 Curie temperature $T_{\rm c}(a)$, saturation polarizations $J_{\rm s}$ at 4.2 K and 300 K, and magnetic moment of ${\rm R}^{3+}$ at 0 K (b), and room temperature magneto-crystalline anisotropic fields $\mu_0 H_{\rm a}(c)$ of ${\rm R}_2 \,{\rm Fe}_{14}$ B phases with different R elements

是钕铁硼磁体展示优异永磁特性的基础和保障。

2.2 $Ce_2Fe_{14}B \leftarrow R_2Fe_{14}B$ 家族中的特殊性

从上一节描述的 R₂Fe₁₄ B 化合物晶体结构及内禀磁 性变化规律可以看出, R = Ce 化合物在整个 $R_{2}Fe_{14}B$ 系 列中属于特立独行的一员。图1表明, Ce, Fe₁₄B对应的 晶格常数明显低于镧系收缩的正常趋势, a 比常规期待 值低 0.005 nm, 意味着六边形层状 Fe 网格中的 Fe - Fe 间距缩小, c 更是低于正常趋势 0.015 nm, Fe 次晶格层 间距进一步缩减。对 R - Fe 基化合物而言, 晶格常数的 变化对 3d 电子磁性的影响是巨大的,因为根据电子能带 理论分类, Fe 的 3d 电子属于弱铁磁性^[15], 其特征是费 米能 E_e低于主自旋(上自旋)能带的上限,在费米面以上 仍存在一定的能带空位,根据 Néel 总结归纳的 3d 和 4d 以及4f等元素及其合金的3d 电子交换积分常数与近邻 原子间距的关系^[16], Fe – Fe 间距的微小变化会改变交 换积分常数,不仅直接影响到化合物的磁有序温度,而 且会改变主次能带的交换劈裂程度,导致费米面移动和 上下自旋能带电子分配的变化,从而改变 Fe 原子的净磁 矩,使化合物的宏观磁矩发生相应变化。Sm, Fe₁₇化合物 经固 – 气相反应生成氮原子间隙化合物 $Sm_2Fe_{17}N_{3-8}$ 后, 其 T_c 和 J_c 的大幅度改善就是 Fe – Fe 间距增大的经典范 例^[17],而在 Ce₂Fe₁₄B中,我们则看到了因 Fe - Fe 间距 缩小而带来的严重负面影响。

图 2a 表明, Ce, Fe, B 的居里温度 T, 仅 422 K, 比 La 和 Pr 的内插值 543 K 低 121 K, 甚至显著低于非磁性稀 土离子 La³⁺和 Lu³⁺化合物对应的 516 K 和 534 K, Ce 不 仅对自旋交换作用无直接贡献,而且还大幅度降低了 Fe 次晶格自身的交换相互作用,这无疑是 Ce2 Fe14 B 在内禀 磁性方面最为独特的表现。与此密切相关的是,在图 2b 中还可以看到, $Ce_{2}Fe_{14}B$ 的低温饱和磁极化强度 $J_{s} =$ 1.47 T 也严重偏离 R₂Fe₁₄B 的整体趋势,完全不在+3 价 局域稀土离子磁矩 μ_1 所对应的位置,且略低于 La₂Fe₁₄B 的1.50 T, 只比 Lu, Fe₁₄ B 的 1.46 T 稍高一点, 意味着 Ce 不仅对 Ce₂Fe₁₄B 化合物没有贡献磁矩,还以缩小 Fe - Fe 间距的途径连带着将 Fe 原子磁矩也降低了;也有另一种 可能的解释,即Ce离子有多余电子进入Fe的3d能带并 降低其磁矩^[12]。Ce₂Fe₁₄B 室温附近的 J_s更逊一筹, 1.17 T的数值只是 La, Fe₁₄ B 1. 38 T 的 85%,相对于低温数值 降低了 20%,根据按 T。归一化的 Fe 次晶格磁化强度随 温度变化的 $M = T/T_{e}$ 曲线^[1],在 300 K时 Ce₂Fe₁₄B的 T/T_{e} = 0.71, 对应的 M 约为低温数值的 78%, 即降低了 22%,这与实测数据的20%已相当接近,过低的T。进一 步劣化了 $Ce_2 Fe_{14} B$ 的室温 J_s 。上节说到, $Ce_2 Fe_{14} B$ 的室 温磁晶各向异性场 $\mu_0 H_a$ 与非磁性 La, Lu 和 S 态 Gd 化合

物的相当,4 个化合物的数值分别为 3.0,2.0,2.0 和 2.5 T,进一步表明 Ce 对室温磁晶各向异性亦无贡献。

总而言之, Ce 在 Ce₂ Fe₁₄ B 中不仅表现出非磁性特 征,而且因缩减了 Fe – Fe 间距致使 Fe 次晶格的内禀磁 性大打折扣,对以 Ce₂ Fe₁₄ B 相为基础开发 Ce – Fe – B 永 磁材料而言极为不利。但如果将 Ce₂ Fe₁₄ B 的内禀磁性参 数与 SmCo₅, Sm₂ Co₁₇和 Nd₂ Fe₁₄ B 3 大类稀土永磁材料主 相相比,还是能看到其产业化的价值: 室温 $J_s = 1.17$ T, 与 SmCo₅相当,最大磁能积(*BH*)_{max}的理论极限值 267 kJ/ m³(33 MGOe)。室温 $\mu_0 H_a = 3.0$ T,根据 Nd – Fe – B 磁 体的经验,可期待 $\mu_0 H_{el} = 0.3 \sim 0.4$ T。

3 Ce 在合金或金属化合物中的混合价态

从 Ce₂ Fe₁₄ B 晶格常数和内禀磁性的反常行为和密切 关系可以看出, Ce 的离子半径明显小于 Ce³⁺离子应有的 水准,而且以 4f 电子局域磁性的理论来分析也与 Ce³⁺磁 性严重偏离。这种现象在其它 Ce – 过渡金属合金或化合 物中并不鲜见,其根本原因就在于 Ce 的混合价态特性。 3.1 Ce 离子的混合价态

