SIEMENS

SIMATIC

S7

S7-1200 Programmable controller

System Manual

04/2012

A5E02486680-06

Preface

Product overview
STEP 7 programming
software

Installation

PLC concepts

Device configuration
Programming concepts
Basic instructions
Extended instructions
Technology instructions
Communication

Web server

Communication processor

© 0O N O O & WODN -~

10

Teleservice communication
(SMTP email)

Online and diagnostic tools

Technical specifications

Calculating a power budget

Order numbers

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

ADANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

AAWARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

A\ CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the relevant information is not taken into account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Trademarks

Note the following:

A WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Siemens AG Order number: 6ES7298-8FA30-8BHO Copyright © Siemens AG 2012.
Industry Sector ® 05/2012 Technical data subject to change All rights reserved

Postfach 48 48

90026 NURNBERG

GERMANY

Preface

Purpose of the manual

The S7-1200 series is a line of programmable logic controllers (PLCs) that can control a
variety of automation applications. Compact design, low cost, and a powerful instruction set
make the S7-1200 a perfect solution for controlling a wide variety of applications. The S7-
1200 models and the Windows-based programming tool give you the flexibility you need to
solve your automation problems.

This manual provides information about installing and programming the S7-1200 PLCs and
is designed for engineers, programmers, installers, and electricians who have a general
knowledge of programmable logic controllers.

Required basic knowledge

To understand this manual, it is necessary to have a general knowledge of automation and
programmable logic controllers.

Scope of the manual
This manual describes the following products:
e STEP 7 V11 Basic and Professional
® S7-1200 CPU firmware release V3.0

For a complete list of the S7-1200 products described in this manual, refer to the technical
specifications (Page 699).

Certification, CE label, C-Tick, and other standards

Refer to the technical specifications | (Page 699) for more information.

Service and support

In addition to our documentation, we offer our technical expertise on the Internet on the
customer support web site (http://www.siemens.com/automation/).

Contact your Siemens distributor or sales office for assistance in answering any technical
questions, for training, or for ordering S7 products. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process
and industry, as well as about the individual Siemens products that you are using, they can
provide the fastest and most efficient answers to any problems you might encounter.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

http://www.siemens.com/automation/�

Preface

Documentation and information

S7-1200 and STEP 7 provide a variety of documentation and other resources for finding the
technical information that you require.

The S7-1200 system manual provides specific information about the operation,
programming and the specifications for the complete S7-1200 product family. In addition
to the system manual, the S7-1200 Easy Book provides a more general overview to the
capabilities of the S7-1200 family.

Both the system manual and the Easy Book are available as electronic (PDF) and printed
manuals. The electronic manuals can be downloaded from the customer support web site
and can also be found on the companion disk that ships with every S7-1200 CPU.

The online information system of STEP 7 provides immediate access to the conceptual
information and specific instructions that describe the operation and functionality of the
programming package and basic operation of SIMATIC CPUs.

My Documentation Manager accesses the electronic (PDF) versions of the SIMATIC
documentation set, including the system manual, the Easy Book and the information
system of STEP 7. With My Documentation Manager, you can drag and drop topics from
various documents to create your own custom manual.

The customer support entry portal (http://support.automation.siemens.com) provides a
link to My Documentation Manager under mySupport.

The customer support web site also provides podcasts, FAQs, and other helpful
documents for S7-1200 and STEP 7. The podcasts utilize short educational video
presentations that focus on specific features or scenarios in order to demonstrate the
interactions, convenience and efficiency provided by STEP 7. Visit the following web sites
to access the collection of podcasts:

— STEP 7 Basic web page (http://www.automation.siemens.com/mcms/simatic-
controller-software/en/step7/step7-basic/Pages/Default.aspx)

— STEP 7 Professional web page (http://www.automation.siemens.com/mcms/simatic-
controller-software/en/step7/step7-professional/Pages/Default.aspx)

You can also follow or join product discussions on the Service & Support technical forum
(https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=€e
n&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodei
d0=34612486). These forums allow you to interact with various product experts.

— Forum for S7-1200
(https://www.automation.siemens.com/WW/forum/quests/Conference.aspx?SortField=
L astPostDate&SortOrder=Descending&ForumID=258&Language=en&onlyinternet=F3
Ise)

— Forum for STEP 7 Basic
(https://www.automation.siemens.com/WW/forum/quests/Conference.aspx?SortField=
L astPostDate&SortOrder=Descending&ForumID=265&Language=en&onlylnternet=F3
Ise)

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

http://support.automation.siemens.com/�
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-basic/Pages/Default.aspx�
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-basic/Pages/Default.aspx�
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-professional/Pages/Default.aspx�
http://www.automation.siemens.com/mcms/simatic-controller-software/en/step7/step7-professional/Pages/Default.aspx�
https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486�
https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486�
https://www.automation.siemens.com/WW/forum/guests/Conferences.aspx?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486�
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=258&Language=en&onlyInternet=False�
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=258&Language=en&onlyInternet=False�
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=258&Language=en&onlyInternet=False�
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=265&Language=en&onlyInternet=False�
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=265&Language=en&onlyInternet=False�
https://www.automation.siemens.com/WW/forum/guests/Conference.aspx?SortField=LastPostDate&SortOrder=Descending&ForumID=265&Language=en&onlyInternet=False�

Table of contents

L (=7 7= Lo 3PP OPRR 3
1 ProdUCE OVEIVIBW ... e e e s e m e s e e e e s e e e s e n e e e e e e e e e e s mr e e e s s mreenan 19
1.1 Introducing the S7-1200 PLC.........o e e see e e e stee e e e srae e e e snnee e e e 19
1.2 Expansion capability 0f the CPU...........cooiiiiiiiie e 22
1.3 ST-1200 MOTUIESooiiiiiie ettt et s e s e e r e reesreesreesee e 24
1.4 NEW FEALUMES ...ttt b bttt e bt e st e esbb e e st e e enbe e e anneesanee s 25
1.5 BasiC HMI PANEIS ... 26
2 STEP 7 programming SOfIWAIE.........cccoriiioiiriiiciiee e eeee e e ne s s e e s senne e e s sennnee s s nne e eennnes 29
21 SYSIEM FEUITEMENTSceiiiiiiii ettt e st e e st e e e st e e e s st e e e ssnsaeeesanseeeesanseeeeanseeeean 29
2.2 Different views to make the WOrk @asier............oocii i 30
2.3 BASY-T0-USE T00ISt e e e e e e e e e e 31
2.31 Inserting instructions iNtO YOUr USEr PrOgram.........ooiiueiiiiiiiee et e e e e 31
23.2 Accessing instructions from the "Favorites” t00Ibar............ccoocivi i 32
2.3.3 Creating a complex equation with a simple iNStruction..............cccvie i, 33
234 Adding inputs or outputs to a LAD or FBD inStructionc..eeeiiiii i 35
2.35 Expandable inStruCtions.............oooo i 35
2.3.6 Selecting a version for an iNSIFUCLIONc.uiii i seeee e 36
2.3.7 Modifying the appearance and configuration of STEP 7cccoiiiiiiiie i 36
2.3.8 Dragging and dropping between €ditors........ .o 37
2.3.9 Changing the operating mode of the CPUcoiiiiiiii e 37
2.3.10 Changing the call type fOr @ DBooiiiiiiie e e e e 39
2.3.11 Temporarily disconnecting devices from a NEtWOrK............coociiiiiiiie i 40
2.3.12 Virtual unplugging of devices from the configuration..............ccccoiiiiiiiiiiii e, 41
3 0 E51 = 1= Lo o ST RUPRROS 43
3.1 Guidelines for installing S7-1200 EVICESc.ciiuiieiiiiiie ettt staee et e e sneeeeens 43
3.2 POWEE DUAGEL ... e e e e et e e e e e e e sabaeaeeeaeaeean 44
3.3 Installation and removal ProCedUIES.........ccoooi i, 46
3.3.1 Mounting dimensions for the S7-1200 deVICES........c..uiiiiiiiiie e 46
3.3.2 Installing and removing the CPUcoo i e 49
3.3.3 Installing and removing an SB, CB OF BBoooiiiiiiiiiiie ettt e 51
3.34 Installing and remoVING @n SM.......cc.uiiii it a e e 52
3.3.5 Installing and removing @ CM OF CPuuiiiiiiiie ettt et a e e e e 53
3.3.6 Removing and reinstalling the S7-1200 terminal block connector..............ccccoveieiiiiiiie e, 55
3.3.7 Installing and removing the expansion Cable.............c.uuiiiiii e 56
3.3.8 TS (1ElESEIVICE) AUAPLEN ... ittt e e st e e st e e s et e e e snnseeeeannneeas 57
3.3.8.1 Connecting the TeleService AdapIer..........cooi i e 57
3.3.8.2 Installing the SIM Cardcooueiiiiiiiiee et s e e et e e e e snre e e e nneeeeeennes 58
3.3.8.3 Installing the TS adapter UNit............coiiiiiiiiiiiie e e e e ae e s naee e e enees 59
3.3.8.4 Installing the TS adapter 0N @ Walll............cooiiiiiii i e e 60
S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 5

Table of confents

3.4 WIRING QUIEIINES ...ttt ettt e b e e e s bt e e e sbe e e e e anbeeeeeas 61
L O oo o7 o 1= T 67
4.1 Execution Of the USEr Programo i 67
411 Operating Modes Of the CPU ... 69
41.2 Processing the scan cycle in RUN MOde..........coooiiiiiiiiiiiie e 72
4.1.3 Organization DIOCKS (OBS)coiiiiiiiieiiieie ettt e et e e e e e e snree e e 73
414 Event execution priorities and QUEUINGeiiiiiiiie e 75
4.1.5 Monitoring the CYCIE tIMEoiii e 80
4.1.6 L0 U 43110 o o] oS PRP PR 82
4.1.6.1 System and CIOCK MEMOIYooi it e e s e e st e e aneeeas 84
4.1.7 DIagnOStICS DUFFEE ..o et e e e e e e e 86
4.1.8 TiME Of dAY CIOCK ...t e et e e st e e e sabe e e e erareeeeeas 86
41.9 Configuring the outputs on @ RUN-t0-STOP transitioncccooiieiiiiii e, 87
4.2 Data storage, memory areas, I/O and addreSSing...........ccouuieiiiiiiiie e 87
4.2.1 Accessing the data of the S7-1200ooo i 87
4.3 Processing of analog VAIUEScooiiiiiiiii e 92
4.4 =Y =T Y 01 T PR 93
4.4 1 Bool, Byte, Word, and DWord data typesuueiiiiiiee e 94
442 INtEGEr At LYPES .o e e naeas 95
443 Floating-point real data tyPes.........ooo i e 95
444 Time and Date data tyPeS......c.uiiii i 96
4.4.5 Character and String data tyPesooi i 97
4.4.6 Ny = 1Yo =1 = TN Y/ o 1= RSP RR 99
447 Data Structure data tyPe.........ooo i 100
44.8 L O o =1 2= 1 £ o= SRR 100
449 PoINter data tyPeS ..o e 101
4.49.1 "Pointer" pointer data tyPeooo i e 101
4.4.9.2 "Any" POINtEr data tYPe......ooueeiiiie e e 102
4.4.9.3 "Variant" pointer data tyPeoooeiiioi e 103
4.410 Accessing a "slice" of a tagged data type ..o 104
4.411 Accessing atag With an AT OVErlaycoo i 105
4.5 USING @ MEMOTY CAIMoiiiitiiiieiiie ettt e s et e s bt e e e e a bt e e e ennb e e e e anb e e e e e nnbeeeeannee 107
4.5.1 Inserting @ memory card in the CPU ... 108
452 Configuring the startup parameter of the CPU before copying the project to the memory
o= | (o SRR UUPRPSPPRRN 110
453 LI =15 =T o= o USRS 110
454 Lol r=Ta T r=] (o O PSR SPR 112
45.5 FIrMWAre UPAALEoooeeiiiiiee e sttt e e et e e et e e e nbne e e e e 115
4.6 Recovery from a [0St PASSWOIG........ccoiuiiiiiiiiii e 118
DeVice CONFIGUIALIONcoo ittt e e st e eae e e e be e s e e e ns e e e e e e sane e e e nne s eaes 119
51 INSEITING @ CPU ...ttt e st e e e et e e e et e e e abee e e e ennee 120
5.2 Detecting the configuration for an unspecified CPU ..o 121
5.3 Adding modules to the coNfiguration.............cooouiiiiiiii e 122
54 Configuring the operation of the CPU ... 123
5.5 Configuring the parameters of the MOdUIES.............oooiiiiii e 125
S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Table of confents

5.6 Configuring the CPU for communiCationc.oiiiiiiiiiiie e 126
5.6.1 Creating @ NetWork CONNECHIONoouiiiiiiiie e 126
5.6.2 Configuring the Local/Partner connection path..............cccooiiiiiiiii e 127
5.6.3 Parameters for the PROFINET CONNECLIONeeiiiiiiiiiiiiiee e 129
5.6.4 Assigning Internet Protocol (IP) addreSSesoocueiiiiiiii i 132
5.6.4.1 Assigning IP addresses to programming and network deviCes...........cccceevereiiiicciiiinee e 132
5.6.4.2 Checking the IP address of your programming deViCeceeeeiiiiiiiiiiiiiee i 134
5.6.4.3 Assigning an IP address to0 @ CPU ONlINE...........cooiiiiiiiiiiiii e 134
5.6.4.4 Configuring an IP address for a CPU in yOUr Project...........coouiiiiiiiiiieiiiiiee e 136
5.6.5 Testing the PROFINET NEIWOTKcooiiiiiiieiiee et 139
5.6.6 Locating the Ethernet (MAC) address on the CPU...........cooiiiiiiiiiii e 140
5.6.7 Configuring Network Time Protocol synchronizationcccoccieiiiiniiie e 141
5.6.8 PROFINET device start-up time, naming, and address assignment............cccoccccciiiieieniieenn. 142
6 [eTe | = TaaTaaTTaTe JezoT Vo= o -3 145
6.1 Guidelines for designing @ PLC SYSteM.........iiiiiiiii e 145
6.2 SrUCtUIiNG YOUT USEI PrOGIAMciiiiiiiiieiiieiee ettt ettt e ettt ettt e e bt e e e s anee e e e s nne e e e s snnneeesanneeas 146
6.3 Using blocks t0 StrUCtUre YOUr PrOGramcoouuiiiiiiiiie ettt e e saaeee e 148
6.3.1 Organization BIOCK (OB)........coi e 148
6.3.2 ¥ Tox 1o o T () USRS 150
6.3.3 FUNCEON DIOCK (FB) ...ttt ettt e ettt e e sbe e e e s rnreeeeeas 150
6.3.4 D=1 = I o] oo Q{1 = S 151
6.4 Understanding data CONSISIENCYcoiiiiiiiiiiiiii et 153
6.5 Programming [aNQUAGE.coo ittt e e e sb e e sb e e ereee e 154
6.5.1 = To [0 F=Y o Fo T [o N (Y) PP TURPRPTRRI 155
6.5.2 Function Block Diagram (FBD)uueiiiiiiiiie ettt e e sneee e 156
6.5.3 T] SRRSO 156
6.5.4 EN and ENO for LAD, FBD @Nd SCL......cccuoiiiiiiiiie et eeeee e e e sneee e 163
6.6 L (0o 110} o T PSR 164
6.6.1 Access protection for the CPU ... 164
6.6.2 KNOW-NOW PIOtECLION ..ottt e et e e sbe e e s rareee e 165
6.6.3 (070] o)V o] o) (=T i o o PSSR 166
6.7 Downloading the elements Of YOUr Programocc.eeiiiiiiieiiiie e 168
6.8 Uploading from the CPU ...ttt e e sbe e e s reee e 168
6.8.1 Copying elements Of the Project ... 168
6.8.2 Using the compare fUNCHONooiuiiiii e 170
6.9 Debugging and testing the program ... 170
6.9.1 Monitor and modify data in the CPU ... 170
6.9.2 Watch tables and force tables.ooo i e 170
6.9.3 Cross reference 10 SNHOW USAQEcoooiuuiiiiiiiiiie e 171
6.9.4 Call structure to examine the calling hierarchyc.ccoo i, 172
7 BasiC INSIMUCHIONS ... e ee e s e e e s s e s se e e s sen e e e s s e e e e e e e e e mr e s 175
7.1 =1 oo 1T PSRRI 175
711 Bit [0giC CONACES @NA COIIS....iiiiiei ittt e e e s raeeee e 175
71.2 Set and reset INSITUCHIONSooiiiiiii e 178
713 Positive and negative edge iNStruCtionsSc.ooiiiiiiiiii e 180
7.2 I 1T TS PPPPPPOTPRRN 182

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 7

Table of confents

7.3

7.4

7.41
7.4.2
7.4.3

7.5

7.51
7.5.2
7.5.3
7.5.4
7.5.5
7.5.6
7.5.7
7.5.8
7.5.9

7.6

7.6.1
7.6.2
7.6.3
7.6.4

7.7

7.7.1
7.7.2
7.7.3
7.7.4
7.7.5

7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.85
7.8.6
7.8.7
7.8.8
7.8.9
7.8.10
7.8.11
7.8.12
7.8.13
7.8.14
7.8.15
7.8.16
7.8.17

7.9

7.91
7.9.2
7.9.3
7.9.4

(07018 0] (=1 =N 190
(70T 0 0] 7= (= TSR OPPRP PRSI 196
L070] 0 0] 7= (= T ST UPPTR 196
In-range and Out-of-range INSIFUCLIONSoiiiiiiiii e 197
(0] Q=T aTo I\ o)1 S @ L QT o 1] ([[1 1 (0] o 1= 197
1Y =Y 1 o N 198
(OF= 1 o101 F=1 (=T 1 5] (0 (31 o] o T 198
Add, subtract, multiply and divide iNStruCtioNS ..o 199
Y oTo [Lo TN Ta Ts] (U (o o] o T 200
NEegation INSIIUCHIONoiii e e e e 201
Increment and decrement INSITUCHONSovvveeieie e 202
P oo [V (R YZ= 1[N TS I T] (0 L1 1 o] o 202
Minimum and Maximum INStIUCHIONS.........ooiieieee e e e e e eeenans 203
[T o1 AT {0 T3 [o N 204
Floating-point math iNStrUCtIONScuuiiiii e 205
1Yo)Y N 207
Move and bIoCK MOVE INSITUCHIONScooiiieeeie et e e e e e e e eeaeees 207
FieldRead and FieldWrite INStIUCHIONSooiiiieeeeee e 209
1| T g1 (U o £ 1= 211
SWAP INSIIUCTION ... et e e ettt e e e sttt e e s sbe e e e e sbeeeeeanbeeeeaas 212
(070 01 VZ=T o RN 213
(010]\ AV AT o =1 (U o [Y o 213
Conversion iNSIIUCLIONS fOr SCL i et e et e e e e e e 214
Round and truncate iNSITUCLIONSvueiiiiii e 217
Ceiling and floor INSIIUCHIONSo.viiii e e 218
Scale and NOrMalize INSTIUCHIONSoiieieeeee e e e e e e aaaaaans 219
L geTe | =10 T eTe] o1 140 F PR 222
Overview of SCL program control statements ... 222
| I = NI = 1 (Y g =0 | A 223
(07N =) =) (] .4 1<) o) S 224
L@ =) =1 (=1 0 1Y o | 225
LA T B L@] =1 (=11 4 1Y o | 226
REPEAT-UNTIL Stat@mMENteeeieeeeeeeee et e e e e e 227
CONTINUE Stat@mMENt.......eveiieeeeeeeee ettt e e e e e et e e e e e e e e e aaaeeaeeeaeeeeees 227
I IS 7= 1 (1 0 1= 0 | 228
(CTO N IO X1 r=1 (=10 (=T o | 229
L IO LN =1 (=1 01T o | 229
Jump and 1abel INSrUCHIONS.ooiii e 230
LY S T 1= £ (U T3 (o 1 230
A O I 1= 1 U o (o 231
RET execution CoONtrol INSEIUCHIONvveeiiiieeeeeee e 233
Re-trigger scan cycle watchdog inStruction ... 234
Stop scan CYCIE INSIUCHION........eiiiii e 235
(1Y O = g To T 1S (U o3 1 o] 1= N 235
LA'e] o I ToTe|[elo] o1=T =1 i o] o < T SRR 239
AND, OR, and XOR INSIrUCHONSccoeieiiiie e e e e e e e e e e e 239
[NV TR E] (0 T3 Lo o 240
Encode and decode iNSIIUCLIONSuuviiiiiiiiiiiiiii e n s eaannnnes 240
Select, Multiplex, and Demultiplex iNStrUCtIONS.............uoiiiiiiiiiie e 242

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

Table of confents

7.10 Shift AN ROLAE ..o e et 244
7101 Shift INSIIUCHIONS ...ttt e ettt e e st e e e sabe e e e s anteeeeeanes 244
7.10.2 ROtate INSIUCHONS ...coiiiiiiii ettt e ettt e e e sae e e e s enteeeeeanes 245
8 Extended iNSTUCHIONSooo i s e s s s e e n e e e 247
8.1 Date and tiMeE-Of-daAYooiiiiiiii et ee e 247
8.1.1 Date and time iNSITUCLIONSuuiiiiiie et ee e 247
8.1.2 Set and read SYStEM ClOCK..........ueiiiii e 249
8.1.3 Run-time meter INSITUCHIONooiie e 251
8.1.4 SET_TIMEZONE iNSTIUCHON ...ttt e et e e e enee e 252
8.2 Y (T aTe =T aTo ed o= = Tex 1= PR 254
8.2.1 SHrING AAtA OVEIVIEW ...t e e e e e e snn e e e 254
8.2.2 I\ (@AY 4 g 1= 1 ¥ o [TR 254
8.2.3 String CoONVErsioN INSIFUCLIONSoiiiiiiie e s 255
8.2.3.1 String to value and value to String CONVEISIONScooiuiiiiiiiie e 255
8.2.3.2 String-to-characters and characters-to-string CoONVersions.............cccccviiiiiiiiiei e 263
8.2.3.3 ASCII to Hex and Hex to ASCIl CONVEISIONSocuuiiiiiiiiiee ettt e e 265
8.24 String 0peration INSIFUCLIONSiiiii e e e 267
. 2 T RS 267
S 1 |\ 7 R SUS 268
8.2.4.3 LEFT, RIGHT, @Nd MIDoiiiiiieiiii ettt e st e e st eene e e sneeeeneeesaeeenneeens 269
8.2.4.4 DELETE ..ottt ettt ettt et e e et e et ee e e te e e eae e e enaeeeneeeanteeeneeeneeeanteeeneean 270
ST] =t RS S 271
8.2.4.8 REPLAQCE ...ttt ettt ettt ettt te e e aae e e aaae e e teeeanteeeneeateeeanteeeneenn 272
S 2 A o |1 5 SR 273
8.3 Distributed I/O (PROFINET, PROFIBUS, OF AS=i)......eiiiiieiieeeie e 274
8.3.1 Distributed I/O INSIrUCHIONS.eiiii e ee e 274
8.3.2 RDREC @nd WRREC........ ittt ettt te et e e saee e et e et e e amte e e sneeesneeeenneeeanneeanneeaneean 275
8.3.3 L I TS 278
8.3.4 STATUS parameter for RDREC, WRREC, and RALRMcooiiiiiiiiiiie e 280
8.3.5 DPRD_DAT and DPWR _DAT ...ttt ettt et e et e et e amee e e sseeesneeeaneeeaneeeenneeeanean 284
8.3.6 DT N1V T TS 286
8.4 L1 C= T4 AU o] €O PTPPPRPTRRI 288
8.4.1 Attach and detach INSITUCHIONSoii i 288
8.4.2 (03[&3 [T) =T (] o) PR SRR 291
8.4.2.1 SET_CINT (Set CYCliC INtEITUPL)eeeiee e 291
8.4.2.2 QRY_CINT (Query CycCliC iNterrupt).......ocueeeiiiiiee e 293
8.4.3 Time delay INTEITUPESeii e 294
8.4.4 AsyNchronous event iNtEITUPLSoooi i 296
8.5 Diagnostics (PROFINET O PROFIBUS)coiiiiiieiiee i e e e e e e s 297
8.5.1 DIiagnostic INSIIUCHIONSeiiiiitiiee et e e st e e sbee e e s rabeee e 297
8.5.2 Diagnostic events for distributed 1/O...........ooi i 297
8.5.3] 1 (o3 1T o PP P PURRRPTPRI 298
8.5.4 DeviceStates INSIUCHION ... i ee e 299
8.5.5 ModuleStates INSIIUCTION............eiii e ee e 301
8.5.6 GET_DIAG INSITUCHON ...ttt e e e e e e e e e e e e e e e et e e e e e e e eraraaan e eens 302
8.6 PUISE ettt e e te e e en e e e e ee e e R ee e e teeeanteeneeeanneeeaneeeannen 309
8.6.1 CTRL_PWM INSTIUCHION. ...ttt e e e e e et e e e e e e e et e e e e e e e eee b e eeas 309
8.6.2 Operation of the pulSE OULPULS.......cooiuiiiii e 311
8.6.3 Configuring a pulse channel for PWMooo e 312

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 9

Table of confents

10

8.7 2= = (oo To [To [PRSP 313
8.7.1 Data 10g reCord StrUCIUIE.........ooi ittt e e e e e 314
8.7.2 Program instructions that control Data [0gscueieiiiiiiiii e 315
A B B - r- | W o To [O Y- | (= RSP PR 315
I B - ¢ | o Te [@ o 1= o [RSP SR 318
A T B - = | oo [0 [0TSR 319
8.7.2.4 DatalogWIILEottt et e ettt e e et e e e et e e e e e e neeas 320
8.7.2.5 DatalOgNEWFIIE....ccc ettt e et e e anaeeas 322
8.7.3 WOrking With data [0gSeeeeii e 324
8.7.4 Limits to the size of data [0g fil€Seeiiii e 325
8.7.5 Data |0g eXample PrOgram.........oouiiie ettt ettt e e et e e et e e e e snbe e e e e abeeeeaneee 327
8.8 Data BIOCK CONIIOL ...t e e e 332
8.8.1 READ_DBL, WRIT_DBL (Read from or write to a DB in load memory)cccccccceveeeveicnvnnnnnn. 332
8.9 Common error codes for the "Extended” inStruCtionSooevveeeeiiiiieee e 335
=Yo7 T Tod o To LY AT 4 TS £ e (o o 337
9.1 HIGN-SPEEA COUNTET ...ttt e et e e e bae e e e 337
9.1.1 Operation of the high-speed COUNLET ..o 339
9.1.2 Configuration of the HSC e 345
9.2 1 I o o1 (o RS 346
9.2.1 Inserting the PID instruction and technological object ..., 348
9.2.2 PID_Compact INSITUCHON.......coiiiiiiieeei ettt e e e e e e e e e e erneeeeeeas 350
9.2.3 PID_Compact instruction ErrorBit parameters ... 354
9.2.4 PID_3STEP INSITUCHION.......oeeiee e e e e et e e e e e et e e e e e e e e rabaa e eeas 355
9.2.5 PID_3STEP instruction ErrorBit parametersccooviiiiiiiee e 362
9.2.6 Configuring the PID CONTrOIENooiiiieeee e 363
9.2.7 Commissioning the PID CONTrOIEN..........uueiiiieiee e 365
9.3 /o] 1o o T oo o1 o) IR 366
9.3.1 (@70 01110 81T aTe [1 0 T= = DL S 370
9.3.2 Configuring the TO_CommandTable_PTO ... e 372
9.3.3 Motion CONtrol INSEIUCHIONScooiiiiiie e 375
9.3.3.1 MC_POWET INSTIUCHION ...ttt e e e e e e et e e e e e e e e e et e e e e eeeeensannanns 375
9.3.3.2 MC_RESEE INSITUCHION ... et e e e e e e e e e e e e et e e e e e e e e eeannaanns 378
9.3.3.3 MC_HOME INSEIUCHION ... ettt e e e e e e e e e e e e e e e eab e e e e e e e eeeannaanns 379
1O TG TR I S |V, [= F= 1) [11 (U o 1T o 381
9.3.3.5 MC_MoVEADSOIULE INSIIUCKONvvveeiieiieeeeeee e e e e e e e e e e eaeaaanns 383
9.3.3.6 MC_MOVEREIAtIVE INSITUCLION.eeiiiieieeeeee e e e e e e e e e e eeaaaans 385
9.3.3.7 MC_MoVEVEIOCIitY INSIIUCHION e e e e e e e e e e e e neeeeeeeas 387
SIRCIRC R S I \Y (O |V To V=N [To I 1 1= i (U (o o] o TS 390
9.3.3.9 MC_CommandTable iNStrUCHION............ooeiiee et e e e e e e e e e e aanaaans 392
9.3.3.10 MC_ChangEDYNAIMICueiiiiiiiiei ettt ettt et e e s b e e e s eneee e e s ansteeesanneeeeannneeas 394
9.34 Operation of motion control for S7-1200.........c..oiiiiiiiiiiiie e 396
9.3.4.1 CPU outputs used for motion CONErol............cooiiiiiiiii s 396
9.3.4.2 Hardware and software limit switches for motion control..............ccccooiiiii i, 397
1R 2R T T o o] 411 o RSP SR 401
LSRG T N 1T Q1o SRRSO 406
9.3.5 (070] 0 01001511 To] a1 oo TR PRSPPI 407
9.3.6 Monitoring active COMMEANGSuiiiiiiiiii e e e 410
9.3.6.1 Monitoring MC instructions with a "Done" output parameterccocceiiiie e, 410
9.3.6.2 Monitoring the MC_Velocity iNStruCHONcooiiiiiii e 414

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

Table of confents

9.3.6.3 Monitoring the MC_MoveJog iNStrUCION...........ooiiiiiiii e 418
L 07Ty 11403 = 1o o H USRS 423
101 Number of asynchronous communication connections supported............cccccoviieeiniiiieeeniiieeen. 424
10.2 e S L | N S 425
10.2.1 Local/Partner CONNECLIONuiiiiiiiiee ettt e s s e e e s beeee s aneeeeeeas 425
10.2.2 Open USEr COMMUNICATIONo.utiiie ittt ettt e e e et e e e et e e e s abee e e s sbeeeeesnreeeeaas 427
10.2.2.1 Connection IDs for the PROFINET inStruCtions............cooiiiiiiiiiie e 427
T0.2.2.2 PrOTOCOIS ..ottt ettt ettt ettt e e s bttt e s hb et e e e nbe e e e e sttt e e e aaeeeeeanbbeeeeannnneeean 430
K2 T Yo I g Lo o3l o T o = PSPPI 431
(L0 S 1 O] = o Vo B 5T 2o o T I S 431
L0020 T U 1 S 446
10.2.2.86 T_CONFIG ... ittt ettt e e e ettt e sa e e e s e e e seeeamte e e emeeeanseeesseeamseeeaneeesaeeeanseeeaneeeannen 451
10.2.2.7 Common parameters for INSITUCHONS...........oooiiiiiiii e 458
10.2.3 Communication with @ programming deVICE...........ocuuiiiiiiiiii e 460
10.2.3.1 Establishing the hardware communications CoONNECLioNcc.coiiiiiiiiiiiiiei e 460
10.2.3.2 Configuring the dEVICEScco ittt e st e e et e e e rnreee e 461
10.2.3.3 Assigning Internet Protocol (IP) addreSSesooiiiiiiiiiiiiiiie e 462
10.2.3.4 Testing your PROFINET NEWOIKcoiiiiiiiiiiiieie et 462
10.2.4 HMI-t0-PLC COMMUNICAION.......oiiiiiiiiii ittt e e b e e e seeee e 462
10.2.4.1 Configuring logical network connections between two devices...........cccooeiiiiiiii e, 463
10.2.5 PLC-0-PLC COMMUNICAtIONeiiiiiiiiiiiiiiiie ettt e e st e et e e e sneee e 464
10.2.5.1 Configuring logical network connections between two devices...........cccooeiiiiiiiii e, 465
10.2.5.2 Configuring the Local/Partner connection path between two devices...........ccccceeiviieiiniienen, 465
10.2.5.3 Configuring transmit (send) and receive parameters.coooiiiiiiiiiiee i 465
10.2.6 Configuring @ CPU and PROFINET 1O dEVICEccuueiiiiiiiiiieiiiiee e 468
LK A B T - To g 013 (o2 3 TSR 471
10.2.8 Distributed /O INSrUCHONS.........coiiiiiiii e e e 472
10.2.9 Diagnostic INSIIUCHIONScoiiiiiiiie ittt e e e sb e e e st e e e e eneeeeeeas 472
10.2.10 Diagnostic events for distributed 1/O...........oooiiiiii e 472
10.3 PROFIBUS ...ttt ettt ettt ettt e et e et ee e s et e e eateeemse e e st e e amteeeameeeenseeeneeenneeeanneeannean 472
10.3.1 Communications modules PROFIBUS ... 474
10.3.1.1 Connecting to PROFIBUSo et e e nneeee e 474
10.3.1.2 Communications services of the PROFIBUS CMScocccuiiiiiiiiiiiiiiiiee e 474
10.3.1.3 Other properties of the PROFIBUS CIMSuiiiiiiiiiiiee e 476
10.3.1.4 Configuration examples for PROFIBUS ..o 477
10.3.2 Configuring a DP master and sSlave deViCe............oocuuiiiiiiiiiiiiiiiec e 478
10.3.2.1 Adding the CM 1243-5 (DP master) module and a DP slave...........cccccoiiiiiiiiiiiiicc e 478
10.3.2.2 Configuring logical network connections between two PROFIBUS devicesccccccceveeeenne. 478
10.3.2.3 Assigning PROFIBUS addresses to the CM 1243-5 module and DP slave...........cccccceeeeenn. 479
10.3.3 Distributed /O INSrUCHONS.........ooiiiiiii e eeaeee s 480
10.3.4 DiagnostiC INSIIUCHIONScoiiiiiiiie ittt e e s b e e e sbe e e e s anbeeeeeas 480
10.3.5 Diagnostic events for distributed. ... 481
10.4 A ST ettt — e ettt et e e aaeeeaa et e ateee ettt ettt eaneeeenneeeanteeaneeeanteeeanteeaneean 481
10.4.1 Configuring an AS-i master and SIave deVICE.........ocuuiiiiiiiiiiiiie e 481
10.4.1.1 Adding the AS-i master CM 1243-2 and AS-i SIaVe.........ccueiiiiiiiiiiii e 482
10.4.1.2 Configuring logical network connections between two AS-i deviCes..........cccevveeeiiiiiiie e, 482
10.4.1.3 Configuring the properties of the AS-i master CM1243-2............ooiiiiiiiiii e 483
10.4.1.4 Assigning an AS-i address t0 an AS-i SIaVeoooiiiiiiii e 483
10.4.2 Exchanging data between the user program and AS-i Slaves...........cccccoviiiiiiciie e, 484
10.4.2.1 STEP 7 basic CONfIGUIratioN.........cooiiiiiiiiiiiiee e rneeee e 484

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 11

Table of confents

11

12

10.4.2.2 Configuring slaves With STEP 7 ... e 486
10.4.3 Distributed /O INSITUCHIONS ..ot e e 488
10.4.4 Working With AS-i ONliNE tOO0IS.........cooiiiiiiii e 488
10.5 S7 COMMUNICALION.eeiiiiiiiie ettt e st e e e sttt e e e aab et e e e sabe e e e e sbbeeeesbbeeesanreeeena 489
10.5.1 GET and PUT INSErUCHIONScoiiiiiiiiiiiiiie et 489
10.5.2 Creating @n S7 CONNECHIONoiiuiiiii e e s et e e et e e e eneee 493
10.5.3 Configuring the Local/Partner connection path between two devicescccccceveeiiiiiciiieenn. 493
10.5.4 GET/PUT connection parameter assignmentooociiiiiiiii i 494
10.5.4.1 CONNECHON PAr@MELEIS ... ettt e e e et e e e e nbe e e e snnreeeeennee 494
10.5.4.2 Configuring @ CPU-t0-CPU S7 CONNECLIONcoiiiiiiiiiiiiiie e 497
LA L= =TT Y PP 503
111 ENabling the WED SEIVETooie e 504
11.2 StaNdard WED PAgESueiiiiiiiiii bbb e e e et ee e 505
11.2.1 Accessing the standard Web pages from the PCooooii e 505
11.2.2 Layout of the standard Web pages ... 506
(V2R T [o Yo [F T3 o o PSR 508
T | | PSR 509
(2 T (o 1= 01 1) o= L1 [o] o [SRS 510
11.2.6 DIagnoSHiC BUFFETooi e e 510
11.2.7 Module INFOrMAtIONoooiiiii e e e et e et e e e eneee 511
11.2.8 COMMUINICALION ...ttt ettt e et e e e e bt e e e ennbee e e anbeeeeanneeeeeannee 513
11.2.9 Variable STAtUScooo e e 515
(2 T B = = T o T PRSP 516
11.2.11 UPAate FIMMWAETE.....coo ettt et e et e e e et e e e e e e e e ennree e e ennee 519
11.3 User-defined WED PAgESooiiiiiiiiiii e 521
11.3.1 Creating HTIML PAgEScoo ittt ettt e e e et e e e e e e e nree e e ennee 521
11.3.2 AWP commands supported by the S7-1200 Web SErvercccccoiviiiiiiiiie e 522
11.3.2.1 Reading VAriabIEScooiiiiiii e 523
11.3.2.2 WIHEING VANTADIES ..ot et e e et e e et e e e e b e e e nneeas 524
11.3.2.3 Reading special variabIesooo i s 526
11.3.2.4 Writing SpecCial VariabIescuuiiiiiiiii e 527
11.3.2.5 Using an alias for a variable reference ... 529
11.3.2.6 DefiniNg ENUM TYPESooiiiiiiiii et e e et e e et e e e ebe e e e ne e e e e e nneeas 529
11.3.2.7 Referencing CPU variables with an enum type ... 530
11.3.2.8 Creating fragmeEnts..... ..o e e 532
11.3.2.9 IMpPorting fragmMENtScooi e 533
11.3.2.10 Combining definitioNS.........cooiiiiiii e 533
11.3.2.11 Handling tag names that contain special characterscccccoiiiiiiiiiii i 534
11.3.3 Configuring use of user-defined Web pages. ..o 535
11.3.4 Programming the WWW instruction for user-defined web pages..........ccccocovveiniiiiiiinecnnn. 537
11.3.5 Downloading the program blocks to the CPU ... 538
11.3.6 Accessing the user-defined web pages fromthe PC............cccooiiiiii e, 539
11.3.7 Constraints specific to user-defined Web pages ... 539
11.3.8 Example of a user-defined Web PAgec.ueiiiiiiiiiii e 540
11.3.8.1 Web page for monitoring and controlling a wind turbine.............cccccooiiiiiiiii 540
11.3.8.2 Reading and displaying controller data.............coccueiiiiiiii e 542
11.3.8.3 USING @N ENUM EYPE ...t et e e et e e e e et e e e e sbe e e e e st e e e e enneeas 543
11.3.8.4 Writing user input t0 the CONrollerooo i 544
11.3.8.5 Writing @ special Variableiiiiii e 545
11.3.8.6 Reference: HTML listing of remote wind turbine monitor Web pageccccooiviiinineinnn. 545

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

Table of confents

11.3.8.7 Configuration in STEP 7 of the example Web pagec.cooiiiiiiiiiiiiiiic e 549
11.3.9 Setting up user-defined Web pages in multiple [anguagescccocoveeiiiiiiiiciie e, 551
11.3.9.1 Creating the folder STTUCIUIEoouiiiiii e e 551
11.3.9.2 Programming the language SWItCh..............oiiiiiiiii e 552
11.3.9.3 Configuring STEP 7 to use a multi-language page structurecccccooiiiinii e, 554
11.3.10 Advanced user-defined Web page CONrol............oooiiiiiiiiiiiii e 555
11.4 LO70] 01 1= 11 0 £ PRSP 558
11.4.1 Features restricted when JavaScript is disabled ... 558
11.4.2 Features restricted when cookies are not allowed...............coooiiiiiiiiiiiii e 560
11.4.3 Importing the Siemens security certificate ... 560
11.4.4 Importing CSV format data logs to non-USA/UK versions of Microsoft Excel.............c.ccccc.... 561
12 COMMUNICALION PIOCESSOTceiietiriieeeateaatee et e e sueeeeabee s et e aassee e eessse e e nsee st e e saeeeensaesame e nneesemeeanen 563
121 Using the serial communication iNterfaces ... 563
12.2 Biasing and terminating an RS485 network connector.............cccciiiiiiii i 564
12.3 Point-to-Point (PtP) COMMUNICAION..........uiiiiiiii e 565
12.3.1 Point-to-Point iNSrUCHIONSooviiii et 566
12.3.1.1 Common parameters for Point-to-Point inStructions.............ccoooii e, 566
12.3.1.2 PORT_CFG iNSTIUCHON ...ttt ettt e e e e e ne e e emeeeeneeeeneeas 568
12.3.1.3 SEND_CFG iNSTIUCHON ..ottt st eemee e e snee e eeeeenneeeneeas 569
R T I A (O A @ € [0 1= (U o [o 571
12.3.1.5 SEND_PTP INSIUCHIONeeiciieeeeeeeee et e e e e e et e e e e e e e e e e e e e e e e e enaaananns 575
12.3.1.6 RCOV_PTP INSITUCHONvveeeieeeeeeeeee ettt e e e e e e e e e e e e e raa e e e e e e e eeeenaaanns 578
12.3.1.7 RCV_RST INSIIUCHION ...ceveeee et eeenaaanns 580
12.3.1.8 SGN_GET INSITUCHION......euiiiiieieeeee e e e e e et e e e e e e e e raae e e e e e e e eeeenaaanns 581
12.3.1.9 SGN _SET INSIIUCHION ...ttt e e e e e e et e e e e e e e e raa e e e e e eeeeeenaannas 582
12.3.2 Configuring the communication POISccooiiiiiiiiiii e 583
12.3.2.1 Managing flOW CONLIOL..........ooiiiiiiie e e sb e e aaeeee s 585
12.3.3 Configuring the transmit (send) and receive parameterscccoiiiiiiiic e 586
12.3.3.1 Configuring transmit (Send) Parametersc..ooii i 586
12.3.3.2 Configuring reCeIVE ParameEterS.........coii it e e e e e st e e e nneeeeeeas 587
12.3.4 Programming the PtP communiCationsc.eoiiiiiiiiiiii e 594
12.3.4.1 POIING @rChitECIUIEoooieieiee ettt e s e e e e snneee s 595
12.3.5 Example: Point-to-Point communiCationcooi i 596
12.3.5.1 Configuring the communication Moduleoooiiiiiii e 597
12.3.5.2 Configuring the RS422 and RS485 ... 599
12.3.5.3 Programming the STEP 7 programcooo it 602
12.3.5.4 Configuring the terminal emulator............c.ooii e 603
12.3.5.5 Running the eXample PrOgram............eoii it e et e s e s eesnneeee s 604
12.4 Universal serial interface (USS) communicationoceiiiiiiiiiiii e 604
12.4.1 Requirements for using the USS ProtocColc.ooiuiiiiiiiiiiiiie e 605
12.4.2 USS_DRV INSITUCHONoveeiei et e e e e e e et e e e e e e e e rea e e e e e e e eeeenaaanns 608
12.4.3 USS_PORT INSIIUCHON ...ceeitiiiiiieiiiieiiie et e st e et e et e sae e e ste e e sneeesneeeesnneeenneeenneeeneeas 610
12.4.4 USS_RPM INSIIUCHION ..covieieiieeieeee ettt e e e e et s e e e e e e e e e e e e e e e eeeenaannns 611
12.4.5 USS_WPM INSITUCHON......uuiiiiiiieeeee et e e e et e e e e e e e e rab e e e e e e e e eeenaaanns 612
12.4.6 USS SEAtUS COUESeeiiiiiiiiiie ettt e e et e e e s bt e e e sbt e e e e sabeeeeeanbeeeeeas 614
12.4.7 General drive setup iNfOrmation...........oooiiiiii e 616
12.5 MOodbUS COMMUNICALIONcoiiiiiiiei et e e sb e e e sreee e 619
12.5.1 Overview of Modbus RTU and TCP communiCationcooouiiiiiiiiiiiiieie e 619
23 Y o T Lo 1U T 1 S 622

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 13

Table of confents

13

14

14

12.5.2.1 MB_CLIENT (MOGADUS TCP)....cciiuiiiiiiieiiieeetiee ettt e et e et e e e e steeesneeeaneeeesseeesneeeaneeenseeens 622
12.5.2.2 MB_SERVER (MOABUS TCP)ueiiiiiieiiie ettt e iee e stee e sneeesaeeesnseeseeeesneeeeneeens 628
12.5.2.3 MB_SERVER example: Multiple TCP connectionscccccoiiiiiiiiiiiiie e 633
12.5.2.4 MB_CLIENT example 1: Multiple requests with common TCP connection.............cccccceeenee. 634
12.5.2.5 MB_CLIENT example 2: Multiple requests with different TCP connections...............ccccce... 635
12.5.2.6 MB_CLIENT example 3: Output image write requestcccooiiiiiiiiii e 636
12.5.2.7 MB_CLIENT example 4: Coordinating multiple requests...........cccceiiiiiiiiiii e 636
12.5.3 MOADUS RTU ...ttt ettt et e et e e e e e st e e smte e e smeeeemneeesnseesneesneeenneeens 637
12.5.3.1 MB_COMM_LOAD ...ttt e et et e et e e et e e ante e e seeeaseeesmbeeesmseeenseeeaneeeaneeeaneeenseeens 638
12.5.3.2 MB_MASTER ...ttt et ettt et e e en e e e aeeeaseeeabeeesmaeeanseeeanseeaneesneaenneeens 641
12.5.3.3 MBL_SLAVEottt ettt e e e sttt e e te e ettt e e te e e aaaeeene e e e anaeeateeeanaeeanteeanteeeanneeeneenn 847
12.5.3.4 Modbus RTU master example program............cocueee oo 653
12.5.3.5 Modbus RTU slave example Programcoooi oo e e 654
12.6 Telecontrol and TeleService with the CP 1242-7...........oo i 655
12.6.1 Connection t0 @ GSM NEIWOTKcooiiiiiiiiii e 655
12.6.2 Applications of the CP 1242-7oo e e 657
12.6.3 Other properties Of tNe CPcooiiiii e e 658
(R S ot er Tt To 4T PRSP 659
12.6.5 Configuration examples for telecontrol ..o 660
Teleservice communication (SMTP €Mail)............ociiiiiiiiiiieiie et 665
13.1 TM_Mail transfer email INSTIUCHIONcovvneieieeeeeeee e e e 665
Online and diagnOSIC tOOIS...........ooiiiiiee ettt st et e e e e ene e e s eae s 673
141 RS e LU = 1P 673
14.2 Going online and connecting 10 @ CPUoiiiiiiiiii e 675
14.3 Assigning a name to a PROFINET 10 device onlingcoooiiiiiiiieieiniee e 676
14.4 Setting the IP address and time of dayc.eoviiiiiii 678
14.5 Resetting to factory SettNgS.......ocueiii i 678
14.6 CPU operator panel for the onling CPUoooiiiiiii e 879
14.7 Monitoring the cycle time and MEeMOrY USAJEcccooiiiiiiiiiiie e 680
14.8 Displaying diagnostic events in the CPU ... 680
14.9 Comparing offline and online CPUS..........coo i 681
1410 Monitoring and modifying values in the CPUoocii i 682
14.10.1 Going online to monitor the values in the CPUccccoiiiiii e 683
14.10.2 Displaying status in the program €ditor.............couuiiiiiiiiie e 684
14.10.3 Capturing the online values of a DB to reset the start values...............cccco i 684
14.10.4 Using a watch table to monitor and modify values in the CPUccccoiiiiiiiiiii 685
14.10.4.1 Using a trigger when monitoring or modifying PLC tagsccccoiiiiiiiiiieiiniee e 686
14.10.4.2 Enabling outputs in STOP MOGE.......cccoiiiiiiiiiiie e 687
14.10.5 Forcing values iN the CPU ...t 688
14.10.5.1 Using the force tableoo e 688
14.10.5.2 Operation of the FOrce fUNCLIONoooiii i 689
14.11 Downloading in RUN MOGE.........uuiiiiiiie et 690
14.11.1 Prerequisites for "Download in RUN mMOde"...........ccooiiiiiiiiii e 691
14.11.2 Changing your program in RUN MOE............coiiiiiiiiiiiii e 692
14.11.3 Downloading Selected DIOCKS.........coii i e 693

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

Table of confents

14.11.4 Downloading a single selected block with a compile error in another block.............c..ccccoceee. 694
14.11.5 System reaction if the download process failS..........c.oooiiiiiiiiiii e 695
14.11.6 Downloading the program in RUN MOGEc..oiiiiiiiiiiii e 696
A Technical SPeCIfiCAtIONS e e e e e e e e e e e e e e e e e e nnnareeee e e s 699
A.1 General Technical SPeCifiCatioNScooi i e 699
A2 O] 0 B 1 e SRS 705
A2A1 General specifications and features ... 705
A22 Timers, counters and code blocks supported by CPU 1211C ... 707
A23 Digital iNputs @and OULPULS.........ouiiiiiiiie ettt ee e 709
A24 F Y =1L e T T o0 | €T RPOTPRRN 710
A.2.4.1 Step response of the built-in analog inputs of the CPU ..., 711
A.2.4.2 Sample time for the built-in analog ports of the CPUcooiiiiiiiii e 711
A25 CPU 1211C WINNG di@gramS.........ceiiiiiiiie ettt ettt ettt e e s e e e s e e e s nnnneeesanneeas 712
A3 O] U By 1 SRS 715
A.3.1 General specifications and features ... 715
A3.2 Timers, counters and code blocks supported by CPU 1212C.........ccoooiiiiiiiiiee e 716
A3.3 Digital iNputs @and OULPULS.........ouiiiieiiie et e s e ee e 718
A34 F Y =1 Lo Te T g o0 | €SP RPOTPRR 720
A.3.4.1 Step response of the built-in analog inputs of the CPU ..., 720
A.3.4.2 Sample time for the built-in analog ports of the CPUccooiiiiiii e 721
A3.5 CPU 1212C WIrNG di@gramS.........ceiiiiiiiie ittt ettt ettt ettt e st eesnee e e e s enne e e e s ennneeesanneeas 721
A4 O] U By 1 TSRS 724
A4 General specifications and fEatures ... 724
A4.2 Timers, counters and code blocks supported by CPU 1214C........cccooiiiiiiiiiee e 725
A4.3 Digital iNputs @and OULPULS........ouuiiiiiie ettt ee e 727
A4d4 F Y =1 Lo Te T T o0 | €U TPPPOTPRRN 729
A4.4.1 Step response of the built-in analog inputs of the CPU ..., 730
A4.4.2 Sample time for the built-in analog ports of the CPUccooiiiiiiiii e 730
A4.5 CPU 1214C WiriNg DIagramscooi ittt st e e st e e e s ennne e e s enneeas 731
A5 (O] U By 1 OSSR 734
A5.1 General specifications and features ... 734
AS5.2 Timers, counters and code blocks supported by CPU 1215C........ccccoiiiiiiiiiiiiee e 735
A5.3 Digital iNputs @and OULPULS.........ouiiiiiiiie et ee e 737
A54 ANalog iNPULS @nd OULPULSeiiiiiiiee e 739
A5.4.1 Analog input SPECIfICAtIONScoiiiiiiiii e 739
A.5.4.2 Step response of built-in analog inputs of the CPU ..., 740
A.5.4.3 Sample time for the built-in analog ports of the CPUccooiiiiiiii e 740
A5.4.4 Analog output SPECIfICAtIONScooiiiiiiii e 740
A5.5 CPU 1215C WirNG DIagramscooi ittt st e e snane e e e enneeas 741
A.6 Digital signal MOdUIES (SIMS)ccoiiiiiiiiiiiiiie ettt st e e sbre e e s sraeeeeea 745
A.6.1 SM 1221 digital input SpecifiCations...........cuueiiiiii e 745
A6.2 SM 1222 8-Point Digital Output Specifications ... 747
A.6.3 SM 1222 16-Point Digital Output Specifications.............ooiiiiiiii e, 749
A6.4 SM 1223 Digital Input/Output VDC Specifications...........ccoocieiiiiiiiiiie e 753
A.6.5 SM 1223 Digital Input/Output AC Specificationsoooiiiiiiiiiiiiee e 757
A7 Analog signal MOAUIES (SIMS)cciiiiiii e e e 760
AT7A1 SM 1231 analog input module Specifications ... 760
AT7.2 SM 1232 analog output module Specificationscc.ueii i 764

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 15

Table of confents

16

AT7.3
AT7.4
AT7.5
A7.6
AT.7
A7.8

A8
A.8.1
A8.1.1
A8.1.2
A8.2
A.8.2.1

A9

A.9.1
A9.2
A9.3
A9.4

A.10
A.10.1
A.10.2
A.10.3
A.10.3.1
A.10.3.2
A.10.3.3
A.10.3.4
A.10.3.5
A.10.4
A.10.4.1
A10.4.2
A.10.5
A.10.5.1
A.10.5.2

A1

A12
A12.1
A12.11
A12.1.2
A12.2
A12.21
A12.3
A.12.31
A123.2
A124
A12.41
A12.4.2
A12.43

A.13
A.14

SM 1234 analog input/output module specificationsoocccuiiiiiii i 766
Step response of the analog INPULSo.eeiii i 769
Sample time and update times for the analog iINPUtS...........c.oceiiiiiii i, 769
Measurement ranges of the analog inputs for voltage...........cccooooviiiii i, 770
Measurement ranges of the analog inputs for current...........cccooi i, 770
Output (AQ) measurement ranges for voltage and current (SB and SM)...........ccccccceveeeiiinns 771
Thermocouple and RTD signal modules (SMS)oiiiiiiiiiiiiii e 772
SM 1231 TREIMOCOUPIE ...ttt e e et e e e b e e 772
Basic operation for a thermoCOUPIEooiiiiiiii e 775
Selection tables for the SM 1231 thermocoupleccueiiiiiiiiiiie e 776
1 172 T o 1 R 778
Selection tables for the SM 1231 RTDcoiiiiiiiiie e 781
Digital Signal boards (SBS).......cuiuuiiiiiiiiie e 784
SB 1221 200 kHz digital input Specificationsccooiiiiiiiiii e 784
SB 1222 200 kHz digital output specifications............cooiiiiiiiii 786
SB 1223 200 kHz digital input / output specifications ... 789
SB 1223 2 X 24 VDC input / 2 X 24 VDC output specifications...........ccoceeviiiiiiieiieen 792
ANalog SigNal DOArds (SBS)........uuiiiiiiiiiieiiee e 794
SB 1231 1 analog input SpecifiCationsocuiiiiiiiiii e 794
SB 1232 1 analog output SPeCIfiCatioNSc..ueiiiiiiiiii e 796
Measurement ranges for analog inputs and OUIPULSccoeiiiiiiiiiiii e, 798
Step response of the analog INPULSueiiiiiii e 798
Sample time and update times for the analog iNPUtS.............oocciiiiii e, 799
Measurement ranges of the analog inputs for voltage.............ccoooviiiiii e, 799
Measurement ranges of the analog inputs for current ..., 800
Output (AQ) measurement ranges for voltage and current (SB and SM)...........cccoeeeeieniieenen. 800
THErMOCOUPIE SBS.....coi ittt sttt e e st e e s ennae e e anneeeean 801
SB 1231 1 analog thermocouple input specifications ..., 801
Basic operation for a thermoCOUPIEoooiiiii i 803
RTD SBS ...itieiiie ettt ettt e e e et e et e et e e e saee e e tee e tee e aateeeeneeeanteeateeeanteeeneeeanneeanteeenneeennneens 805
SB 1231 1 analog RTD input SpecifiCations.cooiiiiiiiii e 805
Selection tables for the SB 1231 RTDcoiiiiiiiie e 808
BB 1297 Battery BOArdooiiiiiiii e 810
CommunICatioN INTEITACES.eiii e 812
PROFIBUS ...ttt ettt ettt e ettt e et e e sat e e emteeeseeeemteeeanseeenseeeaneeesnseeansenenneeens 812
L0 1V ST 812
L0 1V 2 T S 813
L s RS 815
(O] St 1 3 OSSPSR 815
CM 12432 AS-i MASTEI ... ittt ettt e et e et e e ettt e e te e enteeeeneeeenseeenneeenneas 818
Technical data for the AS-i master CM 1243-2...........ooi i 818
Electrical connections of the AS-i master CM 1243-2 ... 819
RS232, RS422, and RS485ottt st et e et e e aee e e eneeesneeea 821
CB 1241 RS485 SpPeCifiCatiOnscooiiiiiiiiiiiie e 821
CM 1241 RS232 SPECifiCatiONScoeiiiiiiie it 823
CM 1241 RS422/485 SPECIfICAtIONScoueeieiiiieiiie et 824
TeleService (TS Adapter and TS Adapter modular) ... 826
SIMATIC MEMOIY CANASceiiiiiiieeiiiiiee ettt et e e sttt e e e ettt e e e sbe e e e e sabeeeessbeeeeesbeeeeesaneeeeaas 826

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

Table of confents

A.15 INPUE SIMUIBLOTS ... e e e e e e e e e b e e e 826
A.16 1/O eXPaNSION CADIE ... e e 827
A7 (O70]ap]oF=Tallo] g I o] o Te [0 £ PP 828
A7 PM 1207 POWEE MOAUIEooiiiiiiiie ittt e et e e e st e e e e sbbeeeesareeeeeas 828
A17.2 CSM 1277 compact SWItCh MOAUIEc.eiiiiiiiiie e 828
B Calculating @ power bUetooo et e e e e e n e e e e s ennnneeeeeae s 829
Cc 1@ (o L=T o 11T o] oL = PO PSPRPRP 833
CA1 L0 o U 43 To o (U] = SRR 833
C.2 Signal modules (SMs), signal boards (SBs) and battery boards (BB).........ccccccoviiiiiiinennnnen. 833
C.3 L070] 0010310] [o7=1 11] o [PSRRI 834
C4 Other MOTUIES. ..o ettt sttt e e st e e s b e e e seneee e e snnneeas 835
C5 Y 1=T 0 L] YA o= 1o L PP TRRRTRRI 836
C.6 BaSIC HMI EVICESeeeiiieiiie ettt ettt ettt e e st e e e sbb e e e e sbeeeesrateeeeeas 836
C.7 Spare parts and other NardWarecoooiiiiiiii e 836
C.8 Programming SOfWEAIEcoi it e s sb e e sareee e 837
C.9 Do TeTh g gT=Y g1 r=\ i o] o H U PPPPTURPTPRI 837
0T PP 839

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 17

Table of confents

18

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

Product overview 1

1.1

Introducing the S7-1200 PLC

The S7-1200 controller provides the flexibility and power to control a wide variety of devices
in support of your automation needs. The compact design, flexible configuration, and
powerful instruction set combine to make the S7-1200 a perfect solution for controlling a
wide variety of applications.

The CPU combines a microprocessor, an integrated power supply, input and output circuits,
built-in PROFINET, high-speed motion control I/0, and on-board analog inputs in a compact
housing to create a powerful controller. After you download your program, the CPU contains
the logic required to monitor and control the devices in your application. The CPU monitors
the inputs and changes the outputs according to the logic of your user program, which can
include Boolean logic, counting, timing, complex math operations, and communications with
other intelligent devices.

The CPU provides a PROFINET port for communication over a PROFINET network.
Additional modules are available for communicating over PROFIBUS, GPRS, RS485 or
RS232 networks.

® @ Power connector
® Memory card slot under top door
— 0 ® Removable user wiring connectors
D ® (behind the doors)
@ Status LEDs for the on-board /O
. . ® PROFINET connector (on the bottom of
@ the CPU)
f—
®

Several security features help protect access to both the CPU and the control program:

e Every CPU provides password protection (Page 164) that allows you to configure access
to the CPU functions.

® You can use 'know-how protection' (Page 165) to hide the code within a specific block.

® You can use copy protection (Page 166) to bind your program to a specific memory card
or CPU.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 19

Product overview

1.1 Introducing the S7-1200 PLC

Table 1- 1 Comparing the CPU models
Feature CPU 1211C CPU 1212C CPU 1214C CPU 1215C
Physical size (mm) 90 x 100 x 75 90 x 100 x 75 110 x 100 x 75 130 x 100 x 75
User memory Work 30 Kbytes 50 Kbytes 75 Kbytes 100 Kbytes
Load 1 Mbyte 1 Mbyte 4 Mbytes 4 Mbytes
Retentive 10 Kbytes 10 Kbytes 10 Kbytes 10 Kbytes
Local on-board Digital 6 inputs/4 outputs 8 inputs/6 outputs 14 inputs/10 outputs 14 inputs/10 outputs
/o Analog 2 inputs 2 inputs 2 inputs 2 inputs / 2 outputs
Process image Inputs (1) 1024 bytes 1024 bytes 1024 bytes 1024 bytes
size Outputs (Q) 1024 bytes 1024 bytes 1024 bytes 1024 bytes
Bit memory (M) 4096 bytes 4096 bytes 8192 bytes 8192 bytes
Signal module (SM) expansion None 2 8 8
Signal board (SB), Battery board 1 1 1 1
(BB), or communication board (CB)
Communication module (CM) 3 3 3 3
(left-side expansion)
High-speed Total 3 built-in /0, 5 4 built-in 1/0, 6 6 6
counters with SB with SB
Single phase 3 at 100 kHz 3 at 100 kHz 3 at 100 kHz 3 at 100 kHz
SB: 2 at 30 kHz 1 at 30 kHz 3 at 30 kHz 3 at 30 kHz
SB: 2 at 30 kHz
Quadrature phase 3 at 80 kHz 3 at 80 kHz 3 at 80 kHz 3 at 80 kHz
SB: 2 at 20 kHz 1 at 20 kHz 3 at 20 kHz 3 at 20 kHz
SB: 2 at 20 kHz
Pulse outputs'’ 4 4 4 4

Memory card

SIMATIC Memory card (optional)

Real time clock retention time

20 days, typ. / 12 day min. at 40 degrees C (maintenance-free Super Capicator)

PROFINET

1 Ethernet communication port

2 Ethernet
communication ports

Real math execution speed

2.3 pslinstruction

Boolean execution speed

0.08 ps/instruction

1

For CPU models with relay outputs, you must install a digital signal board (SB) to use the pulse outputs.

20

Each CPU provides dedicated HMI connections to support up to 3 HMI devices. The total
number of HMI is affected by the types of HMI panels in your configuration. For example,
you could have up to three SIMATIC Basic panels connected to your CPU, or you could

have up to two SIMATIC Comfort panels with one additional Basic panel.

The different CPU models provide a diversity of features and capabilities that help you create
effective solutions for your varied applications. For detailed information about a specific
CPU, see the technical specifications (Page 699).

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

Product overview

1.1 Infroducing the S7-1200 PLC

Table 1- 2 Blocks, timers and counters supported by S7-1200
Element Description
Blocks Type OB, FB, FC, DB
Size 30 Kbytes (CPU 1211C)
50 Kbytes (CPU 1212C)
64 Kbytes (CPU 1214C and CPU 1215C)
Quantity Up to 1024 blocks total (OBs + FBs + FCs + DBs)
Address range for FBs, FCs, 1 to 65535 (such as FB 1 to FB 65535)
and DBs
Nesting depth 16 from the program cycle or start up OB; 4 from the time delay
interrupt, time-of-day interrupt, cyclic interrupt, hardware interrupt,
time error interrupt, or diagnostic error interrupt OB
Monitoring Status of 2 code blocks can be monitored simultaneously
OBs Program cycle Multiple: OB 1, OB 200 to OB 65535
Startup Multiple: OB 100, OB 200 to OB 65535
Time-delay interrupts and 41 (1 per event): OB 200 to OB 65535
cyclic interrupts
Hardware interrupts (edges 50 (1 per event): OB 200 to OB 65535
and HSC)
Time error interrupts 1: OB 80
Diagnostic error interrupts 1: OB 82
Timers Type IEC
Quantity Limited only by memory size
Storage Structure in DB, 16 bytes per timer
Counters Type IEC
Quantity Limited only by memory size
Storage Structure in DB, size dependent upon count type

e Sint, USInt: 3 bytes
e Int, UInt: 6 bytes
e Dint, UDInt: 12 bytes

1 Time-delay and cyclic interrupts use the same resources in the CPU. You can have only a total of 4 of these interrupts
(time-delay plus cyclic interrupts). You cannot have 4 time-delay interrupts and 4 cyclic interrupts.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

21

Product overview

1.2 Expansion capability of the CPU

1.2 Expansion capability of the CPU

The S7-1200 family provides a variety of modules and plug-in boards for expanding the
capabilities of the CPU with additional I/O or other communication protocols. For detailed
information about a specific module, see the technical specifications (Page 699).

) Communication module (CM), communcation processor (CP), or TS Adapter
® cpPu
® Signal board (SB), communication board (CB), or Battery Board (BB)
@ Signal module (SM)
Table 1- 3 Digital signal modules and signal boards
Type Input only Output only Combination In/Out
® digital SB e 4x24VDC In, e 4x24VDC Out, e 2x24VDC In/2x 24VDC Out
200 kHz 200 kHz 2 x 24VDC In / 2 x 24VDC Out,
e 4x5VDCIn, e 4 x5VDC Out, 200 kHz
200 kHz 200 kHz 2x5VDC In /2 x 5VDC Out,
200 kHz
@ digital SM e 8x24VDCIn e 8x24VDC Out e 8x24VDC In/8 x 24VDC Out
¢ 8 xRelay Out e 8x24VDC In/8 x Relay Out
e 8 xRelay Out e 8x120/230VAC In/ 8 x Relay Out
(Changeover)
e 16x24VDC In e 16 x24VDC Out e 16x24VDC In/ 16 x 24VDC Out
e 16 x Relay Out e 16 x24VDC In/ 16 x Relay Out

S7-1200 Programmable controller
22 System Manual, 04/2012, A5E02486680-06

Product overview

1.2 Expansion capability of the CPU

Table 1-4 Analog signal modules and signal boards
Type Input only Output only Combination In/Out
® analog SB e 1x 12 bit Analog In e 1 x Analog Out -
e 1x16bitRTD
e 1 x 16 bit Thermocouple
®@ analog SM e 4 xAnalogIn e 2 x Analog Out e 4 xAnalog In/2 x Analog Out
e 4 xAnalog In x 16 bit e 4 x Analog Out
e 8 xAnalog In
e Thermocouple:
- 4x16bitTC
- 8x16bitTC
e RTD:
- 4x16 bitRTD
- 8x 16 bitRTD
Table 1-5 Communication interfaces
Module Type Description
(D Communication module (CM) RS232 Full-duplex
RS422/485 Full-duplex (RS422)
Half-duplex (RS485)
PROFIBUS Master DPV1
PROFIBUS Slave DPV1
AS-i Master (CM 1243-2) AS-Interface
(® Communication processor (CP) Modem connectivity GPRS
(D Communication board (CB) RS485 Half-duplex
@ TeleService TS Adapter |E Basic! Connection to CPU
TS Adapter GSM GSM/GPRS
TS Adapter Modem Modem
TS Adapter ISDN ISDN
TS Adapter RS232 RS232

1 The TS Adapter allows you to connect various communication interfaces to the PROFINET port of the CPU. You install
the TS Adapter on the left side of the CPU and connect the TS Adapter modular (up to 3) onto the TS Adapter.

Table 1- 6 Other boards

Module

Description

@ Battery board

Plugs into expansion board interface on front of CPU. Provides long term

backup of realtime clock

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

23

Product overview

1.3 §7-1200 modules

1.3 S7-1200 modules

Table 1-7 S7-1200 expansion modules

Type of module

Description

The CPU supports one plug-in
expansion board:

e A signal board (SB) provides
additional 1/O for your CPU.
The SB connects on the front of
the CPU.

e A communication board (CB)
allows you to add another
communication port to your
CPU.

e A battery board (BB) allows you
to provide long term backup of
the realtime clock.

@ Status LEDs on
the SB

® Removable user
wiring connector

to the CPU, such as for
PROFIBUS or RS232 / RS485
connectivity (for PtP, Modbus or
USS), or the AS-i master. A CP
provides capabilities for other types
of communication, such as to
connect the CPU over a GPRS
network.

e The CPU supports up to 3 CMs
or CPs

e Each CM or CP connects to the
left side of the CPU (or to the
left side of another CM or CP)

Signal modules (SMs) add (@ |Status LEDs
additional functionality to the CPU.

SMs connect to the right side of the @ |Bus connector
CPU. ® Removable user
* Digital I/O wiring connector
e Analog I/O

e RTD and thermocouple

Communication modules (CMs) ©) Status LEDs
and communications processors .
(CPs) add communication options @ | Communication

connector

24

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06

Product overview

1.4 New features

14 New features
The following features are new in this release:
e A standard Web server page for performing a CPU firmware update (Page 519)

® The ability to use three PROFIBUS DP CM 1243-5 master modules or three AS-i CM
1243-2 master modules

Note

To use three AS-i modules as masters, you must update the firmware of the AS-i
modules.

New modules for the S7-1200

A variety of new modules expand the power of the S7-1200 CPU and provide the flexibility to
meet your automation needs:

® New and improved CPUs:

— New CPU 1215C DC/DC/DC, CPU 1215C DC/DC/Relay, and CPU 1215C
AC/DC/Relay offer 100 Kbytes of work memory, dual Ethernet, and analog outputs.

— New and improved CPU 1211Cs, CPU 1212Cs, and CPU 1214Cs have faster
processing time, the possibility of 4 PTOs (the CPU 1211C requires a signal board),
increased retentive memory (10 Kbytes), and increased time-of-day hold up time (20
days).

® New I/O signal module: SM 1231 Al 4 x 16 bit provides higher sample rate and increased
number of bits.

® New battery board (BB 1297) offers long term backup of the realtime clock. The BB 1297
is pluggable in the signal board slot of the S7-1200 CPU (firmware 3.0 and later
versions).

To use the new modules you must use STEP 7 V11 SP2 Update 3 or later (Basic or
Professional) and you must download the hardware support package (HSP) for new modules
from the STEP 7 Options > Support Packages menu command. Follow the instructions for
adding modules to the hardware catalog for STEP 7 (TIA Portal) from the Siemens Service
and Support Site (http://support.automation.siemens.com).

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 25

http://support.automation.siemens.com/�

Product overview

1.5 Basic HMI panels

1.5 Basic HMI panels

Because visualization is becoming a standard component for most machine designs, the
SIMATIC HMI Basic Panels provide touch-screen devices for basic operator control and
monitoring tasks. All panels have a protection rating for IP65 and have CE, UL, cULus, and

NEMA 4x certification.
Basic HMI Panel Description Technical data
i e = 3.6" membrane keyboard with 10 freely o 250 tags
| b L] S configurable tactile keys
‘ e, B e 50 process screens
g e Mono (STN, black/white) « 200 alarms
KP 300 Basic PN * 87 mmx31mm (3.6% e 25 curves

e Backlight color programmed (white,
green, yellow or red)

e Resolution: 240 x 80

40 KB recipe memory
e 5 recipes, 20 data records, 20 entries

4" touch screen with 4 tactile keys e 250 tags
e Mono (STN, gray scale) e 50 process screens
e 76.79 mm x 57.59 mm (3.8") e 200 alarms

Portrait or landscape e 25curves

e Resolution: 320 x 240

e 40 KB recipe memory

e 5recipes, 20 data records, 20 entries

6" touch screen with 6 tactile keys e 500 tags
e Color (TFT, 256 colors) or Mono e 50 process screens
(STN, gray scales)

e 1152 mm x 86.4 mm (5.7")
Portrait or landscape

e Resolution: 320 x 240

e 200 alarms
e 25 curves
e 40 KB recipe memory

e 5recipes, 20 data records, 20 entries

KTP 600 Basic PN

S7-1200 Programmable controller
26 System Manual, 04/2012, A5SE02486680-06

Product overview

1.5 Basic HMI panels

Basic HMI Panel

Description

Technical data

10" touch screen with 8 tactile keys
e Color (TFT, 256 colors)

e 211.2 mm x 158.4 mm (10.4")

¢ Resolution: 640 x 480

e 500 tags

e 50 process screens

e 200 alarms

e 25 curves

e 40 KB recipe memory

e 5recipes, 20 data records, 20 entries

TP 1500 Basic PN

15" touch screen

e Color (TFT, 256 colors)

e 304.1 mm x 228.1 mm (15.1")
e Resolution: 1024 x 768

e 500 tags

e 50 process screens
e 200 alarms

e 25 curves

e 40 KB recipe memory (integrated
flash)

e 5recipes, 20 data records, 20 entries

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

27

Product overview

1.5 Basic HMI panels

28

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

STEP 7 programming software

2

STEP 7 provides a user-friendly environment to develop, edit, and monitor the logic needed
to control your application, including the tools for managing and configuring all of the devices
in your project, such as controllers and HMI devices. To help you find the information you
need, STEP 7 provides an extensive online help system.

STEP 7 provides standard programming languages for convenience and efficiency in

developing the control program for your application.

e |AD (ladder logic) is a graphical programming language. The representation is based on

circuit diagrams (Page 155).

e FBD (Function Block Diagram) is a programming language that is based on the graphical
logic symbols used in Boolean algebra (Page 156).

® SCL (structured control language) is a text-based, high-level programming language.

When you create a code block, you select the programming language to be used by that
block. Your user program can utilize code blocks created in any or all of the programming

languages.

Note

STEP 7 is the programming and configuration software component of the TIA Portal. The
TIA Portal, in addition to STEP 7, also includes WinCC for designing and executing runtime
process visualization, and includes online help for WinCC as well as STEP 7.

2.1 System requirements

To install the STEP 7 software on a PC running Windows XP or Windows 7 operating

system, you must log in with Administrator privileges.

Table 2- 1 System requirements

Hardware/software Requirements
Processor type Pentium M, 1.6 GHz or similar
RAM 1GB

Available hard disk space

2 GB on system drive C:\

Operating systems

Windows XP Professional SP3
Windows 2003 Server R2 StdE SP2

Windows 7 Home Premium (STEP 7 Basic only, not
supported for STEP 7 Professional)

Windows 7 (Professional, Enterprise, Ultimate)
Windows 2008 Server StdE R2

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

29

STEP 7 programming software

2.2 Different views to make the work easier

2.2

30

Hardware/software Requirements
Graphics card 32 MB RAM
24-bit color depth
Screen resolution 1024 x 768
Network 20 Mbit/s Ethernet or faster
Optical drive DVD-ROM

Different views to make the work easier

STEP 7 provides a user-friendly environment to develop controller logic, configure HMI
visualization, and setup network communication. To help increase your productivity, STEP 7
provides two different views of the project: a task-oriented set of portals that are organized
on the functionality of the tools (Portal view), or a project-oriented view of the elements within
the project (Project view). Choose which view helps you work most efficiently. With a single
click, you can toggle between the Portal view and the Project view.

Portal view
(@ Portals for the different tasks
(@ Tasks for the selected portal

(® Selection panel for the selected
action

@ Changes to the Project view

Project view
@ Menus and toolbar

® Project navigator

® Work area

(® Task cards

® Inspector window

® Changes to the Portal view
@ Editor bar

T

®) T 1N -
- —cre—

With all of these components in one place, you have easy access to every aspect of your
project. For example, the inspector window shows the properties and information for the
object that you have selected in the work area. As you select different objects, the inspector
window displays the properties that you can configure. The inspector window includes tabs
that allow you to see diagnostic information and other messages.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

STEP 7 programming software
2.3 Easy-to-use fools

By showing all of the editors that are open, the editor bar helps you work more quickly and
efficiently. To toggle between the open editors, simply click the different editor. You can also
arrange two editors to appear together, arranged either vertically or horizontally. This feature
allows you to drag and drop between editors.

2.3 Easy-to-use tools

2.3.1 Inserting instructions into your user program

STEP 7 provides task cards that contain the instructions for your v | Basic instructions
program. The instructions are grouped according to function. Name

* General
o
*

;_ Bitlogic operations
To create your program, you drag instructions from the task card v, B Howwuparetians
On’[O a network. b % Conversion operations

b ¥ Program control operations

Tirmer operatons

2]

+1) Counter oparations
{| Comparator operations
4| Math functions

r v r T T

» 5 Word logic operations
b 5 shittand rotate

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 31

STEP 7 programming software
2.3 Easy-to-use fools

2.3.2 Accessing instructions from the "Favorites" toolbar

STEP 7 provides a "Favorites" toolbar to give you quick access to the instructions that you
frequently use. Simply click the icon for the instruction to insert it into your network!

e E=E8:EE .2 (For the "Favorites" in the instruction tree, double-

click the icon.)
=k Ak == {7} = [‘?ﬁ

You can easily customize the

v | Favarites R v | Favorites .
el ol o o _Favorl'fes by adding new] IS e] P
instructions.
t'% Simply drag and drop an b
H H n H "

VEBasIc instructions instruction to the "Favorites”. ~ | Basic instructions

Name c The instruction is now just a click name g

L3 | Gener\.!l | aWay! K= G.eneml. : B

¥ i) Bitlogic operstions b =] Bitlogic operations

w [@| Timer operations w @] Timer operations
=T { & s
& TON ¢ & TON (
& TOF [§ & TOF ¢
2 TONR 1 4 TONR 1
A (TP L)| (TP}~ £
o] =(TOM)- £ H) (TN~ £
)| =(ToF)- g K| ~(TOF)-]
)] ~(Ton)- 1 H)] ~ToNR)- T
A} (AT}~ F | ~tam- i
A} -(FT)- L L) ~(FT)- L

b |41 Counter operations b +i] Countar operations

¥ [&] Comparator operations | LB Cumparum_r operations -

S7-1200 Programmable controller
32 System Manual, 04/2012, A5SE02486680-06

STEP 7 programming software
2.3 Easy-to-use fools

2.3.3 Creating a complex equation with a simple instruction

The Calculate instruction lets you create a math function that operates on multiple input
parameters to produce the result, according to the equation that you define.

b [General In the Basic instruction tree, expand the Math functions folder.
b L] Bit logic perations Double-click the Calculate instruction to insert the instruction
» @ Timer operations into your user program.
r '—3:_1| Counter aperations
4 E Comparator operations
w [£] Math functions
ET| CALCULATE |,
£l A0D i
T The unconfigured Calculate
" B instruction provides two input
_ — parameters and an output
are parameter.

our

Click the "???" and select the data types for the input and output
» haid b oo parameters. (The input and output parameters must all be the same
" data type.)

For this example, select the "Real" data type.

@ Click the "Edit equation" icon to enter the equation.

“Edit "Calculate™ instruction ¥

ouT:= R

Example:

{IN1 + IN2) ™ (INT = IN2)

Passible instructions.

+0= "0 Abs Heg, Exp, * ' Frac Ln, SingASin. Cos; ACoes, Tan, ATan, S4qr. Sqrt Round, Ceail, Floor Trune

| Ok Il cancel

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 33

STEP 7 programming software

2.3 Easy-to-use fools

For this example, enter the following equation for scaling a raw analog value. (The "In" and
"Out" designations correspond to the parameters of the Calculate instruction.)

Out vaue = ((Out nigh - Out 1ow) / (IN high - IN 1ow)) * (IN vaiue - IN 1ow) + Out 1ow

Out = ((in4 - in5) / (in2 - in3)) * (in1 - in3) + in5

Where: Out value (Out) Scaled output value
IN vaive (in1) Analog input value
In high (in2) Upper limit for the scaled input value
In ow (in3) Lower limit for the scaled input value
Out high (in4) Upper limit for the scaled output value
Out iow (in5) Lower limit for the scaled ouput value

In the "Edit Calculate" box, enter the equation with the parameter names:
OUT = ((in4 - in5) / (in2 - in3)) * (in1 - in3) + in5

Edit"Calculate™ instruction p.g
QUT = -||||'|-l- -n5 an2 -3t anl -in3l + NS
Example

(N1« IN2) * (N1 = 1H2)
Passible instructions for Real
+.5 " 1 Abs, Meg, Exp. **, Frac. Ln. Sin, ASin. Cos, ACos. Tan, ATan, Sqr. Sqrt. Round, Ceil, Floor, Trune

| oK 1 Ea.nl-:elun |

When you click "OK", the Calculate TR
instruction creates the inputs Real
required for the instruction. — —

OUT := (ind-inSI0n2-in3)...

N1 OUT = <77
- — N2
- = IN3
i
-= ING ¥
Enter the tag names for the values T
that correspond to the parameters. Resl
EM EMO

OUT = {imd = in5)/ {in2 =i._.

Tl 02 & R 22

“In_value” = N1 ouT = "0ur_valus"
%MD 30
“ln_high" = IN2
WO 34
“ln_low" — IN3
LMD 53
“Out_high” — N4
HMD2

“Out_low" — NS &

S7-1200 Programmable controller
34 System Manual, 04/2012, A5SE02486680-06

STEP 7 programming software

2.3 Easy-to-use fools

234 Adding inputs or outputs to a LAD or FBD instruction
IN2se Some of the instructions allow you to create additional inputs or outputs.
® To add an input or output, click the "Create" icon or right-click on an input stub for one of
the existing IN or OUT parameters and select the "Insert input" command.
® To remove an input or output, right-click on the stub for one of the existing IN or OUT
parameters (when there are more than the original two inputs) and select the "Delete"
command.
2.3.5 Expandable instructions

Some of the more complex instructions are expandable, displaying only the key inputs and
outputs. To display the inputs and outputs, click the arrow at the bottom of the instruction.

"PID_35tep_TO" "PID_3Step_TO"
PID_35tep |E |E PID_35tep |E |E
—{EN EMI) —EM EM O e
Setpoint Cutput_UP = Setpoint
Input Output DK = Input
Input_PER Jutput_PER Input_PER
= Actuator_H State = Actuator_H Cutput_LUP =~
= Actuator_L Errori= = Actuator L Output DR =
Feedback ErrarBits Feedback Cutput_PER
Feedback_PER Feedback_PER
— Feset - — —
- —
— Feset]
e
State
Errar =
ErrarBits

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 35

STEP 7 programming software

2.3 Easy-to-use fools

2.3.6

2.3.7

36

Selecting a version for an instruction

The development and release cycles for certain sets of instructions (such as Modbus, PID
and motion) have created multiple released versions for these instructions. To help ensure
compatibility and migration with older projects, STEP 7 allows you to choose which version

of instruction to insert into your user program.

Click the icon on the instruction tree task card to enable the

headers and columns of the instruction tree.

vad|= To change the version of the instruction, select the

Options
» || MODBUS
3 MB_COMM_LOAD V1.2
3 MB_MASTER e
4 MB_SLAVE Va0

Settings -

® Genenl
¥ Herdwars

Gerera

¥ FLE pragramming

¥ Simuletan
Crikre & Disgnnnes

» Wiauakmtion

General wettings

Uit isbediace

Shaw i of secently wed
proeas 8 5] Elements

Shairw ol me a3 nge windre Beset o delaull
A Open cazcade auamaticaly in basitips

Lagnut
o Lo o rese ik prajeid dur g Sartug
eaet layeun Aeaet o delauit
Start view
1 MEeenr vew
i@ Ponel view) Projemvies
—__ ™

appropriate version from the drop-down list.

Modifying the appearance and configuration of STEP 7

You can select a variety of settings,
such as the appearance of the
interface, language, or the folder for
saving your work.

Select the "Settings" command from
the "Options" menu to change these
settings.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

STEP 7 programming software

2.3.8

2.3.9

2.3 Easy-to-use fools

Dragging and dropping between editors

& Muh To help you perform tasks quickly and easily,

= STEP 7 allows you to drag and drop elements
from one editor to another. For example, you
can drag an input from the CPU to the address
of an instruction in your user program.

You must zoom in at least 200% to select the
inputs or outputs of the CPU.

Notice that the tag names are displayed not
only in the PLC tag table, but also are
displayed on the CPU.

i —
To display two editors at one time, use the Window Help T
"Split editor" menu commands or buttons in osell Gy Shilt£4

Minirrize all
the toolbar. :

Next editor Cul+Fé

Prévious aditor Crrl+ Shifts Fé

(1] spliceditor space vertically
| Split editor space horzontally Shift+F3

To toggle between the editors that have been opened, click the icons in the editor bar.

R T -]

Changing the operating mode of the CPU

Refer to

The CPU does not have a physical switch for changing the operating mode (STOP or RUN).

Use the "Start CPU" and "Stop CPU" toolbar buttons to change the operating LA
mode of the CPU.

When you configure the CPU in the device configuration, you configure the start-up behavior
in the properties of the CPU.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 37

STEP 7 programming software

2.3 Easy-to-use fools

38

The "Online and diagnostics" portal also provides an operator panel for changing the
operating mode of the online CPU. To use the CPU operator panel, you must be connected
online to the CPU. The "Online tools" task card displays an operator panel that shows the
operating mode of the online CPU. The operator panel also allows you to change the
operating mode of the online CPU.

~ CPU operator panel Use the button on the operator panel to change the operating mode
PLE.1T [P0 1214€ DODEDC) (STOP or RUN). The operator panel also provides an MRES button for
LA H resetting the memory.

ERROR STOF

MAINT | MRES
The color of the RUN/STOP indicator shows the current operating mode of the CPU. Yellow
indicates STOP mode, and green indicates RUN mode.

Refer to Operating Modes of the CPU in the S7-1200 System Manual (Page 69) for
configuring the default operating mode on power up.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

STEP 7 programming software

2.3.10 Changing the call type for a DB

#IEC_Timer_0_
Instance

V]

FT
M cur Crle
_!E Copy Ctrl«C
W Delete [rel

Goto
Cross-reference informeation

]

Change eall type

= W Insert network shiftsF2 =
[Insertemptybox Shift+FS

_-;5:' Ingert comment

Call options
Data block
Name
Number
Single
nsrance
data block.
Multi

Instance

More_..

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

JEC Timer 0_DE|

IEC_Tirner_0_DB_T

2.3 Easy-to-use fools

STEP 7 allows you to easily create or change the
association of a DB for an instruction or an FB that is in
an FB.

You can switch the association between different DBs.

You can switch the association between a single-
instance DB and a multi-instance DB.

You can create an instance DB (if an instance DB is
missing or not available).

You can access the "Change call type" command either
by right-clicking the instruction or FB in the program
editor or by selecting the "Block call' command from the
"Options" menu.

ky

The called function block $awes its datain its own instance

The "Call options" dialog allows
you to select a single-instance
E or multi-instance DB. You can
also select specific DBs from a
drop-down list of available DBs.

39

40

STEP 7 programming software

2.3 Easy-to-use fools

2.3.11

Temporarily disconnecting devices from a network

You can disconnect individual network devices from the subnet. Because the configuration of

the device is not removed from the project, you can easily restore the connection to the
device.

FLC_T |0-Devica_1 [O-Dévica_2

CPU12T14C M 151-3FN IM 151-3FN

PLC.T FLC1
[Prune 2
Right-click the interface port of the network

e device and select the "Disconnect from
Hed ' subnet" command from the context menu.
T Asszign to new subnet

Assign to new (O controller
Disconnect from 10 systam
[7] Highlight 12 system

3 Propemes

STEP 7 reconfigures the network connections, but does not remove the disconnected device

from the project. While the network connection is deleted, the interface addresses are not
changed.

PLC_1

I0-Devica_1 ID-Davice 2
CPU 1274C IM 151-3PN IM-151-3PN
PLC Hot assigned
[PruiE_2 |

When you download the new network connections, the CPU must be set to STOP mode.

To reconnect the device, simply create a new network connection to the port of the device.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

STEP 7 programming software

2.3 Easy-to-use fools

2.3.12 Virtual unplugging of devices from the configuration

& Topology view |d Networkview [If Deviceview | STEP 7 provides a storage area for
d |[rey & % e’ 4 '"unplugged" modules. You can drag a
- Py e e “ module from the rack to save the
= configuration of that module. These
~ unplugged modules are saved with your
project, allowing you to reinsert the
module in the future without having to

reconfigure the parameters.

One use of this feature is for temporary

maintenance. Consider a scenario where

you might be waiting for a replacement
[Topology view | Hetwarkview |If Deviceview | mModule and plan to temporarily use a

d [ACT T & Rt = different module as a short-term

B | replacement. You could drag the

configured module from the rack to the

"Unplugged modules" and then insert the

temporary module.

Modules not
pluggedin

w5

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 41

STEP 7 programming software

2.3 Easy-to-use fools

S7-1200 Programmable controller
42 System Manual, 04/2012, A5SE02486680-06

Installation 3

3.1 Guidelines for installing S7-1200 devices

The S7-1200 equipment is designed to be easy to install. You can install an S7-1200 either
on a panel or on a standard rail, and you can orient the S7-1200 either horizontally or
vertically. The small size of the S7-1200 allows you to make efficient use of space.

A WARNING

The SIMATIC S7-1200 PLCs are Open Type Controllers. It is required that you install the
S7-1200 in a housing, cabinet, or electric control room. Entry to the housing, cabinet, or
electric control room should be limited to authorized personnel.

Failure to follow these installation requirements could result in death, severe personal injury
and/or property damage.

Always follow these requirements when installing S7-1200 PLCs.

Separate the S7-1200 devices from heat, high voltage, and electrical noise

As a general rule for laying out the devices of your system, always separate the devices that
generate high voltage and high electrical noise from the low-voltage, logic-type devices such
as the S7-1200.

When configuring the layout of the S7-1200 inside your panel, consider the heat-generating
devices and locate the electronic-type devices in the cooler areas of your cabinet. Reducing
the exposure to a high-temperature environment will extend the operating life of any
electronic device.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low-voltage
signal wires and communications cables in the same tray with AC power wiring and high-
energy, rapidly-switched DC wiring.

Provide adequate clearance for cooling and wiring

S7-1200 devices are designed for natural convection cooling. For proper cooling, you must
provide a clearance of at least 25 mm above and below the devices. Also, allow at least 25
mm of depth between the front of the modules and the inside of the enclosure.

A\ cauTion

For vertical mounting, the maximum allowable ambient temperature is reduced by 10
degrees C. Orient a vertically mounted S7-1200 system as shown in the following figure.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 43

Installation

3.2 Power budget

When planning your layout for the S7-1200 system, allow enough clearance for the wiring
and communications cable connections.

@ Side view @ Vertical installation
® Horizontal installation @ Clearance area
3.2 Power budget

44

Your CPU has an internal power supply that provides power for the CPU, the signal
modules, signal board and communication modules and for other 24 VDC user power
requirements.

Refer to the technical specifications (Page 699) for information about the 5 VDC logic budget
supplied by your CPU and the 5 VDC power requirements of the signal modules, signal
boards, and communication modules. Refer to the ['Calculating a power budget" (Page 829)
to determine how much power (or current) the CPU can provide for your configuration.

The CPU provides a 24 VDC sensor supply that can supply 24 VDC for input points, for relay
coil power on the signal modules, or for other requirements. If your 24 VDC power
requirements exceed the budget of the sensor supply, then you must add an external

24 \VDC power supply to your system. Refer to the technical specifications (Page 699) for the
24 VDC sensor supply power budget for your particular CPU.

Note

The CM 1243-5 (PROFIBUS master module) requires power from the 24 VDC sensor supply
of the CPU.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06

Installation

3.2 Power budget

If you require an external 24 VDC power supply, ensure that the power supply is not
connected in parallel with the sensor supply of the CPU. For improved electrical noise
protection, it is recommended that the commons (M) of the different power supplies be
connected.

A WARNING

Connecting an external 24 VDC power supply in parallel with the 24 VDC sensor supply
can result in a conflict between the two supplies as each seeks to establish its own
preferred output voltage level.

The result of this conflict can be shortened lifetime or immediate failure of one or both
power supplies, with consequent unpredictable operation of the PLC system. Unpredictable
operation could result in death, severe personal injury and/or property damage.

The DC sensor supply and any external power supply should provide power to different
points.

Some of the 24 VDC power input ports in the S7-1200 system are interconnected, with a
common logic circuit connecting multiple M terminals. For example, the following circuits are
interconnected when designated as "not isolated" in the data sheets: the 24 VDC power
supply of the CPU, the power input for the relay coil of an SM, or the power supply for a non-
isolated analog input. All non-isolated M terminals must connect to the same external
reference potential.

A WARNING

Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and any
connected equipment.

Failure to comply with these guidelines could cause damage or unpredictable operation
which could result in death or severe personal injury and/or property damage.

Always ensure that all non-isolated M terminals in an S7-1200 system are connected to the
same reference potential.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 45

Installation

3.3 Installation and removal procedures

3.3

3.3.1

CPU 1211C, CPU 1212C, CPU 1214C

116

CPU 1215C

Table 3- 1 Mounting dimensions (mm)

Installation and removal procedures

Mounting dimensions for the S7-1200 devices

S7-1200 Devices Width A (mm) | Width B (mm) | Width C (mm)
CPU CPU 1211C and CPU 1212C 90 45 -
CPU 1214C 110 55 -

46

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06

Installation

3.3 Installation and removal procedures

S7-1200 Devices Width A (mm) Width B (mm) Width C (mm)
CPU 1215C 130 65 (top) Bottom:
C1:325
C2:65
C3:325
Signal modules Digital 8 and 16 point 45 225 --
Analog 2, 4, and 8 point
Thermocouple 4 and 8 point
RTD 4 point
Digital DQ 8 x Relay (Changeover) 70 225 --
Analog 16 point 70 35 --
RTD 8 point
Communication CM 1241 RS232, and 30 15 -
interfaces CM 1241 RS422/485
CM 1243-5 PROFIBUS master and
CM 1242-5 PROFIBUS slave
CM 1242-2 AS-i Master
CP 1242-7 GPRS
TS AdapterlE Basic 601 15 -

1 Because you must install a TS Adapter modular with the TS Adapter, the total width ("width A") is 60 mm.

Each CPU, SM, CM, and CP supports mounting on either a DIN rail or on a panel. Use the
DIN rail clips on the module to secure the device on the rail. These clips also snap into an
extended position to provide screw mounting positions to mount the unit directly on a panel.

The interior dimension of the hole for the DIN clips on the device is 4.3 mm.

A 25 mm thermal zone must be provided above and below the unit for free air circulation.

Installing and removing the S7-1200 devices

The CPU can be easily installed on a standard DIN rail or on a panel. DIN rail clips are
provided to secure the device on the DIN rail. The clips also snap into an extended position
to provide a screw mounting position for panel-mounting the unit.

@ DIN rail installation
@ DIN rail clip in latched position

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

@ Panel installation

@ Clip in extended position for panel mounting

47

Installation

3.3 Installation and removal procedures

Before you install or remove any electrical device, ensure that the power to that equipment
has been turned off. Also, ensure that the power to any related equipment has been turned
off.

A WARNING

Installation or removal of S7-1200 or related equipment with the power applied could cause
electric shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury and/or property damage
due to electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove S7-1200 CPUs or related equipment.

Always ensure that whenever you replace or install an S7-1200 device you use the correct
module or equivalent device.

A WARNING

Incorrect installation of an S7-1200 module may cause the program in the S7-1200 to
function unpredictably.

Failure to replace an S7-1200 device with the same model, orientation, or order could result
in death, severe personal injury and/or property damage due to unexpected equipment
operation.

Replace an S7-1200 device with the same model, and be sure to orient and position it
correctly.

A WARNING

Do not disconnect equipment when a flammable or combustible atmosphere is present.

Disconnection of equipment when a flammable or combustible atmosphere is present may
cause a fire or explosion which could result in death, serious injury and/or property
damage.

CAUTION

Electrostatic discharge can damage the device or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the device.

S7-1200 Programmable controller
48 System Manual, 04/2012, A5SE02486680-06

Installation

3.3 Installation and removal procedures

3.3.2 Installing and removing the CPU

You can install the CPU on a panel or on a DIN rail.

Note

Attach any communication modules to the CPU and install the assembly as a unit. Install
signal modules separately after the CPU has been installed.

Consider the following when installing the units on the DIN rail or on a panel:

For DIN rail mounting, make sure the upper DIN rail clip is in the latched (inner) position
and that the lower DIN rail clip is in the extended position for the CPU and attached CMs.

After installing the devices on the DIN rail, move the lower DIN rail clips to the latched
position to lock the devices on the DIN rail.

For panel mounting, make sure the DIN rail clips are pushed to the extended position.

To install the CPU on a panel, follow these steps:

1.

Locate, drill, and tap the mounting holes (M4), using the dimensions shown in table,
Mounting dimensions (mm) (Page 46).

Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.

Extend the mounting clips from the module. Make sure the DIN rail clips on the top and
bottom of the CPU are in the extended position.

Secure the module to the panel, using a Pan Head M4 screw with spring and flat washer.
Do not use a flat head screw.

Note

The type of screw will be determined by the material upon which it is mounted. You
should apply appropriate torque until the spring washer becomes flat. Avoid applying
excessive torque to the mounting screws. Do not use a flat head screw.