Ce 原子的基态电子构型为 [Xe]4 $f^{4}5d^{1}6s^{2}$,在合金或 金属化合物中,Ce 离子既可能与常规稀土离子一样处于 +3 价态一γ态,也可能再失去一个*f* 电子而处于 +4 价 态一α[·]态,不同价态离子的选择性占位使 Ce 呈现混合价 态一α态。不同价态 Ce 离子的磁性截然不同:γ态有一个 4*f* 电子,由洪德法则可以得到:*S*=1/2,*L*=3,*J*=*L*-*S*= 5/2,Ce³⁺离子表现出宏观磁性,离子磁矩 $\mu_{J} =$ *g*_J $\sqrt{J}(J+1) = 2.54 \mu_{B}$,相当于 Pr 和 Nd 的 70%,同时 还可期待 Ce³⁺ 对磁晶各向异性作出贡献: α[·]态的 4*f* 电子 数为0,*S*=*L*=*J*=0,离子磁矩和磁晶各向异性效应随着 4f 电子的离去而丧失,而且 Ce⁴⁺具有明显小于 Ce³⁺的离 子半径。尽管 Ce₂Fe₁₄B 的晶格常数和内禀磁性参数都意 味着 Ce 处于 α[·]态,但低温磁晶各向异性场的数值却建 议,Ce 可能并不完全处于 α[·]态,而是 α态。

Саренат 等人^[18]运用高能同步辐射 X 光吸收谱近边 界结构技术 (XANES), 从 Ce 的 L_3 吸收边测得其在 Ce₂Fe₁₄B中的光谱 $v_s \approx 3.44$, 基本上处于 + 3 fman + 4 fman fman fman $v_s \approx 3.44$, 基本上处于 + 3 fman fman fmanfman fman Ce₂Fe₁₄BH_x(3.5 < x < 4.5) 分别增大到 31.6 和 35.1 Å³, 显然 4f 晶位体积偏小,而 4g 晶位体积大得多,与 + 3 价 γ - Ce 的 34.7 Å³相近(在氢化物中甚至大于 γ - Ce)。因 此,不同晶位的 Ce 具有混合价特征,与 XANES 实验结 果相符。以不同 Ce 晶位体积的加权平均值定义为 Ce 晶 位的平均空间体积,并与这 3 种化合物的 Ce 离子光谱价 ν_s 进行关联,图 3 表明两者呈很好的直线下降关系,晶 位空间体积越大光谱价越低,如果能给 Ce 离子提供更大 的晶位空间体积,比如 4g 晶位,就有希望使其处于 + 3 价 γ 态并贡献磁性。

图 3 Ce 的光谱价 ν_s与 Ce 晶位平均空间体积的关系^[18]

Fig. 3 Ce spectroscopic valence vs average steric volume^[18]

Alam 和 Johnson^[19,20]从第一原理出发计算了一个 Ce₂Fe₁₄B单胞中 Ce₂Fe₁₄B 相生成焓与 Ce 混合价态的关 系。将 Ce^{3+} 和 Ce^{4+} 看成不同的原子,由 Ce^{4+} 逐步替换 8 个 Ce 晶位的 Ce³⁺ 可构成以 1/8 = 0.125 为步长的 7 个混 合价态: +3.125,+3.250, ……,+3.875 和两个纯价 态 +3, +4, 不同比例的 Ce³⁺和 Ce⁴⁺以二项分布占据不 同晶位,然后分别计算离子半径小的 Ce⁴⁺ 优先进入空间 体积小的4f晶位或空间体积大的4g晶位的生成焓。图 4a的计算结果表明: Ce⁴⁺优先进入 4f 晶位具有负生成焓 (实线贯穿的圆点),生成焓极小值对应的混合价 ν_s = 3.53,略高于中间价+3.5,与上述从Ce的L。吸收边测得 其在 $Ce_2Fe_{\mu}B$ 中的光谱价 $\nu_s = 3.44$ 的符合度相当高;反之, Ce^{4+} 优先进入 4g 晶位的生成焓为正(虚线贯穿的方点),在 能量上处于不利地位。如果引入大离子半径的 La³⁺ 形成赝 三元化合物(Ce,La),Fe₁₄B,稀土晶位空间增大,便有机会 使 Ce 混合价态向 Ce3+移动,图4b 是假设一个 La 离子择优 占据空间体积大的 4g 晶位后, 1/8 的 Ce 被 La 替代的(Cest 5 La125),Fe14B生成焓与混合价的关系,可见生成焓

极小值对应的混合价移向 γ 态, ν_s = 3.43, 与(Ce₉₀ La₁₀) $_2$ Fe₁₄B 的 XANES 实验结果 3.46^[21]非常接近。而中 子衍射研究表明, Ce $_2$ Fe₁₄BH_x的 Ce 原子磁矩为 2.1 μ_B , 略低于 Ce³⁺离子磁矩^[22,23]。

Jin 等人^[24]制备了成分为 [[Pr, Nd)_{1-x}(La, Ce)_x]_{2.14} Fe₁₄B (0 $\leq x \leq 0.5$, La/Ce 重量比 = 35/65) 的速凝薄带, 并且综合应用 XPS 和 XRD 等手段,发现当 La – Ce 联合 添加量 x > 0.3 时, XPS 中对应 f^{0} (即 Ce⁴⁺)的强度单调 下降,而 f^{1} 和 f^{2} 的强度单调上升,意味着 Ce 的混合价 态向 +3 价移动。相应地,XRD 表明晶格常数 a 和 c 在 x < 0.3 时线性减小,在 x > 0.3 时线性增大,但 c/a 保持不变。 磁性参数显示,x = 0.4的样品偏离饱和磁矩 M_{s} 和居里温度 T_{c} 随 x 增加单调下降的趋势,相对于 x = 0.3的样品都有所 增加。因此他们也认为晶位体积的增加、Ce 离子价的减少、 含 Ce 磁体的磁性能增强之间存在密切的关系。

3.2 通过增大晶格空间未必能改善 Ce 的 +4 价倾向

Fuerst 等人^[25]的研究得出了与 Jin 等人^[24]不同的结 论。他们将具有最大离子半径的 La 与 Ce 混合,系统制 备了 La_{2-x}Ce_xFe₁₄B ($x = 0 \sim 2$)合金,实验发现稀土过盈 量和热处理条件对获得纯相至关重要, $x \leq 0.2$ 的实际配 方为 R_{2.2}Fe₁₄B, $x \geq 0.4$ 的为 R_{2.02}Fe₁₄B。实测数据表明, 所有样品的晶格常数、c/a和居里温度 T_c 均关于 x 呈线 性下降关系,最小二乘拟合得到:

a(x) = 0.8829 - 0.0034x	偏差平均值 0.04%
c(x) = 1.2363 - 0.0114x	偏差平均值 0.06%
c/a(x) = 1.400 - 0.008x	偏差平均值0.06%
$T_{c}(x) = 545.3 - 58.8x$	偏差平均值 0.32%