Note

If your system is subject to a high vibration environment, or is mounted vertically, panel
mounting the S7-1200 will provide a greater level of protection.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 49

Installation

3.3 Installation and removal procedures

Table 3- 2 Installing the CPU on a DIN rail

Task Procedure

1. Install the DIN rail. Secure the rail to the mounting panel every 75 mm.

2. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

3. Hook the CPU over the top of the DIN rail.

4. Pull out the DIN rail clip on the bottom of the CPU to allow the CPU to fit over the
rail.

5. Rotate the CPU down into position on the rail.
6. Push in the clips to latch the CPU to the rail.

Table 3- 3 Removing the CPU from a DIN rail

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Disconnect the 1/0 connectors, wiring, and cables from
the CPU (Page 59%).

3. Remove the CPU and any attached communication
modules as a unit. All signal modules should remain
installed.

4. If an SM is connected to the CPU, retract the bus
connector:

— Place a screwdriver beside the tab on the top of the
signal module.

— Press down to disengage the connector from the
CPU.

— Slide the tab fully to the right.
5. Remove the CPU:

— Pull out the DIN rail clip to release the CPU from the
rail.

— Rotate the CPU up and off the rail, and remove the
CPU from the system.

S7-1200 Programmable controller
50 System Manual, 04/2012, A5E02486680-06

Installation

3.3 Installation and removal procedures

3.3.3 Installing and removing an SB, CB or BB

Table 3-4 Installing an SB, CB, or BB 1297

Task

Procedure

1.

4. Gently pry the cover up and remove it from the CPU.
5. Place the module straight down into its mounting position in the top

Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

Remove the top and bottom terminal block covers from the CPU.

Place a screwdriver into the slot on top of the CPU at the rear of the
cover.

of the CPU.
6. Firmly press the module into position until it snaps into place.
7. Replace the terminal block covers.
Table 3-5 Removing an SB, CB or BB 1297
Task Procedure
1. Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.
2. Remove the top and bottom terminal block covers from the CPU.
3. Place a screwdriver into the slot on top of the module.
4. Gently pry the module up to disengage it from the CPU.
5. Remove the module straight up from its mounting position in the top
of the CPU.
6. Replace the cover onto the CPU.
7. Replace the terminal block covers.

Installing or replacing the battery in the BB 1297 battery board

The BB 1297 requires battery type CR1025. The battery is not included with the BB 1297
and must be purchased by the user. To install or replace the battery, follow these steps:

1. Inthe BB 1297, install a new battery with the positive side of the battery on top, and the
negative side next to the printed wiring board.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

51

Installation

3.3 Installation and removal procedures

2. The BB 1297 is ready to be installed in the CPU. Follow the installation directions above
to install the BB 1297.

To replace the battery in the BB 1297:
1. Remove the BB 1297 from the CPU following the removal directions above.

2. Carefully remove the old battery using a small screwdriver. Push the battery out from
under the clip.

3. Install a new CR1025 replacement battery with the positive side of the battery on top and
the negative side next to the printed wiring board.

4. Re-install the BB 1297 battery board following the installation directions above.

3.34 Installing and removing an SM

Table 3- 6 Installing an SM

Task Procedure

Install your SM after installing the CPU.

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Remove the cover for the connector from the right side of the
CPU.

3. Insert a screwdriver into the slot above the cover.

4. Gently pry the cover out at its top and remove the cover.
Retain the cover for reuse.

Connect the SM to the CPU:

1. Position the SM beside the CPU.

2. Hook the SM over the top of the DIN rail.

3. Pull out the bottom DIN rail clip to allow the SM to fit over the
rail.

4. Rotate the SM down into position beside the CPU and push
the bottom clip in to latch the SM onto the rail.

Extending the bus connector makes both mechanical and electrical connections for
the SM.

1. Place a screwdriver beside the tab on the top of the SM.

2. Slide the tab fully to the left to extend the bus connector into the CPU.
Follow the same procedure to install a signal module to a signal module.

S7-1200 Programmable controller
52 System Manual, 04/2012, A5SE02486680-06

Installation

Table 3-7 Removing an SM

3.3 Installation and removal procedures

Task

Procedure

You can remove any SM without removing the CPU or other SMs in place.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from
electrical power.

2. Remove the I/O connectors and wiring from the SM (Page 55).
3. Retract the bus connector.

— Place a screwdriver beside the tab on the top of the SM.

— Press down to disengage the connector from the CPU.

— Slide the tab fully to the right.
If there is another SM to the right, repeat this procedure for that SM.

Remove the SM:

1. Pull out the bottom DIN rail clip to release the SM from the rail.

2. Rotate the SM up and off the rail. Remove the SM from the system.

3. If required, cover the bus connector on the CPU to avoid contamination.
Follow the same procedure to remove a signal module from a signal module.

3.3.5 Installing and removing a CM or CP

Attach any communication modules to the CPU and install the assembly as a unit, as shown
in Installing and removing the CPU (Page 49).

Table 3-8 Installing a CM or CP

Task

Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Attach the CM to the CPU before installing the assembly
as a unit to the DIN rail or panel.

3. Remove the bus cover from the left side of the CPU:
— Insert a screwdriver into the slot above the bus cover.
— Gently pry out the cover at its top.

4. Remove the bus cover. Retain the cover for reuse.
5. Connect the CM or CP to the CPU:

— Align the bus connector and the posts of the CM with
the holes of the CPU

— Firmly press the units together until the posts snap into
place.

6. Install the CPU and CP on a DIN rail or panel.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

53

Installation
3.3 Installation and removal procedures

Table 3-9 Removing a CM or CP

Task Procedure
Remove the CPU and CM as a unit from the DIN rail or panel.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

2. Remove the 1/O connectors and all wiring and cables from the CPU and CMs.

3. For DIN rail mounting, move the lower DIN rail clips on the CPU and CMs to the
extended position.

4. Remove the CPU and CMs from the DIN rail or panel.
5. Grasp the CPU and CMs firmly and pull apart.

CAUTION

Do not use a tool to separate the modules because this will damage the units.

S7-1200 Programmable controller
54 System Manual, 04/2012, A5SE02486680-06

Installation
3.3 Installation and removal procedures

3.3.6 Removing and reinstalling the S7-1200 terminal block connector

The CPU, SB and SM modules provide removable connectors to make connecting the wiring
easy.

Table 3- 10 Removing the connector

Task Procedure

Prepare the system for terminal block connector removal by removing the power from the
CPU and opening the cover above the connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.
2. Inspect the top of the connector and locate the slot for the tip of the screwdriver.

3. Insert a screwdriver into the slot.
4

. Gently pry the top of the connector away from the CPU. The connector will release with a
snap.

5. Grasp the connector and remove it from the CPU.

Table 3- 11 Installing the connector

Task Procedure

Prepare the components for terminal block installation by removing power from the CPU and
opening the cover for connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.
2. Align the connector with the pins on the unit.

3. Align the wiring edge of the connector inside the rim of the connector base.

4. Press firmly down and rotate the connector until it snaps into place.

Check carefully to ensure that the connector is properly aligned and fully engaged.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 55

Installation
3.3 Installation and removal procedures

3.3.7 Installing and removing the expansion cable

The S7-1200 expansion cable provides additional flexibility in configuring the layout of your
S7-1200 system. Only one expansion cable is allowed per CPU system. You install the
expansion cable either between the CPU and the first SM, or between any two SMs.

Table 3- 12 Installing and removing the male connector of the expansion cable

Task Procedure
To install the male connector:

1. Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

2. Push the connector into the bus connector on the right side of the
signal module or CPU.

To remove the male connector:

1. Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

2. Pull out the male connector to release it from the signal module or
CPU.

Table 3- 13 Installing the female connector of the expansion cable

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment
are disconnected from electrical power.

2. Place the female connector to the bus connector on
the left side of the signal module.

3. Slip the hook extension of the female connector
into the housing at the bus connector and press
down slightly to engage the hook.

4. Lock the connector into place:

— Place a screwdriver beside the tab on the top of
the signal module.
— Slide the tab fully to the left.
To engage the connector, you must slide the connector
tab all the way to the left. The connector tab must be
locked into place.

S7-1200 Programmable controller
56 System Manual, 04/2012, A5E02486680-06

Installation

3.3 Installation and removal procedures

Table 3- 14 Removing the female connector of the expansion cable

Task Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Unlock the connector:

— Place a screwdriver beside the tab on the top of
the signal module.

— Press down slightly and slide the tab fully to the
right.

3. Lift the connector up slightly to disengage the hook
extension.

4. Remove the female connector.

3.3.8 TS (teleservice) adapter

3.3.8.1 Connecting the TeleService Adapter

Before installing the TS (Teleservice) Adapter IE Basic, you must first connect the
TS Adapter and a TS module.

Available TS modules:
® TS module RS232
® TS module Modem
® TS module GSM
® TS module ISDN

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 57

Installation

3.3 Installation and removal procedures

CAUTION

The TS module can be damaged if you touch the contacts of the plug connector @of the
TS module. Follow ESD guidelines in order to avoid damaging the TS module through

electrostatic discharge. Before connecting a TS module and TS Adapter, make sure that
both are in an idle state.

@® TS module @® Plug connector from the TS module
@ TS Adapter @ Cannot be opened

@ Elements @ Ethernet port

CAUTION

Before connecting a TS module and TS adapter basic unit, ensure that the contact pins @

are not bent. When connecting, ensure that the male connector and guide elements are
positioned correctly.

Only connect a TS module into the TS adapter. Do not force a connection of the TS adapter
to a different device, such as an S7-1200 CPU. Do not change the mechanical construction
of the connector, and do not remove or damage the guide elements.

3.3.8.2 Installing the SIM card
Locate the SIM card slot on the underside of the TS module GSM.

NOTICE

The SIM card may only be removed or inserted if the TS module GSM is de-energized.

S7-1200 Programmable controller

58 System Manual, 04/2012, A5E02486680-06

Installation
3.3 Installation and removal procedures

Table 3- 15 Installing the SIM card

Procedure Task

Use a sharp object to press
the eject button of the SIM
card tray (in the direction of
the arrow) and remove the
SIM card tray.

Place the SIM card in the SIM TS Module GSM
card tray as shown and put
the SIM card tray back into its

slot.

SIM card

® 0|6

SIM card tray

Note

Ensure that the SIM card tray is correctly oriented in the card tray. Otherwise, the SIM card
will not make connection with the module, and the eject button may not remove the card tray.

3.3.8.3 Installing the TS adapter unit

Prerequisites: You must have connected the TS Adapter and a TS module together, and the
DIN rail must have been installed.

Note

If you install the TS unit vertically or in high-vibration environment, the TS module can
become disconnected from the TS Adapter. Use an end bracket 8WA1 808 on the DIN rail to
ensure that the modules remain connected.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 59

Installation

3.3 Installation and removal procedures

Table 3- 16 Installing and removing the TS Adapter

Task Procedure

Installation:
® . .

1. Hook the TS Adapter with attached TS module @ on the DIN rail @
2. Rotate the unit back until it engages.

3. Push in the DIN rail clip on each module to attach the each module to
the rail.

Removal:

1. Remove the analog cable and Ethernet cable from the underside of
the TS Adapter.

Remove power from the TS Adapter.

3. Use a screwdriver to disengage the rail clips on both modules.
4. Rotate the unit upwards to remove the unit from the DIN rail.

A WARNING

Before you remove power from the unit, disconnect the grounding of the TS Adapter by
removing the analog cable and Ethernet cable.

3.3.84 Installing the TS adapter on a wall
Prerequisites: You must have connected the TS Adapter and TS module.

1. Move the attachment slider (D to the backside of the TS Adapter and TS module in the
direction of the arrow until it engages.

2. Screw the TS Adapter and TS module to the position marked with @ to the designated
assembly wall.

S7-1200 Programmable controller
60 System Manual, 04/2012, A5E02486680-06

Installation

3.4 Wiring guidelines

The following illustration shows the TS Adapter from behind, with the attachment sliders (D
in both positions:

I =

=>
=
)
S

108
116

5} -~ .,
b o

@ Attachment slider
@ Drill holes for wall mounting

3.4 Wiring guidelines

Proper grounding and wiring of all electrical equipment is important to help ensure the
optimum operation of your system and to provide additional electrical noise protection for
your application and the S7-1200. Refer to the technical specifications (Page 699) for the
S7-1200 wiring diagrams.

Prerequisites

Before you ground or install wiring to any electrical device, ensure that the power to that
equipment has been turned off. Also, ensure that the power to any related equipment has
been turned off.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 61

Installation

3.4 Wiring guidelines

Ensure that you follow all applicable electrical codes when wiring the S7-1200 and related
equipment. Install and operate all equipment according to all applicable national and local
standards. Contact your local authorities to determine which codes and standards apply to
your specific case.

A WARNING

Installation or wiring the S7-1200 or related equipment with power applied could cause
electric shock or unexpected operation of equipment. Failure to disable all power to the S7-
1200 and related equipment during installation or removal procedures could result in death,
severe personal injury, and/or damage due to electric shock or unexpected equipment
operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove the S7-1200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-
1200 system. Electronic control devices, such as the S7-1200, can fail and can cause
unexpected operation of the equipment that is being controlled or monitored. For this reason,
you should implement safeguards that are independent of the S7-1200 to protect against
possible personal injury or equipment damage.

A WARNING

Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment. Such unexpected operations could result in death, severe personal
injury and/or property damage.

Use an emergency stop function, electromechanical overrides, or other redundant
safeguards that are independent of the S7-1200.

Guidelines for isolation

S7-1200 AC power supply boundaries and 1/0 boundaries to AC circuits have been designed
and approved to provide safe separation between AC line voltages and low voltage circuits.
These boundaries include double or reinforced insulation, or basic plus supplementary
insulation, according to various standards. Components which cross these boundaries such
as optical couplers, capacitors, transformers, and relays have been approved as providing
safe separation. Isolation boundaries which meet these requirements have been identified in
S7-1200 product data sheets as having 1500 VAC or greater isolation. This designation is
based on a routine factory test of (2Ue + 1000 VAC) or equivalent according to approved
methods. S7-1200 safe separation boundaries have been type tested to 4242 VDC.

The sensor supply output, communications circuits, and internal logic circuits of an S7-1200
with included AC power supply are sourced as SELV (safety extra-low voltage) according to
EN 61131-2.

S7-1200 Programmable controller
62 System Manual, 04/2012, A5SE02486680-06

Installation
3.4 Wiring guidelines

To maintain the safe character of the S7-1200 low voltage circuits, external connections to
communications ports, analog circuits, and all 24 V nominal power supply and I/O circuits
must be powered from approved sources that meet the requirements of SELV, PELV, Class
2, Limited Voltage, or Limited Power according to various standards.

A WARNING

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC
line can result in hazardous voltages appearing on circuits that are expected to be touch
safe, such as communications circuits and low voltage sensor wiring.

Such unexpected high voltages could cause electric shock resulting in death, severe
personal injury and/or property damage.

Only use high voltage to low voltage power converters that are approved as sources of
touch safe, limited voltage circuits.

Guidelines for grounding the S7-1200

The best way to ground your application is to ensure that all the common and ground
connections of your S7-1200 and related equipment are grounded to a single point. This
single point should be connected directly to the earth ground for your system.

All ground wires should be as short as possible and should use a large wire size, such as 2
mm?2 (14 AWG).

When locating grounds, consider safety-grounding requirements and the proper operation of
protective interrupting devices.

Guidelines for wiring the S7-1200

When designing the wiring for your S7-1200, provide a single disconnect switch that
simultaneously removes power from the S7-1200 CPU power supply, from all input circuits,
and from all output circuits. Provide over-current protection, such as a fuse or circuit breaker,
to limit fault currents on supply wiring. Consider providing additional protection by placing a
fuse or other current limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning
surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with
AC wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the
neutral or common wire paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required
current. The CPU and SM connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to
22 AWG). The SB connector accepts wire sizes from 1.3 mm2to 0.3 mm2 (16 AWG to 22
AWG). Use shielded wires for optimum protection against electrical noise. Typically,
grounding the shield at the S7-1200 gives the best results.

When wiring input circuits that are powered by an external power supply, include an
overcurrent protection device in that circuit. External protection is not necessary for circuits
that are powered by the 24 VDC sensor supply from the S7-1200 because the sensor supply
is already current-limited.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 63

Installation

3.4 Wiring guidelines

All S7-1200 modules have removable connectors for user wiring. To prevent loose
connections, ensure that the connector is seated securely and that the wire is installed
securely into the connector. To avoid damaging the connector, be careful that you do not
over-tighten the screws. The maximum torque for the CPU and SM connector screw is 0.56
N-m (5 inch-pounds). The maximum torque for the SB connector screw is 0.33 N-m (3 inch-
pounds).

To help prevent unwanted current flows in your installation, the S7-1200 provides isolation
boundaries at certain points. When you plan the wiring for your system, you should consider
these isolation boundaries. Refer to the technical specifications for the amount of isolation
provided and the location of the isolation boundaries. Do not depend on isolation boundaries
rated less than 1500 VAC as safety boundaries.

Guidelines for lamp loads

Lamp loads are damaging to relay contacts because of the high turn-on surge current. This
surge current will nominally be 10 to 15 times the steady state current for a Tungsten lamp.
A replaceable interposing relay or surge limiter is recommended for lamp loads that will be
switched a large number of times during the lifetime of the application.

Guidelines for inductive loads

You should equip inductive loads with suppression circuits to limit voltage rise when the
control output turns off. Suppression circuits protect your outputs from premature failure due
to the high voltages associated with turning off inductive loads. In addition, suppression
circuits limit the electrical noise generated when switching inductive loads. Placing an
external suppression circuit so that it is electrically across the load, and physically located
near the load is most effective in reducing electrical noise.

S7-1200 DC outputs include internal suppression circuits that are adequate for the inductive
loads in most applications. Since S7-1200 relay output contacts can be used to switch either
a DC or an AC load, internal protection is not provided.

Note

The effectiveness of a given suppression circuit depends on the application, and you must
verify it for your particular use. Always ensure that all components used in your suppression
circuit are rated for use in the application.

S7-1200 Programmable controller
64 System Manual, 04/2012, A5SE02486680-06

Installation

3.4 Wiring guidelines

Typical suppressor circuit for DC or relay outputs that switch DC inductive loads

ONO

o Lol

@ 1N4001 diode or equivalent

® 8.2V Zener (DC outputs),
36 V Zener (Relay outputs)

® Output point

In most applications, the addition of a diode (A)
across a DC inductive load is suitable, but if your
application requires faster turn-off times, then the
addition of a Zener diode (B) is recommended. Be
sure to size your Zener diode properly for the amount
of current in your output circuit.

Typical suppressor circuit for relay outputs that switch AC inductive loads

OO
— ——wW—

MoV

@ 01pF
® 100t0 120 Q
® Output point

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

When you use a relay output to switch 115 V/230
VAC loads, place the appropriately rated resistor-
capacitor-metal oxide varistor (MOV) circuit across
the AC load. Ensure that the working voltage of the
MOV is at least 20% greater than the nominal line
voltage.

65

Installation

3.4 Wiring guidelines

66

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts 4

4.1

Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient
structure for your user program:

® Organization blocks (OBs) define the structure of the program. Some OBs have
predefined behavior and start events, but you can also create OBs with custom start
events. Valid OB number ranges are shown in Event execution priorities and queuing
(Page 75).

® Functions (FCs) and function blocks (FBs) contain the program code that corresponds to
specific tasks or combinations of parameters. Each FC or FB provides a set of input and
output parameters for sharing data with the calling block. An FB also uses an associated
data block (called an instance DB) to maintain state of values between execution that can
be used by other blocks in the program. Valid FC and FB numbers range from 1 to
65535.

e Data blocks (DBs) store data that can be used by the program blocks. Valid DB numbers
range from 1 to 65535.

Execution of the user program begins with one or more optional start-up organization blocks
(OBs) which are executed once upon entering RUN mode, followed by one or more program
cycle OBs which are executed cyclically. An OB can also be associated with an interrupt
event, which can be either a standard event or an error event, and executes whenever the
corresponding standard or error event occurs.

A function (FC) or a function block (FB) is a block of program code that can be called from
an OB or from another FC or FB, down to the following nesting depths:

® 16 from the program cycle or startup OB

e 4 from time delay interrupt, cyclic interrupt, time of day interrupt, hardware interrupt, time
error interrupt, or diagnostic error interrupt OB

FCs are not associated with any particular data block (DB), while FBs are tied directly to a
DB and use the DB for passing parameters and storing interim values and results.

The size of the user program, data, and configuration is limited by the available load memory
and work memory in the CPU. There is no specific limit to the number of each individual OB,
FC, FB and DB block. However, the total number of blocks is limited to 1024.

Each cycle includes writing the outputs, reading the inputs, executing the user program
instructions, and performing background processing. The cycle is referred to as a scan cycle
or scan.

The modules (SM, SB, BB, CB, CM or CP) are detected and logged in only upon power-up.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 67

PLC concepts

4.1 Execution of the user program

Inserting or removing a module in the central rack under power (hot) is not supported.
Never insert or remove a module from the central rack when the CPU has power..

A WARNING

Insertion or removal of a module (SM, SB, BB, CD, CM or CP) from the central rack
when the CPU has power could cause unpredictable behavior, resulting in damage to
equipment and/or injury to personnel.

Always ensure that power is removed from the CPU and central rack before inserting or

removing a module from the central rack.

You can insert or remove a SIMATIC memory card while the CPU is under power.
However, inserting or removing a memory card when the CPU is in RUN mode causes
the CPU to go to STOP mode.

CAUTION

Insertion or removal of a memory card when the CPU is in RUN mode causes the CPU
to go to STOP, which might result in in damage to the equipment or the process being
controlled.

Whenever you insert or remove a memory card, the CPU immediately goes to STOP
mode. Before inserting or removing a memory card, always ensure that the CPU is not
actively controlling a machine or process. Always install an emergency stop circuit for
your application or process.

If you insert or remove a module in a distributed I/O rack (PROFINET or PROFIBUS)
when the CPU is in RUN mode, the CPU generates an entry in the diagnostics buffer and
stays in RUN mode.

Under the default configuration, all local digital and analog 1/O points are updated
synchronously with the scan cycle using an internal memory area called the process image.
The process image contains a snapshot of the physical inputs and outputs (the physical I/O
points on the CPU, signal board, and signal modules).

The CPU performs the following tasks:

The CPU writes the outputs from the process image output area to the physical outputs.

The CPU reads the physical inputs just prior to the execution of the user program and
stores the input values in the process image input area. This ensures that these values
remain consistent throughout the execution of the user instructions.

The CPU executes the logic of the user instructions and updates the output values in the
process image output area instead of writing to the actual physical outputs.

This process provides consistent logic through the execution of the user instructions for a
given cycle and prevents the flickering of physical output points that might change state
multiple times in the process image output area.

68

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.1 Execution of the user program

You can specify whether digital and analog 1/O points are to be automatically updated and
stored in the process image. If you insert a module in the device view, its data is located in
the process image of the CPU (default). The CPU handles the data exchange between the
module and the process image area automatically during the update of the process image.
To remove digital or analog points from the process-image automatic update, select the
appropriate device in Device configuration, view the Properties tab, expand if necessary to
locate the desired I/O points, and then select "lO addresses/HW identifier". Then change the
entry for "Process image:" from "Cyclic PI" to "---". To add the points back to the process-
image automatic update, change this selection back to "Cyclic PI".

You can immediately read physical input values and immediately write physical output
values when an instruction executes. An immediate read accesses the current state of the
physical input and does not update the process image input area, regardless of whether the
point is configured to be stored in the process image. An immediate write to the physical
output updates both the process image output area (if the point is configured to be stored in
the process image) and the physical output point. Append the suffix ":P" to the I/O address if
you want the program to immediately access I/O data directly from the physical point instead
of using the process image.

The CPU supports distributed 1/0O for both PROFINET and PROFIBUS networks (Page 423).

411 Operating modes of the CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode.
Status LEDs on the front of the CPU indicate the current mode of operation.

® |n STOP mode, the CPU is not executing the program. You can download a project.

® |n STARTUP mode, the startup OBs (if present) are executed once. Interrupt events are
not processed during the startup mode.

® |n RUN mode, the program cycle OBs are executed repeatedly. Interrupt events can
occur and be processed at any point within the RUN mode. Some parts of a project can
be downloaded in RUN mode (Page 690).

The CPU supports a warm restart for entering the RUN mode. Warm restart does not include
a memory reset. All non-retentive system and user data are initialized at warm restart.
Retentive user data is retained.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 69

PLC concepts

4.1 Execution of the user program

70

A memory reset clears all work memory, clears retentive and non-retentive memory areas,
and copies load memory to work memory. A memory reset does not clear the diagnostics
buffer or the permanently saved values of the IP address.

Note

When you download one or more DBs from STEP 7 V11 to an S7-1200 V2 CPU, the
retentive and non-retentive values of those DBs are set to their start values. The next
transition to RUN performs a warm restart, setting all non-retentive data to their start values
and setting all retentive data to their retained values.

When you download project elements (such as device configuration, code blocks or DBs)
from STEP 7 V10.5 to any S7-1200 CPU or from STEP 7 V11 to an S7-1200 V1 CPU (or a
V2 CPU that has been configured as a V1 CPU), the next transition to RUN mode resets all
of the DBs in the project to their start values.

You can configure the "startup after POWER ON" setting of the CPU. This configuration item
appears under the "Device configuration" for the CPU under "Startup". When power is
applied, the CPU performs a sequence of power-up diagnostic checks and system
initialization. During system initialization the CPU deletes all non-retentive bit memory and
resets all non-retentive DB contents to the initial values from load memory. The CPU retains
retentive bit memory and retentive DB contents and then enters the appropriate operating
mode. Certain detected errors prevent the CPU from entering the RUN mode. The CPU
supports the following configuration choices:

® No restart (stay in STOP mode)
e Warm restart - RUN
e Warm restart - mode prior to POWER OFF

Starup

Startup after POWER ON Warm restart - RUN -

[la restart (stay in STOF made)
‘Warm restart - RUN

Supported hardware
cormpatibility

Warrn restart- mode pnor to POWER OFF
Farameter ESSIgI‘II‘nE‘I‘It time
for distnbuted Q: | G000 ms

CAUTION

The CPU can enter STOP mode due to repairable faults, such as failure of a
replaceable signal module, or temporary faults, such as power line disturbance or erratic
power up event.

If the CPU has been configured to "Warm restart mode prior to POWER OFF", it will not
return to RUN mode when the fault is repaired or removed until it receives a new
command from STEP 7 to go to RUN. Without a new command, the STOP mode is
retained as the mode prior to POWER OFF.

CPUs that are intended to operate independently of a STEP 7 connection should
typically be configured to "Warm restart - RUN" so that the CPU can be returned to RUN
mode by a power cycle following the removal of fault conditions.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts
4.1 Execution of the user program

You can change the current operating mode using the "STOP" or "RUN" commands from the
online tools of the programming software. You can also include a STP instruction in your
program to change the CPU to STOP mode. This allows you to stop the execution of your
program based on the program logic.

® |n STOP mode, the CPU handles any communication requests (as appropriate) and
performs self-diagnostics. The CPU does not execute the user program, and the
automatic updates of the process image do not occur.

You can download your project only when the CPU is in STOP mode.
® |n STARTUP and RUN modes, the CPU performs the tasks shown in the following figure.

STARTUP RUN

A Clears the | (image) memory area @ Writes Q memory to the physical outputs

B Initializes the outputs with either the ® Copies the state of the physical inputs to |
last value or the substitute value memory

C Executes the startup OBs ® Executes the program cycle OBs

D Copies the state of the physical inputs @ Performs self-test diagnostics
to | memory

E Stores any interrupt events into the ® Processes interrupts and communications
queue to be processed after entering during any part of the scan cycle
RUN mode

F Enables the writing of Q memory to the
physical outputs

STARTUP processing

Whenever the operating mode changes from STOP to RUN, the CPU clears the process
image inputs, initializes the process image outputs and processes the startup OBs. Any read
accesses to the process-image inputs by instructions in the startup OBs read zero rather
than the current physical input value. Therefore, to read the current state of a physical input
during the startup mode, you must perform an immediate read. The startup OBs and any
associated FCs and FBs are executed next. If more than one startup OB exists, each is
executed in order according to the OB number, with the lowest OB number executing first.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 71

PLC concepts

4.1 Execution of the user program

Each startup OB includes startup information that helps you determine the validity of
retentive data and the time-of-day clock. You can program instructions inside the startup
OBs to examine these startup values and to take appropriate action. The following startup
locations are supported by the Startup OBs:

Table 4- 1 Startup locations supported by the startup OB

Input Data Type | Description
LostRetentive Bool This bit is true if the retentive data storage areas have been lost
LostRTC Bool This bit is true if the time-of-day clock (Real time Clock) has been lost

The CPU also performs the following tasks during the startup processing.
® Interrupts are queued but not processed during the startup phase
® No cycle time monitoring is performed during the startup phase

® Configuration changes to HSC (high-speed counter), PWM (pulse-width modulation), and
PtP (point-to-point communication) modules can be made in startup

® Actual operation of HSC, PWM and point-to-point communication modules only occurs in
RUN

After the execution of the startup OBs finishes, the CPU goes to RUN mode and processes
the control tasks in a continuous scan cycle.

See also

Stop scan cycle instruction (Page 235)

CPU operator panel for the online CPU (Page 679)
41.2 Processing the scan cycle in RUN mode

For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user
program, updates communication modules, and responds to user interrupt events and
communication requests. Communication requests are handled periodically throughout the
scan.

These actions (except for user interrupt events) are serviced regularly and in sequential
order. User interrupt events which are enabled are serviced according to priority in the order
in which they occur.

S7-1200 Programmable controller
72 System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.1 Execution of the user program

The system guarantees that the scan cycle will be completed in a time period called the
maximum cycle time; otherwise a time error event is generated.

® FEach scan cycle begins by retrieving the current values of the digital and analog outputs
from the process image and then writing them to the physical outputs of the CPU, SB,
and SM modules configured for automatic 1/0O update (default configuration). When a
physical output is accessed by an instruction, both the output process image and the
physical output itself are updated.

® The scan cycle continues by reading the current values of the digital and analog inputs
from the CPU, SB, and SMs configured for automatic 1/0 update (default configuration),
and then writing these values to the process image. When a physical input is accessed
by an instruction, the value of the physical input is accessed by the instruction, but the
input process image is not updated.

e After reading the inputs, the user program is executed from the first instruction through
the end instruction. This includes all the program cycle OBs plus all their associated FCs
and FBs. The program cycle OBs are executed in order according to the OB number with
the lowest OB number executing first.

Communications processing occurs periodically throughout the scan, possibly interrupting
user program execution.

Self-diagnostic checks include periodic checks of the system and the I/O module status
checks.

Interrupts can occur during any part of the scan cycle, and are event-driven. When an event
occurs, the CPU interrupts the scan cycle and calls the OB that was configured to process
that event. After the OB finishes processing the event, the CPU resumes execution of the
user program at the point of interruption.

41.3 Organization blocks (OBs)

OBs control the execution of the user program. Each OB must have a unique OB number.
The default OB numbers are reserved below 200. Other OBs must be numbered 200 or
greater.

Specific events in the CPU trigger the execution of an organization block. OBs cannot call
each other or be called from an FC or FB. Only a start event, such as a diagnostic interrupt
or a time interval, can start the execution of an OB. The CPU handles OBs according to their
respective priority classes, with higher priority OBs executed before lower priority OBs. The
lowest priority class is 1 (for the main program cycle), and the highest priority class is 26 (for
the time-error interrupts).

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 73

PLC concepts

4.1 Execution of the user program

74

OBs control the following operations:

Program cycle OBs execute cyclically while the CPU is in RUN mode. The main block of
the program is a program cycle OB. This is where you place the instructions that control
your program and where you call additional user blocks. Multiple program cycle OBs are
allowed and are executed in numerical order. OB 1 is the default. Other program cycle
OBs must be identified as OB 200 or greater.

Startup OBs execute one time when the operating mode of the CPU changes from STOP
to RUN, including powering up in the RUN mode and in commanded STOP-to-RUN
transitions. After completion, the main "Program cycle" OB will begin executing. Multiple
startup OBs are allowed. OB 100 is the default. Others must be OB 200 or greater.

Cyclic interrupt OBs execute at a specified interval. A cyclic interrupt OB will interrupt
cyclic program execution at user defined intervals, such as every 2 seconds. You can
configure up to a total of 4 for both the time-delay and cyclic events at any given time,
with one OB allowed for each configured time-delay and cyclic event. The OB must be
OB 200 or greater.

Hardware interrupt OBs execute when the relevant hardware event occurs, including
rising and falling edges on built-in digital inputs and HSC events. A hardware interrupt OB
will interrupt normal cyclic program execution in reaction to a signal from a hardware
event. You define the events in the properties of the hardware configuration. One OB is
allowed for each configured hardware event. The OB must be OB 200 or greater.

A time error interrupt OB executes when either the maximum cycle time is exceeded or a
time error event occurs. The OB for processing the time error interrupt is OB 80. If
triggered, it executes, interrupting normal cyclic program execution or any other event
OB. The events that trigger the time error interrupt and the reaction of the CPU to those
events are described below:

— Exceeding the maximum cycle time: You configure the maximum cycle time in the
properties of the CPU. If OB 80 does not exist, the reaction of the CPU for exceeding
the maximum time is to change to STOP.

— Time errors: If OB 80 does not exist, the reaction of the CPU is to stay in RUN. Time
errors occur if the time of day event is missed or repeated, the queue overflows, or an
event OB (time delay event, time of day event, or cyclic interrupt) starts before the
CPU finishes the execution of the first.

The occurrence of either of these events generates a diagnostic buffer entry describing
the event. The diagnostic buffer entry is generated regardless of the existence of OB 80.

Diagnostic error interrupt OBs execute when a diagnostic error is detected and reported.
A diagnostic OB interrupts the normal cyclic program execution if a diagnostics-capable
module recognizes an error (if the diagnostic error interrupt has been enabled for the
module). OB 82 is the only OB number supported for the diagnostic error event. You can
include an STP instruction (put CPU in STOP mode) inside your OB 82 if you desire your
CPU to enter STOP mode upon receiving this type of error. If there is no diagnostic OB in
the program, the CPU ignores the error (stays in RUN).

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.1 Execution of the user program

414 Event execution priorities and queuing

The CPU processing is controlled by events. An event triggers an interrupt OB to be
executed. You can specify the interrupt OB for an event during the creation of the block,
during the device configuration, or with an ATTACH or DETACH instruction. Some events
happen on a regular basis like the program cycle or cyclic events. Other events happen only
a single time, like the startup event and time delay events. Some events happen when there
is a change triggered by the hardware, such as an edge event on an input point or a high
speed counter event. There are also events like the diagnostic error and time error event
which only happen when there is an error. The event priorities and queues are used to
determine the processing order for the event interrupt OBs.

The program cycle event happens once during each program cycle (or scan). During the
program cycle, the CPU writes the outputs, reads the inputs and executes program cycle
OBs. The program cycle event is required and is always enabled. You may have no program
cycle OBs, or you may have multiple OBs selected for the program cycle event. After the
program cycle event is triggered, the lowest numbered program cycle OB (usually OB 1) is
executed. The other program cycle OBs are executed sequentially (in numerical order) within
the program cycle.

The cyclic interrupt events allow you to configure the execution of an interrupt OB at a
configured scan time. The initial scan time is configured when the OB is created and
selected to be a cyclic interrupt OB. A cyclic event will interrupt the program cycle and
execute the cyclic interrupt OB (the cyclic event is at a higher priority class than the program
cycle event).

Only one cyclic interrupt OB can be attached to a cyclic event.

Each cyclic event can be assigned a phase shift so that the execution of cyclic interrupts with
the same scan time can be offset from one another by the phase shift amount. The default
phase shift is 0. To change the initial phase shift, or to change the initial scan time for a
cyclic event, right click on the cyclic interrupt OB in the project tree, click "Properties", then
click "Cyclic interrupt", and enter the new initial values. You can also query and change the
scan time and the phase shift from your program using the Query cyclic interrupt
(QRY_CINT) and Set cyclic interrupt (SET_CINT) instructions. Scan time and phase shift
values set by the SET_CINT instruction do not persist through a power cycle or a transition
to STOP mode; scan time and phase shift values will return to the initial values following a
power cycle or a transition to STOP. The CPU supports a total of four cyclic and time-delay
interrupt events.

The startup event happens one time on a STOP to RUN transition and causes the startup
OBs to be executed. Multiple OBs can be selected for the startup event. The startup OBs are
executed in numerical order.

The time delay interrupt events allow you to configure the execution of an interrupt OB after
a specified delay time has expired. The delay time is specified with the SRT_DINT
instruction. The time delay events will interrupt the program cycle to execute the time delay
interrupt OB. Only one time delay interrupt OB can be attached to a time delay event. The
CPU supports four time delay events.

The hardware interrupt events are triggered by a change in the hardware, such as a rising or
falling edge on an input point, or a HSC (High Speed Counter) event. There can be one
interrupt OB selected for each hardware interrupt event. The hardware events are enabled in
Device configuration. The OBs are specified for the event in the Device configuration or with
an ATTACH instruction in the user program. The CPU supports several hardware interrupt
events. The exact events are based on the CPU model and the number of input points.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 75

PLC concepts

4.1 Execution of the user program

The time and diagnostic error interrupt events are triggered when the CPU detects an error.
These events are at a higher priority class that the other interrupt events and can interrupt
the execution of the time delay, cyclic and hardware interrupt events. One interrupt OB can
be specified for each of the time error and diagnostic error interrupt events.

Understanding event execution priorities and queuing

The number of pending (queued) events from a single source is limited, using a different
queue for each event type. Upon reaching the limit of pending events for a given event type,
the next event is lost. Refer to the following section on "Understanding time error events" for
more information regarding queue overflows.

Each CPU event has an associated priority. You cannot change the priority of an OB. In
general, events are serviced in order of priority (highest priority first). Events of the same
priority are serviced on a "first-come, first-served" basis.

Table 4- 2 OB events

Event OB number Quantity allowed Start event OB priority
Program cycle | OB 1, OB 200 to 1 program cycle event e Startup OB ends 1
OB 65535 Multiple OBs allowed e Last program cycle OB ends
Startup OB 100, OB 200 to 1 startup event 1.2 STOP-to-RUN transition 1
OB 65535 Multiple OBs allowed
Time OB 200 to OB 65535 | Up to 4 time events? Time-delay OB event is scheduled
1 OB per event Cyclic OB event is scheduled
Process OB 200 to OB 65535 | Up to 50 process events* Edges:
1 OB per event ¢ Rising edge events: 16 max.
o Falling edge events: 16 max.
For HSC: 6
o CV=PV: 6 max.
o Direction changed: 6 max.
e External reset: 6 max.
S7-1200 Programmable controller
76 System Manual, 04/2012, A5E02486680-06

PLC concepts

4.1 Execution of the user program

Event OB number Quantity allowed Start event OB priority

Diagnostic error | OB 82 1 event (only if OB 82 was Module transmits an error 9
loaded)

Time error OB 80 1 event (only if OB 80 was e Maximum cycle time was 26
loaded)® exceeded

e A second time interrupt (cyclic or
time-delay) started before the
CPU had finished execution of
the first interrupt

1 The startup event and the program cycle event will never occur at the same time because the startup event will run to
completion before the program cycle event will be started (controlled by the operating system).

Only the diagnostic error event (OB 82) interrupts the startup event. All other events are queued to be processed after

the startup event has finished.

The CPU provides a total of 4 time events that are shared by the time-delay OBs and the cyclic OBs. The number of

time-delay and cyclic OBs in your user program cannot exceed 4.

You can have more than 50 process events if you use the DETACH and ATTACH instructions.

You can configure the CPU to stay in RUN if the maximum scan cycle time was exceeded or you can use the

RE_TRIGR instruction to reset the cycle time. However, the CPU goes to STOP mode the second time that the
maximum scan cycle time was exceeded in one scan cycle.

Interrupt latency

After the execution of an OB with a priority of 2 to 25 has started, processing of that OB
cannot be interrupted by the occurrence of another event, except for by OB 80 (time-error
event, which has a priority of 26). All other events are queued for later processing, allowing
the current OB to finish.

The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is
approximately 175 usec, provided that a program cycle OB is the only event service routine
active at the time of the interrupt event.

Understanding time error events

The occurrence of any of several different time error conditions results in a time error event.
The following time errors are supported:

® Maximum cycle time exceeded
® Requested OB cannot be started
® Queue overflow occurred

The maximum cycle time exceeded condition results if the program cycle does not complete
within the specified maximum scan cycle time. See the section on "Monitoring the cycle time
in the S7-1200 System Manual (Page 80) for more information regarding the maximum
cycle time condition, how to configure the maximum scan cycle time, and how to reset the
cycle timer.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 77

PLC concepts

4.1 Execution of the user program

The requested OB cannot be started condition results if an OB is requested by a cyclic
interrupt, a time-delay interrupt, or a time-of-day interrupt, but the requested OB is already
being executed.

The queue overflow occurred condition results if the interrupts are occurring faster than they
can be processed. The number of pending (queued) events is limited using a different queue
for each event type. If an event occurs when the corresponding queue is full, a time error
event is generated.

All time error events trigger the execution of OB 80 if it exists. If an OB 80 is not included in
the user program, then the device configuration of the CPU determines the CPU reaction to
the time error:

® The default configuration for time errors, such as starting a second cyclic interrupt before
the CPU has finished the execution of the first, is for the CPU to stay in RUN.

® The default configuration for exceeding the maximum time is for the CPU to change to
STOP.

You can use the RE_TRIGR instruction to reset the maximum cycle time. However, if two
"maximum cycle time exceeded" conditions occur within the same program cycle without
resetting the cycle timer, then the CPU transitions to STOP, regardless of whether OB 80
exists. See the section on "Monitoring the cycle time in the S7-1200 System Manual'
(Page 80).

OB 80 includes startup information that helps you determine which event and OB generated
the time error. You can program instructions inside OB 80 to examine these startup values
and to take appropriate action.

Table 4- 3 Startup information for OB 80

Input Data type Description

fault_id BYTE 16#01 - maximum cycle time exceeded
16#02 - requested OB cannot be started
16#07 and 16#09 - queue overflow occurred

csg_OBnr OB_ANY Number of the OB which was being executed when the error
occurred
csg_prio UINT Priority of the OB causing the error

No time error interrupt OB 80 is present when you create a new project. If desired, you add a
time error interrupt OB 80 to your project by double-clicking "Add new block" under "Program
blocks" in the tree, then choose "Organization block", and then "Time error interrupt”.

Understanding diagnostic error events

Analog (local), PROFINET, and PROFIBUS devices are capable of detecting and reporting
diagnostic errors. The occurrence or removal of any of several different diagnostic error
conditions results in a diagnostic error event. The following diagnostic errors are supported:

e No user power
® High limit exceeded

® | ow limit exceeded

S7-1200 Programmable controller
78 System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.1 Execution of the user program

o Wire break
® Short circuit

Diagnostic error events trigger the execution of OB 82 if it exists. If OB 82 does not exist,
then the CPU ignores the error. No diagnostic error interrupt OB 82 is present when you
create a new project. If desired, you add a diagnostic error interrupt OB 82 to your project by
double-clicking "Add new block" under "Program blocks" in the tree, then choose
"Organization block", and then "Diagnostic error interrupt".

Note
Diagnostic errors for multi-channel local analog devices (I/O, RTD, and Thermocouple)
The OB 82 diagnostic error interrupt can report only one channel's diagnostic error at a time.

If two channels of a multi-channel device have an error, then the second error only triggers
OB 82 under the following conditions: the first channel error clears, the execution of OB 82
triggered by the first error is complete, and the second error still exists.

OB 82 includes startup information that helps you determine whether the event is due to the
occurrence or removal of an error, and the device and channel which reported the error. You
can program instructions inside OB 82 to examine these startup values and to take
appropriate action.

Table 4- 4 Startup information for OB 82
Input Data type Description
IOstate WORD 10 state of the device:

e Bit 0 = 1 if the configuration is correct, and = 0 if the configuration is
no longer correct.

e Bit4 =1 if an error is present (such as a wire break). (Bit 4 = 0 if
there is no error.)

e Bit 5 =1 if the configuration is not correct, and = 0 if the configuration
is correct again.

e Bit6 =1 if an I/O access error has occurred. Refer to laddr for the
hardware identifier of the 1/0O with the access error. (Bit 6 = 0 if there
is no error.)

laddr HW_ANY Hardware identifier of the device or functional unit that reported the
error?

channel UINT Channel number

multierror BOOL TRUE if more than one error is present

1 The laddr input contains the hardware identifier of the device or functional unit which returned the error. The hardware
identifier is assigned automatically when components are inserted in the device or network view and appears in the
Constants tab of PLC tags. A name is also assigned automatically for the hardware identifier. These entries in the
Constants tab of the PLC tags cannot be changed.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 79

PLC concepts

4.1 Execution of the user program

41.5

80

Monitoring the cycle time

The cycle time is the time that the CPU operating system requires to execute the cyclic
phase of the RUN mode. The CPU provides two methods of monitoring the cycle time:

® Maximum scan cycle time
® Fixed minimum scan cycle time

Scan cycle monitoring begins after the startup event is complete. Configuration for this
feature appears under the "Device Configuration" for the CPU under "Cycle time".

The CPU always monitors the scan cycle and reacts if the maximum scan cycle time is
exceeded. If the configured maximum scan cycle time is exceeded, an error is generated
and is handled one of two ways:

® |[f the user program does not include an OB 80, then the CPU generates an error and
goes to STOP. (You can change the configuration of the CPU to ignore this time error
and stay in RUN. The default configuration is for the CPU to go to STOP.)

® [f the user program includes an OB 80, then the CPU executes OB 80

The RE_TRIGR instruction (Re-trigger cycle time monitoring) allows you to reset the timer
that measures the cycle time. However, this instruction only functions if executed in a
program cycle OB; the RE_TRIGR instruction is ignored if executed in OB 80. If the
maximum scan cycle time is exceeded twice within the same program cycle with no
RE_TRIGR instruction execution between the two, then the CPU transitions to STOP
immediately. The use of repeated executions of the RE_TRIGR instruction can create an
endless loop or a very long scan.

Typically, the scan cycle executes as fast as it can be executed and the next scan cycle
begins as soon as the current one completes. Depending upon the user program and
communication tasks, the time period for a scan cycle can vary from scan to scan. To
eliminate this variation, the CPU supports an optional fixed minimum scan cycle time (also
called fixed scan cycle). When this optional feature is enabled and a fixed minimum scan
cycle time is provided in ms, the CPU will maintain the minimum cycle time within +1 ms for
the completion of each CPU scan.

In the event that the CPU completes the normal scan cycle in less time than the specified
minimum cycle time, the CPU spends the additional time of the scan cycle performing
runtime diagnostics and/or processing communication requests. In this way the CPU always
takes a fixed amount of time to complete a scan cycle.

In the event that the CPU does not complete the scan cycle in the specified minimum cycle
time, the CPU completes the scan normally (including communication processing) and does
not create any system reaction as a result of exceeding the minimum scan time. The
following table defines the ranges and defaults for the cycle time monitoring functions.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

Table 4- 5 Range for the cycle time

4.1 Execution of the user program

Cycle time Range (ms) Default
Maximum scan cycle time! 1 to 6000 150 ms
Fixed minimum scan cycle time? 1 to maximum scan cycle time Disabled

1 The maximum scan cycle time is always enabled. Configure a cycle time between 1 ms to 6000 ms. The default is 150

ms.

2 The fixed minimum scan cycle time is optional, and is disabled by default. If required, configure a cycle time between 1

ms and the maximum scan cycle time.

Configuring the cycle time and communication load

You use the CPU properties in the Device configuration to configure the following

parameters:

® Cycle time: You can enter a maximum scan cycle time. You can also enter a fixed
minimum scan cycle time.

Cycle

Scan cycle monitonng time: | 150 s

|| Enable minimum cycle time for cyclic 083

ms

e Communications load: You can configure a percentage of the time to be dedicated for

communication tasks.

Communication load

Cycle load due to communication: 20 %

For more information about the scan cycle, see ['"Monitoring the cycle time"| (Page 80)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

81

PLC concepts

4.1 Execution of the user program

41.6

CPU memory

Memory management

82

The CPU provides the following memory areas to store the user program, data, and
configuration:

Load memory is non-volatile storage for the user program, data and configuration. When
a project is downloaded to the CPU, it is first stored in the Load memory area. This area
is located either in a memory card (if present) or in the CPU. This non-volatile memory
area is maintained through a power loss. The memory card supports a larger storage
space than that built-in to the CPU.

Work memory is volatile storage for some elements of the user project while executing
the user program. The CPU copies some elements of the project from load memory into
work memory. This volatile area is lost when power is removed, and is restored by the
CPU when power is restored.

Retentive memory is non-volatile storage for a limited quantity of work memory values.
The retentive memory area is used to store the values of selected user memory locations
during power loss. When a power down or power loss occurs, the CPU restores these
retentive values upon power up.

To display the memory usage for the current project, right-click the CPU (or one of its blocks)
and select "Resources" from the context. To display the memory usage for the current CPU,
double-click "Online and diagnostics", expand "Diagnostics", and select "Memory".

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.1 Execution of the user program

Retentive memory

Data loss after power failure can be avoided by marking certain data as retentive. The
following data can be configured to be retentive:

® Bit memory(M): You can define the precise width of the memory for bit memory in the
PLC tag table or in the assignment list. Retentive bit memory always starts at MBO and
runs consecutively up through a specified number of bytes. Specify this value from the
PLC tag table or in the assignment list by clicking the "Retain" toolbar icon. Enter the
number of M bytes to retain starting at MBO.

® Tags of a function block (FB): If an FB was created with "Optimzed" selected, then the
interface editor for this FB includes a "Retain" column. In this column, you can select
either "Retentive", "Non-retentive", or "Set in IDB" individually for each tag. An instance
DB that was created when this FB is placed in the program editor shows this retain
column as well. You can only change the retentive state of a tag from within the instance
DB interface editor if you selected "Set in IDB" (Set in instance data block) in the Retain
selection for the tag in the optimized FB.

If an FB was created with "Standard - compatible with S7-300/400" selected, then the
interface editor for this FB does not include a "Retain" column. An instance DB created
when this FB is inserted in the program editor shows a "Retain" column which is available
for edit. In this case, selecting the "Retain" option for any tag results in all tags being
selected. Similarly, deselecting the option for any tag results in all tags being deselected.
For an FB that was configured to be "Standard - compatible with S7-300/400", you can
change the retentive state from within the instance DB editor, but all tags are set to the
same retentive state together.

After you create the FB, you cannot change the option for "Standard - compatible with
S7-300/400". You can only select this option when you create the FB. To determine
whether an existing FB was configured for "Optimized" or "Standard - compatible with S7-
300/400", right-click the FB in the Project tree, select "Properties”, and then select
"Attributes". The check box "Optimized block access" when selected shows you whether
a block is optimized. Otherwise, it is standard and compatible with S7-300/400 CPUs.

® Tags of a global data block: The behavior of a global DB with regard to retentive state
assignment is similar to that of an FB. Depending on the block access setting you can
define the retentive state either for individual tags or for all tags of a global data block.

— If you select "Optimized" when you create the DB, you can set the retentive state for
each individual tag.

— If you select "Standard - compatible with S7-300/400" when you create the DB, the
retentive-state setting applies to all tags of the DB; either all tags are retentive or no
tag is retentive.

A total of 10240 bytes of data can be retentive. To see how much is available, from the PLC
tag table or the assignment list, click on the "Retain" toolbar icon. Although this is where the
retentive range is specified for M memory, the second row indicates the total remaining
memory available for M and DB combined. Note that for this value to be accurate, you must
compile all data blocks with retentive tags.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 83

PLC concepts

4.1 Execution of the user program

4.1.6.1 System and clock memory

You use the CPU properties to enable bytes for "system memory" and "clock memory". Your
program logic can reference the individual bits of these functions by their tag names.

® You can assign one byte in M memory for system memory. The byte of system memory
provides the following four bits that can be referenced by your user program by the
following tag names:

— First cycle: (Tag name "FirstScan") bit is set to1 for the duration of the first scan after
the startup OB finishes. (After the execution of the first scan, the "first scan" bit is set
to 0.)

— Diagnostics status changed (Tag name: "DiagStatusUpdate") is set to 1 for one scan
after the CPU logs a diagnostic event. Because the CPU does not set the "diagnostic
graph changed" bit until the end of the first execution of the program cycle OBs, your
user program cannot detect if there has been a diagnostic change either during the
execution of the startup OBs or the first execution of the program cycle OBs.

— Always 1 (high): (Tag name "AlwaysTRUE") bit is always set to 1.
— Always 0 (low): (Tag name "AlwaysFALSE") bit is always set to 0.

® You can assign one byte in M memory for clock memory. Each bit of the byte configured
as clock memory generates a square wave pulse. The byte of clock memory provides 8
different frequencies, from 0.5 Hz (slow) to 10 Hz (fast). You can use these bits as control
bits, especially when combined with edge instructions, to trigger actions in the user
program on a cyclic basis.

The CPU initializes these bytes on the transition from STOP mode to STARTUP mode. The
bits of the clock memory change synchronously to the CPU clock throughout the STARTUP
and RUN modes.

A\ cauTion

Overwriting the system memory or clock memory bits can corrupt the data in these
functions and cause your user program to operate incorrectly, which can cause damage to
equipment and injury to personnel.

Because both the clock memory and system memory are unreserved in M memory,
instructions or communications can write to these locations and corrupt the data.

Avoid writing data to these locations to ensure the proper operation of these functions, and
always implement an emergency stop circuit for your process or machine.

S7-1200 Programmable controller
84 System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.1 Execution of the user program

System memory configures a byte with bits that turn on (value = 1) for a specific event.

System memory bits

Address of systermn mermaory
byte (MEx): |1

First cyc
Diagnostics status changed
Slweays 1 (high

Always O (law)

@ Enable the use of systern memary byte

2 |°b|-.|| 0 (FirstScan)

|°b|-.|| | (DiagStatusUpdate)

[26M1.2 (alwaysTRUE)

[26M1.3 (AlwaysFALSE)

Table 4-6 System memory
7 ‘ 6 ‘ 5 ‘ 4 3 2 1 0
Reserved Always off Always on Diagnostic status First scan indicator
Value 0 Value 0 Value 1 indicator e 1: First scan after
e 1:Change startup
¢ 0: No change e 0: Not first scan
Clock memory configures a byte that cycles the individual bits on and off at fixed intervals.
Each clock bit generates a square wave pulse on the corresponding M memory bit. These
bits can be used as control bits, especially when combined with edge instructions, to trigger
actions in the user code on a cyclic basis.
Clock memory bits
@;Enable the use of clock mermary byte
Address of clock memary byte
Ex: |0
10 Hz clack |°6|'.|':' 0 (Clock_10Hz) |
S Hzelock: [2%M0.1 (Clock_5Hz) |
25 Hzclack: [%M0.2 (Clock_2.5Hz) |
2 Hzelock: [2%M0.3 (Clock_2Hz) |
1 25 Hzelock: [2%M0.4 (Clack_1.25Hz |
| Hzclack: [%M0.5 (Clock_1Hz) |
1625 Hz clack: [%M0.6 (Clock_0.625Hz |
0.5 Hz clock: [36M0.7 (Cloc |
Table 4-7 Clock memory
Bit number 7 5 4 3 2 1 0
| Tag name
Period (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1
Frequency (Hz) 0.5 0.625 1 1.25 25 5 10

Because clock memory runs asynchronously to the CPU cycle, the status of the clock memory can change several times

during a long cycle.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

85

PLC concepts

4.1 Execution of the user program

41.7

41.8

86

Diagnostics buffer

The CPU supports a diagnostics buffer which contains an entry for each diagnostic event.
Each entry includes a date and time the event occurred, an event category, and an event
description. The entries are displayed in chronological order with the most recent event at
the top. Up to 50 most recent events are available in this log. When the log is full, a new
event replaces the oldest event in the log. When power is lost, the events are saved.

The following types of events are recorded in the diagnostics buffer:
® Each system diagnostic event; for example, CPU errors and module errors

® Each state change of the CPU (each power up, each transition to STOP, each transition
to RUN)

To access the diagnostics buffer (Page 680), you must be online. From the "Online &
diagnostics" view, locate the diagnostics buffer under "Diagnostics > Diagnostics buffer".

Time of day clock

The CPU supports a time-of-day clock. A super-capacitor supplies the energy required to
keep the clock running during times when the CPU is powered down. The super-capacitor
charges while the CPU has power. After the CPU has been powered up at least 24 hours,
then the super-capacitor has sufficient charge to keep the clock running for typically 20 days.

STEP 7 sets the time-of-day clock to system time, which has a default value out of the box or
following a factory rest. To utilize the time-of-day clock, you must set it. Timestamps such as
those for diagnostic buffer entries, data log files, and data log entries are based on the
system time. You set the time of day from the 'Set time of day" function (Page 678) in the
"Online & diagnostics" view of the online CPU. STEP 7 then calculates the system time from
the time you set plus or minus the Windows operating system offset from UTC (Coordinated
Universal Time). Setting the time of day to the current local time produces a system time of
UTC if your Windows operating system settings for time zone and daylight savings time
correspond to your locale.

STEP 7 includes instructions (Page 249) to read and write the system time (RD_SYS_T and
WR_SYS_T), to read the local time (RD_LOC_T), and to set the time zone
(SET_TIMEZONE). The RD_LOC_T instruction calculates local time using the time zone and
daylight saving time offsets that you set in the "Time of day" configuration in the general
properties of the CPU (Page 123). These settings enable you to set your time zone for local
time, optionally enable daylight saving time, and specify the start and end dates and times
for daylight saving time. You can also use the SET_TIMEZONE instructions to configure
these settings.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.2 Data storage, memory areas, I/O and addressing

419 Configuring the outputs on a RUN-to-STOP transition

You can configure the behavior of the digital and analog outputs when the CPU is in STOP
mode. For any output of a CPU, SB or SM, you can set the outputs to either freeze the value
or use a substitute value:

® Substituting a specified output value (default): You enter a substitute value for each
output (channel) of that CPU, SB, or SM device.

The default substitute value for digital output channels is OFF, and the default substitute
value for analog output channels is 0.

® Freezing the outputs to remain in last state: The outputs retain their current value at the
time of the transition from RUN to STOP. After power up, the outputs are set to the
default substitute value.

You configure the behavior of the outputs in Device Configuration. Select the individual
devices and use the "Properties" tab to configure the outputs for each device.

When the CPU changes from RUN to STOP, the CPU retains the process image and writes
the appropriate values for both the digital and analog outputs, based upon the configuration.

4.2 Data storage, memory areas, 1/0 and addressing

421 Accessing the data of the S7-1200

STEP 7 facilitates symbolic programming. You create symbolic names or "tags" for the
addresses of the data, whether as PLC tags relating to memory addresses and I/O points or
as local variables used within a code block. To use these tags in your user program, simply
enter the tag name for the instruction parameter.

For a better understanding of how the CPU structures and addresses the memory areas, the
following paragraphs explain the "absolute" addressing that is referenced by the PLC tags.
The CPU provides several options for storing data during the execution of the user program:

® Global memory: The CPU provides a variety of specialized memory areas, including
inputs (1), outputs (Q) and bit memory (M). This memory is accessible by all code blocks
without restriction

® PLC tag table: You can enter symbolic names in the STEP 7 PLC tag table for specific
memory locations. These tags are global to the STEP 7 program and allow programming
with names that are meaningful for your application.

e Data block (DB): You can include DBs in your user program to store data for the code
blocks. The data stored persists when the execution of the associated code block comes
to an end. A "global" DB stores data that can be used by all code blocks, while an
instance DB stores data for a specific FB and is structured by the parameters for the FB.

® Temp memory: Whenever a code block is called, the operating system of the CPU
allocates the temporary, or local, memory (L) to be used during the execution of the
block. When the execution of the code block finishes, the CPU reallocates the local
memory for the execution of other code blocks.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 87

PLC concepts

4.2 Data storage, memory areas, I/O and addressing

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. References to the input (I) or
output (Q) memory areas, such as 10.3 or Q1.7, access the process image. To immediately
access the physical input or output, append the reference with ":P" (such as 10.3:P, Q1.7:P,

or "Stop:P").

Table 4- 8 Memory areas
Memory area Description Force Retentive
| Copied from physical inputs at the beginning of the scan No No
Process image input cycle
P Immediate read of the physical input points on the CPU, Yes No
(Physical input) SB, and SM
Q Copied to physical outputs at the beginning of the scan No No
Process image output cycle
Q_P? Immediate write to the physical output points on the Yes No
(Physical output) CPU, SB, and SM
M Control and data memory No Yes
Bit memory (optional)
L Temporary data for a block local to that block No No
Temp memory
DB Data memory and also parameter memory for FBs No Yes
Data block (optional)

T To immediately access (read or write) the physical inputs and physical outputs, append a ":P" to the address or tag
(such as 10.3:P, Q1.7:P, or "Stop:P").

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. The absolute address consists
of the following elements:

® Memory area identifier (such as I, Q, or M)
e Size of the data to be accessed ("B' for Byte, "W" for Word, or "D" for DWord)
e Starting address of the data (such as byte 3 or word 3)

When accessing a bit in the address for a Boolean value, you do not enter a mnemonic for
the size. You enter only the memory area, the byte location, and the bit location for the data
(such as 10.0, Q0.1, or M3.4).

88

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

PLC concepts
4.2 Data storage, memory areas, I/O and addressing

M3 .4
® © 0
0
1
2
3@
4
5
7 6 5 4 3 2 1 0
®
A Memory area identifier E Bytes of the memory area
B Byte address: byte 3 F Bits of the selected byte
C Separator ("byte.bit")

D Bit location of the byte (bit 4 of 8)

In the example, the memory area and byte address (M = bit memory area, and 3 = Byte 3)

are followed by a period (".") to separate the bit address (bit 4).

Accessing the data in the memory areas of the CPU

STEP 7 facilitates symbolic programming. Typically, tags are created either in PLC tags, a
data block, or in the interface at the top of an OB, FC, or FB. These tags include a name,
data type, offset, and comment. Additionally, in a data block, a start value can be specified.
You can use these tags when programming by entering the tag name at the instruction
parameter. Optionally you can enter the absolute operand (memory area, size and offset) at
the instruction parameter. The examples in the following sections show how to enter
absolute operands. The % character is inserted automatically in front of the absolute
operand by the program editor. You can toggle the view in the program editor to one of
these: symbolic, symbolic and absolute, or absolute.

| (process image input): The CPU samples the peripheral (physical) input points just prior to
the cyclic OB execution of each scan cycle and writes these values to the input process
image. You can access the input process image as bits, bytes, words, or double words. Both
read and write access is permitted, but typically, process image inputs are only read.

Table 4-9 Absolute addressing for | memory

Bit I[byte address].[bit address] 10.1
Byte, Word, or Double Word I[size][starting byte address] 1B4, IW5, or ID12

By appending a ":P" to the address, you can immediately read the digital and analog inputs
of the CPU, SB or SM. The difference between an access using I_:P instead of | is that the
data comes directly from the points being accessed rather than from the input process
image. This |_:P access is referred to as an "immediate read" access because the data is
retrieved immediately from the source instead of from a copy that was made the last time the
input process image was updated.

Because the physical input points receive their values directly from the field devices
connected to these points, writing to these points is prohibited. That is, |_:P accesses are
read-only, as opposed to | accesses which can be read or write.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 89

PLC concepts

4.2 Data storage, memory areas, I/O and addressing

90

I_:P accesses are also restricted to the size of inputs supported by a single CPU, SB, or SM,
rounded up to the nearest byte. For example, if the inputs of a 2 DI / 2 DQ SB are configured
to start at 14.0, then the input points can be accessed as 14.0:P and 14.1:P or as 1B4:P.
Accesses to 14.2:P through 14.7:P are not rejected, but make no sense since these points are
not used. Accesses to IW4:P and ID4:P are prohibited since they exceed the byte offset
associated with the SB.

Accesses using I_:P do not affect the corresponding value stored in the input process image.

Table 4- 10 Absolute addressing for | memory (immediate)

Bit I[byte address].[bit address]:P 10.1:P
Byte, Word, or Double word I[size][starting byte address]:P IB4:P, IW5:P, or ID12:P

Q (process image output): The CPU copies the values stored in the output process image to
the physical output points. You can access the output process image in bits, bytes, words, or
double words. Both read and write access is permitted for process image outputs.

Table 4- 11 Absolute addressing for Q memory

Bit Q[byte address].[bit address] Q1.1
Byte, Word, or Double word Q[size][starting byte address] QB5, QW10, QD40

By appending a ":P" to the address, you can immediately write to the physical digital and
analog outputs of the CPU, SB or SM. The difference between an access using Q_:P instead
of Q is that the data goes directly to the points being accessed in addition to the output
process image (writes to both places). This Q_:P access is sometimes referred to as an
"immediate write" access because the data is sent immediately to the target point; the target
point does not have to wait for the next update from the output process image.

Because the physical output points directly control field devices that are connected to these
points, reading from these points is prohibited. That is, Q_:P accesses are write-only, as
opposed to Q accesses which can be read or write.

Q_:P accesses are also restricted to the size of outputs supported by a single CPU, SB, or
SM, rounded up to the nearest byte. For example, if the outputs of a 2 DI/ 2 DQ SB are
configured to start at Q4.0, then the output points can be accessed as Q4.0:P and Q4.1:P or
as QB4:P. Accesses to Q4.2:P through Q4.7:P are not rejected, but make no sense since
these points are not used. Accesses to QW4:P and QD4:P are prohibited since they exceed
the byte offset associated with the SB.

Accesses using Q_:P affect both the physical output as well as the corresponding value
stored in the output process image.

Table 4- 12 Absolute addressing for Q memory (immediate)

Bit Q[byte address].[bit address]:P Q1.1:P
Byte, Word, or Double word Q[size][starting byte address]:P QB5:P, QW10:P or QD40:P

M (bit memory area): Use the bit memory area (M memory) for both control relays and data
to store the intermediate status of an operation or other control information. You can access
the bit memory area in bits, bytes, words, or double words. Both read and write access is
permitted for M memory.

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.2 Data storage, memory areas, I/O and addressing

Table 4- 13 Absolute addressing for M memory

Bit M[byte address].[bit address] M26.7
Byte, Word, or Double Word M[size][starting byte address] MB20, MW30, MD50

Temp (temporary memory): The CPU allocates the temp memory on an as-needed basis.
The CPU allocates the temp memory for the code block at the time when the code block is
started (for an OB) or is called (for an FC or FB). The allocation of temp memory for a code
block might reuse the same temp memory locations previously used by a different OB, FC or
FB. The CPU does not initialize the temp memory at the time of allocation and therefore the
temp memory might contain any value.

Temp memory is similar to M memory with one major exception: M memory has a "global"
scope, and temp memory has a "local" scope:

e M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data
is available globally for all of the elements of the user program.

® Temp memory: Access to the data in temp memory is restricted to the OB, FC, or FB that
created or declared the temp memory location. Temp memory locations remain local and
are not shared by different code blocks, even when the code block calls another code
block. For example: When an OB calls an FC, the FC cannot access the temp memory of
the OB that called it.

The CPU provides temp (local) memory for each of the three OB priority groups:
® 16 Kbytes for startup and program cycle, including associated FBs and FCs
e 4 Kbytes for standard interrupt events including FBs and FCs

e 4 Kbytes for error interrupt events including FBs and FCs

You access temp memory by symbolic addressing only.

DB (data block): Use the DB memory for storing various types of data, including intermediate
status of an operation or other control information parameters for FBs, and data structures
required for many instructions such as timers and counters. You can access data block
memory in bits, bytes, words, or double words. Both read and write access is permitted for
read/write data blocks. Only read access is permitted for read-only data blocks.

Table 4- 14 Absolute addressing for DB memory

Bit DB[data block number].DBX[byte DB1.DBX2.3
address].[bit address]

Byte, Word, or Double DB[data block number].DB [size][starting | DB1.DBB4, DB10.DBW2,
Word byte address] DB20.DBD8

Note

When you specify an absolute address, STEP 7 precedes this address with a "%" character
to indicate that it is an absolute address. While programming, you can enter an absolute
address either with or without the "%" character (for example %10.0 or 1.0). If omitted,

STEP 7 supplies the "%" character.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 91

PLC concepts

4.3 Processing of analog values

Configuring the I/0 in the CPU and I/O modules

4.3

92

» j When you add a CPU and I/O modules to your
configuration screen, | and Q addresses are
automatically assigned. You can change the
default addressing by selecting the address field in
the configuration screen and typing new numbers.

o Digital inputs and outputs are assigned in
groups of 8 points (1 byte), whether the module
uses all the points or not.

¢ Analog inputs and outputs are assigned in

Device ovondew

ol st ingdress] Qudsin Type ordat groups of 2 points (4 bytes).
103
102
E5485.1 m M 1291 [RS485) GEST
= P 1 CPU N 2140 DODD . BEST
oi4mono 1.3 Q.1 Q.1 [y Elale]
A2 12 6467 A2
A nbSbl M el Doprd
HEL 1 198 1000 High speed count
HSC2 177 High speed county
M5C 3 1.18 High spead courtt
HSC % 139 High spead tountl
HSLS 1.20 High speed count
HSC_ B 1 High speed count
Pulse_1 132 Pulsa gonorator (P
Putee 2 133 Putia genarstor (P
¥ FROFINET L. X0 FROFINET interface
DIB x 24VDC. 2 8 SM 1221 D8 x 2%, BEST

The figure shows an example of a CPU 1214C with two SMs and one SB. In this example,
you could change the address of the DI8 module to 2 instead of 8. The tool will assist you by
changing address ranges that are the wrong size or conflict with other addresses.

Processing of analog values

Analog signal modules provide input signals or expect output values that represent either a
voltage range or a current range. These ranges are 10V, £5V, £2.5V, or 0 - 20mA. The
values returned by the modules are integer values where 0 to 27648 represents the rated
range for current, and -27648 to 27648 for voltage. Anything outside the range represents
either an overflow or underflow. See the tables for analog input representation (Page 770)
and analog output representation (Page 771) for details.

In your control program, you probably need to use these values in engineering units, for
example to represent a volume, temperature, weight or other quantitative value. To do this
for an analog input, you must first normalize the analog value to a real (floating point) value
from 0.0 to 1.0. Then you must scale it to the minimum and maximum values of the
engineering units that it represents. For values that are in engineering units that you need to
convert to an analog output value, you first normalize the value in engineering units to a
value between 0.0 and 1.0, and then scale it between 0 and 27648 or -27648 to 27648,
depending on the range of the analog module. STEP 7 provides the NORM_X and SCALE_X
instructions (Page 219) for this purpose. You can also use the CALCULATE instruction
(Page 198) to scale the analog values (Page 33).

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.4 Data types

44 Data types

Data types are used to specify both the size of a data element as well as how the data are to
be interpreted. Each instruction parameter supports at least one data type, and some
parameters support multiple data types. Hold the cursor over the parameter field of an
instruction to see which data types are supported for a given parameter.

A formal parameter is the identifier on an instruction that marks the location of data to be
used by that instruction (example: the IN1 input of an ADD instruction). An actual parameter
is the memory location (preceded by a "%" character) or constant containing the data to be
used by the instruction (example %MD400 "Number_of_Widgets"). The data type of the
actual parameter specified by you must match one of the supported data types of the formal
parameter specified by the instruction.

When specifying an actual parameter, you must specify either a tag (symbol) or an absolute
(direct) memory address. Tags associate a symbolic name (tag name) with a data type,
memory area, memory offset, and comment, and can be created either in the PLC tags
editor or in the Interface editor for a block (OB, FC, FB and DB). If you enter an absolute
address that has no associated tag, you must use an appropriate size that matches a
supported data type, and a default tag will be created upon entry.

All data types except String are available in the PLC tags editor and the block Interface
editors. String is available only in the block Interface editors. You can also enter a constant
value for many of the input parameters.

e Bit and Bit sequences (Page 94): Bool (Boolean or bit value), Byte (8-bit byte value),
Word (16-bit value), DWord (32-bit double-word value)

® |Integer (Page 95)
— USInt (unsigned 8-bit integer), Sint (signed 8-bit integer),
— Ulnt (unsigned 16-bit integer), Int (signed 16-bit integer)
— UDInt (unsigned 32-bit integer), DInt (signed 32-bit integer)

® Floating-point Real (Page 95): Real (32-bit Real or floating-point value), LReal (64-bit
Real or floating-point value)

e Time and Date (Page 96): Time (32-bit IEC time value), Date (16-bit date value), TOD
(32-bit time-off-day value), DT (64-bit date-and-time value)

e (Character and String (Page 97): Char (8-bit single character), String (variable-length
string of up to 254 characters)

e Array (Page 99)

e Data structure (Page 100): Struct

e PLC Data type (Page 100)

® Pointers (Page 101): Pointer, Any, Variant

Although not available as data types, the following BCD numeric format is supported by the
conversion instructions.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 93

PLC concepts

4.4 Data types

441

Table 4- 15 Size and range of the BCD format

Format | Size (bits) | Numeric Range Constant Entry Examples
BCD16 |16 -999 to 999 123, -123
BCD32 |32 -9999999 to 9999999 1234567, -1234567

Bool, Byte, Word, and DWord data types

Table 4- 16 Bit and bit sequence data types

Data Bit Number Number Constant Address
type size type range examples examples
Bool 1 Boolean FALSE or TRUE TRUE, 1, 11.0
Binary 0or1 0, 240 Q0.1
M50.7
Octal 8#0 or 8#1 8#1 DB1.DBX2.3
Hexadecimal 16#0 or 16#1 16#1 Tag_name
Byte 8 Binary 2#0 to 2#11111111 2#00001111 IB2
Unsigned integer | 0 to 255 15 MB10
DB1.DBB4
Octal 8#0 to 8#377 8#17 Tag_name
Hexadecimal B#16#0 to B#16#FF B#16#F, 16#F
Word 16 Binary 2#0 to 2#1111111111111111 2#1111000011110000 MW10
Unsigned integer | 0 to 65535 61680 DB1.DBW2
Tag_name
Octal 8#0 to 8#177777 8#170360
Hexadecimal W#16#0 to W#16#FFFF, W#16#FOFO0, 16#FOF0
16#0 to 16#FFFF
DWord 32 Binary 2#0 to 2#111100001111111100 | MD10
2#111111111111111111111111 | 001111 DB1.DBD8
11111111 Tag_name
Unsigned integer | 0 to 4294967295 15793935
Octal 8#0 to 8#37777777777 8#74177417
Hexadecimal DW#16#0000_0000 to DW#16#FOFFOF,
DW#16#FFFF_FFFF, 16#FOFFOF
16#0000_0000 to
16#FFFF_FFFF
S7-1200 Programmable controller
94 System Manual, 04/2012, A5E02486680-06

PLC concepts

4.4 Data types
442 Integer data types
Table 4- 17 Integer data types (U = unsigned, S = short, D= double)
Data type Bit size Number Range Constant examples Address
examples
USint 8 0 to 255 78, 2#01001110 MBO, DB1.DBB4,
Sint 8 -128 to 127 +50, 16#50 Tag_name
Ulnt 16 0 to 65,535 65295, 0 MW?2, DB1.DBW2,
Int 16 -32,768 to 32,767 30000, +30000 Tag_name
UDInt 32 0to 4,294,967,295 | 4042322160 MD6, DB1.DBDS,
Dint 32 -2,147,483,648 to -2131754992 Tag_name
2,147,483,647
443 Floating-point real data types

Real (or floating-point) numbers are represented as 32-bit single-precision numbers (Real),
or 64-bit double-precision numbers (LReal) as described in the ANSI/IEEE 754-1985
standard. Single-precision floating-point numbers are accurate up to 6 significant digits and
double-precision floating point numbers are accurate up to 15 significant digits. You can
specify a maximum of 6 significant digits (Real) or 15 (LReal) when entering a floating-point

constant to maintain precision.

Table 4- 18 Floating-point real data types (L=Long)

-2.2250738585072014e-308,
*0,
+2.2250738585072014e-308 to
+1.7976931348623158e+308

Data type | Bit size | Number range Constant Examples Address examples
Real 32 -3.402823e+38 to -1.175 495e-38, 123.456, -3.4, 1.0e-5 MD100, DB1.DBDS,
10, Tag_name
+1.175 495e-38 to +3.402823e+38
LReal 64 -1.7976931348623158e+308 to 12345.123456789¢e40, DB_name.var_name

1.2E+40

Rules:
e No direct addressing
support

e Can be assigned in an
OB, FB, or FC block
interface table

Calculations that involve a long series of values including very large and very small numbers
can produce inaccurate results. This can occur if the numbers differ by 10 to the power of x,
where x > 6 (Real), or 15 (LReal). For example (Real): 100 000 000 + 1 = 100 000 000.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

95

PLC concepts

4.4 Data types

444 Time and Date data types

Table 4- 19 Time and date data types

Data type Size Range Constant Entry Examples
Time 32 bits | T#-24d_20h_31m_23s_648ms to T#5m_30s
T#24d_20h_31m_23s_647ms T#1d_2h_15m_30s_45ms
Stored as: -2,147,483,648 ms to +2,147,483,647 | 1IME#10d20h30m20s630ms
ms 500h10000ms
10d20h30m20s630ms
Date 16 bits | D#1990-1-1 to D#2168-12-31 D#2009-12-31
DATE#2009-12-31
2009-12-31
Time_of_Day 32 bits | TOD#0:0:0.0 to TOD#23:59:59.999 TOD#10:20:30.400
TIME_OF_DAY#10:20:30.400
23:10:1
DTL 12 bytes | Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-20:30:20.250
(Date and Time Max.: DTL#2554-12-31-23:59:59.999 999 999
Long)
Time

TIME data is stored as a signed double integer interpreted as milliseconds. The editor format
can use information for day (d), hours (h), minutes (m), seconds (s) and milliseconds (ms).

It is not necessary to specify all units of time. For example T#5h10s and 500h are valid.

The combined value of all specified unit values cannot exceed the upper or lower limits in
milliseconds for the Time data type (-2,147,483,648 ms to +2,147,483,647 ms).

Date
DATE data is stored as an unsigned integer value which is interpreted as the number of days
added to the base date 01/01/1990, to obtain the specified date. The editor format must
specify a year, month and day.

TOD

TOD (TIME_OF_DAY) data is stored as an unsigned double integer which is interpreted as
the number of milliseconds since midnight for the specified time of day (Midnight = 0 ms).
The hour (24hr/day), minute, and second must be specified. The fractional second
specification is optional.

S7-1200 Programmable controller
96 System Manual, 04/2012, A5E02486680-06

PLC concepts

4.4 Data types

DTL

DTL (Date and Time Long) data type uses a12 byte structure that saves information on date
and time. You can define DTL data in either the Temp memory of a block or in a DB. A value
for all components must be entered in the "Start value" column of the DB editor.

Table 4- 20 Size and range for DTL

Length Format Value range Example of value input

(bytes)

12 Clock and calendar Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-20:30:20.250
Year-Month-Day:Hour:Minute: Max.: DTL#2554-12-31-23:59:59.999
Second.Nanoseconds 999 999

Each component of the DTL contains a different data type and range of values. The data
type of a specified value must match the data type of the corresponding components.

Table 4- 21 Elements of the DTL structure

Byte Component Data type Value range

0 Year UINT 1970 to 2554

1

2 Month USINT 1t0 12

3 Day USINT 1to 31

4 Weekday ! USINT 1(Sunday) to 7(Saturday) *
5 Hour USINT 0to 23

6 Minute USINT 0 to 59

7 Second USINT 0to 59

8 Nanoseconds UDINT 0 to 999 999 999
9

10

11

1 The weekday is not considered in the value entry.

445 Character and String data types

Table 4- 22 Character and String data types

Data type Size Range Constant Entry Examples
Char 8 bits ASCII character codes: 16#00 to 16#FF ALY '@
String n+ 2 bytes | n = (0 to 254 character bytes) 'ABC'

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 97

PLC concepts

4.4 Data types

Char

String

Char data occupies one byte in memory and stores a single character coded in ASCII
format. The editor syntax uses a single quote character before and after the ASCII character.
Visible characters and control characters can be used. A table of valid control characters is
shown in the description of the String data type.

The CPU supports the String data type for storing a sequence of single-byte characters. The
String data type contains a total character count (number of characters in the string) and the
current character count. The String type provides up to 256 bytes for storing the maximum
total character count (1 byte), the current character count (1 byte), and up to 254 characters,
with each character stored in 1 byte.

You can use literal strings (constants) for instruction parameters of type IN using single
quotes. For example, ‘ABC’ is a three-character string that could be used as input for
parameter IN of the S_CONV instruction. You can also create string variables by selecting
data type "String" in the block interface editors for OB, FC, FB, and DB. You cannot create a
string in the PLC tags editor.

You can specify the maximum string size in bytes by entering square brackets after the
keyword "String" (once the data type "String" is selected from a data type drop-list). For
example, "MyString String[10]" would specify a 10-byte maximum size for MyString. If you do
not include the square brackets with a maximum size, then 254 is assumed.

The following example defines a String with maximum character count of 10 and current
character count of 3. This means the String currently contains 3 one-byte characters, but
could be expanded to contain up to 10 one-byte characters.

Table 4- 23 Example of a String data type

Total Character Current Character Character 1 Character 2 Character 3 Character 10
Count Count
10 3 'C' (16#43) ‘A’ (16#41) T' (16#54) -
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 11

ASCII control characters can be used in Char and String data. The following table shows
examples of control character syntax.

Table 4- 24 Valid ASCII control characters

Control characters ASCII Hex value Control function Examples
$L or $I 0A Line feed '$LText', '$0AText'
$N or $n 0A and 0D Line break '$NText', 'S0A$S0DText'
The new line shows two characters in the
string.
$P or $p 1] Form feed '$PText', '$0CText'
$R or $r oD Carriage return (CR) '$RText','$0DText'
$T or $t 09 Tab '$TText', '$09Text'

98

S7-1200 Programmable controller
System Manual, 04/2012, A5SE02486680-06

PLC concepts

4.4 Data types
Control characters ASCII Hex value Control function Examples
24 Dollar sign '100$$', '100$24"
27 Single quote '$'Text$",'$27Text$27'

4.4.6

Arrays

Array data type

You can create an array that contains multiple elements of the same data type. Arrays can
be created in the block interface editors for OB, FC, FB, and DB. You cannot create an array
in the PLC tags editor.

To create an array from the block interface editor, name the array and choose data type
"Array [lo .. hi] of type", then edit "I0", "hi", and "type" as follows:

® |0 - the starting (lowest) index for your array
® hi - the ending (highest) index for your array
® type - one of the data types, such as BOOL, SINT, UDINT

Table 4-25 ARRAY data type rules

Data Type

Array syntax

ARRAY

Name [index1_min..index1_max, index2_min..index2_max] of <data type>

e All array elements must be the same data type.

e The index can be negative, but the lower limit must be less than or equal to the upper limit.
¢ Arrays can have one to six dimensions.

¢ Multi-dimensional index min..max declarations are separated by comma characters.

e Nested arrays, or arrays of arrays, are not allowed.

¢ The memory size of an array = (size of one element * total number of elements in array)

Array index Valid index data types Array index rules
Constant or USInt, Sint, Ulnt, Int, UDInt, e Value limits: -32768 to +32767
variable Dint

e Valid: Mixed constants and variables
e Valid: Constant expressions
e Not valid: Variable expressions

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 99

PLC concepts

4.4 Data types

447

448

100

Example: array ARRAYT[1..20] of REAL One dimension, 20 elements
declarations ARRAY([-5..5] of INT One dimension, 11 elements
ARRAYT1..2, 3..4] of CHAR Two dimensions, 4 elements
Example: array ARRAY1[0] ARRAY1 element 0
addresses ARRAY2[1,2] ARRAY?2 element [1,2]
ARRAY 3[i,j] Ifi =3 and j=4, then ARRAY3 element

[3, 4] is addressed

Data structure data type

You can use the data type "Struct" to define a structure of data consisting of other data
types. The struct data type can be used to handle a group of related process data as a single
data unit. A Struct data type is named and the internal data structure declared in the data
block editor or a block interface editor.

Arrays and structures can also be assembled into a larger structure. A structure can be
nested up to eight levels deep. For example, you can create a structure of structures that
contain arrays.

A Struct variable begins at an even-byte address and uses the memory to the next word
boundary.

PLC data type

The PLC data type editor lets you define data structures that you can use multiple times in
your program. You create a PLC data type by opening the "PLC data types" branch of the
project tree and double-clicking the "Add new data type" item. On the newly created PLC
data type item, use two single-clicks to rename the default name and double-click to open
the PLC data type editor.

You create a custom PLC data type structure using the same editing methods that are used
in the data block editor. Add new rows for any data types that are necessary to create the
data structure that you want.

If a new PLC data type is created, then the new PLC type name will appear in the data type
selector drop drop-lists in the DB editor and code block interface editor.

Potential uses of PLC data types:

e PLC data types can be used directly as a data type in a code block interface or in data
blocks.

e PLC data types can be used as a template for the creation of multiple global data blocks
that use the same data structure.

For example, a PLC data type could be a recipe for mixing colors. You can then assign this
PLC data type to multiple data blocks. Each data block can then have the variables adjusted
to create a specific color.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

PLC concepts

4.4 Data types
449 Pointer data types
The pointer data types (Pointer, Any, and Variant) can be used in the block interface tables
for FB and FC code blocks. You can select a pointer data type from the block interface data
type drop-lists.
The Variant data type is also used for instruction parameters.
4491 "Pointer" pointer data type

The data type Pointer points to a particular variable. It occupies 6 bytes (48 bits) in memory
and can include the following information:

® DB number or 0 if the data is not stored in a DB
e Storage area in the CPU

® Variable address

Pointer format

Bit Bit
15 .. 8 7. .0
Byte 2 Memory area o|loflofo|[o|b|b|b|Byte3
Byte 4 b|b|b|b|b|b|b|b b|b|b|b|b|x|x|x]Bytes
~ N

b = byte address X = bit address

Depending on the instruction, you can declare the following three types of pointers:

® Area-internal pointer: contains data on the address of a variable

® Area-crossing pointer: contains data on the memory area and the address of a variable

® DB-pointer: contains a data block number and the address of a variable

Table 4- 26 Pointer types:

Type Format Example entry
Area-internal pointer P#Byte.Bit P#20.0
Area-crossing pointer P#Memory_area_Byte.Bit P#M20.0

DB-pointer

P#Data_block.Data_element

P#DB10.DBX20.0

You can enter a parameter of type Pointer without the prefix (P #). Your entry will be
automatically converted to the pointer format.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 101

PLC concepts

4.4 Data types

4492

102

Table 4- 27 Memory area encoding in the Pointer data:

Hexadecimal code Data type Description

b#16#81 | Input memory area
b#16#82 Q Output memory area
b#16#83 M Marker memory area
b#16#84 DBX Data block

b#16#85 DIX Instance data block
b#16#86 L Local data

b#16#87 V Previous local data

"Any" pointer data type

The pointer data type ANY ("Any") points to the beginning of a data area and specifies its
length. The ANY pointer uses 10 bytes in memory and can include the following information:

e Data type: Data type of the data elements

® Repeat factor: Number of data elements

e DB Number: Data block in which data elements are stored

® Storage area: Memory area of the CPU, in which the data elements are stored
e Start address: "Byte.Bit" starting address of the data

The following image shows the structure of the ANY pointer:

Bit Bit

158 7. ..0
Byte 0 Data type Byte 1
Byte 2 Repeat factor Byte 3
Byte 4 Byte 5
Byte 6 Memory area olojlololo|b|b|b| Byte7?
Byte 8 b| b| b| b| b| b| b|b bl b[b|b|b|x]|x]|x| Byte9

~ "

b = Byte adress x = Bit adress

A pointer can not detect ANY structures. It can only be assigned to local variables.

Table 4-28 Format and examples of the ANY pointer:

Format Entry example Description
P#Data_block.Memory_area P#DB 11.DBX 20.0 INT 10 10 words in global DB 11
Data_address Type Number starting from DBB 20.0
P#Memory_area Data_address | P#M 20.0 BYTE 10 10 bytes starting from MB 20.0
Type Number P#1 1.0 BOOL 1 Input 11.0

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

PLC concepts

Table 4- 29 Data type encoding in the ANY pointer

4.4 Data types

Hexadecimal code Data type Description

b#16#00 Null Null pointer

b#16#01 Bool Bits

b#16#02 Byte Bytes, 8 Bits

b#16#03 Char 8-bit character
b#16#04 Word 16-bit-word

b#16#05 Int 16-bit-integer

b#16#37 Sint 8-bit-integer

b#16#35 Ulnt 16-bit unsigned integer
b#16#34 uUSint 8-bit unsigned integer
b#16#06 DWord 32-bit double word
b#16#07 Dint 32-bit double integer
b#16#36 UDInt 32-bit-unsigned double integer
b#16#08 Real 32-Bit floating point
b#16#0B Time Time

b#16#13 String Character string

Table 4- 30 Memory area encoding in the ANY pointer:

Hexadecimal code Memory area Description

b#16#81 I Input memory area
b#16#82 Q Output memory area
b#16#83 M Marker memory area
b#16#84 DBX Data block

b#16#85 DIX Instance data block
b#16#86 L Local data

b#16#87 \% Previous local data

4493 "Variant" pointer data type
The data type Variant is can point to variables of different data types or parameters. The
Variant pointer can point to structures and individual structural components. The Variant
pointer does not occupy any space in memory.
Table 4- 31 Properties of the Variant pointer
Length Representation Format Example entry
(Byte)
0 Symbolic Operand MyTag
DB_name.Struct_name.element_name MyDB.Struct1.pressure
Absolute Operand %MW10

DB_number.Operand Type Length

P#DB10.DBX10.0 INT 12

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

103

PLC concepts
4.4 Data types

4410 Accessing a "slice" of a tagged data type

PLC tags and data block tags can be accessed at the bit, byte, or word level depending on
their size. The syntax for accessing such a data slice is as follows:

e "<PLC tag name>".xn (bit access)

e "<PLC tag name>".bn (byte access)

e "<PLC tag name>".wn (word access)

e "<Data block name>".<tag name>.xn (bit access)

e "<Data block name>".<tag name>.bn (byte access)
e "<Data block name>".<tag name>.wn (word access)

A double word-sized tag can be accessed by bits 0 - 31, bytes 0 - 3, or word O - 1. A word-
sized tag can be accessed by bits 0 - 15, bytes 0 - 2, or word 0. A byte-sized tag can be
accessed by bits 0 - 8, or byte 0. Bit, byte, and word slices can be used anywhere that bits,
bytes, or words are expected operands.

BYTE

WORD

x31|x30[x29[x28 [x27 [x26 | x25|x24

Note

Valid data types that can be accessed by slice are Byte, Char, Conn_Any, Date, Dint,
DWord, Event_Any, Event_Att, Hw_Any, Hw_Device, HW_Interface, Hw_lo, Hw_Pwm,
Hw_SubModule, Int, OB_Any, OB_Att, OB_Cyclic, OB_Delay, OB_WHINT, OB_PCYCLE,
OB_STARTUP, OB_TIMEERROR, OB_Tod, Port, Rtm, Sint, Time, Time_Of_Day, UDInt,
Ulnt, USInt, and Word. PLC Tags of type Real can be accessed by slice, but data block tags
of type Real cannot.

S7-1200 Programmable controller
104 System Manual, 04/2012, A5E02486680-06

PLC concepts

4.4 Data types
Examples
In the PLC tag table, "DW" is a declared tag of type DWORD. The examples show bit, byte,
and word slice access:
LAD FBD SCL
Bit access S . IF "DW".x11l THEN
"D T T — st
— = 0 END_IF;
Byte access "D b - IF "DW".b2 = "DW".b3
_| __ |_ B;t_e THEN
| Ee "D B2 — INT e
D™ b3 "DW" b3 — N3 END_IF;
Word access AT out:= "DW".w0 AND
AND " " .
Ward wiord DW" .wl h
EM EMC = EM
"D D — M1 auT "D sl 111
"D el N2 2k O™] N2 3k
See also
SCL (Page 156)
4411 Accessing a tag with an AT overlay
The AT tag overlay allows you to access an already-declared tag of a standard access block
with an overlaid declaration of a different data type. You can, for example, address the
individual bits of a tag of a Byte, Word, or DWord data type with an Array of Bool.
Declaration

To overlay a parameter, declare an additional parameter directly after the parameter that is
to be overlaid and select the data type "AT". The editor creates the overlay, and you can
then choose the data type, struct, or array that you wish to use for the overlay.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

105

PLC concepts

4.4 Data types

Example

This example shows the input parameters of a standard-access FB. The byte tag B1 is
overlaid with an array of Booleans:

a il Biyte
- AT AT"B1" Array [0.7] of Bool
L] AT[D] Eool
L] AT[1] Bool
L] AT[2] Eool
L] AT[3] Bool
L] AT[4] Eool
L] AT[S] Bool
L] AT[6] Eool
L] AT[7] Bool
Table 4- 32 Overlay of a byte with a Boolean array
7 6 5 4 3 2 1 0
ATIO] AT[1] AT[2] AT[3] AT[4] AT[5] ATI[6] AT[7]

Another example is a DWord tag overlaid with a Struct:

Dinrl

» DW1_Struct
31
52
53

AT "D "

Divord
Struct
wiord
Byte
Byte

The overlay types can be addressed directly in the program logic:

LAD FBD SCL
Tl . IF #AT[1] THEN
— HAT[1] — e
s | END_IF;
#DW_Struct 51 L IF (#DW1l_Struct.sl =
_ e W#16#000C) THEN
I Wford | #DW_Struct.51 — IN1
WHTeH000C WRTEHODDC M2 END_IF,’
outl := #DW1l_Struct.S2;
BT MCVE
EN ENG -
#OW1_Struct.52 — [N 2 OUTI o= BN 3x OUTI
HDW_Struct.52 — IN ENG -

Rules
e Overlaying of tags is only possible in FB and FC blocks with standard access.
® You can overlay parameters for all block types and all declaration sections.
S7-1200 Programmable controller
106 System Manual, 04/2012, ASE02486680-06

PLC concepts

See also

4.5

4.5 Using a memory card

e An overlaid parameter can be used like any other block parameter.
® You cannot overlay parameters of type VARIANT.

® The size of the overlaying parameter must be less than or equal to the size of the overlaid
parameter.

® The overlaying variable must be declared immediately after the variable that it overlays
and identified with the keyword "AT".

SCL (Page [156)

Using a memory card

NOTICE

The CPU supports only the pre-formatted SIMATIC memory card (Page 826).

Before you copy any program to the formatted memory card, delete any previously saved

program from the memory card.

Use the memory card either as a transfer card or as a program card. Any program that you
copy to the memory card contains all of the code blocks and data blocks, any technology
objects, and the device configuration. A copied program does not contain force values.

® Use a fransfer card (Page 110) to copy a program to the internal load memory of the CPU

without using STEP 7. After you insert the transfer card, the CPU first erases the user
program and any force values from the internal load memory, and then copies the
program from the transfer card to the internal load memory. When the transfer process is
complete, you must remove the transfer card.

You can use an empty transfer card to access a password-protected CPU when the
password has been lost or forgotten (Page 118). Inserting the empty transfer card deletes
the password-protected program in the internal load memory of the CPU. You can then
download a new program to the CPU.

Use a program card (Page 112) as external load memory for the CPU. Inserting a
program card in the CPU erases all of the CPU internal load memory (the user program
and any force values). The CPU then executes the program in external load memory (the
program card). Downloading to a CPU that has a program card updates only the external
load memory (the program card).

Because the internal load memory of the CPU was erased when you inserted the
program card, the program card must remain in the CPU. If you remove the program
card, the CPU goes to STOP mode. (The error LED flashes to indicate that program card
has been removed.)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 107

PLC concepts

4.5 Using a memory card

4.5.1

108

The copied program on a memory card includes the code blocks, the data blocks, the
technology objects, and the device configuration. The memory card does not contain any
force values. The force values are not part of the program, but are stored in the load
memory, whether the internal load memory of the CPU, or the external load memory (a
program card). If a program card is inserted in the CPU, STEP 7 then applies the force
values only to the external load memory on the program card.

You also use a memory card when downloading firmware updates (Page 115).

Inserting a memory card in the CPU

CAUTION

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position.

CAUTION

If you insert a memory card (whether configured as a program or transfer card) into a
running CPU, the CPU goes immediately to STOP mode, which might result in damage to
the equipment or to the process being controlled. Before inserting or removing a memory
card, always ensure that the CPU is not actively controlling a machine or process. Always
install an emergency stop circuit for your application or process.