从纯 La 的 x = 0 到纯 Ce 的 x = 2, a 只减小了 0.007 nm,反映出 Fe – B 三角菱柱对 Nd₂Fe₁₄ B 型结构稳 定性所起的作用; c 的减小幅度达到 0.022 nm,显然是 Ce 离子半径的影响。由此可见 a 和 c 与 x 的关系及其起 因与图 1 非常相似,而晶格常数的线性关系意味着 Ce 离 子的价态在整个 La_{2-x}Ce_xFe₁₄ B 系列中是相同的。 T_c 的线 性下降关系也表明 Ce 的价态没有发生突变,只是 Fe – Fe 间距缩短的影响。考虑到磁化强度测量的不确定度 ±0.24 kGs和 $x \le 0.4$ 时存在杂相的影响,T = 5 K 的低温 4 π M_s基本上保持为常数 15.0 kGs,也说明 Ce 离子对 La_{2-x}Ce_xFe₁₄ B 化合物的磁矩无贡献。因此,虽然通过 La 取代 Ce 让 Ce 原子具有比 Ce₂Fe₁₄ B 更大的晶格空间,但 并未改变 Ce 离子的 +4 价态特征。

4 Ce 对烧结 Nd – Fe – B 磁体永磁性的影响

磁体主相的内禀磁性和磁体的相组成以及微结构将 共同决定磁体的永磁性。Ce 替代 Nd 添加到 Nd – Fe – B 合金之中, Ce 离子的 +4 价倾向直接影响到烧结磁体的 相组成及其显微结构,实验表明它还会进一步损伤烧结 磁体的内禀矫顽力。但在以内禀磁性和纳米晶粒尺寸决 定的快淬磁体中,这种 Ce 混合价态对内禀矫顽力的影响 较小,因此可以得到 Ce 含量很高的快淬 R – Fe – B 磁 体。从下面的研究工作可以看到,不同的矫顽力机制对 Ce 添加的敏感度极为不同。

4.1 高 Ce 或混合稀土含量烧结磁体的尝试

Ce-Fe-B 烧结磁体的尝试是以失败而告终的,因此 富含 La, Ce的烧结磁体实验都是从部分替代 Pr 或 Nd 着 手。尽管混合稀土 MM 天然就是 La, Ce, Pr, Nd 的混合 物,但因为 La, Ce 含量过高, MM – Fe – B 烧结磁体的性 能仍然低到没有实用价值^[26]。Okada 等人^[27]用 Ce 含量 5 wt%和40 wt%的 Pr - Nd 合金作为原料,磁体成分为 R_{32.5~34.5}Fe_{bal}B_{1~1.6},实验表明:Ce占稀土总量5 wt%的 $R_{33.5}Fe_{65.5}B_1$ 磁体 $B_r = 1.32$ T (13.2 kGs) , $H_{cJ} = 812$ kA/m (10.2 kOe), (BH) max = 318 kJ/m³ (40 MGOe), 具有很好 的永磁特性;但当 Ce 含量增加到总稀土量的 40 wt% 时, 烧结温度需降到 1040 ± 5 ℃,磁体 B_r = 1.15 T (11.5 kGs) , $H_{c1} = 422 \text{ kA/m} (5.3 \text{ kOe})$, $(BH)_{max} = 214 \text{ kJ/m}^3 (27)$ MGOe),与前者相比大打折扣,但依然具有一定的实用 价值,不过其矫顽力的温度系数很差,100 ℃的 H_a仅为 室温的 65%。电镜观察表明, Ce 进入主相和富稀土相, 降低了两者的熔点,使烧结更容易达成,且富 Nd - Ce 相对主相的浸润性更好。龚伟和 Hadjipanayis^[26]完全采 用 MM 来制备烧结磁体,名义成分 $MM_{15}Fe_{77}B_8$ 磁体的 H_{c1} 不超过 120 kA/m (2 kOe),添加 Al 和 Dy₂O₃或 Nd₂O₃可 将 H_{el}提升到 637~796 kA/m (8~10 kOe)的水平,代价 是剩磁大幅下降, (BH) max < 80 kJ/m³ (10 MGOe), 还不 如各向同性粘结钕铁硼磁体。马保民(Ma B M)和 Willman^[28]用多合金方法,将不同 B, Al 含量的 Nd – Fe - B 合金与 MM - Fe - B 或 MM - Fe - Al - B 合金粉末混 合制备烧结磁体,表1综合了不同 MM 和 Al 含量磁体的 永磁性能, 10 at%的 Ce 替代 Nd 还能维持 11.0 kOe 的矫 顽力,但(BH) max已经降到 27.8 MGOe,而约 65 at%的 Ce 得到的 H_{cl} 只有4.6 kOe , (BH) max = 16.2 MGOe。Li 和 Bogatin^[29]研究了 Nd 置换 Ce, Co 和 Si 置换 Fe 的烧结磁 体(Ce_{1-x}Nd_x)_{13.5}Fe₆₂Co₁₇Si₁B_{6.5}的相结构和磁性,发现Ce 含量高的铸态合金存在 α – Fe、Ce₂(Fe, Co, Si)₁₄B 和居 里温度 T_a≈110 ℃的富 Ce 相, 而低 Ce 合金只有 α – Fe 和 Ce₂(Fe, Co, Si)₁₄B相,均匀化处理后α-Fe含量显著降 低。Nd 含量 x 越高磁性能越好, x = 0 的纯Ce – Fe – B 磁 体(BH) $_{max}$ 仅11.1 MGOe, x = 0.4磁体的 $B_r = 11.7$ kGs, $H_{\rm cJ} = 7.5 \text{ kOe}$, (*BH*) _{max} = 27.2 MGOe.

- 图 4 Ce₂Fe₁₄B(a) 和(Ce_{87.5}La_{12.5})₂Fe₁₄B(b)的生成焓 ΔE 与 Ce 混合价的关系(La 优先进入 4g 晶位) 实线(虚线) ——半径偏小的 Ce⁴⁺ 优先占据 4f(4g) 晶位^[20]
- Fig. 4 Relationship between formation enthalpy (ΔE) and valence of Ce in Ce $_2$ Fe $_{14}B$ and (Ce $_{87.5}La_{12.5}$) $_2$ Fe $_{14}B$ (La favors one 4g site) , solid (dashed) line with the smaller Ce⁴⁺ ions distribute over 4f (4g) sites^[20]

表1 MM_{16.3-x}Nd_xFe_{77.5-y}Al_yB_{6.2}的磁性能^[28]