Note

If you insert a memory card with the CPU in STOP mode, the diagnostic buffer displays a
message that the memory card evaluation has been initiated. The CPU will evaluate the
memory card the next time you either change the CPU to RUN mode, reset the CPU
memory with an MRES, or power-cycle the CPU.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

PLC concepts

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

4.5 Using a memory card

To insert a memory card, open the top
CPU door and insert the memory card in
the slot. A push-push type connector
allows for easy insertion and removal.
The memory card is keyed for proper
installation.

109

PLC concepts

4.5 Using a memory card

45.2

453

Configuring the startup parameter of the CPU before copying the project to the
memory card

When you copy a program to a transfer card or a program card, the program includes the
startup parameter for the CPU. Before copying the program to the memory card, always
ensure that you have configured the operating mode for the CPU following a power-cycle.
Select whether the CPU starts in STOP mode, RUN mode, or in the previous mode (prior to
the power cycle).

Startup

Startup after FOWER OH VWarmn restart- RUN -
o restart (stay in STOF made)
‘Warm restart - RUN

Supported hardware
compatibility

Warm restart - mode pnor to POWER OFF
Fararneater assignment time
for distnbuted 10 | S0000 ms

Transfer card

CAUTION

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the memory card. Store the memory card in a conductive container.

Creating a transfer card

110

Always remember to configure the startup parameter of the CPU (Page 110) before copying
a program to the transfer card. To create a transfer card, follow these steps:

1. Insert a blank SIMATIC memory card into an SD card reader/writer attached to your
computer.

If you are reusing a SIMATIC memory card that contains a user program or a firmware
update, you must delete the program files before reusing the card. Use Windows Explorer
to display the contents of the memory card and delete the "S7_JOB.S7S" file and also
delete any existing "Data Logs" folders and directory folder (such as "SIMATIC.S7S" or
"FWUPDATE.S7S").

2. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select
your card reader.

3. Display the "Memory card" dialog by right-clicking the drive letter corresponding to the
memory card in the card reader and selecting "Properties" from the context menu.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

PLC concepts

4.

4.5 Using a memory card

In the "Memory card" dialog, select "Transfer" from the "Card type" drop-down menu.

At this point, STEP 7 creates the empty transfer card. If you are creating an empty
transfer card, such as to recover from a lost CPU password (Page 118), remove the
transfer card from the card reader.

Miminry card "0

| L
Ll Staraqe msdium

Memory spacs

Free spacs | 5059054 Bytes
Usad space | 5430064 Fytes
write-protected

Card characteristics

Mama 30 cand (3:)

el et —

File systeme | FATAZ
Capaclty | 15550040 Bytwi

Sennlnumber | IMC_FbSol90e00

o cancel

Add the program by selecting the CPU device (such as PLC_1 [CPU 1214 DC/DC/DC]) in
the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

In the "Load preview" dialog, click the "Load" button to copy the CPU device to the
memory card.

When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

Using a transfer card

A WARNING

Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a memory card, always ensure that the CPU is offline and in a safe state.

To transfer the program to a CPU, follow these steps:

1.

Insert the transfer card into the CPU (Page 108). If the CPU is in RUN, the CPU will go to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated.

Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 111

PLC concepts

4.5 Using a memory card

3. After the rebooting and evaluating the memory card, the CPU copies the program to the
internal load memory of the CPU.

The RUN/STOP LED alternately flashes green and yellow to indicate that the program is
being copied. When the RUN/STOP LED turns on (solid yellow) and the MAINT LED
flashes, the copy process has finished. You can then remove the memory card.

4. Reboot the CPU (either by restoring power or by the alternative methods for rebooting) to
evaluate the new program that was transferred to internal load memory.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the project.

Note

You must remove the transfer card before setting the CPU to RUN mode.

454 Program card

CAUTION

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position.

Before you copy any program elements to the program card, delete any
previously saved programs from the memory card.

S7-1200 Programmable controller
112 System Manual, 04/2012, ASE02486680-06

PLC concepts

4.5 Using a memory card

Creating a program card

When used as a program card, the memory card is the external load memory of the CPU. If
you remove the program card, the internal load memory of the CPU is empty.

Note

If you insert a blank memory card into the CPU and perform a memory card evaluation by
either power cycling the CPU, performing a STOP to RUN transition, or performing a
memory reset (MRES), the program and force values in internal load memory of the CPU are
copied to the memory card. (The memory card is now a program card.) After the copy has
been completed, the program in internal load memory of the CPU is then erased. The CPU
then goes to the configured startup mode (RUN or STOP).

Always remember to configure the startup parameter of the CPU (Page 110) before copying
a project to the program card. To create a program card, follow these steps:

1. Insert a blank SIMATIC memory card into an SD card reader/writer attached to your
computer.

If you are reusing a SIMATIC memory card that contains a user program or a firmware
update, you must delete the program files before reusing the card. Use Windows Explorer
to display the contents of the memory card and delete the "S7_JOB.S7S" file and also
delete any existing "Data Logs" folders and any directory folder (such as "SIMATIC.S7S"
or "FWUPDATE.S7S").

2. In the Project tree (Project view), expand the "SIMATIC Card Reader" folder and select
your card reader.

3. Display the "Memory card" dialog by right-clicking the drive letter corresponding to the
memory card in the card reader and selecting "Properties" from the context menu.

4. In the "Memory card" dialog, select "Program" from the drop-down menu.

Memory card =G =
Srorage mediure .
Storage medium
Memary space
Free space: | F5065056 Bytes
Used space: | 8489984 Bytes

Wine-peotecred

Card characteristics

Mo |50 cand (G
el ook —
Fibe system: |FAT3Z b
Capaoey. | S3550040 Bytes

Senal nurnber: | SMC_3bSc038800

O Lancel

5. Add the program by selecting the CPU device (such as PLC_1 [CPU 1214 DC/DC/DC]) in
the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 113

PLC concepts

4.5 Using a memory card

6. In the "Load preview" dialog, click the "Load" button to copy the CPU device to the
memory card.

7. When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

Using a program card as the load memory for your CPU

114

A WARNING

Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a memory card, always ensure that the CPU is offline and in a safe state.

To use a program card with your CPU, follow these steps:

1. Insert the program card into the CPU. If the CPU is in RUN mode, the CPU goes to STOP
mode. The maintenance (MAINT) LED flashes to indicate that the memory card needs to
be evaluated.

2. Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

3. After the CPU reboots and evaluates the program card, the CPU erases the internal load
memory of the CPU.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the CPU.

The program card must remain in the CPU. Removing the program card leaves the CPU with
no program in internal load memory.

A WARNING

If you remove the program card, the CPU loses its external load memory and generates an
error. The CPU goes to STOP mode and flashes the error LED.

Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment. Such unexpected operations could result in death or serious injury to
personnel, and/or damage to equipment.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

PLC concepts
4.5 Using a memory card

45.5 Firmware update

CAUTION

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap
whenever you handle the memory card. Store the memory card in a conductive container.

You use a memory card when downloading firmware updates from customer support
(http://www.siemens.com/automation/). From this Web site, navigate to Automation
Technology > Automation Systems > SIMATIC Industrial Automation Systems > PLC >
Modular controllers SIMATIC S7 > SIMATIC S7-1200. From there continue navigating to the

specific type of module that you need to update. Under "Support", click the link for "Software
Downloads" to proceed.

Alternatively, you can access the S7-1200 downloads Web page
(http://support.automation.siemens.com/\WWW/view/en/34612486/133100) directly.

Note
You cannot update an S7-1200 CPU V2.2 or earlier to S7-1200 V3.0 by firmware update.

CAUTION

Do not use the Windows formatter utility or any other formatting utility to reformat the
memory card.

If a Siemens memory card is reformatted using the Microsoft Windows formatter utility, then
the memory card will no longer be usable by a S7-1200 CPU.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 115

http://www.siemens.com/automation/�
http://support.automation.siemens.com/WW/view/en/34612486/133100�

PLC concepts

4.5 Using a memory card

116

To download the firmware update to your memory card, follow these steps:

1.

Insert a blank SIMATIC MC 24 MB memory card into an SD card reader/writer attached
to your computer.

You can reuse a SIMATIC memory card that contains a user program or another firmware
update, but you must delete some of the files on the memory card.

CAUTION

Do NOT delete the hidden files"__LOG__" and "crdinfo.bin" from the memory card.

The "__LOG__" and "crdinfo.bin" files are required for the memory card. If you delete
these files, you cannot use the memory card with the CPU.

To reuse a memory card, you must delete the "S7_JOB.S7S" file and any existing "Data
Logs" folders or any folder (such as "SIMATIC.S7S" or "FWUPDATE.S7S") before
downloading the firmware update. However, do not delete the files"__ LOG__ " and
"crdinfo.bin". (These files are typically hidden and are required.) Use Windows Explorer to
display the contents of the memory card and to delete the file and folders.

Select the self-extracting file (.exe) for the firmware update that corresponds to your
module, and download it to your computer. Double-click the update file, set the file

destination path to be the root directory of the SIMATIC memory card, and start the
extraction process. After the extraction is complete, the root directory (folder) of the
memory card will contain a "FWUPDATE.S7S" directory and the "S7_JOB.S7S" file.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

PLC concepts

4.5 Using a memory card

To install the firmware update, follow these steps:

A WARNING
Verify that the CPU is not actively running a process before installing the firmware update.

Installing the firmware update will cause the CPU to go to STOP mode, which could affect
the operation of an online process or machine. Unexpected operation of a process or
machine could result in death or injury to personnel and/or property damage.

Before inserting the memory card, always ensure that the CPU is offline and in a safe state.

1. Insert the memory card into the CPU. If the CPU is in RUN mode, the CPU then goes to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated.

2. Power-cycle the CPU to start the firmware update. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

NOTICE

To complete the firmware upgrade for the module, you must ensure that the external 24
VDC power to the module remains on.

After the CPU reboots, the firmware update starts. The RUN/STOP LED alternately
flashes green and yellow to indicate that the update is being copied. When the
RUN/STOP LED turns on (solid yellow) and the MAINT LED flashes, the copy process
has finished. You must then remove the memory card.

3. After removing the memory card, reboot the CPU again (either by restoring power or by
the alternative methods for rebooting) to load the new firmware.

The user program and hardware configuration are not affected by the firmware update.
When the CPU is powered up, the CPU enters the configured start-up state. (If the startup
mode for your CPU was configured to "Warm restart - mode before POWER OFF", the CPU
will be in STOP mode because the last state of the CPU was STOP.)

Note
Updating multiple modules connected to CPU

If your hardware configuration contains multiple modules that correspond to a single
firmware update file on the memory card, the CPU applies the updates to all applicable
modules (CM, SM, SB) in configuration order, that is, by increasing order of the module
position in Device Configuration in STEP 7.

If you have downloaded multiple firmware updates to the memory card for multiple modules,
the CPU applies the updates in the order in which you downloaded them to the memory
card.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 117

PLC concepts

4.6 Recovery from a lost password

4.6 Recovery from a lost password

If you have lost the password for a password-protected CPU, use an empty transfer card to
delete the password-protected program. The empty transfer card erases the internal load
memory of the CPU. You can then download a new user program from STEP 7 to the CPU.

For information about the creation and use of an empty transfer card, see the section of
transfer cards (Page 110).

A WARNING

If you insert a transfer card in a running CPU, the CPU goes to STOP. Control devices can
fail in an unsafe condition, resulting in unexpected operation of controlled equipment. Such

unexpected operations could result in death or serious injury to personnel, and/or damage
to equipment.

You must remove the transfer card before setting the CPU to RUN mode.

S7-1200 Programmable controller

118 System Manual, 04/2012, ASE02486680-06

Device configuration

You create the device configuration for your PLC by adding a CPU and additional modules to
your project.

Communication module (CM) or communication processor (CP): Up to 3, inserted in slots 101,
102, and 103

CPU: Slot 1
Ethernet port of CPU

Signal board (SB), communication board (CB) or battery board (BB): up to 1, inserted in the
CPU

Signal module (SM) for digital or analog I/O: up to 8, inserted in slots 2 through 9
(CPU 1214C and CPU 1215C allow 8, CPU 1212C allows 2, CPU 1211C does not allow any)

® ®0

To create the device configuration,
add a device to your project.

e |n the Portal view, select
"Devices & Networks" and click
"Add new device".

¢ In the Project view, under the
project name, double-click "Add
new device".

Hatworks

@ Add new device

Devices
% O Q@ i g

*] Froject]
ﬁ.ﬂ\dd new device

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 119

Device configuration

5.1 Inserting a CPU

5.1 Inserting a CPU

You create your device configuration by inserting a CPU into your project. Be sure you insert
the correct model and firmware version from the list. Selecting the CPU from the "Add new
device" dialog creates the rack and CPU.

"Add new device" dialog

- I
P L BOE,

“nine . [ILFLTETTTE
arr— W
i

TRAR weaet mmy AVE Ym0 B
v g gy 11+ e nam wed
il ki sl f g Bewed Sty
e T et Sl Bl
et et L g B o e
R s P e ot R e, o T
T S| b W e, D
L. | I o o
eap— 1l RO R
e

Device view of the hardware ProjectPLC_1
Conflgurat'on) :E-' Inpnlil;ml winw Jﬂ }.l:lwu.r.h_yl'ﬁ-w 3]IB'[Device view l Options
[no Y 4 edasr’ 4

7 T
¥ |Catalog
<Searchs.

[Fileer

rgou

+ [Signal board

* [Communicaticns boards

P goi
P meo
b g DTG
» A
v iman
] ¥ Eaag
7 [- i (>80 b gl Commumicancns modules
Selecting the CPU in the Device []
view displays the CPU = .
. R . - FCFINET iroetae themet achdres ses
properties in the inspector e ST
Window_ Bubner | ot newieked I=]
Tirves syvechroneatin [Addnewsdbier |
= On4mo1o
s s s I pranca
* DRJEAl TP & seriFakdress in the prjecot
:i:»::::;;-ll-e- L IPaddress [192 1e6. 0 1
LS i e P B % . Mm% .M. 0
* High pead ooitess (HECH d [T s iF oy
S‘;;l:'““m“'r‘ . a ke
Pl) BatIPatdress iing 4 die e m e
Note

The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU during the device configuration. If your CPU is connected to a router on
the network, you also enter the IP address for a router.

S7-1200 Programmable controller
120 System Manual, 04/2012, A5E02486680-06

Device configuration
5.2 Detecting the configuration for an unspecified CPU

5.2 Detecting the configuration for an unspecified CPU
Oniine e Twan W If you are connected to a CPU, you can upload the
o i configuration of that CPU, including any modules, to your
I sorutacon ¢ project. Simply create a new project and select the "unspecified
. ™ CPU" instead of selecting a specific CPU. (You can also skip
r the device configuration entirely by selecting the "Create a PLC
" iptont e e program" from the "First steps". STEP 7 then automatically
ey SEEE creates an unspecified CPU.)
: From the program editor, you select the "Hardware detection"
G Online 8 dingnastics a0 command from the "Online" menu.

From the device configuration editor, you select the option for detecting the configuration of
the connected device.

.&;f

The device is not spacitied
=4 Please use the 1o specidy the CPU,

- OF the configuration of the connected dewnce

After you select the CPU from the online dialog and click the Load button, STEP 7 uploads
the hardware configuration from the CPU, including any modules (SM, SB, or CM). You can
then configure the parameters for the CPU and the modules.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 121

Device configuration

5.3 Adding modules fo the configuration

5.3 Adding modules to the configuration

Use the hardware catalog to add modules to the CPU:

e Signal module (SM) provides additional digital or analog 1/O points. These modules are
connected to the right side of the CPU.

e Signal board (SB) provides just a few additional 1/0 points for the CPU. The SB is
installed on the front of the CPU.

e Battery Board 1297 (BB) provides long-term backup of the realtime clock. The BB is
installed on the front of the CPU.

e Communication board (CB) provides an additional communication port (such as RS485).
The CB is installed on the front of the CPU.

e Communication module (CM) and communication processor (CP) provide an additional
communication port, such as for PROFIBUS or GPRS. These modules are connected to
the left side of the CPU.

To insert a module into the device configuration, select the module in the hardware catalog

and either double-click or drag the module to the highlighted slot. You must add the modules

to the device configuration and download the hardware configuration to the CPU for the
modules to be functional.
Table 5- 1 Adding a module to the device configuration
Module Select the module Insert the module Result
SM | Catalog -
Search
& Filvec
» ;.cl‘u
¥ :l‘iaglulbonrd
¥ Ll Comnmmicabon: boands
¥ :_lunm:_rboald
--_l.m
- Ll DE2 x 24VDE
[4E57 2211 300080
» [one s zaone
SB, BB or | ~|cataiag
CB |=5eanh
[Filkar
» (g cru
= [Signal bosrd
» g
v[@oo
v:_'-Jnlt-O
o | i et
[6E37 2230B03500B0
2 -éE‘.T 22RIB0HBY
¥ [D002« SuDe
CMor CP | sigoice
)E:Iil
» o
b?'.:-rr-"_‘
- '_l)tomrnum‘:ano.n‘,\. wodules
b LW FRCRIBUS
= [Pomnstopoit
o [H oM 124 B3z
O 1240 (RS
"'. Gl LR (R TS
W 657 e asmn
» [l 45 ietedace
S7-1200 Programmable controller
122 System Manual, 04/2012, ASE02486680-06

Device configuration

5.4

5.4 Configuring the operation of the CPU

Configuring the operation of the CPU

To configure the operational parameters for the CPU, select the CPU in the Device view
(blue outline around whole CPU), and use the "Properties" tab of the inspector window.

To configure input filter times, select "Digital Anepeies . Tats W] A imsameitns

Inputs”. The default filter time for the digital =, 5
inputs is 6.4 ms. tovm e

Each input point has a single filter
configuration that applies to all uses: process o s
inputs, interrupts, pulse catch, and HSC
inputs. s

ol s b Bt cBum

Note

If an HSC is not configured to use a point, the filter setting chosen in this screen applies. If
an HSC is configured to use an input point, the filter setting for that point is automatically set
at 800 ns and is not affected by the configuration on this screen.

A warRNING

If the filter time for a digital input channel is changed from a previous setting, a new "0"
level input value may need to be presented for up to 20.0 ms accumulated duration before
the filter becomes fully responsive to new inputs. During this time, short "0" pulse events of
duration less than 20.0 ms may not be detected or counted.

This changing of filter times can result in unexpected machine or process operation, which
may cause death or serious injury to personnel, and/or damage to equipment.

To ensure that a new filter time goes immediately into effect, a power cycle of the CPU
must be applied.

Table 5- 2 CPU properties

Property Description

PROFINET interface Sets the IP address for the CPU and time synchronization

DI, DO, and Al Configures the behavior of the local (on-board) digital and analog I/O (for example, digital
input filter times and digital output reaction to a CPU stop).

High-speed counters Enables and configures the high-speed counters (HSC) and the pulse generators used for

(Page 337) and pulse pulse-train operations (PTO) and pulse-width modulation (PWM)

generators (Page 311) When you configure the outputs of the CPU or signal board as pulse generators (for use with
the PWM or motion control instructions), the corresponding output addresses (Q0.0, Q0.1,
Q4.0, and Q4.1) are removed from the Q memory and cannot be used for other purposes in
your user program. If your user program writes a value to an output used as a pulse
generator, the CPU does not write that value to the physical output.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 123

Device configuration

5.4 Configuring the operation of the CPU

Property

Description

Startup (Page 69)

Startup after POWER ON: Selects the behavior of the CPU following an off-to-on transition,
such as to start in STOP mode or to go to RUN mode after a warm restart

Supported hardware compatibility: Configures the substitution strategy for all system
components (SM, SB, CM, CP and CPU):

e Allow acceptable substitute

e Allow any substitute (default)

Each module internally contains substitution compatibility requirements based on the
number of 1/O, electrical compatibility, and other corresponding points of comparison. For
example, a 16-channel SM could be an acceptable substitute for an 8-channel SM, but an 8-
channel SM could not be an acceptable substitute for a 16-channel SM. If you select "Allow
acceptable substitute", STEP 7 enforces the substitution rules; otherwise, STEP 7 allows
any substitution.

Parameter assignment time for distributed I/O: Configures a maximum amount of time
(default: 60000 ms) for the distributed 1/0 to be brought online. (The CMs and CPs receive
power and communication parameters from the CPU during startup. This assignment time
allows time for the /O connected to the CM or CP be brought online.)

The CPU goes to RUN as soon as the distributed 1/O is online, regardless of the assignment
time. If the distributed I/O has not been brought online within this time, the CPU still goes to
RUN--without the distributed 1/0.

Note: If your configuration uses a CM 1243-5 (PROFIBUS master), do not set this parameter
below 15 seconds (15000 ms) to ensure that the module to be brought online.

Cycle (Page 80)

Defines a maximum cycle time or a fixed minimum cycle time

Communication load

Allocates a percentage of the CPU time to be dedicated to communication tasks

System and clock memory
(Page 84)

Enables a byte for "system memory" functions and enables a byte for "clock memory"
functions (where each bit toggles on and off at a predefined frequency).

Web server (Page 503)

Enables and configures the Web server feature.

Time of day

Selects the time zone and configures daylight saving time

Protection (Page 164)

Sets the read/write protection and password for accessing the CPU

Connection resources
(Page 424)

Provides a summary of the communication connections that are available for the CPU and
the number of connections that have been configured.

Overview of addresses

Provides a summary of the 1/0 addresses that have been configured for the CPU.

124

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Device configuration
5.5 Configuring the parameters of the modules

5.5 Configuring the parameters of the modules

To configure the operational parameters for the modules, select the module in the Device
view and use the "Properties" tab of the inspector window to configure the parameters for the
module.

Configuring a signal module (SM) or a signal board (SB)

o Propertles. [Milinfa | % Diagnostics

General

Genersl
VD addresses
w Dugeal mputs

rrrrr ' Input addresses

seamaddress: |4
Chanrell

U0 addresses

Hardwars idernifier

Dutput addresses

Stam sddresa; |4

e Digital I/O: Inputs can be configured for rising-edge detection or falling-edge detection
(associating each with an event and hardware interrupt) and also for "pulse catch" (to
stay on after a momentary pulse) through the next update of the input process image.
Outputs can use a freeze or substitute value.

® Analog I/O: For individual inputs, configure parameters, such as measurement type
(voltage or current), range and smoothing, and to enable underflow or overflow
diagnostics. Analog outputs provide parameters such as output type (voltage or current)
and for diagnostics, such as short-circuit (for voltage outputs) or upper/lower limit
diagnostics. You do not configure ranges of analog inputs and outputs in engineering
units on the Properties dialog. You must handle this in your program logic as described in
the topic "Processing of analog values (Page 92)".

® |/O diagnostic addresses: Configures the start address for the set of inputs and outputs of
the module

Configuring a communication interface (CM, CP or CB)

o Propedties .'i‘ Info %] Diagnostics

Ganeral
¥ General
= PACFIBLS intartace (01}
general Interface networked with
FROFELUS address

FROFIBLES address

Operating mode SubFET Mt AEtwnikid

Hardware idencifier Add rvew zubnet

Parameters

Address:
Highest address.

Transmission speed:

Depending on the type of communication interface, you configure the parameters for the
network.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 125

Device configuration

5.6 Configuring the CPU for communication

5.6 Configuring the CPU for communication
5.6.1 Creating a network connection
Use the "Network view" of Device configuration to create the network connections between
the devices in your project. After creating the network connection, use the "Properties” tab of
the inspector window to configure the parameters of the network.
Table 5- 3 Creating a network connection
Action Result
Select "Network view" to display the Project! > Devices & netwarks
devices to be connected.
5}’ Hetwork H Connections |57 cor T [+ % =u| Q:" 2
v B e R
CPU 12714 CRUI 240
Select the port on one device and PRel = Daviear S naberis
drag the connection to the port on) Y -
the second device e Fopolagy view . Joby Networkview. |y Daviceview, ||
’ % Mevwork, Lf Connections : £ Has =
L1 E o L E
CPITHAC CPU 1214
Release the mouse button to create Project! > Devices & netwarks
the network connection. ___|& Topology view |gh Networkview [Device view |
5‘{ Hetwork ij Connections L a = '@Li 2 = |
tad
PLC_1 P2
CPU 1274C CPU1214C
S7-1200 Programmable controller
126 System Manual, 04/2012, ASE02486680-06

Device configuration

5.6.2

5.6 Configuring the CPU for communication

Configuring the Local/Partner connection path

The inspector window displays the properties of the connection whenever you have selected
any part of the instruction. Specify the communication parameters in the "Configuration" tab
of the "Properties" for the communication instruction.

Table 5- 4

Configuring the connection path (using the properties of the instruction)

TCP, 1ISO-on-TCP, and UDP

Connection properties

"Local/Partner" connections.
The illustration shows the "Connection

on-TCP connection.

For the TCP, ISO-on-TCP, and UDP Ethernet
protocols, use the "Properties" of the instruction
(TSEND_C, TRCV_C, or TCON) to configure the

properties" of the "Configuration tab" for an ISO-

4 Proporties

Gemital ﬁnnliquralnﬁ

Consection paremetsl S
Block parameter []
General

Endd paint

Intersce
Subrat
mddreay
Conrachon fpa
Eannection I

Cannoion dats

Auddrese detaily

THAP (ASCH
TEARID

Comnection parameter

:"_'!.Iuln l.i Y Diagnastics

reesl

[LTK]

CruU 1 24C pODODC It
(]

PR2168.01

S on-TEF

FLE 1 Reeiie DB

(@) Extablish aciree
connection

daenl Tiar

5% 30.2E 30.50

: U 1 214G DODODLE 1 -
LI] -
19216004

£l M2 Sand D8 -

Estabhsh sctrve
coRrssctinn

Fartriar TLAF
1100

EQOY A% SRAFEFEE T4 A0

Note

When you configure the connection properties for one CPU, STEP 7 allows you either to
select a specific connection DB in the partner CPU (if one exists), or to create the connection
DB for the partner CPU. The partner CPU must already have been created for the project
and cannot be an "unspecified" CPU.

You must still insert a TSEND_C, TRCV_C or TCON instruction into the user program of the
partner CPU. When you insert the instruction, select the connection DB that was created by

the configuration.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

127

Device configuration

5.6 Configuring the CPU for communication

Table 5- 5

Configuring the connection path for S7 communication (Device configuration)

S7 communication (GET and PUT)

Connection properties

For S7 communication, use the "Devices &
networks" editor of the network to configure the Guneral
Local/Partner connections. You can click the 5
"Highlighted: Connection" button to access the
"Properties".

The "General" tab provides several properties:
e "General" (shown)

e "Local ID"

e "Special connection properties"
e "Address details" (shown)

Gepieral

| O, Properties

Tiinte. 0% Diagnastics
e

Local

Specal conmectisn peoperhed

Conaection
Adden 11 details

Ofine stepuy)
Connection path

Lecal

End pone: [FLC T

Partres

C2

Intedoce | FLC_1, FROFAIET maernd = FLC_2, FROFINET interal ™
Interlwca ype: | ExhetnetiP EthermeaiF
Subnet | FIIE_1 ¥ (muE]
Address (15278801 19216005
o Propenties | *iinio 0] %! Disgrostics

Genetal

General
Addeess details

Luscal il

Specind CONNE D prOpEMed

Ja.czvess denais] Lotal Paimes
Emdpeint HLC_1 IFLCD
Bchiaiat

Connsanon ted
-
TRAR | BMARCACCIREET SIMATIC-ACET 0101

Subh&t it CTAF . DDOO - 0009 CTAF - D004 - 0G4

Refer to ['Protocols" (Page 430) in the "PROFINET" section or to "Creating an S7
connection' (Page 493) in the "S7 communication" section for more information and a list of
available communication instructions.

Table 5- 6 Parameters for the multiple CPU connection
Parameter Definition
Address Assigned IP addresses
General End point Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces
Subnet Name assigned to the subnets
Interface type S7 communication only. Type of interface
Connection type Type of Ethernet protocol
Connection ID ID number
Connection data Local and Partner CPU data storage location
Establish active Radio button to select Local or Partner CPU as the active connection
connection
Address End point S7 communication only. Name assigned to the partner (receiving) CPU
details Rack/slot S7 communication only. Rack and slot location
Connection resource S7 communication only. Component of the TSAP used when configuring an
S7 connection with an S7-300 or S7-400 CPU
Port (decimal): TCP and UPD: Partner CPU port in decimal format
S7-1200 Programmable controller
128 System Manual, 04/2012, ASE02486680-06

Device configuration

5.6 Configuring the CPU for communication

Parameter

Definition

TSAP ' and Subnet ID: ISO on TCP (RFC 1006) and S7 communication: Local and partner CPU

TSAPs in ASCIl and hexadecimal formats

1 When configuring a connection with an S7-1200 CPU for ISO-on-TCP, use only ASCII characters in the TSAP extension
for the passive communication partners.

Transport Service Access Points (TSAPs)

Port Numbers

5.6.3

Using TSAPs, ISO on TCP protocol and S7 communication allows multiple connections to a
single IP address (up to 64K connections). TSAPs uniquely identify these communication
end point connections to an IP address.

In the "Address Details" section of the Connection Parameters dialog, you define the TSAPs
to be used. The TSAP of a connection in the CPU is entered in the "Local TSAP" field. The
TSAP assigned for the connection in your partner CPU is entered under the "Partner TSAP"
field.

With TCP and UDP protocols, the connection parameter configuration of the Local (active)
connection CPU must specify the remote IP address and port number of the Partner
(passive) connection CPU.

In the "Address Details" section of the Connection Parameters dialog, you define the ports to
be used. The port of a connection in the CPU is entered in the "Local Port" field. The port
assigned for the connection in your partner CPU is entered under the "Partner Port" field.

Parameters for the PROFINET connection

The TSEND_C, TRCV_C and TCON instructions require that connection-related parameters
be specified in order to connect to the partner device. These parameters are specified by the
TCON_Param structure for the TCP, ISO-on-TCP and UDP protocols. Typically, you use the
"Configuration" tab of the "Properties" of the instruction to specify these parameters. If the
"Configuration" tab is not accessible, then you must specify the TCON_Param structure
programmatically.

Table 5-7 Structure of the connection description (TCON_Param)

Byte Parameter and data type Description
0...1 block_length Ulnt Length: 64 bytes (fixed)
2...3 id CONN_OUC Reference to this connection: Range of values: 1 (default) to 4095.

(Word) Specify the value of this parameter for the TSEND_C, TRCV_C or
TCON instruction under ID.

4 connection_type USint Connection type:

e 17: TCP (default)
e 18:ISO-on-TCP
e 19: UDP

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 129

Device configuration

5.6 Configuring the CPU for communication

Byte Parameter and data type Description
5 active_est Bool ID for the type of connection:
e TCP and ISO-on-TCP:
— FALSE: Passive connection
— TRUE: Active connection (default)
e UDP: FALSE
6 local_device_id USint ID for the local PROFINET or Industrial Ethernet interface:
1 (default)
7 local_tsap_id_len USiInt Length of parameter local_tsap_id used, in bytes; possible values:
e TCP: 0 (active, default) or 2 (passive)
e [SO-on-TCP: 210 16
e UDP: 2
8 rem_subnet_id_len USint This parameter is not used.
9 rem_staddr_len USint Length of address of partner end point, in bytes:
e 0: unspecified (parameter rem_staddr is irrelevant)
o 4 (default): Valid IP address in parameter rem_staddr (only for
TCP and ISO-on-TCP)
10 rem_tsap_id_len USint Length of parameter rem_tsap_id used, in bytes; possible values:
e TCP: 0 (passive) or 2 (active, default)
e [SO-on-TCP: 210 16
e UDP:0
11 next_staddr_len USint This parameter is not used.
12 ... 27 |local_tsap_id Array [1..16] of | Local address component of connection:
Byte e TCP and ISO-on-TCP: local port no. (possible values: 1 to
49151; recommended values: 2000...5000):
— local_tsap_id[1] = high byte of port number in hexadecimal
notation;
— local_tsap_id[2] = low byte of port number in hexadecimal
notation;
— local_tsap_id[3-16] = irrelevant
e [SO-on-TCP: local TSAP-ID:
— local_tsap_id[1] = B#16#EO;
— local_tsap_id[2] = rack and slot of local end points (bits O to
4: slot number, bits 5 to 7: rack number);
— local_tsap_id[3-16] = TSAP extension, optional
o UDP: This parameter is not used.
Note: Make sure that every value of local_tsap_id is unique within
the CPU.
28 ... 33 |rem_subnet_id Array [1..6] of This parameter is not used.
USint
S7-1200 Programmable controller
130 System Manual, 04/2012, ASE02486680-06

Device configuration

5.6 Configuring the CPU for communication

Byte

Parameter and data type

Description

34 ...

39

rem_staddr Array [1..6] of
USiInt

TCP and ISO-on-TCP only: IP address of the partner end point.
(Not relevant for passive connections.) For example, IP address
192.168.002.003 is stored in the following elements of the array:

rem_staddr[1] = 192
rem_staddr[2] = 168
rem_staddr[3] = 002
rem_staddr[4] = 003
rem_staddr[5-6]= irrelevant

40 ...

55

rem_tsap_id Array [1..16] of
Byte

Partner address component of connection
e TCP: partner port number. Range: 1 to 49151; Recommended
values: 2000 to 5000):

— rem_tsap_id[1] = high byte of the port number in
hexadecimal notation

— rem_tsap_id[2] = low byte of the port number in
hexadecimal notation;

— rem_tsap_id[3-16] = irrelevant
e [SO-on-TCP: partner TSAP-ID:
— rem_tsap_id[1] = B#16#EO

— rem_tsap_id[2] = rack and slot of partner end point (bits 0 to
4: Slot number, bits 5 to 7: rack number)

— rem_tsap_id[3-16] = TSAP extension, optional
e UDP: This parameter is not used.

56 ...

61

next_staddr Array [1..6] of
Byte

This parameter is not used.

62 ...

63

spare Word

Reserved: W#16#0000

See also

Configuring the Local/Partner connection path (Page 127)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

131

Device configuration

5.6 Configuring the CPU for communication

5.6.4

5.6.4.1

132

Assigning Internet Protocol (IP) addresses

Assigning IP addresses to programming and network devices

If your programming device is using an on-board adapter card connected to your plant LAN
(and possibly the world-wide web), the IP Address Network ID and subnet mask of your CPU
and the programming device's on-board adapter card must be exactly the same. The
Network ID is the first part of the IP address (first three octets) (for example, 211.154.184.16)
that determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0; however, since your computer is on a plant LAN, the subnet mask may have
various values (for example, 255.255.254.0) in order to set up unique subnets. The subnet
mask, when combined with the device IP address in a mathematical AND operation, defines
the boundaries of an IP subnet.

Note

In a world-wide web scenario, where your programming devices, network devices, and IP
routers will communicate with the world, unique IP addresses must be assigned to avoid
conflict with other network users. Contact your company IT department personnel, who are
familiar with your plant networks, for assignment of your IP addresses.

If your programming device is using an Ethernet-to-USB adapter card connected to an
isolated network, the IP Address Network ID and subnet mask of your CPU and the
programming device's Ethernet-to-USB adapter card must be exactly the same. The Network
ID is the first part of the IP address (first three octets) (for example, 211.154.184.16) that
determines what IP network you are on. The subnet mask normally has a value of
255.255.255.0. The subnet mask, when combined with the device IP address in a
mathematical AND operation, defines the boundaries of an IP subnet.

Note

An Ethernet-to-USB adapter card is useful when you do not want your CPU on your
company LAN. During initial testing or commissioning tests, this arrangement is particularly
useful.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Device configuration

Table 5- 8

5.6 Configuring the CPU for communication

Assigning Ethernet addresses

Programming Device
Adapter Card

Network Type

Internet Protocol (IP) Address

Subnet Mask

On-board adapter
card

Connected to
your plant LAN
(and possibly
the world-wide
web)

Network ID of your CPU and the
programming device's on-board
adapter card must be exactly the
same.

The Network ID is the first part of the
IP address (first three octets) (for
example, 211.154.184.16) that
determines what IP network you are
on.)

The subnet mask of your CPU and the
on-board adapter card must be exactly
the same.

The subnet mask normally has a value of
255.255.255.0; however, since your
computer is on a plant LAN, the subnet
mask may have various values (for
example, 255.255.254.0) in order to set
up unique subnets. The subnet mask,
when combined with the device IP
address in a mathematical AND
operation, defines the boundaries of an
IP subnet.

Ethernet-to-USB
adapter card

Connected to an
isolated network

Network ID of your CPU and the
programming device's Ethernet-to-
USB adapter card must be exactly
the same.

The Network ID is the first part of the
IP address (first three octets) (for
example, 211.154.184.16) that
determines what IP network you are
on.)

The subnet mask of your CPU and the
Ethernet-to-USB adapter card must be
exactly the same.

The subnet mask normally has a value of
255.255.255.0. The subnet mask, when
combined with the device IP address in a
mathematical AND operation, defines the
boundaries of an IP subnet.

Assigning or checking the IP address of your programming device using "My Network Places" (on

your desktop)

You can assign or check your programming device's IP address with the following menu
selections:

(Right-click) "My Network Places"

"Properties"

(Right-click) "Local Area Connection"

"Properties"

In the "Local Area Connection Properties" dialog, in the "This connection uses the following
items:" field, scroll down to "Internet Protocol (TCP/IP)". Click "Internet Protocol (TCP/IP)",
and click the "Properties" button. Select "Obtain an IP address automatically (DHCP)" or
"Use the following IP address" (to enter a static IP address).

Note

Dynamic Host Configuration Protocol (DHCP) automatically assigns an IP address to your
programming device upon power up from the DHCP server.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

133

Device configuration

5.6 Configuring the CPU for communication

5.6.4.2 Checking the IP address of your programming device

You can check the MAC and IP addresses of your programming device with the following
menu selections:

1. In the "Project tree", expand "Online access".
2. Right-click the required network, and select "Properties".
3. In the network dialog, expand "Configurations", and select "Industrial Ethernet".

The MAC and IP addresses of the programming device are displayed.

DR DU OO L 0 T ast Tehinrsed Adapter - Facke! Schefaled Minlpart

.I -l _— et Eraewt
[t tamere] Lacal setiings
P
e Dok DUB-ET 00 LIV 30 F st ebawrrord At
A Comedinn | Listal Aeth Coredethian 3
MAL pbda (D0 B0 0B o3 -T1 .0R
[

APV, actnes

Pabdui (17 (R8T 1
Buleermadk | DM N P 0
Dy sddwrnn

DHCF widreesns A4 584 A1 HE

5.6.4.3 Assigning an |IP address to a CPU online

You can assign an IP address to a network device online. This is particularly useful in an
initial device configuration.

1. In the "Project tree," verify that] NOTE: If a MAC address is
no IP address is assigned to the | pevicas shown instead of an IP
CPU, with the following menu 00 B address, then no IP
selections: = Pt address has been

i I Add new device . d
e "Online access" h Diices scetworta assigned.

» (@ PLC_1 [OP1394C DoDGDE]

e <Adapter card for the network| * cemmeade

* 1] Docurnertetion settings

in which the device is » (g Langages resnuaces
- Online sccess
located> lr. use [sTose] -

» L OO [BE2I200 rrbti-mastes cable] B
b Ll PLosiM s [ToPip|

» L] Incei{F) FROFTO0D MT Hetsork Corme . B8
= L) B-Lirdk DUB-E100 LS8 2.0 Past Ethem M,

e "Update accessible devices"

2. Under the required accessible =@ ek oustianuss 20 rasetinem. %,
S Updath soca s ibie didoes

deVICG, dOUb|e-C|ICk “Onllne & .l Accessible davice [08-00-D6-05-91-11]

S7-1200 Programmable controller
134 System Manual, 04/2012, ASE02486680-06

Device configuration

3. In the "Online & diagnostics"

dialog, make the following menu '

selections:
¢ "Functions"
e "Assign IP address"

4. In the "IP address" field, enter
your new IP address, and click
the "Assign IP address" button.

5.6 Configuring the CPU for communication

¥ DignaIncs

e
Gl
b Functions ol
.
w0
#Har |0
* Dimgnosoes

e Assign P address

Aasign P addiess

kg e

Resevo Inctory setings

Faddress
Subres marsk

132

s

Teg . 2 12

258 79

o

ot U tpoies

Somersddress: 192 168 2

=TT

5. In the "Project tree," verify that]

your new IP address has been
assigned to the CPU, with the
following menu selections:

e "Online access"

e <Adapter for the network in
which the device is located>

o "Update accessible devices"

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

| Deovices | -
00 =
= | }Fraject)
I Add e deace
iy Davices & ntwarks
+ [Pec 1 [ore 12 1ac oopoec)
» [comman dems
¥ (5]l Dotsmantstion setngs
b i Langueges & reiouces
w Iy Online sncass
v g usajsTusne] []
» [§ COM RS 2521 mult-mester cable] 18
+ LB FLCSIM VS < [TCRIF)
b [Incmlim) SROM 000 MT Nerssork Conne..
= [O-Link DUB-ET 00 LISE 2.0 Fast Ethern M,
-t updat= accezsible
LR | CPUeaiman 192 168 212]

135

Device configuration

5.6 Configuring the CPU for communication

5.6.4.4

Configuring an IP address for a CPU in your project

Configuring the PROFINET interface

To configure parameters for the PROFINET interface, select the green PROFINET box on
the CPU. The "Properties" tab in the inspector window displays the PROFINET port.

)
L

@® PROFINET port

Configuring the IP address

136

Ethernet (MAC) address: In a PROFINET network, each device is assigned a Media Access
Control address (MAC address) by the manufacturer for identification. A MAC address
consists of six groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in
transmission order, (for example, 01-23-45-67-89-AB or 01:23:45:67:89:AB).

IP address: Each device must also have an Internet Protocol (IP) address. This address
allows the device to deliver data on a more complex, routed network.

Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal
format (for example, 211.154.184.16). The first part of the IP address is used for the Network
ID (What network are you on?), and the second part of the address is for the Host ID (unique
for each device on the network). An IP address of 192.168.x.y is a standard designation
recognized as part of a private network that is not routed on the Internet.

Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a
subnet tend to be located in close physical proximity to each other on a Local Area Network
(LAN). A mask (known as the subnet mask or network mask) defines the boundaries of an IP
subnet.

A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means
that all IP addresses on this network should have the same first 3 octets, and the various
devices on this network are identified by the last octet (8-bit field). An example of this is to
assign a subnet mask of 255.255.255.0 and an IP addresses of 192.168.2.0 through
192.168.2.255 to the devices on a small local network.

The only connection between different subnets is via a router. If subnets are used, an IP
router must be employed.

IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send
messages to any other networks, which might have other LANs behind them. If the
destination of the data is not within the LAN, the router forwards the data to another network
or group of networks where it can be delivered to its destination.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Device configuration

5.6 Configuring the CPU for communication

Routers rely on IP addresses to deliver and receive data packets.

G Properties. [PUinfa. |5 Disgnostics IP addresses properties: In

General = the Properties window,

ehemetadsssgy | Eibemet addresses select the "Ethernet
il Iubpriacs acsorced whty addresses" configuration
Tine synehiocieition Subnet. [Hotnetmorked - entry. STEP 7 displays the
— Ethernet address
Fptscol configuration dialog, which
@) Sexib address in the prejeis associates the software
s R T project with the IP address
,,,:::::“‘ B of the CPU that will receive
that project.

SetiP sddeess using & different method
PROFINET
| St PROFINET devace name aiing a diffsrent
method

FROFINET device mame | plo_i
Corverted namae! | plod 1 d0ed
Dimace number |0

Table 5- 9 Parameters for the IP address

Parameter Description

Subnet Name of the Subnet to which the device is connected. Click the "Add new subnet" button to create a
new subnet. "Not connected" is the default. Two connection types are possible:

e The "Not connected" default provides a local connection.
e A subnet is required when your network has two or more devices.

IP protocol IP address Assigned IP address for the CPU
Subnet mask Assigned subnet mask
Use IP router Click the checkbox to indicate the use of an IP router
Router address Assigned IP address for the router, if applicable
Note

All IP addresses are configured when you download the project. If the CPU does not have a
pre-configured IP address, you must associate the project with the MAC address of the
target device. If your CPU is connected to a router on a network, you must also enter the IP
address of the router.

The "Set IP address using a different method" radio button allows you to change the IP
address online or by using the "T_CONFIG" instruction after the program is downloaded.
This IP address assignment method is for the CPU only.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 137

Device configuration

5.6 Configuring the CPU for communication

See also

138

A WARNING

After downloading a hardware configuration with the "Set IP address using a different
method" option enabled, it is not possible to transition the CPU operating mode from RUN
to STOP or from STOP to RUN.

User equipment will keep running under these conditions and may result in unexpected
machine or process operations, which could cause death, severe personal injury, or
property damage if proper precautions are not taken.

Ensure that your CPU IP address(es) are set before using the CPU in an actual automation
environment. This can be done by using your STEP 7 programming package, the S7-1200
Tool, or an attached HMI device in conjunction with the T_CONFIG instruction.

A WARNING

When changing the IP address of a CPU online or from the user program, it is possible to
create a condition in which the PROFINET network may stop.

If the IP address of a CPU is changed to an IP address outside the subnet, the PROFINET
network will lose communication, and all data exchange will stop. User equipment may be
configured to keep running under these conditions. Loss of PROFINET communication may
result in unexpected machine or process operations, causing death, severe personal injury,
or property damage if proper precautions are not taken.

If an IP address must be changed manually, ensure that the new IP address lies within the
subnet.

T_CONFIG (Page 451)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Device configuration

5.6.5

5.6 Configuring the CPU for communication

Testing the PROFINET network

After completing the configuration, download the project (Page 168) to the CPU. All IP
addresses are configured when you download the project.

Exirnded dewnload be dedor

Conigrmed sconiiingded of TLET*

e Dt B e Addrndn
net = EF T AT LT

PO roerace ot loading. P b Duspton e of. s

Aoty tibie Aroioet mitanges sulnnt o Sz il moce g tible devican

Device [Tt AdSopan Tawpet devide

n : - = ==

Batre b

Assigning an IP address to a device online
The S7-1200 CPU does not have a pre-configured IP address. You must manually assign an

IP address for the CPU:

e To assign an IP address to a device online, refer to ['Device configuration: Assigning an

IP address to a CPU online"| (Page 134) for this step-by-step procedure.

® To assign an IP address in your project, you must configure the IP address in the Device

configuration, save the configuration, and download it to the PLC. Refer to 'Device

configuration: Configuring an IP address for a CPU in your project" (Page 136) for more

information.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

139

Device configuration
5.6 Configuring the CPU for communication

Using the "Extended download to device" dialog to test for connected network devices

The S7-1200 CPU "Download to device" function and its "Extended download to device"
dialog can show all accessible network devices and whether or not unique IP addresses
have been assigned to all devices. To display all accessible and available devices with their
assigned MAC or IP addresses, check the "Show all accessible devices" checkbox.

Exiended demmload te devoe

Conligmed aconiiingded ol TLE. 1

Dre B e L Addegn
e = EF T [LEATE Y]
PGTC ntorace for loading. L Eelu BABEI00 I8 20 =

Astrytibie dpainen mismget subart o Sh il gote s pible deicet

Addogan Tt devid
GeLaodtE Al =
oot rs vl ey

LR R

g

Batre b
| gance |

If the required network device is not in this list, communications to that device have been
interrupted for some reason. The device and network must be investigated for hardware
and/or configuration errors.

5.6.6 Locating the Ethernet (MAC) address on the CPU

In PROFINET networking, a Media Access Control address (MAC address) is an identifier
assigned to the network interface by the manufacturer for identification. A MAC address
usually encodes the manufacturer's registered identification number.

The standard (IEEE 802.3) format for printing MAC addresses in human-friendly form is six
groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in transmission
order, (for example, 01-23-45-67-89-ab or 01:23:45:67:89:ab).

Note

Each CPU is loaded at the factory with a permanent, unique MAC address. You cannot
change the MAC address of a CPU.

The MAC address is printed on the front, lower-left corner of the CPU. Note that you have to
lift the lower door to see the MAC address information.

S7-1200 Programmable controller
140 System Manual, 04/2012, ASE02486680-06

Device configuration

5.6 Configuring the CPU for communication

L.l
ramoe | B
=on | o
WANT |
- i]
—

[EEFFF YN EEE Y
[bE

[ESD SENSITIVE]| Boiny
BOUUUUUL B s
GJ‘..,H‘ : l' o

@ MAC address

Initially, the CPU has no IP address, only a factory-installed MAC address. PROFINET
communications requires that all devices be assigned a unique IP address.

Estended download ta device

Configpmed sosninsdes of UC 1

Devion Dot Bt Lo Addredn
i T NACO00. TOR VAT

IMGTC ntariace ot loading. . B Evok LT 00 138 3 0 P w
s b : R

At bl At et Subant o S il St 1 ik

Drce Ervicn s et addrenn Tt devvice
L RE o BOLBOALENIAT -
- T ARTERD B

Batre b

] l

Use the CPU "Download to
device" function and the
"Extended download to device"
dialog to show all accessible
network devices and ensure that
unique IP addresses have been
assigned to all devices. This
dialog displays all accessible and
available devices with their
assigned MAC or IP addresses.
MAC addresses are all-important
in identifying devices that are
missing the required unique IP
address.

5.6.7 Configuring Network Time Protocol synchronization

The Network Time Protocol (NTP) is widely used to synchronize the clocks of computer
systems to Internet time servers. In NTP mode, the CP sends time-of-day queries at regular
intervals (in the client mode) to the NTP server in the subnet (LAN). Based on the replies
from the server, the most reliable and most accurate time is calculated and the time of day

on the station is synchronized.

The advantage of this mode is that it allows the time to be synchronized across subnets.

The IP addresses of up to four NTP servers need to be configured. The update interval
defines the interval between the time queries (in seconds). The value of the interval ranges

between 10 seconds and one day.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

141

Device configuration

5.6 Configuring the CPU for communication

5.6.8

142

In NTP mode, it is generally UTC (Universal Time Coordinated) that is transferred; this
corresponds to GMT (Greenwich Mean Time).

In the Properties window, select the "Time synchronization" configuration entry. STEP 7
displays the Time synchronization configuration dialog:

Time synchronization

[Enable time-of-day synchronization using NTP

maode
Server 1: 192 . 165 . 0 .21
Serser 2: 192 . 168 .0 .22
Server 3: 192 0165 . 0 .23
Serserd: 192 . 168 .0 . 24
Update interval: |10 SEC

Note

All IP addresses are configured when you download the project.

Table 5- 10 Parameters for time synchronization

Parameter Definition

Enable time-of-day Click the checkbox to enable time-of-day synchronization using
synchronization using Network NTP servers.

Time Protocol (NTP) servers

Server 1 Assigned IP Address for network time server 1

Server 2 Assigned IP Address for network time server 2

Server 3 Assigned IP Address for network time server 3

Server 4 Assigned IP Address for network time server 4

Time synchronization interval Interval value (sec)

PROFINET device start-up time, naming, and address assignment

PROFINET IO can extend the start-up time for your system (configurable time-out figure).
More devices and slow devices impact the amount of time it takes to switch to RUN.

You can have the following maximum numbers of PROFINET IO devices on your S7-1200
PROFINET network:

® |n V3.0, you can have a maximum of 16 10 devices.
® |n V2.2, you can have a maximum of 8 10 devices.

Each station (or IO device) starts up independently on start-up, and this affects the overall
CPU start-up time. If you set the configurable time-out too low, there may not be a sufficient
overall CPU start-up time for all stations to complete start-up. If this situation occurs, false
station errors will result.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Device configuration

5.6 Configuring the CPU for communication

In the CPU Properties under "Startup", you can find the "Parameter assignment time for
distributed I/O" (time-out). The default configurable time-out is 60,000 ms (1 minute); the
user can configure this time.

PROFINET device naming and addressing in STEP 7

All PROFINET devices must have a Device Name and an IP Address. Use STEP 7 to define
the Device Names and to configure the IP addresses. Device names are downloaded to the
IO devices using PROFINET DCP (Discovery and Configuration Protocol).

PROFINET address assignment at system start-up

The controller broadcasts the names of the devices to the network, and the devices respond
with their MAC addresses. The controller then assigns an IP address to the device using
PROFINET DCP protocol:

e |f the MAC address has a configured IP address, then the station performs start-up.

e |f the MAC address does not have a configured IP address, STEP 7 assigns the address
that is configured in the project, and the station then performs start-up.

e |f there is a problem with this process, a station error occurs and no start-up takes place.
This situation causes the configurable time-out value to be exceeded.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 143

Device configuration

5.6 Configuring the CPU for communication

S7-1200 Programmable controller
144 System Manual, 04/2012, ASE02486680-06

Programming concepts

6.1 Guidelines for designing a PLC system

When designing a PLC system, you can choose from a variety of methods and criteria. The
following general guidelines can apply to many design projects. Of course, you must follow
the directives of your own company's procedures and the accepted practices of your own
training and location.

Table 6- 1 Guidelines for designing a PLC system

Recommended steps Tasks

Partition your process | Divide your process or machine into sections that have a level of independence from each other.
or machine These partitions determine the boundaries between controllers and influence the functional
description specifications and the assignment of resources.

Create the functional Write the descriptions of operation for each section of the process or machine, such as the 1/0
specifications points, the functional description of the operation, the states that must be achieved before
allowing action for each actuator (such as a solenoid, a motor, or a drive), a description of the
operator interface, and any interfaces with other sections of the process or machine.

Design the safety Identify any equipment that might require hard-wired logic for safety. Remember that control
circuits devices can fail in an unsafe manner, which can produce unexpected startup or change in the
operation of machinery. Where unexpected or incorrect operation of the machinery could result in
physical injury to people or significant property damage, consider the implementation of
electromechanical overrides (which operate independently of the PLC) to prevent unsafe
operations. The following tasks should be included in the design of safety circuits:

¢ |dentify any improper or unexpected operation of actuators that could be hazardous.

¢ |dentify the conditions that would assure the operation is not hazardous, and determine how
to detect these conditions independently of the PLC.

¢ Identify how the PLC affects the process when power is applied and removed, and also
identify how and when errors are detected. Use this information only for designing the normal
and expected abnormal operation. You should not rely on this "best case" scenario for safety
purposes.

¢ Design the manual or electromechanical safety overrides that block the hazardous operation
independent of the PLC.

e Provide the appropriate status information from the independent circuits to the PLC so that
the program and any operator interfaces have necessary information.

Identify any other safety-related requirements for safe operation of the process.

Plan system security Determine what level of protection (Page 164) you require for access to your process. You can
password-protect CPUs and program blocks from unauthorized access.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 145

Programming concepts

6.2 Structuring your user program

Recommended steps

Tasks

Specify the operator
stations

Based on the requirements of the functional specifications, create the following drawings of the
operator stations:

e Overview drawing that shows the location of each operator station in relation to the process
or machine.

e Mechanical layout drawing of the devices for the operator station, such as display, switches,
and lights.

e Electrical drawings with the associated 1/O of the PLC and signal modules.

Create the
configuration drawings

Based on the requirements of the functional specification, create configuration drawings of the
control equipment:

e Overview drawing that shows the location of each PLC in relation to the process or machine.

e Mechanical layout drawing of each PLC and any I/O modules, including any cabinets and
other equipment.

e Electrical drawings for each PLC and any I/O modules, including the device model numbers,
communications addresses, and I/O addresses.

Create a list of
symbolic names

Create a list of symbolic names for the absolute addresses. Include not only the physical I1/0
signals, but also the other elements (such as tag names) to be used in your program.

6.2 Structuring your user program

When you create a user program for the automation tasks, you insert the instructions for the
program into code blocks:

146

An organization block (OB) responds to a specific event in the CPU and can interrupt the
execution of the user program. The default for the cyclic execution of the user program
(OB 1) provides the base structure for your user program and is the only code block
required for a user program. If you include other OBs in your program, these OBs
interrupt the execution of OB 1. The other OBs perform specific functions, such as for
startup tasks, for handling interrupts and errors, or for executing specific program code at
specific time intervals.

A function block (FB) is a subroutine that is executed when called from another code
block (OB, FB, or FC). The calling block passes parameters to the FB and also identifies
a specific data block (DB) that stores the data for the specific call or instance of that FB.
Changing the instance DB allows a generic FB to control the operation of a set of
devices. For example, one FB can control several pumps or valves, with different
instance DBs containing the specific operational parameters for each pump or valve.

A function (FC) is a subroutine that is executed when called from another code block
(OB, FB, or FC). The FC does not have an associated instance DB. The calling block
passes parameters to the FC. The output values from the FC must be written to a
memory address or to a global DB.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Programming concepts

6.2 Structuring your user program

Choosing the type of structure for your user program

Based on the requirements of your application, you can choose either a linear structure or a
modular structure for creating your user program:

® A linear program executes all of the instructions for your automation tasks in sequence,
one after the other. Typically, the linear program puts all of the program instructions into
the OB for the cyclic execution of the program (OB 1).

® A modular program calls specific code blocks that perform specific tasks. To create a
modular structure, you divide the complex automation task into smaller subordinate tasks
that correspond to the technological functions of the process. Each code block provides
the program segment for each subordinate task. You structure your program by calling
one of the code blocks from another block.

Linear structure: Modular structure:
OB 1 __|oB1 " FB 1
—
1 < FC1
«— «—

By creating generic code blocks that can be reused within the user program, you can simplify
the design and implementation of the user program. Using generic code blocks has a
number of benefits:

® You can create reusable blocks of code for standard tasks, such as for controlling a pump
or a motor. You can also store these generic code blocks in a library that can be used by
different applications or solutions.

® \When you structure the user program into modular components that relate to functional
tasks, the design of your program can be easier to understand and to manage. The
modular components not only help to standardize the program design, but can also help
to make updating or modifying the program code quicker and easier.

® Creating modular components simplifies the debugging of your program. By structuring
the complete program as a set of modular program segments, you can test the
functionality of each code block as it is developed.

e Creating modular components that relate to specific technological functions can help to
simplify and reduce the time involved with commissioning the completed application.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 147

Programming concepts

6.3 Using blocks to structure your program

6.3

6.3.1

148

Using blocks to structure your program

By designing FBs and FCs to perform generic tasks, you create modular code blocks. You
then structure your program by having other code blocks call these reusable modules. The
calling block passes device-specific parameters to the called block.

When a code block calls another code block, the CPU executes the program code in the
called block. After execution of the called block is complete, the CPU resumes the execution
of the calling block. Processing continues with execution of the instruction that follows after
the block call.

® Calling block

OB, FB, FC OB, FB, FC
®
@

()

Called (or interrupting) block

Program execution

Instruction or event that initiates the execution of
another block

Program execution

l \,, Block end (returns to calling block)
@

You can nest the block calls for a more modular structure. In the following example, the
nesting depth is 4: the program cycle OB plus 3 layers of calls to code blocks.

®e 0 %”>

| | Start of cycle
@ \ @ \ © .
I > | > ® Nesting depth
OB 1 FB 1 FC1
|DB
FB2 || FB1 || FC 21
< < A
|oB |oB
» v
iR . FC1 DB 1

Organization block (OB)

Organization blocks provide structure for your program. They serve as the interface between
the operating system and the user program. OBs are event driven. An event, such as a
diagnostic interrupt or a time interval, will cause the CPU to execute an OB. Some OBs have
predefined start events and behavior.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Programming concepts
6.3 Using blocks to structure your program

The program cycle OB contains your main program. You can include more than one program
cycle OB in your user program. During RUN mode, the program cycle OBs execute at the
lowest priority level and can be interrupted by all other types of program processing. The
startup OB does not interrupt the program cycle OB because the CPU executes the startup
OB before going to RUN mode.

After finishing the processing of the program cycle OBs, the CPU immediately executes the
program cycle OBs again. This cyclic processing is the "normal" type of processing used for
programmable logic controllers. For many applications, the entire user program is located in
a single program cycle OB.

You can create other OBs to perform specific functions, such as for handling interrupts and
errors, or for executing specific program code at specific time intervals. These OBs interrupt
the execution of the program cycle OBs.

Use the "Add new block" dialog to create new OBs in your user program.

W now Block i Interrupt handling is always event-
Hsi driven. When such an event occurs,
Han! the CPU interrupts the execution of

@ Fiogam oydle Pt) = the user program and calls the OB
% s tactiee <1| that was configured to handle that
b e 3 Lt event. After finishing the execution
Hatdeaare &l AUTHADE . .
T vt gt of the interrupting OB, the CPU
&5 e Block accars:) opmied resumes the execution of the user
i Vg J e program at the point of interruption.
Demcriphion:
A Program oycle® OB is sxecuted oychoally
C and in tha main block of the pragram This is
where you place the instrucnans thet conral
Function your apphcation, and cafl additonal uses
3
Data block
More_
¥ Additional information
[Add rew and gpen Ok oy

The CPU determines the order for handling interrupt events by a priority assigned to each
OB. Each event has a particular servicing priority. The respective priority level within a
priority class determines the order in which the OBs are executed. Several interrupt events
can be combined into priority classes. For more information, refer to the PLC concepts
chapter section on execution of the user program (Page 67).

Creating an additional OB within a class of OB

You can create multiple OBs for your user program, even for the program cycle and startup
OB classes. Use the "Add new block" dialog to create an OB. Enter the name for your OB
and enter an OB number 200 or greater.

If you create multiple program cycle OBs for your user program, the CPU executes each
program cycle OB in numerical sequence, starting with the program cycle OB with the lowest
number (such as OB 1). For example: after first program cycle OB (such as OB1) finishes,
the CPU executes the next higher program cycle OB (such as OB 200).

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 149

Programming concepts

6.3 Using blocks to structure your program

Configuring the operation of an OB

6.3.2

6.3.3

You can modify the operational
Ganaral parameters for an OB. For example, you
e General can configure the time parameter for a
e . time-delay OB or for a cyclic OB.
arnplaton ame: Han
r““:“"‘" Constant name: OB_Main
Aftributes noe 08
Number 1
Event clazs: Frogeam ogche
Langusge: LAD -

Function (FC)

A function (FC) is a code block that typically performs a specific operation on a set of input
values. The FC stores the results of this operation in memory locations. For example, use
FCs to perform standard and reusable operations (such as for mathematical calculations) or
technological functions (such as for individual controls using bit logic operations). An FC can
also be called several times at different points in a program. This reuse simplifies the
programming of frequently recurring tasks.

An FC does not have an associated instance data block (DB). The FC uses the local data
stack for the temporary data used to calculate the operation. The temporary data is not
saved. To store data permanently, assign the output value to a global memory location, such
as M memory or to a global DB.

Function block (FB)

A function block (FB) is a code block that uses an instance data block for its parameters and
static data. FBs have variable memory that is located in a data block (DB), or "instance" DB.
The instance DB provides a block of memory that is associated with that instance (or call) of
the FB and stores data after the FB finishes. You can associate different instance DBs with
different calls of the FB. The instance DBs allow you to use one generic FB to control
multiple devices. You structure your program by having one code block make a call to an FB
and an instance DB. The CPU then executes the program code in that FB, and stores the
block parameters and the static local data in the instance DB. When the execution of the FB
finishes, the CPU returns to the code block that called the FB. The instance DB retains the
values for that instance of the FB. These values are available to subsequent calls to the
function block either in the same scan cycle or other scan cycles.

Reusable code blocks with associated memory

150

You typically use an FB to control the operation for tasks or devices that do not finish their
operation within one scan cycle. To store the operating parameters so that they can be
quickly accessed from one scan to the next, each FB in your user program has one or more
instance DBs. When you call an FB, you also specify an instance DB that contains the block
parameters and the static local data for that call or "instance" of the FB. The instance DB
maintains these values after the FB finishes execution.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Programming concepts
6.3 Using blocks to structure your program

By designing the FB for generic control tasks, you can reuse the FB for multiple devices by
selecting different instance DBs for different calls of the FB.

An FB stores the Input, Output, and InOut, and Static parameters in an instance DB.

Assigning the start value in the instance DB

The instance DB stores both a default value and a start value for each parameter. The start
value provides the value to be used when the FB is executed. The start value can then be
modified during the execution of your user program.

The FB interface also provides a "Default value" column that allows you to assign a new start
value for the parameter as you are writing the program code. This default value in the FB is
then transferred to the start value in the associated instance DB. If you do not assign a new
start value for a parameter in the FB interface, the default value from instance DB is copied
to start value.

Using a single FB with DBs

The following figure shows an OB that calls one FB three times, using a different data block
for each call. This structure allows one generic FB to control several similar devices, such as
motors, by assigning a different instance data block for each call for the different devices.
Each instance DB stores the data (such as speed, ramp-up time, and total operating time)
for an individual device.

DB 201
OB1
FB 22
FB 22, DB 201 ’%
FB 22, DB 202
FB 22, DB 203

In this example, FB 22 controls three separate devices, with DB 201 storing the operational
data for the first device, DB 202 storing the operational data for the second device, and DB
203 storing the operational data for the third device.

6.3.4 Data block (DB)

You create data blocks (DB) in your user program to store data for the code blocks. All of the
program blocks in the user program can access the data in a global DB, but an instance DB
stores data for a specific function block (FB).

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 151

Programming concepts

6.3 Using blocks to structure your program

The data stored in a DB is not deleted when the execution of the associated code block
comes to an end. There are two types of DBs:

® A global DB stores data for the code blocks in your program. Any OB, FB, or FC can
access the data in a global DB.

e An instance DB stores the data for a specific FB. The structure of the data in an instance
DB reflects the parameters (Input, Output, and InOut) and the static data for the FB. (The
Temp memory for the FB is not stored in the instance DB.)

Note

Although the instance DB reflects the data for a specific FB, any code block can access
the data in an instance DB.

You can configure a DB as being read-only:
1. Right-click the DB in the project navigator and select "Properties” from the context menu.
2. In the "Properties" dialog, select "Attributes".

3. Select the "Data block write-protected in the device" option and click "OK".

S7-1200 Programmable controller
152 System Manual, 04/2012, ASE02486680-06

Programming concepts

Creating reusable code blocks

“Ald new Block

6.4 Understanding data consistency

Use the "Add new block" dialog

Hethi under "Program blocks" in the
Rest.t Project navigator to create OBs,
Longusge: . FBs, FCs, and global DBs.
% Mamhee When you create a code block, you
Tt S select the programming language
oy for the block. You do not select a
ﬁ) Standasd - compatible vith 57:300400 language for a DB because it only
Functien bloch stores data.
Dezeriptian:
Funcniong are code blocks o subrouting 1 witheut dedicated marmosy,
U
!-uﬁl
Enen.,
| * Additional nfermation
[l Add rew and gpen Ok Cancal

Understanding data consistency

The CPU maintains the data consistency for all of the elementary data types (such as Words
or DWords) and all of the system-defined structures (for example, IEC_TIMERS or DTL).
The reading or writing of the value cannot be interrupted. (For example, the CPU protects
the access to a DWord value until the four bytes of the DWord have been read or written.) To
ensure that the program cycle OBs and the interrupt OBs cannot write to the same memory
location at the same time, the CPU does not execute an interrupt OB until the read or write
operation in the program cycle OB has been completed.

If your user program shares multiple values in memory between a program cycle OB and an
interrupt OB, your user program must also ensure that these values are modified or read
consistently. You can use the DIS_AIRT (disable alarm interrupt) and EN_AIRT (enable
alarm interrupt) instructions in your program cycle OB to protect any access to the shared
values.

e |nsert a DIS_AIRT instruction in the code block to ensure that an interrupt OB cannot be
executed during the read or write operation.

® |nsert the instructions that read or write the values that could be altered by an interrupt
OB.

® |nsert an EN_AIRT instruction at the end of the sequence to cancel the DIS_AIRT and
allow the execution of the interrupt OB.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 153

Programming concepts
6.5 Programming language

A communication request from an HMI device or another CPU can also interrupt execution of
the program cycle OB. The communication requests can also cause issues with data
consistency. The CPU ensures that the elementary data types are always read and written
consistently by the user program instructions. Because the user program is interrupted
periodically by communications, it is not possible to guarantee that multiple values in the
CPU will all be updated at the same time by the HMI. For example, the values displayed on a
given HMI screen could be from different scan cycles of the CPU.

The PtP (Point-to-Point) instructions, PROFINET instructions (such as TSEND_C and
TRCV_C), PROFINET Distributed 1/O instructions , and PROFIBUS Distributed 1/0
Instructions (Page 274) transfer buffers of data that could be interrupted. Ensure the data
consistency for the buffers of data by avoiding any read or write operation to the buffers in
both the program cycle OB and an interrupt OB. If it is necessary to modify the buffer values
for these instructions in an interrupt OB, use a DIS_AIRT instruction to delay any interruption
(an interrupt OB or a communication interrupt from an HMI or another CPU) until an
EN_AIRT instruction is executed.

Note

The use of the DIS_AIRT instruction delays the processing of interrupt OBs until the
EN_AIRT instruction is executed, affecting the interrupt latency (time from an event to the
time when the interrupt OB is executed) of your user program.

6.5 Programming language
STEP 7 provides the following standard programming languages for S7-1200:

e | AD (ladder logic) is a graphical programming language. The representation is based on
circuit diagrams (Page (155).

e FBD (Function Block Diagram) is a programming language that is based on the graphical
logic symbols used in Boolean algebra (Page 156).

e SCL (structured control language) is a text-based, high-level programming language
(Page 1156).

When you create a code block, you select the programming language to be used by that
block.

Your user program can utilize code blocks created in any or all of the programming
languages.

S7-1200 Programmable controller
154 System Manual, 04/2012, ASE02486680-06

Programming concepts

6.5 Programming language

6.5.1 Ladder logic (LAD)

The elements of a circuit diagram, such as normally closed and normally open contacts, and
coils are linked to form networks.

=
—

To create the logic for complex operations, you can insert branches to create the logic for
parallel circuits. Parallel branches are opened downwards or are connected directly to the
power rail. You terminate the branches upwards.

LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and
move.

STEP 7 does not limit the number of instructions (rows and columns) in a LAD network.

Note

Every LAD network must terminate with a coil or a box instruction.

Consider the following rules when creating a LAD network:

® You cannot create a branch that could result in a power flow in the reverse direction.

A B C D 4
| | | | || | | s
! ! ! [\)
E F
| | |
[>< [
-
H G
| II

A B Cc 4
| | | | | | e
[|1 ! \)

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 155

Programming concepts

6.5 Programming language

6.5.2

6.5.3

156

Function Block Diagram (FBD)

Like LAD, FBD is also a graphical programming language. The representation of the logic is
based on the graphical logic symbols used in Boolean algebra.

To create the logic for complex operations,
== .
"Start — o insert parallel branches between the boxes.

"ON" ——g —_— "On"
"Stop” -0 sp —_— _—

Mathematical functions and other complex functions can be represented directly in
conjunction with the logic boxes.

STEP 7 does not limit the number of instructions (rows and columns) in an FBD network.

SCL

Structured Control Language (SCL) is a high-level, PASCAL-based programming language
for the SIMATIC S7 CPUs. SCL supports the block structure of STEP 7 (Page 148). You can
also include program blocks written in SCL with program blocks written in LAD and FBD.

SCL instructions use standard programming operators, such as for assignment (:=),
mathematical functions (+ for addition, - for subtraction, * for multiplication, and / for division).
SCL also uses standard PASCAL program control operations, such as IF-THEN-ELSE,
CASE, REPEAT-UNTIL, GOTO and RETURN. You can use any PASCAL reference for
syntactical elements of the SCL programming language. Many of the other instructions for
SCL, such as timers and counters, match the LAD and FBD instructions. For more
information about specific instructions, refer to the specific instructions in the chapters for
Basic instructions (Page 175) and Extended instructions (Page 247).

You can designate any type of block (OB, FB, or FC) to use the SCL programming language
at the time you create the block. STEP 7 provides an SCL program editor that includes the
following elements:

® [nterface section for defining the parameters of the code block
® Code section for the program code
® Instruction tree that contains the SCL instructions supported by the CPU

You enter the SCL code for your instruction directly in the code section. For more complex
instructions, simply drag the SCL instructions from the instruction tree and drop them into
your program. You can also use any text editor to create an SCL program and then import
that file into STEP 7.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Programming concepts

-

-

-

ArAaASA

-

-

<
0« =

= w0 0 = o R o R —

Interface

Mame

Input

StartStopSwitch
Cutput

Run¥esho
InCiut

<Add news
Temp

<Add news
Return

Ret_“al

Data type

Eool

Eool

Woid

6.5 Programming language

Comment

o

CASE

oF

IF

FOR.TO WHILE
[£) oo

THEN

4/ Ztatement section IF

END_IF;

In the section of the SCL code block you can declare the following types of parameters:

e |nput, Output, InOut, and Ret_Val: These parameters define the input tags, output tags,
and return value for the code block. The tag name that you enter here is used locally
during the execution of the code block. You typically would not use the global tag name in
the tag table.

e Static (FBs only; the illustration above is for an FC): Static tags are used for storage of
static intermediate results in the instance data block. Static data is retained until
overwritten, which may be after several cycles. The names of the blocks, which are called
in this code block as multi-instance, are also stored in the static local data.

® Temp: These parameters are the temporary tags that are used during the execution of
the code block.

If you call the SCL code block from another code block, the parameters of the SCL code
block appear as inputs or outputs.

"5 tatProcess™

EN

“Start" < StatStopSwatch

ENO

Runitestio = “0n"

In this example, the tags for "Start" and "On" (from the project tag table) correspond to
"StartStopSwitch" and "RunYesNo" in the declaration table of the SCL program.

Constructing an SCL expression

An SCL expression is a formula for calculating a value. The expression consists of operands
and operators (such as *, /, + or -). The operands can be tags, constants, or expressions.

S7-1200 Programmable controller
System Manual, 04/2012, ASE024

86680-06

157

Programming concepts

6.5 Programming language

The evaluation of the expression occurs in a certain order, which is defined by the following
factors:

e Every operator has a pre-defined priority, with the highest-priority operation performed
first.

® For operators with equal priority, the operators are processed in a left-to-right sequence.
® You use parentheses to designate a series of operators to be evaluated together.

The result of an expression can be used either for assigning a value to a tag used by your
program, as a condition to be used by a control statement, or as parameters for another SCL
instruction or for calling a code block.

Table 6- 2 Operators in SCL

Type Operation Operator Priority
Parentheses (Expression) (,) 1
Math Power > 2
Sign (unary plus) + 3
Sign (unary minus) - 3
Multiplication * 4
Division / 4
Modulo MOD 4
Addition + 5
Subtraction - 5
Comparison Less than < 6
Less than or equal to <= 6
Greater than > 6
Greater than or equal to >= 6
Equal to = 7
Not equal to <> 7
Bit logic Negation (unary) NOT 3
AND logic operation AND or & 8
Exclusive OR logic operation XOR 9
OR logic operation OR 10
Assignment Assignment = 11

As a high-level programming language, SCL uses standard statements for basic tasks:
e Assignment statement: :=
e Mathematical functions: +, -, *, and /

e Addressing of global variables (tags): "<tag name>" (Tag name or data block name
enclosed in double quotes)

e Addressing of local variables: #<variable name> (Variable name preceded by "#" symbol)

S7-1200 Programmable controller
158 System Manual, 04/2012, ASE02486680-06

Programming concepts

6.5 Programming language

The following examples show different expressions for different uses.

"C" := #A+HEB; Assigns the sum of two local variables to a tag
"Data_block 1".Tag := #A; Assignment to a data block tag

IF #A > #B THEN "C" := #A; Condition for the IF-THEN statement

"C" := SQRT (SQR (#A) + SQR (#B)); Parameters for the SQRT instruction

Arithmetic operators can process various numeric data types. The data type of the result is
determined by the data type of the most-significant operands. For example, a multiplication
operation that uses an INT operand and a REAL operand yields a REAL value for the result.

Control statements

A control statement is a specialized type of SCL expression that performs the following
tasks:

® Program branching

® Repeating sections of the SCL program code
® Jumping to other parts of the SCL program

e Conditional execution

The SCL control statements include IF-THEN, CASE-OF, FOR-TO-DO, WHILE-DO,
REPEAT-UNTIL, CONTINUE, GOTO, and RETURN.

A single statement typically occupies one line of code. You can enter multiple statements on
one line, or you can break a statement into several lines of code to make the code easier to
read. Separators (such as tabs, line breaks and extra spaces) are ignored during the syntax
check. An END statement terminates the control statement.

The following examples show a FOR-TO-DO control statement. (Both forms of coding are
syntactically valid.)

FOR x := 0 TO max DO sum := sum + value(x); END_FOR;
FOR x := 0 TO max DO

sum := sum + value (x);
END_FOR;

A control statement can also be provided with a label. A label is set off by a colon at the
beginning of the statement:

Label: <Statement>;

The STEP 7 online help provides a complete SCL programming language reference.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 159

Programming concepts

6.5 Programming language

Conditions

Addressing

A condition is a comparison expression or a logical expression whose result is of type BOOL
(with the value of either TRUE or FALSE). The following example shows conditions of
various types.

#Temperature > 50 Relational expression
#Counter <= 100

#CHARL < 'S’
(#Alpha <> 12) AND NOT #Beta Comparison and logical expression

5 + #Alpha Arithmetic expression
A condition can use arithmetic expressions:
® The condition of the expression is TRUE if the result is any value other than zero.

® The condition of the expression is FALSE if the result equals zero.

As with LAD and FBD, SCL allows you to use either tags (symbolic addressing) or absolute
addresses in your user program. SCL also allows you to use a variable as an array index.

Absolute addressing
10.0
MB100

Symbolic addressing

"PLC_Tag_1" Tag in PLC tag table
"Data_block_1".Tag_1 Tag in a data block
"Data_block 1".MyArray[#i] Array element in a data block array

Indexed addressing with PEEK and POKE instructions

160

SCL provides PEEK and POKE instructions that allow you to read from or write to data
blocks, 1/0, or memory. You provide parameters for specific byte offsets or bit offsets for the
operation.

Note

To use the PEEK and POKE instructions with data blocks, you must use standard (not
optimized) data blocks. Also note that the PEEK and POKE instructions merely transfer data.
They have no knowledge of data types at the addresses.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Programming concepts

6.5 Programming language

PEEK (area:= in_, Reads the byte referenced by byteOffset of
dbNumber:=_in_, the referenced data block, 1/O or memory
byteOffset:= _in_); area.

Example referencing data block:

$MB100 := PEEK (area:=16#84,
dbNumber:=1, byteOffset:=#i);

Example referencing IB3 input:

$MB100 := PEEK (area:=16#81,
dbNumber:=0, byteOffset:=#i); // when

#i =3
PEEK_WORD (area:=_in_, Reads the word referenced by byteOffset of
dbNumber:=_in_, the referenced data block, /0 or memory
byteOffset:= _in); area.
Example:
$MW200 := PEEK WORD (area:=16#84,
dbNumber:=1, byteOffset:=#i) ;
PEEK_DWORD (area:= in_, Reads the double word referenced by
dbNumber:=_in_, byteOffset of the referenced data block, /O or
byteOffset:= in); memory area.
Example:
$MD300 := PEEK_DWORD (area:=164#84,
dbNumber:=1, byteOffset:=#i) ;
PEEK_BOOL (area:=_in_, Reads a Boolean referenced by the bitOffset
dbNumber:= in_, and byteOffset of the referenced data block,
byteOffset:=_in_, I/O or memory area
bitOffset:= in_); Example:

$MB100.0 := PEEK_BOOL (area:=16#84,
dbNumber:=1, byteOffset:=#ii,
bitOffset:=#j) ;

POKE (area:= in_, Writes the value (Byte, Word, or DWord) to
dbNumber:= in_, the referenced byteOffset of the referenced
byteOffset:= in , data block, /0O or memory area

value:= in); Example referencing data block:

POKE(area:=16#84, dbNumber:=2,
byteOffset:=3, value:="Tag_1");

Example referencing QB3 output:
POKE (area:=16#82, dbNumber:=0,
byteOffset:=3, value:="Tag_1");

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 161

Programming concepts

6.5 Programming language

POKE_BOOL (area:=_in_, Writes the Boolean value to the referenced
dbNumber:=_in_, bitOffset and byteOffset of the referenced
byteOffset:= in , data block, /0 or memory area

bitOffset:= in_,

) Example:
value:=_in);

POKE_BOOL (area:=16#84, dbNumber:=2,
byteOffset:=3, bitOffset:=5,

value:=0) ;

POKE_BLK (area_src:=_in_, Writes "count" number of bytes starting at the
dbNumber_src:=_in_, referenced byte Offset of the referenced
byteOffset src:= in_, source data block, 1/0O or memory area to the
area dest:= in , referenced byteOffset of the referenced
dbNumber_dest:=_in_, destination data block, /O or memory area
byteOffset dest:= in_, Example:

count:= in);
- = POKE_BLK (area_src:=16#84,

dbNumber_ src:=#src_db,
byteOffset_src:=#src_byte,
area_dest:=16#84,

dbNumber dest:=#src_db,
byteOffset dest:=#src_byte,
count:=10) ;

For PEEK and POKE instructions, the following values for the "area", "area_src" and
"area_dest" parameters are applicable. For areas other than data blocks, the dbNumber
parameter must be 0.

16#81 |
16#82 Q
16#83 M
16#84 DB

Calling other code blocks from your SCL program

To call another code block in your user program, simply enter the name (or absolute
address) of the FB or FC with the parameters. For an FB, you must provide the instance DB
to be called with the FB.

<DB name> (Parameter list) Call as a single instance
<#Instance name> (Parameter list) Call as multi-instance

"MyDB" (MyInput:=10, MyInOut:="Tagl");

<FC name> (Parameter list) Standard call
<Operand>:=<FC name> (Parameter list) Call in an expression

"MyFC" (MyInput:=10, MyInOut:="Tagl");

S7-1200 Programmable controller
162 System Manual, 04/2012, ASE02486680-06

Programming concepts

6.5.4

6.5 Programming language

You can also drag blocks from the navigation tree to the SCL program editor, and complete
the parameter assignment.

EN and ENO for LAD, FBD and SCL

Determining "power flow" (EN and ENO) for an instruction

Table 6- 3 Operands for EN and ENO

Certain instructions (such as the Math and the Move instructions) provide parameters for EN
and ENO. These parameters relate to power flow in LAD or FBD and determine whether the
instruction is executed during that scan. SCL also allows you to set the ENO parameter for a

code block.

e EN (Enable In) is a Boolean input. Power flow (EN = 1) must be present at this input for
the box instruction to be executed. If the EN input of a LAD box is connected directly to

the left power rail, the instruction will always be executed.

e ENO (Enable Out) is a Boolean output. If the box has power flow at the EN input and the
box executes its function without error, then the ENO output passes power flow
(ENO = 1) to the next element. If an error is detected in the execution of the box
instruction, then power flow is terminated (ENO = 0) at the box instruction that generated

the error.

Program editor Inputs/outputs Operands Data type

LAD EN, ENO Power flow Bool

FBD EN I, I:P, Q, M, DB, Temp, Power Flow Bool
ENO Power Flow Bool

SCL EN? TRUE, FALSE Bool
ENO?2 TRUE, FALSE Bool

1 The use of EN is only available for FBs.

2. The use of ENO with the SCL code block is optional. You must configure the SCL compiler to set ENO when the code

block finishes.

Configuring SCL to set ENO

To configure the SCL compiler for setting ENO, follow these steps:

1. Select the "Settings" command from the "Options" menu.

2. Expand the "PLC programming" properties and select "SCL (Structured Control

Language)".

3. Select the "Set ENO automatically" option.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

163

Programming concepts

6.6 Protection

Effect of Ret_Val or Status parameters on ENO

See also

6.6

6.6.1

164

Some instructions, such as the communication instructions or the string conversion
instructions, provide an output parameter that contains information about the processing of
the instruction. For example, some instructions provide a Ret_Val (return value) parameter,
which is typically an Int data type that contains status information in a range from -32768 to
+32767. Other instructions provide a Status parameter, which is typically a Word data type
that stores status information in a range of hexadecimal values from 16#0000 to 16#FFFF.
The numerical value stored in a Ret_Val or a Status parameter determines the state of ENO
for that instruction.

e Ret_Val: A value from 0 to 32767 typically sets ENO = 1 (or TRUE). A value from -32768
to -1 typically sets ENO = 0 (or FALSE). To evaluate Ret_Val, change the representation
to hexadecimal.

e Status: A value from 16#0000 16#7FFF typically sets ENO = 1 (or TRUE). A value from
16#8000 to 16#FFFF typically sets ENO = 0 (or FALSE).

Instructions that take more than one scan to execute often provide a Busy parameter (Bool)
to signal that the instruction is active but has not completed execution. These instructions
often also provide a Done parameter (Bool) and an Error parameter (Bool). Done signals that
the instruction was completed without error, and Error signals that the instruction was
completed with an error condition.

® When Busy =1 (or TRUE), ENO = 1 (or TRUE).
® When Done = 1 (or TRUE), ENO = 1 (or TRUE).
® When Error = 1 (or TRUE), ENO = 0 (or FALSE).

OK and Not OK instructions (Page 197)

Protection

Access protection for the CPU

The CPU provides three levels of security for restricting access to specific functions. When
you configure the security level and password for a CPU, you limit the functions and memory
areas that can be accessed without entering a password.

The password is case-sensitive.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Programming concepts

6.6 Protection

To configure the password, Protection
follow these steps:

1. In the "Device configuration”,
select the CPU.

Mo protection

Wifrite protection

2. In the inspector window, « Readhwrite protection
select the "Properties” tab.

3. Select the "Protection” SaEEiarSionen i talac e
property to select the Password:
protection level and to enter a Confirrn passward:
password.

Each level allows certain functions to be accessible without a password. The default
condition for the CPU is to have no restriction and no password-protection. To restrict access
to a CPU, you configure the properties of the CPU and enter the password.

Entering the password over a network does not compromise the password protection for the
CPU. Password protection does not apply to the execution of user program instructions
including communication functions. Entering the correct password provides access to all of
the functions.

PLC-to-PLC communications (using communication instructions in the code blocks) are not
restricted by the security level in the CPU. HMI functionality is also not restricted.

Table 6- 4 Security levels for the CPU

Security level

Access restrictions

No protection

Allows full access without password-protection.

Write protection

Allows HMI access and all forms of PLC-to-PLC communications without password-protection.

Password is required for modifying (writing to) the CPU and for changing the CPU mode
(RUN/STOP).

Read/write protection Allows HMI access and all forms of PLC-to-PLC communications without password-protection.

Password is required for reading the data in the CPU, for modifying (writing to) the CPU, and for
changing the CPU mode (RUN/STOP).

6.6.2

Know-how protection

Know-how protection allows you to prevent one or more code blocks (OB, FB, FC, or DB) in
your program from unauthorized access. You create a password to limit access to the code
block. The password-protection prevents unauthorized reading or modification of the code
block. Without the password, you can read only the following information about the code
block:

® Block title, block comment, and block properties
® Transfer parameters (IN, OUT, IN_OUT, Return)
® (Call structure of the program

® Global tags in the cross references (without information on the point of use), but local
tags are hidden

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 165

Programming concepts

6.6 Profection
When you configure a block for "know-how" protection, the code within the block cannot be
accessed except after entering the password.
Use the "Properties" task card of the code block to configure the know-how protection for
that block. After opening the code block, select "Protection” from Properties.
| General |
;I-:—:rl?'llfll':lllnn Prﬂttl:ﬂtlll
Time stamps Know-how protection
Compilation
m The block iz not protected
Aatributes Frotection
Copy protection
. Ho binding [
1. In the Properties for the code block, click FEIg L EILE
the "Protection" button to display the
"Know-how protection” dialog.
2. Click the "Define" button to enter the S a
password. e —
oF, Cancel
e
After entering and confirming the password, FITZITL %
click "OK".
Enter protection pa‘psw\-:-rd
Hew n
Confirm | ﬂ
ok Cancel
I —_—_SBSBSBSBS————— . ..
6.6.3 Copy protection

An additional security feature allows you to bind the program or code blocks for use with a
specific memory card or CPU. This feature is especially useful for protecting your intellectual
property. When you bind a program or block to a specific device, you restrict the program or
code block for use only with a specific memory card or CPU. This feature allows you to
distribute a program or code block electronically (such as over the Internet or through email)
or by sending a memory cartridge.

S7-1200 Programmable controller
166 System Manual, 04/2012, ASE02486680-06

Programming concepts

6.6 Protection

Use the "Properties" task card of the code block to bind the block to a specific CPU or

memory card.

1. After opening the code block, select "Protection".

General
General
Protection
Infarmation
Time stamps Know-how protection
Compilation
m The block iz not protected
Artributes [Protection |
Copy protection
o r
Ha binding
¥ venal number inserte en devwnloading to a device ar a menr
Enter s=nal number

2. From the drop-down list under "Copy protection" task, select the option to bind the code

block either to a memory card or to a specific CPU.

Know-how protection

The block is not protecred

Protection |

Copy protection

Bind to senal number of the OFU

®) serial number inserted when downlsading to a device or 8 memaory card

o Enter senal number

CPU.

Select the type of copy protection and enter the serial number for the memory card or

Note

The serial number is case-sensitive.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

167

Programming concepts

6.7 Downloading the elements of your program

6.7 Downloading the elements of your program

You can download the elements of your project from the programming device to the CPU.
When you download a project, the CPU stores the user program (OBs, FCs, FBs and DBs)
in permanent memory.

Exiended demmload te devoe

Conligmed aconiiingded ol TLE. 1
[Dt B e Addrndn
net = EF T AT LT

PG ropdace lor eading. P _bnu DLEI00 N8 20 N

You can download your project from the programming device to your CPU from any of the
following locations:

e "Project tree": Right-click the program element, and then click the context-sensitive
"Download" selection.

e "Online" menu: Click the "Download to device" selection.

® Toolbar: Click the "Download to device" icon.

6.8 Uploading from the CPU

6.8.1 Copying elements of the project

You can also copy the program blocks from an online CPU or a memory card attached to
your programming device.

S7-1200 Programmable controller
168 System Manual, 04/2012, ASE02486680-06

Programming concepts

6.8 Uploading from the CPU

Prepare the offline project for the copied program blocks: « jesjean

1. Add a CPU device that matches the online CPU. gn“. s
2. Expand the CPU node once so that the "Program il 1FLc7 [P 1212¢ Do)

[ﬂ‘ Device configuration
Y Online & diagnostics

blocks" folder is visible.

* g Program blocks
‘r" Add new blocl
& Mam [0B1]

To upload the program blocks from the online CPU to the ' 5 5, onjine
offline project, follow these steps:

1. Click the "Program blocks" folder in the offline project. i
2. Click the "Go online" button.

3. Click the "Upload" button.

4. Confirm your decision from the Upload dialog

(Page 675).
As an alternative to the previous method, follow these S Cniine aceess |
steps: » CQusE [5TUSE]]
mcom]
1. From the project navigator, expand the node for ¥ PC adapter [MP])
"Online access" to select the program blocks in the LR CPEE1T MY -
. . * | intel{R) PRV OG0 T Metvork Con]
onllne CPU - _&D-Lll-l- DUB-E100 USE 20 FamtEr 1
2. Expand the node for the network, and double click &1 Updiseazessrible devices
"Update accessible devices". sl oot
3. Expand the node for the CPU. v P'“--?”'"h‘“-:'|=
& Mam |28
4. Drag the "Program blocks" folder from the online CPU & Elock_| [F1)
and drop the folder into the "Program blocks" folder of ¥ L Technolagical abjects

¥ L PLC data typea

your offline project.

5. In the "Upload preview" dialog, select the box for
"Continue", and then click the "Upload from device"
button.

When the upload is complete, all of the program blocks, B 7 [cPU 1272C DoDoDC])
technology blocks, and tags will be displayed in the offline By vevice configuranon

B Onbine & disgnostics

area. w lgi Frogram blocks
B Add e bloc
& Mam [OB1]
3 Block_1 [FC1]
Note

You can copy the program blocks from the online CPU to an existing program. The
"Program-blocks" folder of the offline project does not have to be empty. However, the
existing program will be deleted and replaced by the user program from the online CPU.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 169

Programming concepts

6.9 Debugging and testing the program

6.8.2 Using the compare function
You can use the "Compare" editor (Page 681) in STEP 7 to find differences between the
online and offline projects. You might find this useful prior to uploading from the CPU.
6.9 Debugging and testing the program
6.9.1 Monitor and modify data in the CPU
As shown in the following table, you can monitor and modify values in the online CPU.
Table 6-5 Monitoring and modifying data with STEP 7
Editor Monitor Modify Force
Watch table Yes Yes No
Force table Yes No Yes
Program editor Yes Yes No
Tag table Yes No No
DB editor Yes No No
- Monitoring with a
watch table
!‘:’] =y =§ i Fa 1 |GE: Fary
Hame tddress Dusplay format Klantar value Medidy value
*on" 00 0 Eaal FALSE
"o %01 Boel [&] FALSE
*Run® i O Bosl [& FeLSE
on- - o Monitoring with the LAD editor
e { -
Run” E
-
Refer to the "Online and diagnostics" chapter for more information about monitoring and
modifying data in the CPU (Page 682).
6.9.2 Watch tables and force tables

You use "watch tables" for monitoring and modifying the values of a user program being
executed by the online CPU. You can create and save different watch tables in your project
to support a variety of test environments. This allows you to reproduce tests during
commissioning or for service and maintenance purposes.

170

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

Programming concepts

6.9 Debugging and testing the program

With a watch table, you can monitor and interact with the CPU as it executes the user
program. You can display or change values not only for the tags of the code blocks and data
blocks, but also for the memory areas of the CPU, including the inputs and outputs (I and Q),
peripheral inputs (I:P), bit memory (M), and data blocks (DB).

With the watch table, you can enable the physical outputs (Q:P) of a CPU in STOP mode.
For example, you can assign specific values to the outputs when testing the wiring for the
CPU.

STEP 7 also provides a force table for "forcing" a tag to a specific value. For more
information about forcing, see the section on forcing values in the CPU (Page 689) in the
"Online and Diagnostics" chapter.

Note

The force values are stored in the CPU and not in the watch table.

You cannot force an input (or "I" address). However, you can force a peripheral input. To
force a peripheral input, append a ":P" to the address (for example: "On:P").

6.9.3 Cross reference to show usage

The Inspector window displays cross-reference information about how a selected object is
used throughout the complete project, such as the user program, the CPU and any HMI
devices. The "Cross-reference" tab displays the instances where a selected object is being
used and the other objects using it. The Inspector window also includes blocks which are
only available online in the cross-references. To display the cross-references, select the
"Show cross-references" command. (In the Project view, find the cross references in the
"Tools" menu.)

Note

You do not have to close the editor to see the cross-reference information.

You can sort the entries in the cross-reference. The cross-reference list provides an
overview of the use of memory addresses and tags within the user program.

® \When creating and changing a program, you retain an overview of the operands, tags
and block calls you have used.

® From the cross-references, you can jump directly to the point of use of operands and
tags.

® During a program test or when troubleshooting, you are notified about which memory
location is being processed by which command in which block, which tag is being used in
which screen, and which block is called by which other block.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 171

Programming concepts
6.9 Debugging and testing the program

Table 6- 6 Elements of the cross reference

Column Description

Object Name of the object that uses the lower-level objects or that is being used by the
lower-level objects

Quantity Number of uses

Location Each location of use, for example, network

Property Special properties of referenced objects, for example, the tag names in multi-instance
declarations

as Shows additional information about the object, such as whether an instance DB is
used as template or as a multiple instance

Access Type of access, whether access to the operand is read access (R) and/or write
access (W)

Address Address of the operand

Type Information on the type and language used to create the object

Path Path of object in project tree

6.94 Call structure to examine the calling hierarchy

The call structure describes the call hierarchy of the block within your user program. It
provides an overview of the blocks used, calls to other blocks, the relationships between
blocks, the data requirements for each block, and the status of the blocks. You can open the
program editor and edit blocks from the call structure.

Displaying the call structure provides you with a list of the blocks used in the user program.
STEP 7 highlights the first level of the call structure and displays any blocks that are not
called by any other block in the program. The first level of the call structure displays the OBs
and any FCs, FBs, and DBs that are not called by an OB. If a code block calls another block,
the called block is shown as an indentation under the calling block. The call structure only
displays those blocks that are called by a code block.

You can selectively display only the blocks causing conflicts within the call structure. The
following conditions cause conflicts:

® Blocks that execute any calls with older or newer code time stamps
® Blocks that call a block with modified interface

® Blocks that use a tag with modified address and/or data type

® Blocks that are called neither directly nor indirectly by an OB

® Blocks that call a non-existent or missing block

You can group several block calls and data blocks as a group. You use a drop-down list to
see the links to the various call locations.

S7-1200 Programmable controller
172 System Manual, 04/2012, ASE02486680-06

Programming concepts

6.9 Debugging and testing the program

You can also perform a consistency check to show time stamp conflicts. Changing the time
stamp of a block during or after the program is generated can lead to time stamp conflicts,
which in turn cause inconsistencies among the blocks that are calling and being called.