Table 1 Magnetic properties of MM_{16.3-x}Nd_xFe_{77.5-y}Al_yB_{6.2}^[28]

x	MM/RE	у	$B_{\rm r}$	H_{cB}	$H_{ m cJ}$	$H_{\rm k}$	(<i>BH</i>) _{max}
/ at%	/ at%	/ at%	/kGs	/kOe	/kOe	/kOe	/MGOe
5.8	64.4	3.5	8.9	4.2	4.6	3.4	16.2
7.5	54.0	2.9	9.4	5.1	5.8	4.0	18.5
9.2	43.6	2.4	9.8	5.8	6.9	4.1	20.2
12.6	22.7	1.2	10.8	8.0	9.9	5.8	25.5
14.6	10.4	0.7	11.1	8.1	11.0	6.3	27.8

4.2 双主相方法成功制备商品化高 Ce 含量烧结磁体

朱明刚和李卫等人^[30,31]采用双主相的方法,用速凝 薄片技术分别制备 Nd - Fe - B 和 (Ce - Nd) - Fe - B 合 金,再将两种合金的粉末以不同比例均匀混合,用传统 粉末冶金方法制备出名义成分为 (Nd_{1-x} Ce_x)₃₀(Fe, TM) $_{69}$ B₁ (wt%, x = 0.10 ~ 0.45) 的烧结磁体。如图 5 所示, (Nd_{0.8}Ce_{0.2})₃₀(Fe, TM)₆₉B的烧结温度需高于1020 ℃才能达到 7.64 g/cm³以上的密度,但 H_{el}随烧结温度升 高单调下降,且1060 ℃的高温会显著降低 B_x和 (BH)_{max}。 在优化工艺条件下得到的磁体性能与 Ce 含量 x 的关系参见 表 2, 富稀土相的熔点从 x = 0 的 455 ℃ 单调降低到 x = 0.2的419 ℃, 说明含 Ce 磁体可在更低温度下烧结, 以避免 主相晶粒过度生长;磁体 T_e和 B_r降低表明 Ce 进入主相 形成了 (Ce, Nd), $Fe_{14}B$ 固溶化合物; 在 $x \leq 0.2$ 可以得到 $H_{cl} \approx 12 \text{ kOe}$ 、(BH) max ≥45 MGOe 的中等性能磁体,即使在 x = 0.3, (BH) max 还可维持在 43 MGOe 以上。将成分为 [(PrNd)_{0.8}Ce_{0.2}]₃₁(Fe,TM)₆₈B₁的单合金磁体和双主相 磁体进行比较,其中双主相磁体由(PrNd)₃₁(Fe,TM)₆₈ B₁与 [PrNd)_{0.5}Ce_{0.5}]₃₁(Fe, TM)₆₈B₁按3:2配成。双主 相方法将磁体的 Hei从单合金法的 7.7 kOe 提升到 12.1

kOe, B,从 13. 16 kGs 提升到 13. 30 kGs。显微分析揭示, 双主相磁体的主相晶粒基本保持各自的 Ce 含量,相邻晶 粒之间的扩散渗透不明显,但存在更多的富稀土相。两 种内禀磁性差异较大的主相晶粒间相互影响,其效果优 于形成完全固溶体后的内禀磁性。

- 图 5 (Nd_{0.8}Ce_{0.2})₃₀ (Fe, TM)₆₉B₁的密度及磁性能与烧结温度的 关系^[30]
- Fig. 5 Dependence of density and magnetic properties on sintered temperatures for ($\rm Nd_{0.8}\,Ce_{0.2})_{~30}$ (Fe , TM) $_{69}B_1$ magnets $^{[~30\,]}$

类似地, Jin 等人^[32]用(Pr, Nd)_{29.8}Gd_{1.7}Fe_{bal}M_{1.1}B_{1.0} 与(Pr, Nd)_{20.3}(La, Ce)_{9.5}Gd_{1.7}Fe_{bal}M_{1.1}B_{1.0}两种粉末按一 定比例混合制备烧结磁体。当La - Ce(La 35 wt%、 Ce 65 wt%) 占总稀土量达 36 wt% 时,磁体的最大磁能积 匀分布可导致 仍可达到 42.2 MGOe。扫描电镜观察表明,磁体主相中存 磁体的磁性能 在 La/Ce 和 Pr/Nd 分布不均匀的现象,他们认为这种不均 温度高于同成

匀分布可导致晶粒内部的短程交换作用,从而可使双主相 磁体的磁性能高于单主相磁体,他们测到双主相磁体居里 温度高于同成分单主相磁体,是这个推测的重要注脚。

表 2 ($Nd_{1-x}Ce_x$) 30(Fe, TM) 69B1(wt% x = 0.10 ~ 0.45)的磁性能^[30]

Table 2	Magnetic properties of (Nd, "C	e.,) 20 (Fe	, TM) 60 B1 (wt% . x	c = 0.10	~ 0.45) [30]
1 4010 2	magnotio proportioo or (-x	U _x /30(1 U	,, 69 0 1		- 0.10	0.157

x/wt%	$B_{\rm r}/{\rm kG}$	$H_{\rm eJ}/{\rm kOe}$	($\mathit{BH})_{max}/\mathrm{MGOe}$	$H_{\rm k}/H_{\rm eJ}$	$T_{\rm c}$ / °C	Melting point of R – rich phase $/^{\circ}\!\!\mathrm{C}$
0.00	14.2	13.1	48.1	0.80	315	455
0.10	14.0	12.2	46.6	0.87	306	433
0.15	13.8	11.4	45.6	0.95	294	422
0.20	13.7	12.0	45.0	0.90	293	419
0.30	13.6	9.3	43.3	0.93		
0.45	12.4	6.2	33.4	0.90		

4.3 CeFe₂ Laves 相妨碍高 Ce 含量烧结磁体获得高H_{cl}

钮萼等人^[33]系统地研究了采用混合稀土 MM 和双 合金法制备(MM,Nd,Dy)-Fe-Co-Cu-Al-Nb-B 烧结磁体的相结构、微结构与永磁性能的关系。图6展 示了磁体内禀磁性和外禀磁性随 MM 占稀土总量 R 的原 子比 MM/R 变化的特征,可见磁体的磁晶各向异性场 *H*_a、饱和磁化强度 4πM_s和居里温度 *T*_c都随 MM/R 线性 下降,表现出简单的固溶模式,相应的磁体 *B*_r和 (*BH*)_{max}也线性下降,唯独 *H*_{cl}在 MM/R = 42.2% 出现转 折,对应的 LaCe 与 R 之比为 1/3,在 MM/R ≤ 21.5% 能 得到 *B*_r≥12.1 kGs、*H*_{cl}≥10.7 kOe、(*BH*)_{max}≥34.0 MG– Oe 的实用化磁体。

比较 MM/R = 0 的常规磁体和 MM/R = 62.1 at% 磁体 的 SEM 背散射图像可知:前者主相晶粒内化学成分均 匀,沿着晶界有薄且连续的富 Pr – Nd 相,部分晶界三角 区也存在富 Pr – Nd 相;而后者多数晶粒都具有清晰的 "核"与"壳"衬度,"壳"区灰度低于"核"区,意 味着"壳"的平均原子序数比"核"小,而富稀土相几 乎都位于晶界三角区,不是分割相邻主相晶粒的浸润相。 区域 EDS 分析结果证实,"核"区稀土元素只有 Pr 和 Nd,La 和 Ce 含量不可探测,而"壳"中 La,Ce 含量与 Pr,Nd 相当,且 Ce 含量最高,可以推测"壳"的 H_a比 "核"的低,主相晶粒呈现"软壳硬核"特征,加上晶粒 边界缺少退磁耦合的连续富稀土相,高MM/R的磁体 H_{cl} 很低。从不同MM/R磁体的断裂形貌(图7)也可以识 别两者在富稀土相分布上的显著差异:低MM/R磁体为 沿晶断裂,主相晶粒边界清晰,晶粒尺寸在5~10 μ m之 间,除了孔洞多一些以外,MM/R=21.5 at%的微结构与 MM/R=0的非常类似;而高MM含量磁体(图7c~d) 大多为穿晶断裂,主相晶粒间没有明显的边界,多个晶粒 连成等效大晶粒,断面还存在5~10 μ m的孔洞。另外, 通过 XRD、EDS 和M - T曲线还证实,MM/R=62.1 at% 和 100 at%的样品中存在 (Ce, Nd) (Fe, Co) $_{2}$ 相晶粒, 居 里温度约 245 K,比 Deportes 等人 $^{[34]}$ 报道的 CeFe $_{2}$ 居里温度 230 K高 15 K,估计是由于 Co和 Nd 进入了 Laves 相。 从图 8 的 Ce – Fe – B 和 Nd – Fe – B 三元相图比较可以看出, 由于 Ce 的混合价倾向,离子半径更小的 Ce 能形成 CeFe₂ Laves 相(常规条件下 NdFe₂相不存在),烧结 Ce – Fe – B

图 7 不同 MM/R (at%) 磁体的断裂形貌 SEM 照片: (a) MM/R = 0, (b) MM/R = 21.5, (c) MM/R = 62.1 和 (d) MM/R = 100^[33] Fig. 7 SEM images of fracture morphologies and oxygen contents of different samples: (a) MM/R = 0, (b) MM/R = 21.5, (c) MM/R = 62.1 and (d) MM/R = 100^[33]

的成分处于由 $Ce_2 Fe_{14}B$ 、 $Ce_{1,12} Fe_4 B_4$ 和 $CeFe_2$ 构成的三角 形内(图 8a),这 3 个相都倾向于以独立晶粒的形式存 在, 主相晶粒之间缺乏起退磁耦合作用的浸润性富稀土相, 导致烧结 Ce – Fe – B 磁体 *H*er极低。

图 8 Ce – Fe – B (a) 和 Nd – Fe – B (b) 三元相图,灰色圆圈对应磁体成分^[33]

Fig. 8 Phase diagrams of Ce - Fe - B (a) and Nd - Fe - B (b) ternary system , the composition of magnet is marked by gray circle [33]

严长江等人^[35]在氩气氛下将 Ce_{30.5} Fe_{68.5} B₁ (wt%) 熔融合金以 1.8 m/s 的铜辊线速度制成平均厚度 200 μm 的速凝薄片,粉末 XRD 显示合金为 Ce₂ Fe₁₄ B、α – Fe、 Fe₂B、CeFe₂和 Ce 五相共存,高达 10³/℃的冷速尚不能 有效抑制α – Fe 的生成,而在同等条件下 Nd – Fe – B 体 系只有 Nd₂Fe₁₄B 和富 Nd 相。差热分析和 BSE 分析给出的 合金凝固反应见表 3, 共晶反应生成的 α – Fe 和 Fe₂B 枝 晶形成 "核" (图 9a), 核外包覆包晶反应生成的 Ce₂Fe₁₄B "壳",更低熔点的 CeFe₂和 Ce 被挤到三角区。 主相晶粒并非贯穿速凝薄片厚度的柱状晶,面积也不占 绝对优势。合金在 1000 ℃处理 30 min 即可消除 α – Fe 和 Fe₂B, 但仍有不少 CeFe₂相。将约 1/5 的 Ce 用 Ho 替代^[36],

表 3 Ce – Fe – B 速凝薄片凝固反应特征^[35]

Table 3 Solidification reactions of strip casting Ce – Fe – B alloy^[35]

Phase	Reaction	Equation	$T \nearrow C$
$\operatorname{Fe}_2 B$	Eutectic	$L \rightarrow \gamma - Fe + Fe_2B$	1173
Fe	Eutectic	$L \rightarrow \gamma - Fe + Fe_2B$	1173
$\mathrm{Ce}_{2}\mathrm{Fe}_{14}\mathrm{B}$	Peritectic	L' + γ – Fe + Fe ₂ B \rightarrow Ce ₂ Fe ₁₄ B	982
$\mathrm{Ce}_{2}\mathrm{Fe}_{17}$	Peritectic	L'' + $\gamma - \text{Fe} \rightarrow \text{Ce}_2 \text{Fe}_{17}$	970
$CeFe_2$	Peritectic	L''' + $Ce_2Fe_{17} \rightarrow CeFe_2$	876

Ce_{25.5}Ho₅Fe_{68.5}B₁速凝薄片可完全消除富 Fe "核" (图 9b),因为 Ho 有效提高了主相的固相线温度,(Ce,Ho)₂ Fe₁₄B 主相晶粒呈椭圆形,大多数椭圆的长轴沿冷却热流方 向排列,CeFe₂倾向于团聚,不像富 Nd 相那样完全浸润和 包覆主相;进一步用部分 Nd 替代 Ce,Mn 替代 Fe,并适当 提高稀土总量和降低 B 含量,Ce₂₂Ho₅Nd₄Fe_{67.1}Mn_{0.96}B_{0.94}速 凝薄片的微结构就与 Nd – Fe – B 一样了(图 9c),较高 熔点的 RFe₂相转化为熔点低得多的富稀土相。用上述 3 种合金制备的烧结磁体密度和性能见表 4,磁体断面的微 结构特征见图 10。由于浸润性晶界相的缺失,前两种合 金表现出穿晶断裂,主相晶粒粗大,磁体 H_{cl} 很低;随着 浸润性晶界相的出现,磁体的永磁性显著改善。