® Most time stamp and interface conflicts can be corrected by recompiling the code blocks.

o |f compilation fails to clear up inconsistencies, use the link in the "Details" column to go to
the source of the problem in the program editor. You can then manually eliminate any
inconsistencies.

® Any blocks marked in red must be recompiled.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 173

Programming concepts

6.9 Debugging and testing the program

S7-1200 Programmable controller
174 System Manual, 04/2012, ASE02486680-06

Basic instructions

71 Bit logic
711 Bit logic contacts and coils
LAD and FBD are very effective for handling Boolean logic. While SCL is especially effective
for complex mathematical computation and for project control structures, you can use SCL
for Boolean logic.
LAD contacts
Table 7- 1 Normally open and normally closed contacts
LAD SCL Description
- IF in THEN Normally open and normally closed contacts: You can connect contacts
I y Yy
— Statement; to other contacts and create your own combination logic. If the input bit
ELSE you specify uses memory identifier | (input) or Q (output), then the bit
Statement: value is read from the process-image register. The physical contact
END IF; signals in your control process are wired to | terminals on the PLC. The
- IF NOT (in) THEN CPU scans.the wired input §ignals and coqtinuou§ly updat.es the
I corresponding state values in the process-image input register.
—— Statement;) . . s S npn
ELSE You can specify an immediate read of a physical input using ":P
St . following the | offset (example: "%I13.4:P"). For an immediate read, the bit
atement;
data values are read directly from the physical input instead of the
END IF; .) .)
- process image. An immediate read does not update the process image.
Table 7- 2 Data types for the parameters
Parameter Data type Description
IN Bool Assigned bit

® The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.

® The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.

® (Contacts connected in series create AND logic networks.

® (Contacts connected in parallel create OR logic networks.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06 175

Basic instructions

7.1 Bit logic

FBD AND, OR, and XOR boxes

In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and
exclusive OR (x) box networks where you can specify bit values for the box inputs and
outputs. You may also connect to other logic boxes and create your own logic combinations.
After the box is placed in your network, you can drag the "Insert input” tool from the
"Favorites" toolbar or instruction tree and then drop it onto the input side of the box to add
more inputs. You can also right-click on the box input connector and select "Insert input".

Box inputs and outputs can be connected to another logic box, or you can enter a bit
address or bit symbol name for an unconnected input. When the box instruction is executed,
the current input states are applied to the binary box logic and, if true, the box output will be
true.

Table 7- 3 AND, OR, and XOR boxes

FBD SCL! Description

3 out := inl AND All inputs of an AND box must be TRUE for the output to be TRUE.
I — in2;
N2 — -

- out := inl OR Any input of an OR box must be TRUE for the output to be TRUE.
T — B in2;
“INZ — —

" out := inl XOR An odd number of the inputs of an XOR box must be TRUE for the output

T in2; to be TRUE.
“INZ — -

T For SCL: You must assign the result of the operation to a variable to be used for another statement.

Table 7- 4 Data types for the parameters

Parameter Data type Description
IN1, IN2 Bool Input bit

S7-1200 Programmable controller
176 System Manual, 04/2012, ASE02486680-06

Basic instructions

NOT logic inverter

7.1 Bit logic

Table 7- 5 NOT Logic inverter
LAD FBD SCL Description
NOT For FBD programming, you can drag the "Negate binary input" tool
— NOT = - from the "Favorites" toolbar or instruction tree and then drop it on an
"IN = - input or output to create a logic inverter on that box connector.
The LAD NOT contact inverts the logical state of power flow input.
e If there is no power flow into the NOT contact, then there is power
N1 g flow out.
"IN — o
o [f there is power flow into the NOT contact, then there is no power
flow out.

Output coil and assignment box

The coil output instruction writes a value for an output bit. If the output bit you specify uses
memory identifier Q, then the CPU turns the output bit in the process-image register on or
off, setting the specified bit equal to power flow status. The output signals for your control
actuators are wired to the Q terminals of the CPU. In RUN mode, the CPU system
continuously scans your input signals, processes the input states according to your program
logic, and then reacts by setting new output state values in the process-image output
register. After each program execution cycle, the CPU system transfers the new output state
reaction stored in the process-image register to the wired output terminals.

Table 7- 6 Output coil (LAD) and output assignment box (FBD)
LAD FBD SCL Description
QT “ouT out := <Boolean In FBD programming, LAD coils are transformed into
— — = expression>; assignment (= and /=) boxes where you specify a bit
— address for the box output. Box inputs and outputs can be
connected to other box logic or you can enter a bit
QU quT out := NOT address.
—{/— iz <Boolean You can specify an immediate write of a physical output
- expression>; using ":P" following the Q offset (example: "%Q3.4:P").
For an immediate write, the bit data values are written to
e the process image output and directly to physical output.
=
Table 7-7 Data types for the parameters
Parameter Data type Description
ouT Bool Assigned bit

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

177

Basic instructions

7.1 Bit logic

e |[f there is power flow through an output coil or an FBD "=" box is enabled, then the output

bit is set to 1.

e |[f there is no power flow through an output coil or an FBD "=" assignment box is not

enabled, then the output bit is set to 0.

e |[f there is power flow through an inverted output coil or an FBD "/=" box is enabled, then

the output bit is set to 0.

e |[f there is no power flow through an inverted output coil or an FBD "/=" box is not enabled,
then the output bit is set to 1.

71.2 Set and reset instructions

Set and Reset 1 bit

Table 7- 8 S and R instructions

LAD FBD SCL Description
U "ouT" Not available When S (Set) is activated, then the data value at the OUT
T T address is set to 1. When S is not activated, OUT is not
—{S}H— "IN — — changed.
“UT" Ut Not available When R (Reset) is activated, then the data value at the OUT
TR address is set to 0. When R is not activated, OUT is not
—{R}— N — - changed.

1 For LAD and FBD: These instructions can be placed anywhere in the network.

2 For SCL: You must write code to replicate this function within your application.

Table 7-9 Data types for the parameters

Parameter Data type Description
IN (or connect to contact/gate logic) Bool Bit location to be monitored
ouT Bool Bit location to be set or reset

178

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

Set and Reset Bit Field

Table 7- 10 SET_BF and RESET_BF instructions

7.1 Bit logic

LAD!? FBD SCL Description
OUT Ut Not available When SET_BF is activated, a data value of 1 is assigned to "n"
TEETBE bits starting at address OUT. When SET_BF is not activated,
—{SET_BFH —EN OUT is not changed.
Ilnll N
QT "guT" Not available RESET_BF writes a data value of 0 to "n" bits starting at
RESET BE address OUT. When RESET_BF is not activated, OUT is not
—{ RESET_BF) —_EN changed.
TS N

1 For LAD and FBD: These instructions must be the right-most instruction in a branch.

2 For SCL: You must write code to replicate this function within your application.

Table 7- 11 Data types for the parameters
Parameter Data type Description
ouT Bool Starting element of a bit field to be set or reset (Example:
#MyArray[3])
n Constant (Uint) Number of bits to write

Set-dominant and Reset-dominant bit latches

Table 7- 12 RS and SR instructions

LAD / FBD SCL Description
g Not available RS is a set dominant latch where the set dominates. If the set (S1) and reset (R)
RS signals are both true, the output address OUT will be 1.
—F (=
=51
"quT" Not available SR is a reset dominant latch where the reset dominates. If the set (S) and reset
T (R1) signals are both true, the output address OUT will be 0.
-5 (]
- R1

1 For LAD and FBD: These instructions must be the right-most instruction in a branch.

2 For SCL: You must write code to replicate this function within your application.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

179

Basic instructions

7.1 Bit logic

Table 7- 13 Data types for the parameters

Parameter Data type Description
S, S1 Bool Set input; 1 indicates dominance
R, R1 Bool Reset input; 1 indicates dominance
ouT Bool Assigned bit output "OUT"
Q Bool Follows state of "OUT" bit
The OUT parameter specifies the bit address that is set or reset. The optional OUT output Q
reflects the signal state of the "OUT" address.
Instruction S1 R "OUT" bit
RS 0 0 Previous state
0 1 0
1 0 1
1 1 1
S R1
SR 0 0 Previous state
0 1 0
1 0 1
1 1 0
713 Positive and negative edge instructions
Table 7- 14 Positive and negative transition detection
LAD FBD SCL Description
e R Not available LAD: The state of this contact is TRUE when a positive transition (OFF-
p to-ON) is detected on the assigned "IN" bit. The contact logic state is
— P} then combined with the power flow in state to set the power flow out
“W_BIT" | state. The P contact can be located anywhere in the network except the
"M_BIT" end of a branch.
FBD: The output logic state is TRUE when a positive transition (OFF-
to-ON) is detected on the assigned input bit. The P box can only be
located at the beginning of a branch.
p R Not available LAD: The state of this contact is TRUE when a negative transition (ON-
i to-OFF) is detected on the assigned input bit. The contact logic state is
—N— then combined with the power flow in state to set the power flow out
"W_EIT" - : n state. The N contact can be located anywhere in the network except
M_EIT the end of a branch.
FBD: The output logic state is TRUE when a negative transition (ON-to-
OFF) is detected on the assigned input bit. The N box can only be
located at the beginning of a branch.
S7-1200 Programmable controller
180 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.1 Bit logic

LAD

FBD

SCL

Description

Ut

—(P =
"M_BIT"

|||:|L|T||

Not available

P:

"M_BIT"

LAD: The assigned bit "OUT" is TRUE when a positive transition (OFF-
to-ON) is detected on the power flow entering the coil. The power flow
in state always passes through the coil as the power flow out state. The
P coil can be located anywhere in the network.

FBD: The assigned bit "OUT" is TRUE when a positive transition (OFF-
to-ON) is detected on the logic state at the box input connection or on
the input bit assignment if the box is located at the start of a branch.
The input logic state always passes through the box as the output logic
state. The P= box can be located anywhere in the branch.

Ut

—(N —
"M_BIT"

Ut

Not available

"M_EI

T

LAD: The assigned bit "OUT" is TRUE when a negative transition (ON-
to-OFF) is detected on the power flow entering the coil. The power flow
in state always passes through the coil as the power flow out state. The
N coil can be located anywhere in the network.

FBD: The assigned bit "OUT" is TRUE when a negative transition (ON-
to-OFF) is detected on the logic state at the box input connection or on
the input bit assignment if the box is located at the start of a branch.
The input logic state always passes through the box as the output logic
state. The N= box can be located anywhere in the branch.

1 For SCL: You must write code to replicate this function within your application.

Table 7- 15 P_TRIG and N_TRIG instructions

LAD / FBD

SCL

Description

CLE

FP_TRIG

i

"M_BIT"

Not available

The Q output power flow or logic state is TRUE when a positive transition
(OFF-to-ON) is detected on the CLK input state (FBD) or CLK power flow
in (LAD).

In LAD, the P_TRIG instruction cannot be located at the beginning or end
of a network. In FBD, the P_TRIG instruction can be located anywhere
except the end of a branch.

N_TRIG
CLE

0k

"W_BIT"

Not available

The Q output power flow or logic state is TRUE when a negative transition
(ON-to-OFF) is detected on the CLK input state (FBD) or CLK power flow
in (LAD).

In LAD, the N_TRIG instruction cannot be located at the beginning or end
of a network. In FBD, the N_TRIG instruction can be located anywhere
except the end of a branch.

1 For SCL: You must write code to replicate this function within your application.

Table 7- 16 Data types for the parameters (P and N contacts/coils, P=, N=, P_TRIG and N_TRIG)

Parameter Data type Description

M_BIT Bool Memory bit in which the previous state of the input is saved

IN Bool Input bit whose transition edge is to be detected

ouT Bool Output bit which indicates a transition edge was detected
CLK Bool Power flow or input bit whose transition edge is to be detected
Q Bool Output which indicates an edge was detected

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

181

Basic instructions

7.2 Timers

All edge instructions use a memory bit (M_BIT) to store the previous state of the input signal
being monitored. An edge is detected by comparing the state of the input with the state of
the memory bit. If the states indicate a change of the input in the direction of interest, then an
edge is reported by writing the output TRUE. Otherwise, the output is written FALSE.

Note

Edge instructions evaluate the input and memory-bit values each time they are executed,
including the first execution. You must account for the initial states of the input and memory
bit in your program design either to allow or to avoid edge detection on the first scan.

Because the memory bit must be maintained from one execution to the next, you should use
a unique bit for each edge instruction, and you should not use this bit any other place in your
program. You should also avoid temporary memory and memory that can be affected by
other system functions, such as an I/O update. Use only M, global DB, or Static memory (in
an instance DB) for M_BIT memory assignments.

7.2 Timers

You use the timer instructions to create programmed time delays. The number of timers that
you can use in your user program is limited only by the amount of memory in the CPU. Each
timer uses a 16 byte IEC_Timer data type DB structure to store timer data that is specified at
the top of the box or coil instruction. STEP 7 automatically creates the DB when you insert
the instruction.

Table 7- 17 Timer instructions

LAD / FBD boxes LAD coils SCL Description
IEC_Timer_0 TP OB "IEC_Timer_O0_DB".TP(The TP timer generates a pulse with a preset
TR T —{TP }— IN:= bool in_, width time.
Time "PRESET_Tag" PT:=_time_in ,
=M Q- Q=> bool out_,
il dl ET=>_time_out);
IEC. Timer_1 TOM_DE "IEC_Timer_O0_DB".TON (The TON timer sets output Q to ON after a preset
T —{TON }— IN: =_bool_in_, time delay.
Time "FRESET Tag” PT:=_time_in ,
=N 0= Q=> bool out_,
il i ET=>_time_out);
IEC_Timer_2 TOF_OB "IEC Timer O _DB".TOF (The TOF timer resets output Q to OFF after a
ToF —{TOF }— IN:= bool_in_, preset time delay.
Time "PRESET_Tag" PT:=_time_in_,
N O Q=> bool out ,
T ET ~ P

ET=>_ time_ out) ;

182

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.2 Timers

LAD / FBD boxes LAD coils SCL Description
IEC_Timer_3 TONA_OB "IEC_Timer 0 DB".TONR (|The TONR timer sets output Q to ON after a
= —{ TOMR }— IN:= bool in _, preset time delay. Elapsed time is accumulated
Time “PRESET Tag" R:= bool in over multiple timing periods until the R input is
I 0= PT:= time in , used to reset the elapsed time.
— B Q=> bool_out_,
ET=>_time_ out);
FBD only: TON_DE (No SCL equivalent) The PT (Preset timer) coil loads a new PRESET
—{FT — time value in the specified IEC_Timer.
_ - "PRESET_Tag"
T —
FBD only: TOM_DE (No SCL equivalent) The RT (Reset timer) coil resets the specified
— AT} IEC_Timer.

RT

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL examples, "IEC_Timer_0_DB" is the name of the instance DB.

Table 7- 18 Data types for the parameters

Parameter Data type Description
Box: IN Bool TP, TON, and TONR:
Coil: Power flow Box: 0=Disable timer, 1=Enable timer
Coil: No power flow=Disable timer, Power flow=Enable timer
TOF:
Box: 0=Enable timer, 1=Disable timer
Coil: No power flow=Enable timer, Power flow=Disable timer
R Bool TONR box only:
0=No reset
1= Reset elapsed time and Q bit to 0
Box: PT Time Timer box or coil: Preset time input
Coil: "PRESET_Tag"
Box: Q Bool Timer box: Q box output or Q bit in the timer DB data
Coil: DBdata.Q Timer coil: you can only address the Q bit in the timer DB data
Box: ET Time Timer box: ET (elapsed time) box output or ET time value in the timer DB
Coil: DBdata.ET data
Timer coil: you can only address the ET time value in the timer DB data.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

183

Basic instructions

7.2 Timers

Table 7- 19 Effect of value changes in the PT and IN parameters

Timer Changes in the PT and IN box parameters and the corresponding coil parameters
TP e Changing PT has no effect while the timer runs.
e Changing IN has no effect while the timer runs.
TON e Changing PT has no effect while the timer runs.
e Changing IN to FALSE, while the timer runs, resets and stops the timer.
TOF e Changing PT has no effect while the timer runs.
e Changing IN to TRUE, while the timer runs, resets and stops the timer.
TONR o

Changing PT has no effect while the timer runs, but has an effect when the timer resumes.

Changing IN to FALSE, while the timer runs, stops the timer but does not reset the timer. Changing
IN back to TRUE will cause the timer to start timing from the accumulated time value.

PT (preset time) and ET (elapsed time) values are stored in the specified IEC_TIMER DB
data as signed double integers that represent milliseconds of time. TIME data uses the T#
identifier and can be entered as a simple time unit (T#200ms or 200) and as compound time
units like T#2s_200ms.

Table 7- 20 Size and range of the TIME data type

Data type

Size Valid number ranges'’

TIME

32 bits, stored T#-24d_20h_31m_23s_648ms to T#24d_20h_31m_23s_647ms
as Dint data Stored as -2,147,483,648 ms to +2,147,483,647 ms

1 The negative range of the TIME data type shown above cannot be used with the timer instructions. Negative PT (preset
time) values are set to zero when the timer instruction is executed. ET (elapsed time) is always a positive value.

Timer coil example

184

The -(TP)-, -(TON)-, -(TOF)-, and -(TONR)- timer coils must be the last instruction in a LAD
network. As shown in the timer example, a contact instruction in a subsequent network
evaluates the Q bit in a timer coil's IEC_Timer DB data. Likewise, you must address the
ELAPSED element in the IEC_timer DB data if you want to use the elapsed time value in
your program.

"Tag_Input” Timer
| { | {TF —

"Tag_Time"

| “DE1".MyIEC_

The pulse timer is started on a 0 to 1 transition of the Tag_Input bit value. The timer runs for
the time specified by Tag_Time time value.

"OB1".MylEC_
Timer.0) "Tag_Output”

] 1 I 3
I 11 L)

As long as the timer runs, the state of DB1.MylEC_Timer.Q=1 and the Tag_Output value=1.
When the Tag_Time value has elapsed, then DB1.MylEC_Timer.Q=0 and the Tag_Output
value=0.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

Reset timer -(RT)- and Preset timer -(PT)- coils

7.2 Timers

These coil instructions can be used with box or coil timers and can be placed in a mid-line
position. The coil output power flow status is always the same as the coil input status. When
the -(RT)- coil is activated, the ELAPSED time element of the specified IEC_Timer DB data
is reset to 0. When the -(PT)- coil is activated, the PRESET time element of the specified

IEC_Timer DB data is reset to 0.

Note

When you place timer instructions in an FB, you can select the "Multi-instance data block"
option. The timer structure names can be different with separate data structures, but the
timer data is contained in a single data block and does not require a separate data block for
each timer. This reduces the processing time and data storage necessary for handling the
timers. There is no interaction between the timer data structures in the shared multi-instance

DB.

Operation of the timers

Table 7-21 Types of IEC timers

Timer

Timing diagram

TP: Pulse timer

The TP timer generates a pulse with a preset width
time.

IN

ET

(e

Q
PT [pT | [pT |

TON: ON-delay timer IN
The TON timer sets output Q to ON after a preset time
delay.

ET

PT+

Q PT PT

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

185

Basic instructions

7.2 Timers
Timer Timing diagram
TOF: OFF-delay timer IN
The TOF timer resets output Q to OFF after a preset
time delay. |_|

ET

PTT

Q

P PT

TONR: ON-delay Retentive timer IN 4

time.

The TONR timer sets output Q to ON after a preset time

delay. Elapsed time is accumulated over multiple timing | |

periods until the R input is used to reset the elapsed ‘ ‘
/
A
A

ET/

/_/__PT—

»

186

Note

In the CPU, no dedicated resource is allocated to any specific timer instruction. Instead,
each timer utilizes its own timer structure in DB memory and a continuously-running internal
CPU timer to perform timing.

When a timer is started due to an edge change on the input of a TP, TON, TOF, or TONR
instruction, the value of the continuously-running internal CPU timer is copied into the
START member of the DB structure allocated for this timer instruction. This start value
remains unchanged while the timer continues to run, and is used later each time the timer is
updated. Each time the timer is started, a new start value is loaded into the timer structure
from the internal CPU timer.

When a timer is updated, the start value described above is subtracted from the current
value of the internal CPU timer to determine the elapsed time. The elapsed time is then
compared with the preset to determine the state of the timer Q bit. The ELAPSED and Q
members are then updated in the DB structure allocated for this timer. Note that the elapsed
time is clamped at the preset value (the timer does not continue to accumulate elapsed time
after the preset is reached).

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions
7.2 Timers

A timer update is performed when and only when:
® A timer instruction (TP, TON, TOF, or TONR) is executed

e The "ELAPSED" member of the timer structure in DB is referenced directly by an
instruction

e The "Q" member of the timer structure in DB is referenced directly by an instruction

Timer programming

The following consequences of timer operation should be considered when planning and
creating your user program:

® You can have multiple updates of a timer in the same scan. The timer is updated each
time the timer instruction (TP, TON, TOF, TONR) is executed and each time the
ELAPSED or Q member of the timer structure is used as a parameter of another
executed instruction. This is an advantage if you want the latest time data (essentially an
immediate read of the timer). However, if you desire to have consistent values throughout
a program scan, then place your timer instruction prior to all other instructions that need
these values, and use tags from the Q and ET outputs of the timer instruction instead of
the ELAPSED and Q members of the timer DB structure.

® You can have scans during which no update of a timer occurs. It is possible to start your
timer in a function, and then cease to call that function again for one or more scans. If no
other instructions are executed which reference the ELAPSED or Q members of the timer
structure, then the timer will not be updated. A new update will not occur until either the
timer instruction is executed again or some other instruction is executed using ELAPSED
or Q from the timer structure as a parameter.

® Although not typical, you can assign the same DB timer structure to multiple timer
instructions. In general, to avoid unexpected interaction, you should only use one timer
instruction (TP, TON, TOF, TONR) per DB timer structure.

® Self-resetting timers are useful to trigger actions that need to occur periodically. Typically,
self-resetting timers are created by placing a normally-closed contact which references
the timer bit in front of the timer instruction. This timer network is typically located above
one or more dependent networks that use the timer bit to trigger actions. When the timer
expires (elapsed time reaches preset value), the timer bit is ON for one scan, allowing the
dependent network logic controlled by the timer bit to execute. Upon the next execution of
the timer network, the normally closed contact is OFF, thus resetting the timer and
clearing the timer bit. The next scan, the normally closed contact is ON, thus restarting
the timer. When creating self-resetting timers such as this, do not use the "Q" member of
the timer DB structure as the parameter for the normally-closed contact in front of the
timer instruction. Instead, use the tag connected to the "Q" output of the timer instruction
for this purpose. The reason to avoid accessing the Q member of the timer DB structure
is because this causes an update to the timer and if the timer is updated due to the
normally closed contact, then the contact will reset the timer instruction immediately. The
Q output of the timer instruction will not be ON for the one scan and the dependent
networks will not execute.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 187

Basic instructions

7.2 Timers

Time data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the timer data stored in the previous run mode session is lost, unless
the timer data structure is specified as retentive (TP, TON, TOF, and TONR timers).

When you accept the defaults in the call options dialog after you place a timer instruction in
the program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your timer data retentive, you must either use a global DB or a Multi-
instance DB.

Assign a global DB to store timer data as retentive data

This option works regardless of where the timer is placed (OB, FC, or FB).
1. Create a global DB:

Double-click "Add new block" from the Project tree
Click the data block (DB) icon
For the Type, choose global DB

If you want to be able to select individual data elements in this DB as retentive, be
sure the DB type "Optimized" box is checked. The other DB type option "Standard -
compatible with S7-300/400" only allows setting all DB data elements retentive or
none retentive.

Click OK

2. Add timer structure(s) to the DB:

In the new global DB, add a new static tag using data type IEC_Timer.
In the "Retain" column, check the box so that this structure will be retentive.

Repeat this process to create structures for all the timers that you want to store in this
DB. You can either place each timer structure in a unique global DB, or you can place
multiple timer structures into the same global DB. You can also place other static tags
besides timers in this global DB. Placing multiple timer structures into the same global
DB allows you to reduce your overall number of blocks.

Rename the timer structures if desired.

3. Open the program block for editing where you want to place a retentive timer (OB, FC, or
FB).

4. Place the timer instruction at the desired location.

5. When the call options dialog appears, click the cancel button.

6. On the top of the new timer instruction, type the name (do not use the helper to browse)
of the global DB and timer structure that you created above (example:
"Data_block_3.Static_1").

188

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.2 Timers

Assign a multi-instance DB to store timer data as retentive data

This option only works if you place the timer in an FB.

This option depends upon whether the FB was created with "Optimized" block access
(allows symbolic access only). Once the FB has been created, you cannot change the
checkbox for "Optimized"; it must be chosen correctly when the FB is created, on the first
screen after selecting "Add new block" from the tree. To verify how the access attribute is
configured for an existing FB, right-click on the FB in the Project tree, choose properties, and
then choose attributes.

If the FB was created with the "Optimized" box checked (allows symbolic access only):

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click on the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the timer if desired.

5. Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure

appears in the FB Interface under Static.

If necessary, open the FB interface editor (may have to click on the small arrow to
expand the view).

Under Static, locate the timer structure that was just created for you.

In the Retain column for this timer structure, change the selection to "Retain". Whenever
this FB is called later from another program block, an instance DB will be created with this
interface definition which contains the timer structure marked as retentive.

If the FB was created with the "Standard - compatible with S7-300/400" box checked (allows
symbolic and direct access):

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the timer if desired.

5. Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure

appears in the FB Interface under Static.
Open the block that will use this FB.

Place this FB at the desired location. Doing so results in the creation of an instance data
block for this FB.

Open the instance data block created when you placed the FB in the editor.

9. Under Static, locate the timer structure of interest. In the Retain column for this timer

structure, check the box to make this structure retentive.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 189

Basic instructions

7.3 Counters

7.3

Counters

Table 7- 22 Counter instructions

QU=> bool out,
QD=> bool out,
Cv=> int out);

LAD / FBD SCL Description
AT "IEC_Counter_ 0 DB".CTU(|Use the counter instructions to count internal program events and
[T CU:= bool_in, external process events. Each counter uses a structure stored in a
Slnt R:= bool in, data block to maintain counter data. You assign the data block when
= ar PV:= int in, the counter instruction is placed in the editor.
-R o - -
lpv Q=> bool_out, e CTU s a count-up counter
CVv=> _int out); e CTD is a count-down counter
| s "IEC Counter 0 DB".CTD .
i cokialnd - — . ¢, CTUD is a count-up-and-down counter
CID CD:= _bool_in,
- Sl ; LD:= bool_in,
Jinan ol PV:= int_in,
B Q=> bool out,
- CV=> int out);
T "IEC_Counter_0_DB".CTUD (
B T CU:= bool_in,
Sint CD:= bool_in,
1 E;: gg B R:= bool_in,
dn e, ,—r LD:= bool_in,
o LOAD PV:=_int in,
[Py

T For LAD and FBD: Select the count value data type from the drop-down list below the instruction name.

2 STEP 7 automatically creates the DB when you insert the instruction.

3 In the SCL examples, "IEC_Counter_0_DB" is the name of the instance DB.

Table 7- 23 Data types for the parameters

Parameter Data type! Description

CU, CD Bool Count up or count down, by one count
R (CTU, CTUD) Bool Reset count value to zero

LD (CTD, CTUD) Bool Load control for preset value

PV Sint, Int, DInt, USInt, UInt, UDInt Preset count value

Q, QU Bool True if CV >= PV

QD Bool Trueif CV <=0

Ccv Sint, Int, Dint, USInt, Uint, UDInt Current count value

1 The numerical range of count values depends on the data type you select. If the count value is an unsigned integer
type, you can count down to zero or count up to the range limit. If the count value is a signed integer, you can count
down to the negative integer limit and count up to the positive integer limit.

190

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.3 Counters

The number of counters that you can use in your user program is limited only by the amount
of memory in the CPU. Counters use the following amount of memory:

e For SInt or USInt data types, the counter instruction uses 3 bytes.
e For Int or Ulnt data types, the counter instruction uses 6 bytes.
e For Dint or UDInt data types, the counter instruction uses 12 bytes.

These instructions use software counters whose maximum counting rate is limited by the
execution rate of the OB in which they are placed. The OB that the instructions are placed in
must be executed often enough to detect all transitions of the CU or CD inputs. For faster
counting operations, see the CTRL_HSC instruction (Page 337).

Note

When you place counter instructions in an FB, you can select the multi-instance DB option,
the counter structure names can be different with separate data structures, but the counter
data is contained in a single DB and does not require a separate DB for each counter. This
reduces the processing time and data storage necessary for the counters. There is no
interaction between the counter data structures in the shared multi-instance DB.

Operation of the counters

Table 7- 24 Operation of the CTU counter

Counter

Operation

The CTU counter counts up by 1 when the value of parameter CU
changes from 0 to 1. The CTU timing diagram shows the operation for
an unsigned integer count value (where PV = 3).

co L TT T1 TT

equal to the value of parameter PV (preset count value), then the
counter output parameter Q = 1.

e If the value of the reset parameter R changes from 0 to 1, then the
current count value is reset to 0.

If the value of parameter CV (current count value) is greater than or R

S SN

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

191

Basic instructions

7.3

Counfters

Table 7- 25 Operation of the CTD counter

o [f the value of parameter CV (current count value) is equal
to or less than 0, the counter output parameter Q = 1.

Counter Operation
The CTD counter counts down by 1 when the value of
parameter CD changes from 0 to 1. The CTD timing diagram CcD —!_I—!_I—!_I—n—n—!_l—
shows the operation for an unsigned integer count value |—| oo l_L:_
(where PV = 3). LOAD o : i
P30 0 P3
1 1
1
1

e If the value of parameter LOAD changes from 0 to 1, the
value at parameter PV (preset value) is loaded to the
counter as the new CV (current count value).

Ccv

|

« 1T —

Table 7- 26 Operation of the CTUD counter

Counter Operation

The CTUD counter counts up or cu

M It rt r

down by 1 onthe 0 to 1
transition of the count up (CU) or

count down (CD) inputs. The CcD

CTUD timing diagram shows the
operation for an unsigned

integer count value (where PV = R
4).

o |[f the value of parameter CV

i LOAD
is equal to or greater than the

value of parameter PV, then
the counter output parameter
QU =1.

e If the value of parameter CV
is less than or equal to zero,
then the counter output

R

parameter QD = 1.

o |f the value of parameter

LOAD changes from 0 to 1,
then the value at parameter
PV is loaded to the counter
as the new CV.

o If the value of the reset
parameter R is changes from
0 to 1, the current count
value is reset to 0.

Counter data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the counter data stored in the previous run mode session is lost,
unless the counter data structure is specified as retentive (CTU, CTD, and CTUD counters).

192

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.3 Counters

When you accept the defaults in the call options dialog after you place a counter instruction
in the program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your counter data retentive, you must either use a global DB or a Multi-
instance DB.

Assign a global DB to store counter data as retentive data

This option works regardless of where the counter is placed (OB, FC, or FB).
1. Create a global DB:

Double-click "Add new block" from the Project tree
Click the data block (DB) icon
For the Type, choose global DB

If you want to be able to select individual items in this DB as retentive, be sure the
symbolic-access-only box is checked.

Click OK

2. Add counter structure(s) to the DB:

In the new global DB, add a new static tag using one of the counter data types. Be
sure to consider the Type you want to use for your Preset and Count values.

Counter Data Type Corresponding Type for the Preset and Count
Values

IEC_Counter INT

IEC_SCounter SINT

IEC_DCounter DINT

IEC_UCounter UINT

IEC_USCounter USINT

IEC_UDCounter UDINT

1. In the "Retain" column, check the box so that this structure will be retentive.

Repeat this process to create structures for all the counters that you want to store in
this DB. You can either place each counter structure in a unique global DB, or you can
place multiple counter structures into the same global DB. You can also place other
static tags besides counters in this global DB. Placing multiple counter structures into
the same global DB allows you to reduce your overall number of blocks.

Rename the counter structures if desired.

2. Open the program block for editing where you want to place a retentive counter (OB, FC,
or FB).

3. Place the counter instruction at the desired location.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 193

Basic instructions

7.3 Counters

4. When the call options dialog appears, click the cancel button. You should now see a new
counter instruction which has "???" both just above and just below the instruction name.

5. On the top of the new counter instruction, type the name (do not use the helper to
browse) of the global DB and counter structure that you created above (example:
"Data_block_3.Static_1"). This causes the corresponding preset and count value type to
be filled in (example: Ulnt for an IEC_UCounter structure).

Assign a multi-instance DB to store counter data as retentive data

194

This option only works if you place the counter in an FB.

This option depends upon whether the FB was created as symbolic access only. Once the
FB has been created, you cannot change the checkbox for "Symbolic access only"; it must
be chosen correctly when the FB is created, on the first screen after selecting "Add new
block" from the tree. To see how this box is configured for an existing FB, right-click on the
FB in the Project tree, choose properties, and then choose attributes.

If the FB was created with the "Symbolic access only" box checked:
1. Open the FB for edit.
2. Place the counter instruction at the desired location in the FB.

3. When the Call options dialog appears, click on the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

4. In the Call options dialog, rename the counter if desired.

5. Click OK. The counter instruction appears in the editor with type INT for the preset and
count values, and the IEC_COUNTER structure appears in the FB Interface under Static.

6. If desired, change the type in the counter instruction from INT to one of the other types.
The counter structure will change correspondingly.

Type shown in counter instruction (for preset Corresponding structure Type shown in FB

and count values) interface
INT IEC_Counter
SINT IEC_SCounter
DINT IEC_DCounter
UINT IEC_UCounter
USINT IEC_USCounter
UDINT IEC_UDCounter

1. If necessary, open the FB interface editor (may have to click on the small arrow to
expand the view).

2. Under Static, locate the counter structure that was just created for you.

3. In the Retain column for this counter structure, change the selection to "Retain".
Whenever this FB is called later from another program block, an instance DB will be
created with this interface definition which contains the counter structure marked as
retentive.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.3 Counters

If the FB was created with the "Symbolic access only" box nof checked:

1.
2.
3.

Open the FB for edit.
Place the counter instruction at the desired location in the FB.

When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the counter if desired.

Click OK. The counter instruction appears in the editor with type INT for the preset and
count value, and the IEC_COUNTER structure appears in the FB Interface under Static.

If desired, change the type in the counter instruction from INT to one of the other types.
The counter structure will change correspondingly.

Type shown in counter instruction (for preset Corresponding structure Type shown in FB

and count values) interface
INT IEC_Counter
SINT IEC_SCounter
DINT IEC_DCounter
UINT IEC_UCounter
USINT IEC_USCounter
UDINT IEC_UDCounter

. Open the block that will use this FB.

Place this FB at the desired location. Doing so results in the creation of an instance data
block for this FB.

3. Open the instance data block created when you placed the FB in the editor.

Under Static, locate the counter structure of interest. In the Retain column for this counter
structure, check the box to make this structure retentive.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 195

Basic instructions

7.4 Compare

7.4

7.4.1

Compare

Compare

Table 7-27 Compare instructions

LAD FBD SCL Description
M o out := inl = in2; Compares two values of the same data type. When the
— Byte or LAD contact comparison is TRUE, then the contact is
-I Byte |_ N7 IF inl = in2 activated. When the FBD box comparison is TRUE,
N2 Nz = THEN out := 1: then the box output is TRUE.
ELSE out := 0;
END IF;
1 For LAD and FBD: Click the instruction name (such as "==") to change the comparison type from the drop-down list.

Click the "???" and select data type from the drop-down list.

Table 7- 28 Data types for the parameters

Parameter

Data type

Description

IN1, IN2

Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, String, Char,

Time, DTL, Constant

Values to compare

Table 7-29 Comparison descriptions

Relation type The comparison is true if ...

= IN1 is equal to IN2

<> IN1 is not equal to IN2

>= IN1 is greater than or equal to IN2

<= IN1 is less than or equal to IN2

> IN1 is greater than IN2

< IN1 is less than IN2

S7-1200 Programmable controller

196 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.4 Compare

74.2 In-range and Out-of-range instructions
Table 7- 30 In Range and Out of Range instructions

LAD / FBD SCL Description

iH FANGE out := IN_RANGE (min, val, |Tests whether an input value is in or out of a specified value range.
m max) ; If the comparison is TRUE, then the box output is TRUE.

{MIN

fal

'nur_' . out := OUT_RANGE (min, val,

m max) ;
[
AL

1

For LAD and FBD: Click the "???" and select the data type from the drop-down list.

Table 7- 31 Data types for the parameters
Parameter Data type’ Description
MIN, VAL, MAX Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Constant Comparator inputs

1

743

The input parameters MIN, VAL, and MAX must be the same data type.

® The IN_RANGE comparison is true if: MIN <= VAL <= MAX

® The OUT_RANGE comparison is true if: VAL < MIN or VAL > MAX

OK and Not OK instructions

Table 7- 32 OK and Not OK instructions

LAD FBD SCL Description
" - Not available Tests whether an input data reference is a valid real
—]oK |— oK | number according to IEEE specification 754.
p LS Not available
MOT_OE |
—NOT_OK|— - B

1

is TRUE, then the box output is TRUE.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

For LAD and FBD: When the LAD contact is TRUE, the contact is activated and passes power flow. When the FBD box

197

Basic instructions

7.5 Math

Table 7- 33 Data types for the parameter

Parameter Data type Description
IN Real, LReal Input data

Table 7- 34 Operation

Instruction The Real number test is TRUE if:
OK The input value is a valid real number 1
NOT_OK The input value is not a valid real number 1

1 AReal or LReal value is invalid if it is +/- INF (infinity), NaN (Not a Number), or if it is a denormalized value. A
denormalized value is a number very close to zero. The CPU substitutes a zero for a denormalized value in calculations.

See also

EN and ENO for LAD, FBD and SCL (Page 163)
7.5 Math
7.5.1 Calculate instruction

Table 7- 35 CALCULATE instruction

LAD / FBD SCL Description
Use the The CALCULATE instruction lets you create a math function that
I:ALEI#ATE standard SCL operates on inputs (IN1, IN2, .. INn) and produces the result at OUT,
EN enolL | math according to the equation that you define.
OUT = <377 e;(pr;es;l]ons o |, Select a data type first. All inputs and the output must be the same
create the data type.
1M1 auT equation.
IN2ze e To add another input, click the icon at the last input.
Table 7- 36 Data types for the parameters
Parameter Data type!
IN1, IN2, ..INn Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord
ouT Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, DWord

1 The IN and OUT parameters must be the same data type (with implicit conversions of the input parameters). For
example: A SINT value for an input would be converted to an INT or a REAL value if OUT is an INT or REAL

S7-1200 Programmable controller
198 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.5.2

7.5 Math

Click the calculator icon to open the dialog and define your math function. You enter your
equation as inputs (such as IN1 and IN2) and operations. When you click "OK" to save the
function, the dialog automatically creates the inputs for the CALCULATE instruction.

An example and a list of possible math operations you can include is shown at the bottom of
the editor.

Example:
(M1 + INZY ® (INT - BN2)

Possible instructions:

And, Or, XOr, Swap, Not f Inv, +: - ", I, Mod, Abs, Neg, Exp, ™" Frac. Ln, Sin, ASin, Cos; ACos, Tan, ATan,
Sqr Sqm. Round, Ceil, Floor, Truna

oK Cancel

Note

You also must create an input for any constants in your function. The constant value would
then be entered in the associated input for the CALCULATE instruction.

By entering constants as inputs, you can copy the CALCULATE instruction to other locations
in your user program without having to change the function. You then can change the values
or tags of the inputs for the instruction without modifying the function.

When CALCULATE is executed and all the individual operations in the calculation complete
successfully, then the ENO = 1. Otherwise, ENO = 0.

Add, subtract, multiply and divide instructions

Table 7- 37 Add, subtract, multiply and divide instructions

LAD / FBD

SCL Description

ADDO
e

EM
1M1
IMZ23k

EMO
auT

out := inl + in2; |, ADD: Addition (IN1 + IN2 = OUT)

out :=dinl - in2; | SUB: Subtraction (IN1 - IN2 = OUT)
out := inl * in2;
out .= inl / in2, |*® MUL:Multiplication (IN1*IN2 = OUT)

e DIV: Division (IN1/IN2 = OUT)

An Integer division operation truncates the fractional part of the quotient
to produce an integer output.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 199

Basic instructions

7.5 Math

Table 7- 38 Data types for the parameters (LAD and FBD)

Parameter Data type! Description
IN1, IN2 Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Constant Math operation inputs
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Math operation output

1 Parameters IN1, IN2, and OUTmust be the same data type.

INZsE To add an ADD or MUL input, click the "Create" icon or right-click on an input
[:E stub for one of the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete” command.

When enabled (EN = 1), the math instruction performs the specified operation on the input
values (IN1 and IN2) and stores the result in the memory address specified by the output
parameter (OUT). After the successful completion of the operation, the instruction sets ENO
=1.

Table 7- 39 ENO status

ENO Description

1 No error

0 The Math operation result value would be outside the valid number range of the data type selected. The
least significant part of the result that fits in the destination size is returned.

0 Division by 0 (IN2 = 0): The result is undefined and zero is returned.

0 Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.

0 ADD Real/LReal: If both IN values are INF with different signs, this is an illegal operation and NaN is
returned.

0 SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal operation and NaN is
returned.

0 MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal operation and NaN is
returned.

0 DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN is returned.

753 Modulo instruction

Table 7- 40 MOD instruction

LAD / FBD SCL Description
out := inl MOD in2; You can use the MOD instruction to return the remainder of an integer
"-,,u._.? division operation. The value at the IN1 input is divided by the value at
—EM ENO — the IN2 input and the remainder is returned at the OUT output.
81 our
{IN2

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
200 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.5 Math
Table 7- 41 Data types for parameters
Parameter Data type! Description
IN1 and IN2 Sint, Int, DInt, USInt, Uint, UDInt, Constant Modulo inputs
ouT Sint, Int, DiInt, USInt, Ulnt, UDInt Modulo output
1 The IN1, IN2, and OUTparameters must be the same data type.
Table 7- 42 ENO values
ENO Description
1 No error
0 Value IN2 = 0, OUT is assigned the value zero
754 Negation instruction
Table 7- 43 NEG instruction
LAD / FBD SCL Description
-(in); The NEG instruction inverts the arithmetic sign of the value at parameter IN and stores
| NEG .
77 | the result in parameter OUT.
—EN END -
1M ourt

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 44 Data types for parameters

Parameter Data type! Description
IN Sint, Int, DInt, Real, LReal, Constant Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output

1 The IN and OUT parameters must be the same data type.

Table 7-45 ENO status

ENO Description

1 No error

0 The resulting value is outside the valid number range of the selected data type.
Example for Sint: NEG (-128) results in +128 which exceeds the data type maximum.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 201

Basic instructions

7.5 Math
7.5.5 Increment and decrement instructions
Table 7- 46 INC and DEC instructions
LAD / FBD SCL Description
T in_out := in out + 1; |Increments a signed or unsigned integer number value:
el IN_OUT value +1 = IN_OUT value
—EN END
MAOUT '
e in_out := in out - 1; | Decrements a signed or unsigned integer number value:
| s IN_OUT value - 1 = IN_OUT value
—EN END =
{INAOLIT

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 47 Data types for parameters

Parameter

Data type

Description

IN/OUT

Sint, Int, DInt, USInt, Uint, UDInt

Math operation input and output

Table 7- 48 ENO status

ENO Description
1 No error
0 The resulting value is outside the valid number range of the selected data type.
Example for Sint: INC (+127) results in +128, which exceeds the data type maximum.
7.5.6 Absolute value instruction

Table 7- 49 ABS instruction

LAD / FBD SCL Description
—aHET out := ABS(in); Calculates the absolute value of a signed integer or real number at parameter
| e IN and stores the result in parameter OUT.
—EM ENO =
M ouT |

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

202

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.5 Math
Table 7- 50 Data types for parameters
Parameter Data type! Description
IN Sint, Int, DInt, Real, LReal Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output

1 The IN and OUT parameters must be the same data type.

Table 7- 51 ENO status
ENO Description
1 No error
0 The math operation result value is outside the valid number range of the selected data type.
Example for Sint: ABS (-128) results in +128 which exceeds the data type maximum.
7.5.7 Minimum and Maximum instructions
Table 7- 52 MIN and MAX instructions
LAD / FBD SCL Description
out:= MIN(The MIN instruction compares the value of two parameters IN1
r'gl?': inl:= variant_in_, and IN2 and assigns the minimum (lesser) value to parameter
i — in2:= variant_in_ OUT.
= ERD = [,...in32]);
1M auT
IM2sE
out:= MAX(The MAX instruction compares the value of two parameters IN1
r»:;:;x inl:= variant _in_, and IN2 and assigns the maximum (greater) value to parameter
EN = in2:= variant in_ OUT.
- END— [,...in32]);
1M ouT
IM2:E

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 53 Data types for the parameters

Parameter Data type’ Description

IN1, IN2 Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Constant | Math operation inputs (up to 32 inputs)
[...IN32]

ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Math operation output

1 The IN1, IN2, and OUT parameters must be the same data type.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

203

Basic instructions

7.5 Math

INZsE To add an input, click the "Create" icon or right-click on an input stub for one of
[:E the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete” command.

Table 7- 54 ENO status

ENO Description
1 No error
0 For Real data type only:

e One or more inputs is not a real number (NaN).
e The resulting OUT is +/- INF (infinity).

758 Limit instruction

Table 7- 55 LIMIT instruction

LAD / FBD SCL Description
Gkt LIMIT(MN:= variant in_, The Limit instruction tests if the value of parameter IN is inside the
b i - IN:= variant in_, value range specified by parameters MIN and MAX and if not,
e o) MX:= variant in_, clamps the value at MIN or MAX.
i OUT:= variant out);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 56 Data types for the parameters

Parameter Data type! Description
MN, IN, and MX Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Constant Math operation inputs
ouT Sint, Int, Dint, USInt, UInt, UDInt, Real, LReal Math operation output

1 The MN, IN, MX, and OUTparameters must be the same data type.

If the value of parameter IN is within the specified range, then the value of IN is stored in
parameter OUT. If the value of parameter IN is outside of the specified range, then the OUT
value is the value of parameter MIN (if the IN value is less than the MIN value) or the value
of parameter MAX (if the IN value is greater than the MAX value).

S7-1200 Programmable controller
204 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.5 Math

Table 7- 57 ENO status

ENO Description
1 No error

0 Real: If one or more of the values for MIN, IN and MAX is NaN (Not a Number), then NaN is returned.

0 If MIN is greater than MAX;, the value IN is assigned to OUT.
SCL examples:
o MyVal := LIMIT(MN:=10,IN:=53, MX:=40); //Result: MyVal = 40
o MyVal := LIMIT(MN:=10,IN:=37, MX:=40); //Result: MyVal = 37
e MyVal := LIMIT(MN:=10,IN:=8, MX:=40); //Result: MyVal = 10

7.5.9 Floating-point math instructions

You use the floating point instructions to program mathematical operations using a Real or
LReal data type:

SQR: Square (IN 2= OUT)

SQRT: Square root (vVIN = OUT)

LN: Natural logarithm (LN(IN) = OUT)

EXP: Natural exponential (e N=0UT), where base e = 2.71828182845904523536
EXPT: General exponential (IN1 IN2= QUT)

EXPT parameters IN1 and OUT are always the same data type, for which you must
select Real or LReal. You can select the data type for the exponent parameter IN2 from
among many data types.

FRAC: Fraction (fractional part of floating point number IN = OUT)

SIN: Sine (sin(IN radians) = OUT)
ASIN: Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN

COS: Cosine (cos(IN radians) = OUT)
ACOS: Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN

TAN: Tangent (tan(IN radians) = OUT)
ATAN: Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 205

Basic instructions

7.5 Math

Table 7- 58 Examples of floating-point math instructions

LAD / FBD SCL Description

T out := SQR(in); Square: IN 2= QUT

Figal or For example: If IN = 9, then OUT = 81.

—EN END out := in * in;

i our |

BFT | out := inl ** in2; General exponential: IN1 N2= OQUT
Real =777 | For example: If IN1 =3 and IN2 = 2, then OUT = 9.