表 4 掺杂 Ho , Nd 和 Mn 的 Ce – Fe – B 烧结磁体的性能^[36] Table 4 Magnetic properties of sintered Ce – Fe – B magnets with Ho , Nd , and Mn dopants^[36]

Composition	$ ho/{ m g/cm}^3$	$B_{\rm r}/{ m kGs}$	$H_{\rm cJ}/\rm kOe$	(BH) _{max} /MGOe	
$Ce_{30.5}Fe_{68.5}B_1$	7.61	3.74	0.10	0.07	
${\rm Ce}_{25.5}{\rm Ho}_5{\rm Fe}_{68.5}{\rm B}_1$	7.65	7.29	0.17	0.26	
${ m Ce}_{22}{ m Ho}_5{ m Nd}_4{ m Fe}_{67.1}{ m Mn}_{0.96}{ m B}_{0.94}$	7.63	9.41	3. 59	18.45	

图 9 $Ce_{30.5}Fe_{68.5}B_1$ 、 $Ce_{25.5}Ho_5Fe_{68.5}B_1$ 和 $Ce_{22}Ho_5Nd_4Fe_{67.1}Mn_{0.96}B_{0.94}$ 速凝薄片的 BSE 照片^[36] Fig. 9 BSE images of strip-casting $Ce_{30.5}Fe_{68.5}B_1$, $Ce_{25.5}Ho_5Fe_{68.5}B_1$ and $Ce_{22}Ho_5Nd_4Fe_{67.1}Mn_{0.96}B_{0.94}$ ^[36]

图 10 Ce_{30.5}Fe_{68.5}B₁、Ce_{25.5}Ho₅Fe_{68.5}B₁和 Ce₂₂Ho₅Nd₄Fe_{67.1}Mn_{0.96}B_{0.94}烧结磁体断面的 SEM 照片^[36] Fig. 10 SEM images of fracture of sintered Ce_{30.5}Fe_{68.5}B₁, Ce_{25.5}Ho₅Fe_{68.5}B₁ and Ce₂₂Ho₅Nd₄Fe_{67.1}Mn_{0.96}B_{0.94} magnets^[36]

4.4 快淬 Ce-Fe-B 磁粉的永磁特性

小的 Ce⁴⁺ 离子半径促成了 Ce – Fe – B 三元体系中 CeFe₂相的生成,而 CeFe₂不能浸润和包覆主相,致使烧 结 Ce – Fe – B 磁体无法获得合理的高 H_{cl} 。有适当的内禀 磁性做保证,快淬 Ce – Fe – B 合金的高 H_{cl} 只要求主相晶 粒达到亚微米的水平,而分割主相的浸润性晶界相并不 是高 H_{cl} 的必要条件。

 Herbst 等人^[6]系统研究了 Ce₂Fe₁₄B 相邻区域 Ce - Fe

 - B 三元系快淬合金的相结构和永磁特性,图 11a 是合

金配方点在 Ce - Fe - B 三元相图中的分布,并以方框的 灰度表征 (B_r + H_{cl}) 的高低—从纯白的最大值到纯黑的 最小值,表 5 列出了围绕最佳性能点 A - Ce₁₇ Fe₇₈ B₆ 的合 金性能;图 11b 是过淬 A 合金在不同温度下退火 5 min 的磁性能变化规律,最佳晶化温度在 550 ~ 600 ℃。Ce -Fe - B 的最佳性能成分有别于 Nd - Fe - B 体系的 Nd₁₃ Fe₈₂ B₅ (对应图 11a 和表 5 中的 M 点), A 点的相组成为 Ce₂ Fe₁₄ B、Ce_{1.12} Fe₄ B₄和 CeFe₂, M 合金 Ce₁₃ Fe₈₂ B₅ 与 A 合金处 在Ce₂ Fe₁₄ B - CeFe₂ 连接线的两侧,相组成变为 Ce₂ Fe₁₄ B、

表 5 最佳性能点 A 附近的快淬合金成分、磁性能参数及对应的退 火温度^[6]

Table 5 Composition , magnetic properties , and heat treatment temperatures of rapidly quenched powders around composition A with optimized performance ^[6]

Composition /at%	B _r /kG	$H_{\rm cJ}$ /kOe	(<i>BH</i>) _{max} /MGOe	$B_{\rm r}$ + $H_{\rm cJ}$	$T_a/^{\circ}$ C
${\rm A-Ce_{17}Fe_{78}B_6}$	4.9	6.2	4.1	11.1	550
$\mathrm{B}-\mathrm{Ce}_{14}\mathrm{Fe}_{79}\mathrm{B}_7$	5.3	5.4	4.6	10.7	500
${\rm C}-{\rm Ce_{15}Fe_{77}B_8}$	4.7	5.8	3.4	10.5	600
$\mathrm{D}-\mathrm{Ce}_{18}\mathrm{Fe}_{78}\mathrm{B}_4$	4.6	5.6	3.3	10.2	600
$\mathrm{E}-\mathrm{Ce}_{23}\mathrm{Fe}_{71}\mathrm{B}_{6}$	2.9	7.1	1.4	10.0	600
${\rm F-Ce_{14}Fe_{75}B_{11}}$	5.0	4.7	3.6	9.7	600
$\mathrm{I-Ce_{13}Fe_{80}B_7}$	5.2	3.2	2.8	8.4	600
$\mathrm{M}-\mathrm{Ce}_{13}\mathrm{Fe}_{82}\mathrm{B}_5$	4.8	3.1	2.5	7.9	650
$\mathrm{V}-\mathrm{Ce}_8\mathrm{Fe}_{82}\mathrm{B}_{10}$	2.3	0.6	0.3	2.9	700

 图 11 快淬 Ce - Fe - B 合金的成分与磁性能关系(a);不同温度下 退火 5 min 的过淬 Ce₁₇ Fe₇₈ B₆ 合金磁性能变化规律(b)^[6]

Fig. 11 Relationship between magnetic properties and composition of quenched Ce-Fe-B (a) , and influence of an nealing temperature on magnetic properties of over – quenched $Ce_{17}Fe_{78}B_6$ alloy (b) ^[6] Ce_2Fe_{17} 和 $CeFe_2$ 。由于离子半径较大,热平衡 Nd – Fe 二 元系不存在 NdFe_相 (Nd₃₃Fe₆₇),取而代之的是 Fe 含量 更高的 Nd₅Fe₁₇相 (Nd₂₃Fe₇₇),因此合金最佳成分可以更 靠近富 Fe 区,而且在快淬一晶化的亚稳条件下只有主相 和 Nd – Fe 晶界相,不存在富 B 相,显然有利于得到高 磁化强度。

陈仲民等人^[37]研究了 Ce 替代 Pr – Nd 的快淬 Nd – Fe – B 磁粉永磁特性,合金成分与商品化快淬 Nd – Fe – B 磁 粉相似,为 [(Nd_{0.75}Pr_{0.25})_{1-x}Ce_x]_{11.65}Fe_{82.75}B_{5.6} (x = 0 ~ 0.5)。图 12 是室温磁性能参数 B_r 、 H_{cl} 和(BH)_{max}与 x 的 关系,其中 B_r 符合简单的固溶规律,x = 0.5相对于 x = 0 的 剩磁比为 88.3%,但从 Ce₂Fe₁₄B、Pr₂Fe₁₄B 和 Nd₂Fe₁₄B 的饱 和磁极化强度 11.7,15.6 和 16.0 kGs 来计算,这个剩磁比 应为 86.8%,意味着 Ce 对(Ce,Pr,Nd)₂Fe₁₄B 磁性的贡献 大于纯 Ce₂Fe₁₄B。 H_{cl} 下降也可以归结为 Ce 对 Pr – Nd 磁晶 各向异性场的稀释效应。磁粉的 T_c 从 x = 0 的584 K线性下 降到 x = 0.5 的 509 K,室温至 100 ℃ 的剩磁温度系数也 从 – 0.13%/℃变到绝对值更大的 – 0.20%/℃。

图 12 【 Nd_{0.75} Pr_{0.25})_{1-X} Ce_X]_{11.65} Fe_{82.75} B_{5.6} 快淬磁粉的磁性 能参数与 Ce 含量的关系^[37]

Fig. 12 Effect of Ce content on room temperature demagnetization curves and magnetic parameters of rapidly quenched $\left[\begin{array}{c} Nd_{0.75} Pr_{0.25} \right)_{1-X} Ce_X \right]_{11.65} Fe_{82.75} B_{5.6} \right]^{37}$

Gschneidner 等人^[38] 制备了 ($Nd_{1-x}Ce_x$)₂Fe₁₄B 系列 快淬薄带,其室温磁性能与 Ce 含量 *x* 的关系可参见图 13,与图 12 的线性下降相比存在显著差异的是,在 *x* = 0.2 时 μ_0H_{c1} 跃升到 1.0 T (10.0 kOe),一直到 *x* = 0.35 才 回到原来的趋势,而在 *x* = 0.3 处 B_r 和 (*BH*)_{max}发生陡 降。晶格参数 *c* 在 *x* = 0.2 也是一个局部极小的低谷,而 扫描电镜的二次电子像照片表明薄带中存在两种灰度、 因而 Ce 含量不同的主相,他们认为这是由于 Ce 的变价 引起的磁晶各向异性和永磁性能变化。随后该实验室的

图 13 300 K 下快淬带 (Nd_{1-x}Ce_x)₂Fe₁₄B 内禀矫顽力 H_{eJ}, 最 大磁能积 (BH)_{max}, 剩磁 B_r随 Ce 替代量 x 的变化^[38]

Fig. 13 Magnetization measurements of $(M_{1-x}Ce_x)_2Fe_{14}B$ melt spun ribbons at 300 K: intrinsic coercivity $, H_{cJ}$; maximum energy product $, (BH)_{max}$; remanent magnetization $, B_r$ as a function of Ce concentration (x) ^[38]

5 结 语

Ce 的混合价特性使纯 Ce – Fe – B 合金体系难以制备 出高内禀矫顽力的烧结磁体,因为在合金中 Ce 表现出强 烈的 +4 价倾向。从 Ce₂Fe₁₄B 的内禀磁性上看,Ce⁴⁺离子 不仅因自身 4f 电子的缺失而无法贡献磁性稀土离子应有 的磁矩、自旋交换作用和磁晶各向异性,而且还由于离子 半径过小导致 Fe – Fe 间距缩减,使 Ce₂Fe₁₄B 的居里温度 和饱和磁极化强度都表现出较大幅度下降,因此 Ce₂Fe₁₄B 具有轻稀土 R_2 Fe₁₄B 中最低的内禀磁性。另外,在 Ce – Fe – B 三元合金中,Ce 倾向于生成 Laves 相 CeFe₂,而不是 富 Ce 低熔点晶界浸润相,不能在烧结磁体中对主相晶粒 退磁耦合来提升内禀矫顽力,因此在烧结 Ce – Fe – B 磁体 中难以实现高矫顽力。但毕竟 Ce₂Fe₁₄ B 还具有较为优良的 内禀磁性,通过快淬方法可制备出性能适中的(Ce,Nd) – Fe – B 各向同性磁粉,而通过贫 Ce 富 Nd 和贫 Nd 富 Ce 双合金或双主相烧结技术的应用,以富 Nd 相承担分割主 相晶粒提高矫顽力的功能,实现了高性价比(Ce,Nd) – Fe – B 烧结磁体的商品化。

参考文献 References

- Coey J M D. Rare Earth Iron Permanent Magnets [M]. Oxford: Clarendon Press, 1996: 1 – 57.
- [2] Koon N C , Williams C M , Das B N et al. J Appl Phys [J], 1981 , 52 (3): 2535 – 2535.
- [3] Koon N C , Das B N. Appl Phys Lett [J], 1981, 39 (10): 840-842.
- [4] The State Council of the People's Republic of China (中华人民共和 国国务院). Several Opinions on Promoting the Sustained and Healthy Development of the Rare Earth Industry (国务院关于促进稀土行业 持续健康发展的若干意见 [EB/OL]. 2011. 05.

http://www.gov.cn/zwgk/2011-05/19/content_1866997.htm.

- [5] U. S. Department of Energy (美国能源局). Critical Materials Strategy (关键材料战略 [EB/OL]. 2011,11. http://www.energy.gov/epsa/initiatives/department - energy - s - critical - materials - strategy
- [6] Herbst J F , Meyer M S , Pinkerton F E. J Appl Phys [J], 2012 , 111
 (7): 07A718.
- [7] Feng H B , Li A H , Wang J D , et al. Proceedings of the 22nd International Workshop on Rare – Earth Permanent Magnets and their Applications [C]. Nagasaki , Japan: 2012: 236 – 238.
- [8] Chu L H , Liu Y , Li J , et al. IEEE Trans Magn [J], 2012, 48 (6): 2092 – 2095.
- [9] Buschow K H J. Rep Prog Phys [J], 1991, 54 (9): 1123-1214.
- [10] Wohlfarth E P , Buschow K H J. Ferromagnetic Materials: A handbook on the properties of magnetically ordered substances [M]. Netherlands: Elsevier Science Publishers B V , 1988: 1–129.
- [11] Coey J M D. Rare Earth Iron Permanent Magnets [M]. Oxford: Clarendon Press, 1996: 58 – 158.
- [12] Hirosawa S , Matsuura Y , Yamamoto H. et al. J Appl Phys [J], 1986 , 59 (3): 873-879.
- [13] Tokuhara K , Ohtsu Y , Ono F , et al. Solid State Commun. [J], 1985 , 56 (4): 333 – 336.
- [14] Belorizky E , Fremy M A , Gavigan J P , et al. J Appl Phys [J], 1987 ,
 61 (8): 3971 3973.
- [15] Ziman J. The Physics of Metals [M]. Cambridge: Cambridge University Press, 1969: 340.
- [16] Néel L. J Phys Radium [J], 1940, 1 (7): 242-250.
- [17] Coey J M D , Sun H. J Magn Magn Mater [J], 1990, 87 (3): I251 I254.
- [18] Capehart T W , Mishra R K , Meisner G P , et al. Appl Phys Lett [J],

1993 ,63 (26): 3642 - 3644.

- [19] Alam A , Khan M , McCallum RW , et al. Appl Phys Lett [J], 2013 , 102 (4): 042402.
- [20] Alam A, Johnson D D. Phys Rev B [J], 2014, 89 (23): 235126.
- [21] Capehart T W , Mishra R K , Fuerst C D , et al. Phys Rev B [J], 1997 , 55 (17): 11496 – 11501.
- [22] Dalmas de Reotier P , Fruchart D , Pontonnier L , et al. J Less Common Metals [J], 1987, 129: 133 – 144.
- [23] Fruchart D , Vaillant F , Yaouanc A , et al. J Less Common Metals [J], 1987, 130: 97 – 104.
- [24] Jin J Y , Zhang Y J , Bai G H , et al. Sci Rep [J], 2016, 6: 30194.
- [25] Fuerst C D , Capehart T W , Pinkerton F E , et al. J Magn Magn Mater [J], 1995, 139 (3): 359 – 363.
- [26] Gong W , Hadjipanayis G C. J Appl Phys [J], 1988, 63 (8): 3513 -3215.
- [27] Okada M , Sugimoto S , Ishizaka C , et al. J Appl Phys [J], 1985 , 57 (8): 4146 – 4148.
- [28] Ma B M , Willman C J. Res Soc Symp Proc [J], 1987, 96: 133-142.
- [29] Li D , Bogatin Y. J Appl Phys [J], 1991, 69: 5515-5517.
- [30] Zhu M G , Li W , Wang J D , et al. IEEE Trans Magn [J], 2014, 50

(1): 1000104.

- [31] Zhu M G , Han R , Li W , et al. IEEE Trans Magn [J], 2015 , 51 (11): 2104604.
- [32] Jin J Y , Ma T Y , Zhang Y J , et al. Sci Rep [J], 2016, 6: 32200.
- [33] Niu E , Chen Z A , Chen G A , et al. J Appl Phys [J], 2014 ,115 (11) , 113912.
- [34] Déportes J , Givord D , Ziebeck K R A. J Appl Phys [J], 1981, 52
 (3): 2074 2076.
- [35] Yan C J , Guo S , Chen R J , et al. Chin Phys B [J], 2014, 23 (10): 107501.
- [36] Yan C J , Guo S , Chen R J , et al. IEEE Trans Magn [J], 2014, 50 (11): 2104604.
- [37] Chen Z M, Lim Y K, Brow D. IEEE Trans Magn [J], 2015, 51 (11): 2102104.
- [38] Gschneidner K A J , McCallum R W , Khan M , et al. Proceedings of the 22nd International Workshop on Rare – Earth Permanent Magnets and their Applications [C]. Mayland , USA: 2014: 403 – 406.
- [39] Pathak A K , Khan M , Gschneidner K A , et al. Adv Mater [J], 2015 , 27 (16): 2663 – 2667.

(本文为本刊约稿,编辑 盖少飞)

特约撰稿人马 飞 马 飞:男,1979 年生,教授,博士生导 师。入选教育部新世纪 优秀人才支持计划,现 任中国工程学会表 面工程分会青工委委员、 中膜支省真公学会理事、联 西省省纳家自然不学基金。 目3 项,国专题1 项, 回

特约撰稿人薛龙建 西省自然科学基金面上 项目 1 项,参与"973" 课题 2 项。已在 Nanoscale, Acta Materialia, Applied Physics Letters 等学术期刊上发表论文 100余篇,累计他引 600 余次;荣获陕西省科学 技术奖 2 项。主要研究 方向:纳米结构的 MBE 制备及 STM 表征;石墨 烯和 TMDs 二维晶体的 制备与表征;低维体系形

特约撰稿人阚洪敏 变/相变的分子动力学模 拟:低维体系电子学和 热学特性的第一原理 计算

薛龙建:男,1983 年生,武汉大学教授。 2010年获中国科学院长 春应用化学研究所博士 学位。2009~2015年在 德国多所大学和研究所 (亚琛工大、奥斯纳布吕 克大学、基尔大学等) 从事博士后研究工作,

期间先后获得了洪堡学 者奖学金和马普学者奖 学金的资助。2015年入 选中组部"千人计划" 青年项目,到武汉大学 工作。研究方向包括聚 合物薄膜的稳定性及图 案化、微纳结构制备、 仿生功能材料等。已经 发表包括 Nature Communications 在内的 SCI 论文 37 篇, 文章总引用超 1000次,H指数为18。 受邀撰写英文图书3章, 中文图书1章,编辑英 文专著1本(斯普林格 出版社)。受邀担任 ACS Nano , Advanced Functional Materials 等 10 余 种 SCI 期刊的审稿人。

阚 洪 敏: 女,1978 年生,沈阳大学副教授, 硕士生导师。辽宁省百千 万人才千人层次,辽宁省 高等学校优秀人才支持计 划(高校杰出青年学者成 长计划) 获得者。2008年 获东北大学有色金属冶金 博士学位,师从中国工程 院院士邱竹贤教授。主要 从事电沉积制备金属、合 金及其金属陶瓷复合镀层 的研究工作。对低温电沉 积金属的理论与实验方面 进行了大量研究工作,取 得了具有一定影响力的学 术成果。获沈阳市科技进 步三等奖1项,发表论文 20余篇,授权专利3项, 出版《低温铝电解》专著 1部。主持国家自然科学 基金青年基金和辽宁省高 等学校优秀人才计划等多 项项目。