—EN END

{1H1 ouT

fnz

1 For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

2 For SCL: You can also use the basic SCL math operators to create the mathematical expressions.

Table 7- 59 Data types for parameters

Parameter Data type Description
IN, IN1 Real, LReal, Constant Inputs
IN2 Sint, Int, DInt, USInt, Uint,UDInt, Real, LReal, Constant EXPT exponent input
ouT Real, LReal Outputs
Table 7- 60 ENO status
ENO Instruction Condition Result (OUT)
1 All No error Valid result
0 SQR Result exceeds valid Real/LReal range +INF
IN is +/- NaN (not a number) +NaN
SQRT IN is negative -NaN
IN is +/- INF (infinity) or +/- NaN +/- INF or +/- NaN
LN IN is 0.0, negative, -INF, or -NaN -NaN
IN is +INF or +NaN +INF or +NaN
EXP Result exceeds valid Real/LReal range +INF
IN is +/- NaN +/- NaN
SIN, COS, TAN IN is +/- INF or +/- NaN +/- INF or +/- NaN
ASIN, ACOS IN is outside valid range of -1.0 to +1.0 +NaN
IN is +/- NaN +/- NaN
ATAN IN is +/- NaN +/- NaN
FRAC IN is +/- INF or +/- NaN +NaN
EXPT IN1 is +INF and IN2 is not -INF +INF
IN1 is negative or -INF +NaN if IN2 is Real/LReal,
-INF otherwise
IN1 or IN2 is +/- NaN +NaN
S7-1200 Programmable controller
206 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.6 Move
ENO Instruction Condition Result (OUT)
IN1 is 0.0 and IN2 is Real/LReal (only) +NaN
7.6 Move
7.6.1 Move and block move instructions

Use the Move instructions to copy data elements to a new memory address and convert
from one data type to another. The source data is not changed by the move process.

® The MOVE instruction copies a single data element from the source address specified by
the IN parameter to the destination addresses specified by the OUT parameter.

® The MOVE_BLK and UMOVE_BLK instructions have an additional COUNT parameter.
The COUNT specifies how many data elements are copied. The number of bytes per
element copied depends on the data type assigned to the IN and OUT parameter tag
names in the PLC tag table.

Table 7-61 MOVE, MOVE_BLK and UMOVE_BLK instructions

LAD / FBD SCL Description
e outl := in; Copies a data element stored at a specified address to a new address

—EN ENO = or multiple addresses.!

IN - sE0UT]

R MOVE_BLK (Interruptible move that copies a block of data elements to a new

JEN EMOL in:= variant_in, address.

I out count:= uint_in,

COUMT out=> variant out);

LTI LS UMOVE_BLK (Uninterruptible move that copies a block of data elements to a new
— EN T END = in:= variant_in, address.

It out count:= uint_in,

COUNT out=> variant_out);

1 MOVE instruction: To add another output in LAD or FBD, click the "Create" icon by the output parameter. For SCL, use
multiple assignment statements. You might also use one of the loop constructions.

Table 7- 62 Data types for the MOVE instruction

Parameter Data type Description

IN Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, Source address
DWord, Char, Array, Struct, DTL, Time

ouT Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, Destination address
DWord, Char, Array, Struct, DTL, Time

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 207

Basic instructions

7.6 Move

4.0UTT To add MOVE outputs, click the "Create" icon or right-click on an output stub for
one of the existing OUT parameters and select the "Insert output" command.

To remove an output, right-click on an output stub for one of the existing OUT parameters
(when there are more than the original two outputs) and select the "Delete" command.

Table 7- 63 Data types for the MOVE_BLK and UMOVE_BLK instructions

Parameter Data type Description
IN Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal Byte, Source start address
Word, DWord
COUNT Ulnt Number of data elements to copy
ouT Sint, Int, Dint, USInt, Ulnt, UDInt, Real, LReal, Byte, Destination start address
Word, DWord
Note

Rules for data copy operations

e To copy the Bool data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)
(Page 178)

e To copy a single elementary data type, use MOVE

e To copy an array of an elementary data type, use MOVE_BLK or UMOVE_BLK
e To copy a structure, use MOVE

e To copy a string, use S_MOVE (Page 254)

e To copy a single character in a string, use MOVE

e The MOVE_BLK and UMOVE_BLK instructions cannot be used to copy arrays or
structures to the |, Q, or M memory areas.

MOVE_BLK and UMOVE_BLK instructions differ in how interrupts are handled:

¢ |Interrupt events are queued and processed during MOVE_BLK execution. Use the
MOVE_BLK instruction when the data at the move destination address is not used within
an interrupt OB subprogram or, if used, the destination data does not have to be
consistent. If a MOVE_BLK operation is interrupted, then the last data element moved is
complete and consistent at the destination address. The MOVE_BLK operation is
resumed after the interrupt OB execution is complete.

¢ Interrupt events are queued but not processed until UMOVE_BLK execution is complete.
Use the UMOVE_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram. For
more information, see the section on data consistency (Page [153).

ENO is always true following execution of the MOVE instruction.

S7-1200 Programmable controller
208 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.6.2

7.6 Move

Table 7- 64 ENO status
ENO Condition Result
1 No error All COUNT elements were
successfully copied.
0 Either the source (IN) range or the destination | Elements that fit are copied. No partial
(OUT) range exceeds the available memory elements are copied.
area.

FieldRead and FieldWrite instructions

Note

STEP 7 V10.5 did not support a variable reference as an array index or multi-dimensional
arrays. The FieldRead and FieldWrite instructions were used to provide variable array index
operations for a one-dimensional array. STEP 7 V11 does support a variable as an array
index and multi-dimensional arrays. FieldRead and FieldWrite are included in STEP 7 V11
for backward compatibility with programs that have used these instructions.

Table 7- 65 FieldRead and FieldWrite instructions

LAD / FBD SCL Description
. value := FieldRead reads the array element with the index value INDEX
F'E';ffad member [index] ; from the array whose first element in specified by the MEMBER
N - END = parameter. The value of the array element is transferred to the
IMDEX VALLIE location specified at the VALUE parameter.
MEMEER
_ member [index] WriteField transfers the value at the location specified by the
F"ﬂ';"ﬂ := value; VALUE parameter to the array whose first element is specified by
EN o ENO = the MEMBER parameter. The value is transferred to the array
IMDE MEMBER element whose array index is specified by the INDEX parameter.
YALLUE

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

209

Basic instructions
7.6 Move

Table 7- 66 Data types for parameters

Parameter and type Data type Description
Index Input Dint The index number of the array element to be
read or written to
Member 1 Input Array element types: Location of the first element in a one-
Bool, Byte, Word, DWord, Char, Sint, Int, | dimension array defined in a global data block
Dint, USInt, Ulnt, UDInt, Real, LReal or block interface.

For example: If the array index is specified as
[-2..4], then the index of the first element is -2

and not 0.
Value ! Out Bool, Byte, Word, DWord, Char, Sint, Int, | Location to which the specified array element
Dint, USInt, Ulnt, UDInt, Real, LReal is copied (FieldRead)

Location of the value that is copied to the
specified array element (FieldWrite)

1 The data type of the array element specified by the MEMBER parameter and the VALUE parameter must have the
same data type.

The enable output ENO = 0, if one of the following conditions applies:
® The EN input has signal state "0"

® The array element specified at the INDEX parameter is not defined in the array
referenced at MEMBER parameter

® Errors such as an overflow occur during processing

Accessing data by array indexing

To access elements of an array with a variable, simply use the variable as an array index in
your program logic. For example, the network below sets an output based on the Boolean
value of an array of Booleans in "Data_block_1" referenced by the PLC tag "Index".

"Data_block_1".
Bool_ W00
Array["Index"] "Tag_1"

] | I 1
LI} L |

The logic with the variable array index is equivalent to the former method using the
FieldRead instruction:

FieldRead
Bool

ERr EMC

%rADT00 W00
"Index" — INDEX WALUE — "Tag_1"

"Data_block_1"
Boaol_array{1] — MEMEER

FieldWrite and FieldRead instructions can be replaced with variable array indexing logic.

S7-1200 Programmable controller
210 System Manual, 04/2012, ASE02486680-06

Basic instructions
7.6 Move

SCL has no FieldRead or FieldWrite instructions, but supports indirect addressing of an

array with a variable:
#Tag_1 := "Data_block 1".Bool Array[#Index];

7.6.3 Fill instructions

Table 7- 67 FILL_BLK and UFILL_BLK instructions

LAD / FBD SCL Description

IR FILL BLK(Interruptible fill instruction: Fills an address range with copies of a
—En e ;nn'- in:= variant_in, |specified data element

M ouT | count:=int,

{COLINT | out=> variant_out) ;

; T UFILL BLK(Uninterruptible fill instruction: Fills an address range with copies of a
_EH""B"‘- END L in:= variant_in, |specified data element

Y] ouT count:=int

| COUNT | out=> variant_out) ;

Table 7- 68 Data types for parameters

Parameter Data type Description
IN Sint, Int, DIntT, USInt, UInt, UDInt, Real, LReal, Byte, Word, | Data source address
DWord
COUNT USint, Uint Number of data elements to copy
ouT Sint, Int, DIntT, USInt, Uint, UDInt, Real, LReal, Byte, Word, | Data destination address
DWord
Note

Rules for data fill operations

o To fill with the BOOL data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)
¢ To fill with a single elementary data type, use MOVE

o To fill an array with an elementary data type, use FILL_BLK or UFILL_BLK

¢ To fill a single character in a string, use MOVE

e The FILL_BLK and UFILL_BLK instructions cannot be used to fill arrays in the |, Q, or M
memory areas.

The FILL_BLK and UFILL_BLK instructions copy the source data element IN to the
destination where the initial address is specified by the parameter OUT. The copy process
repeats and a block of adjacent addresses is filled until the number of copies is equal to the
COUNT parameter.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 211

Basic instructions

7.6 Move

7.6.4

FILL_BLK and UFILL_BLK instructions differ in how interrupts are handled:

® |[nterrupt events are queued and processed during FILL_BLK execution. Use the
FILL_BLK instruction when the data at the move destination address is not used within an
interrupt OB subprogram or, if used, the destination data does not have to be consistent.

e Interrupt events are queued but not processed until UFILL_BLK execution is complete.
Use the UFILL_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram.

Table 7- 69 ENO status

ENO Condition Result
1 No error The IN element was successfully copied to
all COUNT destinations.
0 The destination (OUT) range exceeds Elements that fit are copied. No partial
the available memory area elements are copied.

Swap instruction

Table 7-70 SWAP instruction

LAD / FBD SCL Description
D out := SWAP(in); |Reverses the byte order for two-byte and four-byte data elements. No change
737 is made to the bit order within each byte. ENO is always TRUE following
—EM EMO execution of the SWAP instruction.
I ouT |

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 71 Data types for the parameters
Parameter Data type Description
IN Word, DWord Ordered data bytes IN
ouT Word, DWord Reverse ordered data bytes OUT
Example 1 Parameter IN = MBO Parameter OUT = MB4,
(before execution) (after execution)
Address MBO MB1 MB4 MB5
Wi#16#1234 12 34 34 12
WORD MSB LSB MSB LSB
S7-1200 Programmable controller
212 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.7 Convert
Example 2 Parameter IN = MBO Parameter OUT = MB4,
(before execution) (after execution)

Address MBO MB1 MB2 MB3 MB4 MB5 MB6 MB7
DW#16# 12 34 56 78 78 56 34 12
12345678
DWORD MSB LSB MSB LSB

7.7 Convert

7.71 CONV instruction

Table 7- 72 Convert (CONV) instruction

LAD / FBD SCL Description
out := <data type in> TO_<data type out>(in); Converts a data element from one
??Et:rm data type to another data type.
—EH END
[N OUT

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

2 For SCL: Construct the conversion instruction by identifying the data type for the input parameter (in) and output
parameter (out). For example, DWORD_TO_REAL converts a DWord value to a Real value.

Table 7- 73 Data types for the parameters

Parameter Data type Description
IN Bit string®, Sint, USInt, Int, Uint, Dint, UDInt, Real, LReal, Input value
BCD16, BCD32
ouT Bit string®, Sint, USInt, Int, UInt, Dint, UDInt, Real, LReal, Input value converted to a new data type

BCD16, BCE32

1 The instruction does not allow you to select Bit strings (Byte, Word, DWord). To enter an operand of data type Byte,
Word, or DWord for a parameter of the instruction, select an unsigned integer with the same bit length. For example,
select USInt for a Byte, Ulnt for a Word, or UDInt for a DWord.

After you select the (convert from) data type, a list of possible conversions is shown in the
(convert to) dropdown list. Conversions from and to BCD16 are restricted to the Int data
type. Conversions from and to BCD32 are restricted to the DInt data type.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

213

Basic instructions

7.7 Convert

Table 7- 74 ENO status

ENO Description Result OUT

1 No error Valid result

0 IN is +/- INF or +/- NaN +/- INF or +/- NaN

0 Result exceeds valid range for OUT data type OUT is set to the least-significant bytes of IN
7.7.2 Conversion instructions for SCL

Conversion instructions for SCL

Table 7- 75 Conversion from a Bool, Byte, Word, or DWord

Data type Instruction Result
Bool BOOL_TO_BYTE, BOOL TO_WORD, The value is transferred to the least significant bit of the
BOOL_TO_DWORD, BOOL_TO_INT, target data type.
BOOL TO DINT
Byte BYTE_TO_BOOL The lowest bit is transferred into the destination data
type.
BYTE_TO_WORD, BYTE_TO_DWORD The value is transferred to the low byte of the target data
type.
BYTE_TO_SINT, BYTE_TO_USINT The value is transferred to the target data type.
BYTE_TO_INT, BYTE_ TO_UINT, The value is transferred to the least significant byte of the
BYTE TO DINT, BYTE TO_UDINT target data type.
Word WORD_TO_BOOL The lowest bit is transferred into the destination data
type.
WORD_TO_BYTE The low byte of the source value is transferred to the
target data type
WORD _TO_DWORD The value is transferred to the low byte of the target data
type.
WORD _TO_SINT, WORD _TO_USINT The low byte of the source value is transferred to the
target data type.
WORD _TO_INT, WORD _TO_UINT The value is transferred to the target data type.
WORD _TO_DINT, WORD _TO_UDINT The value is transferred to the low byte of the target data
type.
DWord DWORD_TO_BOOL The lowest bit is transferred into the destination data
type.
DWORD_TO_BYTE, DWORD_TO_WORD, The low byte of the source value is transferred to the
DWORD_TO_SINT, DWORD_TO USINT, target data type.
DWORD TO INT, DWORD TO UINT
DWORD_TO_DINT, DWORD_TO_ UDINT, The value is transferred to the target data type.
DWORD TO REAL
§7-1200 Programmable controller
214 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.7 Convert

Table 7- 76 Conversion from a short integer (Sint or USInt)
Data type Instruction Result
Sint SINT TO_BOOL The lowest bit is transferred into the destination data
type.
SINT TO_BYTE The value is transferred to the target data type
SINT_TO_WORD, SINT_TO_DWORD, The value is transferred to the low byte of the target data
SINT TO_INT, SINT TO DINT type.
SINT_ TO_USINT, SINT TO_UINT, The value is converted.
SINT_TO_UDINT, SINT TO_REAL,
SINT TO_LREAL, SINT TO_CHAR,
SINT TO STRING
UsSint USINT_TO_BOOL The lowest bit is transferred into the destination data
type.
USINT_TO_BYTE The value is transferred to the target data type
USINT_TO_WORD, USINT_ TO_DWORD, The value is transferred to the low byte of the target data
USINT TO_INT, USINT TO UINT, type.
USINT TO DINT, USINT TO UDINT
USINT_TO_SINT, USINT TO_REAL, The value is converted.
USINT TO_LREAL, USINT TO CHAR,
USINT TO STRING
Table 7- 77 Conversion from an integer (Int or Ulnt)
Data type instruction Result
Int INT_TO_BOOL The lowest bit is transferred into the destination data
type.
INT_TO_BYTE, INT_TO_DWORD, The value is converted.
INT_TO_SINT, INT_TO USINT,
INT_TO UINT, INT_TO UDINT,
INT_TO REAL, INT_TO LREAL,
INT TO CHAR, INT TO STRING
INT TO_WORD The value is transferred to the target data type.
INT_TO_DINT The value is transferred to the low byte of the target data
type.
Ulnt UINT TO_BOOL The lowest bit is transferred into the destination data

type.

UINT_TO BYTE, UINT TO_SINT,
UINT_TO_USINT, UINT TO_INT,
UINT_TO REAL, UINT TO_ LREAL,
UINT TO CHAR, UINT TO_ STRING

The value is converted.

UINT_TO_WORD, UINT_TO_ DATE

The value is transferred to the target data type.

UINT_TO_DWORD, UINT_ TO DINT,
UINT _TO_UDINT

The value is transferred to the low byte of the target data
type.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

215

Basic instructions

7.7 Convert
Table 7- 78 Conversion from a double integer (Dint or UDInt)
Data type Instruction Result
Dint DINT_ TO_BOOL The lowest bit is transferred into the
destination data type.
DINT TO _BYTE, DINT_TO WORD, DINT TO_SINT, The value is converted.
DINT TO_USINT, DINT TO_INT, DINT TO_UINT,
DINT_TO_UDINT, DINT TO REAL, DINT TO LREAL,
DINT TO CHAR, DINT TO STRING
DINT TO_DWORD, DINT TO_TIME The value is transferred to the target
data type.
UDInt UDINT_ TO_BOOL The lowest bit is transferred into the
destination data type.
UDINT TO_BYTE, UDINT TO WORD, UDINT TO_SINT, The value is converted.
UDINT_TO_USINT, UDINT TO_INT, UDINT TO_UINT,
UDINT_TO DINT, UDINT TO_ REAL, UDINT TO_LREAL,
UDINT TO CHAR, UDINT TO STRING
UDINT TO_DWORD, UDINT TO_TOD The value is transferred to the target
data type.
Table 7- 79 Conversion from a Real number (Real or LReal)
Data type Instruction Result
Real REAL TO_DWORD, REAL TO_LREAL The value is transferred to the target
data type.
REAL_TO_SINT, REAL TO USINT, REAL TO_INT, The value is converted.
REAL_TO_UINT, REAL TO DINT, REAL TO_ UDINT,
REAL TO STRING
LReal LREAL TO_SINT, LREAL TO USINT, LREAL TO_ INT, The value is converted.
LREAL TO_UINT, LREAL TO DINT, LREAL TO_UDINT,
LREAL TO REAL, LREAL TO STRING
Table 7- 80 Conversion from Time, DTL, TOD or Date
Data type Instruction Result
Time TIME_TO_DINT The value is transferred to the target data type.
DTL DTL_TO_DATE, DTL_TO_TOD The value is converted.
TOD TOD_TO_UDINT The value is converted.
Date DATE TO_UINT The value is converted.
S7-1200 Programmable controller
216 System Manual, 04/2012, ASE02486680-06

Basic instructions

Table 7- 81 Conversion from a Char or String

7.7 Convert

Data type Instruction

Result

Char CHAR_TO_SINT, CHAR TO_USINT, The value is converted.
CHAR TO_INT, CHAR TO UINT,
CHAR TO DINT, CHAR TO UDINT

CHAR_TO_STRING

The value is transferred to the first character of
the string.

String STRING_TO_SINT, STRING_TO_USINT, The value is converted.
STRING_TO_INT, STRING_TO_UINT,
STRING_TO_DINT, STRING_TO_UDINT,
STRING TO REAL, STRING TO LREAL

STRING_TO_CHAR

The first character of the string is copied to the
Char.

7.7.3 Round and truncate instructions

Table 7- 82 ROUND and TRUNC instructions

LAD / FBD SCL Description
out := ROUND (in); |Converts a real number to an integer. The default data type is DINT. When
Rf:ﬁ';?d the output is a valid data type other than DINT, it must be declared
—EM ENO explicitly; for example, ROUND_REAL or ROUND_LREAL.

L ouT | The real number fraction is rounded to the nearest integer value (IEEE -
round to nearest). If the number is exactly one-half the span between two
integers (for example, 10.5), then the number is rounded to the even
integer. For example:

e ROUND (10.5) =10
¢ ROUND (11.5) =12
T out := TRUNC(in); TRUNC converts a real number to an integer. The fractional part of the real
Fieal :‘;DH number is truncated to zero (IEEE - round to zero).
=EN END =
It ouT

1 For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

Table 7- 83 Data types for the parameters

Parameter Data type Description
IN Real, LReal Floating point input
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Rounded or truncated output

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

217

Basic instructions

7.7 Convert

Table 7- 84 ENO status

ENO Description Result OUT

1 No error Valid result

0 IN is +/- INF or +/- NaN +/- INF or +/- NaN
7.74 Ceiling and floor instructions

Table 7- 85 CEIL and FLOOR instructions

LAD / FBD SCL Description

ERL out := CEIL(in); Converts a real number (Real or LReal) to the closest integer

| Real i Dint greater than or equal to the selected real number (IEEE "round
—EN END = to +infinity").

(N ouT|

R ST out := FLOOR(in) ; Converts a real number (Real or LReal) to the closest integer

FLODR
Risal toDIrt . | smaller than or equal to the selected real number (IEEE "round

—EN END to -infinity").

L L

1 For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

Table 7- 86 Data types for the parameters

Parameter Data type Description
IN Real, LReal Floating point input
ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Converted output

Table 7- 87 ENO status

ENO Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NaN +/- INF or +/- NaN
S7-1200 Programmable controller
218 System Manual, 04/2012, A5E02486680-06

Basic instructions

7.7.5

Scale and normalize instructions

Table 7- 88 SCALE_X and NORM_X instructions

7.7 Convert

LAD / FBD SCL Description
SOER out :=SCALE X(min:=_in_, Scales the normalized real parameter VALUE
i 1o 77 value:= in , where (0.0 <= VALUE <= 1.0) in the data type
—EN END - max:=_in); and value range specified by the MIN and MAX
IMIN OUT| parameters:
{\ALLE
e OUT = VALUE (MAX - MIN) + MIN
T out :=NORM X(min:= in_, Normalizes the parameter VALUE inside the
727 lo Real value:=_in , value range specified by the MIN and MAX
- EN END - max:= in_); parameters:
:mua Loty OUT = (VALUE - MIN) / (MAX - MIN),
| e where (0.0 <=0UT <=1.0)

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 89 Data types for the parameters
Parameter Data type’ Description
MIN Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Input minimum value for range
VALUE SCALE_X: Real, LReal Input value to scale or normalize
NORM_X: Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal
MAX Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Input maximum value for range
ouT SCALE_X: Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Scaled or normalized output value
NORM_X: Real, LReal

1 For SCALE_X: Parameters MIN, MAX, and OUTmust be the same data type.
For NORM_X: Parameters MIN, VALUE, and MAXmust be the same data type.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

219

Basic instructions

7.7 Convert

Table 7- 90

Note

SCALE_X parameter VALUE should be restricted to (0.0 <= VALUE <=1.0)

If parameter VALUE is less than 0.0 or greater than 1.0:

e The linear scaling operation can produce OUT values that are less than the parameter
MIN value or above the parameter MAX value for OUT values that fit within the value
range of the OUT data type. SCALE_X execution sets ENO = TRUE for these cases.

e ltis possible to generate scaled numbers that are not within the range of the OUT data
type. For these cases, the parameter OUT value is set to an intermediate value equal to
the least-significant portion of the scaled real number prior to final conversion to the OUT
data type. SCALE_X execution sets ENO = FALSE in this case.

NORM_X parameter VALUE should be restricted to (MIN <= VALUE <= MAX)
If parameter VALUE is less than MIN or greater than MAX, the linear scaling operation can

produce normalized OUT values that are less than 0.0 or greater than 1.0. NORM_X
execution sets ENO = TRUE in this case.

ENO status

ENO

Condition

Result OUT

No error

Valid result

Result exceeds valid range for the OUT data
type

Intermediate result: The least-significant portion of a real
number prior to final conversion to the OUT data type.

Parameters MAX <= MIN

SCALE_X: The least-significant portion of the Real number
VALUE to fill up the OUT size.

NORM_X: VALUE in VALUE data type extended to fill a
double word size.

Parameter VALUE = +/- INF or +/- NaN

VALUE is written to OUT

Example (LAD): normalizing and scaling an analog input value

220

An analog input from an analog signal module or signal board using input in current is in the
range 0 to 27648 for valid values. Suppose an analog input represents a temperature where
the 0 value of the analog input represents -30.0 degrees C and 27648 represents 70.0

degrees C.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.7 Convert

To transform the analog value to the corresponding engineering units, normalize the input to
a value between 0.0 and 1.0, and then scale it between -30.0 and 70.0. The resulting value
is the temperature represented by the analog input in degrees C:

MORM_X SCALE_X
Int toReal Real toReal
EN EMO EM END —y
Wik
o wMOG0 3. WMDE0)
HIWE2 “Marmalized_ 0000000000000 OUT = “Current_temp
“Temp_input’ — VALUE OUT - valug” DE+007 - MIN
WA
27646 anDen
"Marmalized
walue” — WALLE
7.
0000000000000
DE+007T — MAY

Note that if the analog input was from an analog signal module or signal board using voltage,
the MIN value for the NORM_X instruction would be -27648 instead of 0.

Example (LAD): normalizing and scaling an analog output value

An analog output to be set in an analog signal module or signal board using output in current
must be in the range 0 to 27648 for valid values. Suppose an analog output represents a
temperature setting where the 0 value of the analog input represents -30.0 degrees C and
27648 represents 70.0 degrees C. To convert a temperature value in memory that is
between -30.0 and 70.0 to a value for the analog output in the range 0 to 27648, you must
normalize the value in engineering units to a value between 0.0 and 1.0, and then scale it to
the range of the analog output, 0 to 27648:

MORRM_x SCALE_x
Real toReal Real ta Int
EN END EM END —y
MIN
-3. HMOED v HwED .
0000000000000 "Mormalized_ wMOB0 OUT — "Temp_autput
DE+007 — MIN OuT - walue" “Warmalized
BAWED value" — WALUE
"Target_temp” @ WALUE DTELE — hAK
7.
0000000000000
DE+001 — MAX

Note that if the analog output was for an analog signal module or signal board using voltage,
the MIN value for the SCALE_X instruction would be -27648 instead of 0.

Additional information on analog input representations (Page 770) and analog output
representations (Page [771) in both voltage and current can be found in the Technical
Specifications.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 221

Basic instructions

7.8 Program control

Program control

Overview of SCL program control statements

Structured Control Language (SCL) provides three types of program control statements for
structuring your user program:

Selective statements: A selective statement enables you to direct program execution into
alternative sequences of statements.

Loops: You can control loop execution using iteration statements. An iteration statement
specifies which parts of a program should be iterated depending on certain conditions.

Program jumps: A program jump means an immediate jump to a specified jump
destination and therefore to a different statement within the same block.

These program control statements use the syntax of the PASCAL programming language.

7.8

7.8.1
[]
[
[]

Table 7- 91

Types of SCL program control statements

Program control statement

Description

Selective IF-THEN statement Enables you to direct program execution into one of two alternative
(Page 223) branches, depending on a condition being TRUE or FALSE
CASE statement Enables the selective execution into 1 of n7 alternative branches, based
(Page 224) on the value of a variable

Loop FOR statement Repeats a sequence of statements for as long as the control variable
(Page 225) remains within the specified value range
WHILE-DO statement Repeats a sequence of statements while an execution condition
(Page 226) continues to be satisfied

REPEAT-UNTIL
statemen{ (Page 227)

Repeats a sequence of statements until a terminate condition is met

Program jump

CONTINUE statement

Stops the execution of the current loop iteration

(Page 227)

EXIT statement Exits a loop at any point regardless of whether the terminate condition
(Page 228) is satisfied or not

GOTO statement Causes the program to jump immediately to a specified label

(Page 229)

IF-THEN statement Causes the program to exit the block currently being executed and to
(Page 223) return to the calling block

See also

RETURN statemeni (Page 229)

222

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.8 Program contro/

7.8.2 IF-THEN statement

The IF-THEN statement is a conditional statement that controls program flow by executing a
group of statements, based on the evaluation of a Bool value of a logical expression. You
can also use brackets to nest or structure the execution of multiple IF-THEN statements.

Table 7- 92 Elements of the IF-THEN statement

SCL Description
IF "condition" THEN If "condition" is TRUE or 1, then execute the following statements until
statement A; encountering the END_IF statement.
statement_B; If "condition" is FALSE or 0, then skip to END_IF statement (unless the
statement C; program includes optional ELSIF or ELSE statements).
[ELSIF "condition-n" THEN The optional ELSEIF' statement provides additional conditions to be
statement N; evaluated. For example: If "condition" in the IF-THEN statement is FALSE,
71 then the program evaluates "condition-n". If "condition-n" is TRUE, then
execute "statement_N".
[ELSE The optional ELSE statement provides statements to be executed when the
statement X; "condition” of the IF-THEN statement is FALSE.
i1
END_TF; The END_IF statement terminates the IF-THEN instruction.

1 You can include multiple ELSIF statements within one IF-THEN statement.

Table 7- 93 Variables for the IF-THEN statement

Variables Description

"condition" Required. The logical expression is either TRUE (1) or FALSE (0).

"statement_A" Optional. One or more statements to be executed when "condition" is TRUE.

"condition-n" Optional. The logical expression to be evaluated by the optional ELSIF statement.

"statement_N" Optional. One or more statements to be executed when "condition-n" of the ELSIF statement is
TRUE.

"statement_X" Optional. One or more statements to be executed when "condition" of the IF-THEN statement
is FALSE.

An IF statement is executed according to the following rules:

® The first sequence of statements whose logical expression = TRUE is executed. The
remaining sequences of statements are not executed.

e |f no Boolean expression = TRUE, the sequence of statements introduced by ELSE is
executed (or no sequence of statements if the ELSE branch does not exist).

® Any number of ELSIF statements can exist.

Note

Using one or more ELSIF branches has the advantage that the logical expressions
following a valid expression are no longer evaluated in contrast to a sequence of IF
statements. The runtime of a program can therefore be reduced.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 223

Basic instructions

7.8 Program control

7.8.3

CASE statement

Table 7- 94 Elements of the CASE statement

SCL Description

CASE "Test Value" OF The CASE statement executes one of several
"ValueList": Statement[; Statement, ...] groups of statements, depending on the value
"ValuelList": Statement[; Statement, ...] of an expression.

[ELSE

Else-statement[; Else-statement, ...]]

END CASE;

Table 7- 95 Parameters

Parameter

Description

"Test_Value"

Required. Any numeric expression of data type Int

"ValuelList"

Required. A single value or a comma-separated list of values or ranges of values. (Use two
periods to define a range of values: 2..8) The following example illustrates the different
variants of the value list:

1: Statement_A;

2, 4: Statement _B;
3, 5..7,9: Statement _C;

Statement

Required. One or more statements that are executed when "Test_Value" matches any value
in the value list

Else-statement

Optional. One or more statements that are executed if no match with a value of the
"ValueList" stated matches

224

The CASE statement is executed according to the following rules:

® The selection expression must return a value of the type Int.

e When a CASE statement is processed, the program checks whether the value of the
selection expression is contained within a specified list of values. If a match is found, the
statement component assigned to the list is executed.

e |f no match is found, the program section following ELSE is executed or no statement is
executed if the ELSE branch does not exist.

CASE statements can be nested. Each nested case statement must have an associated
END_CASE statement.

ELSE

1
2

CASE varl OF

: var2 := "A";

: var2 := "B";

CASE var3 OF

ELSE

65..90: var2 := "UpperCase";
97..122: var2 := "LowerCase";
var2:= "SpecialCharacter";

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

END_CASE;

END_CASE;

784 FOR statement

Table 7- 96 Elements of the FOR statement

7.8 Program contro/

SCL

Description

FOR "control variable"
[BY "increment"] DO
statement;

END_FOR;

:= "begin" TO "end"

A FOR statement is used to repeat a sequence of
statements as long as a control variable is within
the specified range of values. The definition of a
loop with FOR includes the specification of an
initial and an end value. Both values must be the
same type as the control variable.

Table 7- 97 Parameters

Parameter

Description

"control_variable"

Required. An integer (Int or DiInt) that serves as a loop counter

"begin" Required. Simple expression that specifies the initial value of the control variables
"end" Required. Simple expression that determines the final value of the control variables
"increment” Optional. Amount by which a "control variable" is changed after each loop. The "increment"

has the same data type as "control variable". If the "increment" value is not specified, then
the value of the run tags will be increased by 1 after each loop. You cannot change
"increment” during the execution of the FOR statement.

The FOR statement executes as follows:

® At the start of the loop, the control variable is set to the initial value (initial assignment)
and each time the loop iterates, it is incremented by the specified increment (positive
increment) or decremented (negative increment) until the final value is reached.

® Following each run through of the loop, the condition is checked (final value reached) to
establish whether or not it is satisfied. If the condition is satisfied, the sequence of
statements is executed, otherwise the loop and with it the sequence of statements is
skipped.

Rules for formulating FOR statements:

® The control variable may only be of the data type Int or Dint.

® You can omit the statement BY [increment]. If no increment is specified, it is automatically
assumed to be +1.

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page 228). The EXIT statement executes the statement immediately following the
END_FOR statement.

Use the CONTINUE statement (Page 227) to skip the subsequent statements of a FOR loop
and to continue the loop with the examination of whether the condition is met for termination.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

225

Basic instructions

7.8 Program control

7.85 WHILE-DO statement

Table 7- 98 WHILE statement

SCL Description

WHILE "condition" DO The WHILE statement performs a series of statements until a given condition is
Statement; TRUE.
Statement; You can nest WHILE loops. The END_WHILE statement refers to the last executed
ceed WHILE instruction.

END WHILE;

Table 7-99 Parameters

Parameter

Description

"condition"

Required. A logical expression that evaluates to TRUE or FALSE. (A "null" condition is
interpreted as FALSE.)

Statement

Optional. One or more statements that are executed until the condition evaluates to TRUE.

226

Note

The WHILE statement evaluates the state of "condition" before executing any of the
statements. To execute the statements at least one time regardless of the state of
"condition", use the REPEAT statement.

The WHILE statement executes according to the following rules:
® Prior to each iteration of the loop body, the execution condition is evaluated.

® The loop body following DO iterates as long as the execution condition has the value
TRUE.

® Once the value FALSE occurs, the loop is skipped and the statement following the loop is
executed.

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page 228). The EXIT statement executes the statement immediately following the
END_WHILE statement

Use the CONTINUE statement to skip the subsequent statements of a WHILE loop and to
continue the loop with the examination of whether the condition is met for termination.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.8.6 REPEAT-UNTIL statement

Table 7- 100 REPEAT instruction

7.8 Program contro/

UNTIL "condition"
END REPEAT;

SCL Description
REPEAT The REPEAT statement executes a group of statements until a given condition is
Statement; TRUE.

You can nest REPEAT loops. The END_REPEAT statement always refers to the last
executed Repeat instruction.

Table 7- 101 Parameters

Parameter

Description

Statement

Optional. One or more statements that are executed until the condition is TRUE.

"condition"

Required. One or more expressions of the two following ways: A numeric expression or string
expression that evaluates to TRUE or FALSE. A "null" condition is interpreted as FALSE.

Note

Before evaluating the state of "condition”, the REPEAT statement executes the statements
during the first iteration of the loop (even if "condition" is FALSE). To review the state of

"condition" before executing the statements, use the WHILE statement.

To end the loop regardless of the state of the "condition" expression, use the EXIT statement
(Page 228). The EXIT statement executes the statement immediately following the

END_REPEAT statement

Use the CONTINUE statement (Page 227) to skip the subsequent statements of a REPEAT
loop and to continue the loop with the examination of whether the condition is met for
termination.

7.8.7 CONTINUE statement

Table 7- 102 CONTINUE statement

SCL

Description

CONTINUE
Statement;

’

The CONTINUE statement skips the subsequent statements of a program loop (FOR,
WHILE, REPEAT) and continues the loop with the examination of whether the condition is
met for termination. If this is not the case, the loop continues.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

227

Basic instructions

7.8 Program control

7.8.8

The CONTINUE statement executes according to the following rules:
e This statement immediately terminates execution of a loop body.

e Depending on whether the condition for repeating the loop is satisfied or not the body is
executed again or the iteration statement is exited and the statement immediately
following is executed.

® |n a FOR statement, the control variable is incremented by the specified increment
immediately after a CONTINUE statement.

Use the CONTINUE statement only within a loop. In nested loops CONTINUE always refers
to the loop that includes it immediately. CONTINUE is typically used in conjunction with an IF
statement.

If the loop is to exit regardless of the termination test, use the EXIT statement.

The following example shows the use of the CONTINUE statement to avoid a division-by-0
error when calculating the percentage of a value:
FOR x = 0 TO 10 DO
IF value[i] = 0 THEN CONTINUE; END IF;
p := part / value[i] * 100;

s := INT_TO_STRING (p) ;
percent=CONCAT (INl:=s, IN2:="%");
END_FOR;
EXIT statement

Table 7- 103 EXIT instruction

SCL Description
EXIT; An EXIT statement is used to exit a loop (FOR, WHILE or REPEAT) at any point, regardless of whether
the terminate condition is satisfied.
The EXIT statement executes according to the following rules:
® This statement causes the repetition statement immediately surrounding the exit
statement to be exited immediately.
® Execution of the program is continued after the end of the loop (for example after
END_FOR).
Use the EXIT statement within a loop. In nested loops, the EXIT statement returns the
processing to the next higher nesting level.
FOR i = 0 TO 10 DO
CASE value[i, 0] OF
1..10: value [i, 1]:="A";
11..40: value [i, 1]:="B";
41..100: value [i, 1]:="C";
ELSE
EXIT;
END_CASE;
END_FOR;
S7-1200 Programmable controller
228 System Manual, 04/2012, ASE02486680-06

Basic instructions
7.8 Program control

7.8.9 GOTO statement

Table 7- 104 GOTO statement

SCL Description
GOTO JumpLabel ; The GOTO statement skips over statements by jumping to a label in the same
Statement; block.
. ; The jump label ("JumpLabel") and the GOTO statement must be in the same block.
JumpLabel: Statement; The name of a jump label can only be assigned once within a block. Each jump
label can be the target of several GOTO statements.

It is not possible to jump to a loop section (FOR, WHILE or REPEAT). It is possible to jump
from within a loop.

In the following example: Depending on the value of the "Tag_value" operand, the execution
of the program resumes at the point defined by the corresponding jump label. If "Tag_value"
equals 2, the program execution resumes at the jump label "MyLabel2" and skips
"MyLabel1".

CASE "Tag_value" OF

1 : GOTO MyLabell;

2 : GOTO MyLabel2;

ELSE GOTO MyLabel3;

END_CASE;

MyLabell: "Tag 1" := 1;
MyLabel2: "Tag 2" := 1;
MyLabel3: "Tag 4" := 1;
7.8.10 RETURN statement
Table 7- 105 RETURN instruction
SCL Description
RETURN; The Return instruction exits the code block being executed without conditions. Program
execution returns to the calling block or to the operating system (when exiting an OB).

Example of a RETURN instruction:
IF "Error" <> 0 THEN
RETURN

END_IF;

Note

After executing the last instruction, the code block automatically returns to the calling block.
Do not insert a RETURN instruction at the end of the code block.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 229

Basic instructions

7.8 Program control

7.8.11

Jump and label instructions

Table 7- 106 JMP, JMPN, and LABEL instruction

LAD FBD SCL Description
Label_name Label rams See the GOTO (Page 229) | If there is power flow to a JMP coil (LAD), or if the
—{JHP— JHP statement. JMP box input is true (FBD), then program execution
-1 continues with the first instruction following the
specified label.
Labeal_name Label_name If there is no power flow to a JMPN coil (LAD), or if
—{JMPN} JMPH the JMPN box input is false (FBD), then program
-1 execution continues with the first instruction following
the specified label.
Destination label for a JMP or JMPN jump instruction.
Label_ruame: Label_nams

T You create your label names by typing in the LABEL instruction directly. Use the parameter helper icon to select the
available label names for the JMP and JMPN label name field. You can also type a label name directly into the JMP or
JMPN instruction.

Table 7- 107 Data types for the parameters

Parameter

Data type

Description

Label_name

Label identifier

Identifier for Jump instructions and the corresponding jump
destination program label

7.8.12

Table 7- 108 JMP_LIST instruction

e Each label must be unique within a code block.

® You can jump within a code block, but you cannot jump from one code block to another

code block.

® You can jump forward or backward.

® You can jump to the same label from more than one place in the same code block.

JMP_LIST instruction

LAD /FBD - SCL Description
CASE k OF The JMP_LIST instruction acts as a program jump distributor to control
JMF_LIST 0: GOTO destO; the execution of program sections. Depending on the value of the K
— EN DESTO 1: GOTO destl; input, a jump occurs to the corresponding program label. Program
K. DESTI 2: GOTO dest2; execution continues with the program instructions that follow the
DESTZ [n: GOTO destn;] |destinationjump label. If the value of the K input exceeds the number of
s DEST3 END CASE; labels - 1, then no jump occurs and processing continues with the next
- program network.

230

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

7.8 Program contro/

Table 7- 109 Data types for parameters

Parameter Data type Description

K Ulnt Jump distributor control value

DESTO, DEST1, .., | Program Labels Jump destination labels corresponding to specific K parameter values:
DESTn. If the value of K equals 0, then a jump occurs to the program label

assigned to the DESTO output. If the value of K equals 1, then a jump
occurs to the program label assigned to the DEST1 output, and so on. If
the value of the K input exceeds the (number of labels - 1), then no jump
occurs and processing continues with the next program network.

For LAD and FBD: The JMP_LIST box is first placed in your program, there are two jump
label outputs. You can add or delete jump destinations.

Click the create icon inside the box (on the left of the last DEST parameter)

JHP_LIST
JEN DESTOD to add new outputs for jump labels.
K DESTT
kg
JMP_LIST ¢ Right-click on an output stub and select the "Insert output" command.
. E“ ggg;ﬂ e Right-click on an output stub and select the "Delete" command.
¥ g
)
7.8.13 SWITCH instruction

Table 7- 110 SWITCH instruction

LAD / FBD SCL Description
Not available The SWITCH instruction acts as a program jump distributor to
S“;'LCH control the execution of program sections. Depending on the
EM DESTO result of comparisons between the value of the K input and the
K DESTY values assigned to the specified comparison inputs, a jump occurs
== :£DESTZ to the program label that corresponds to the first comparison test
< ELSE that is true. If none of the comparisons is true, then a jump to the
»= label assigned to ELSE occurs. Program execution continues with
the program instructions that follow the destination jump label.

1 For LAD and FBD: Click below the box name and select a data type from the drop-down menu.
2 For SCL: Use an IF-THEN set of comparisons.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 231

Basic instructions

7.8 Program control

Table 7- 111 Data types for parameters

Parameter Data type! Description

K Sint, Int, Dint, USInt, Uint, UDInt, Real, | Common comparison value input
LReal, Byte, Word, DWord, Time,
TOD, Date

==, <>, <, <=, > >= | SInt, Int, DInt, USInt, Uint, UDInt, Real,
LReal, Byte, Word, DWord, Time,

TOD, Date

Separate comparison value inputs for specific comparison
types

DESTO, DESTT, ..,
DESTn. ELSE

Program Labels

Jump destination labels corresponding to specific
comparisons:

The comparison input below and next to the K input is
processed first and causes a jump to the label assigned to
DESTO, if the comparison between the K value and this
input is true. The next comparison test uses the next input
below and causes a jump to the label assigned to DEST1, if
the comparison is true, The remaining comparisons are
processed similarly and if none of the comparisons are true,
then a jump to the label assigned to the ELSE output
occurs.

1 The Kinput and comparison inputs (==, <>, <, <=, >, >=) must be the same data type.

Adding inputs, deleting inputs, and specifying comparison types

When the LAD or FBD SWITCH box is first placed in your program there are two comparison
inputs. You can assign comparison types and add inputs/jump destinations, as shown below.

-EW DESTO

k. s:DESTH

DESTO

k.« DEST1
== %ELSE

-EN DESTO .
Kk :DESTT o

%== ELSE

Click a comparison operator inside the box and select a new operator
from the drop-down list.

Click the create icon inside the box (to the left of the last DEST
parameter) to add new comparison-destination parameters.

Right-click on an input stub and select the "Insert input" command.
Right-click on an input stub and select the "Delete" command.

Table 7- 112 SWITCH box data type selection and allowed comparison operations

Data type Comparison Operator syntax
Byte, Word, DWord Equal ==
Not equal <>

232

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions

SWITCH box placement rules

7.8.14

7.8 Program contro/

Data type Comparison Operator syntax
Sint, Int, Dint, USInt, Ulnt, Equal ==
UDInt, Real, LReal, Time, TOD, Not equal <>
Date
Greater than or equal >=
Less than or equal <=
Greater than >
Less than <

® No LAD/FBD instruction connection in front of the compare input is allowed.

® There is no ENO output, so only one SWITCH instruction is allowed in a network and the
SWITCH instruction must be the last operation in a network.

RET execution control instruction

The optional RET instruction is used to terminate the execution of the current block. If and
only if there is power flow to the RET coil (LAD) or if the RET box input is true (FBD), then
program execution of the current block will end at that point and instructions beyond the RET
instruction will not be executed. If the current block is an OB, the "Return_Value" parameter
is ignored. If the current block is a FC or FB, the value of the "Return_Value " parameter is
passed back to the calling routine as the ENO value of the called box.

You are not required to use a RET instruction as the last instruction in a block; this is done
automatically for you. You can have multiple RET instructions within a single block.

For SCL, see the RETURN (Page 229) statement.

Table 7- 113 Return_Value (RET) execution control instruction

RET

LAD FBD SCL Description
“Rretum_ Vahe' g, Vahae' RETURN; Terminates the execution of the current block
—{RET}

Table 7- 114 Data types for the parameters

Parameter

Data type

Description

Return_Value

Bool

The "Return_value" parameter of the RET instruction is assigned to the ENO output
of the block call box in the calling block.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

233

Basic instructions

7.8 Program control

Sample steps for using the RET instruction inside an FC code block:
1. Create a new project and add an FC:
2. Edit the FC:

— Add instructions from the instruction tree.

— Add a RET instruction, including one of the following for the "Return_Value"
parameter:

TRUE, FALSE, or a memory location that specifies the required return value.
— Add more instructions.
3. Call the FC from MAIN [OB1].

The EN input on the FC box in the MAIN code block must be true to begin execution of the
FC.

The value specified by the RET instruction in the FC will be present on the ENO output of the
FC box in the MAIN code block following execution of the FC for which power flow to the
RET instruction is true.

7.8.15 Re-trigger scan cycle watchdog instruction

Table 7- 115 RE_TRIGR instruction

LAD / FBD

SCL Description

- EN END =

RE_TRIGR() ; RE_TRIGR (Re-trigger scan time watchdog) is used to extend the maximum
time allowed before the scan cycle watchdog timer generates an error.

234

Use the RE_TRIGR instruction to restart the scan cycle monitoring timer during a single scan
cycle. This has the effect of extending the allowed maximum scan cycle time by one
maximum cycle time period, from the last execution of the RE_TRIGR function.

Note

Prior to S7-1200 CPU firmware version 2.2, RE_TRIGR was restricted to execution from a
program cycle OB and could be used to extend the PLC scan time indefinitely. ENO =
FALSE and the watchdog timer is not reset when RE_TRIGR was executed from a start up
OB, an interrupt OB, or an error OB.

For firmware version 2.2 and later, RE_TRIGR can be executed from any OB (including start
up, interrupt, and error OBs). However, the PLC scan can only be extended by a maximum
of 10x the configured maximum cycle time.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions
7.8 Program control

Setting the PLC maximum cycle time

Configure the value for maximum scan cycle time in the Device configuration for "Cycle
time".

Table 7- 116 Cycle time values

Cycle time monitor Minimum value Maximum value Default value

Maximum cycle time 1ms 6000 ms 150 ms

Watchdog timeout

If the maximum scan cycle timer expires before the scan cycle has been completed, an error
is generated. If an error handling code block OB 80 is included in the user program, the CPU
executes OB 80 where you may add program logic to create a special reaction. If OB 80 is
not included, the first timeout condition is ignored and the CPU goes to STOP.

If a second maximum scan time timeout occurs in the same program scan (2 times the
maximum cycle time value), an error is triggered that causes the CPU to transition to STOP
mode.

In STOP mode, your program execution stops while CPU system communications and
system diagnostics continue.

7.8.16 Stop scan cycle instruction

Table 7- 117 STP instruction

LAD / FBD SCL Description
— =P STP() ; STP (Stop scan cycle) puts the CPU in STOP mode. When the CPU is in
JEN ENO - STOP mode, the execution of your program and physical updates from the
process image are stopped.

For more information see: Configuring the outputs on a RUN-to-STOP transition (Page 87).

If EN = TRUE, then the CPU goes to STOP mode, the program execution stops, and the
ENO state is meaningless. Otherwise, EN = ENO = 0.

7.8.17 Get Error instructions

The get error instructions provide information about program block execution errors. If you
add a GetError or GetErrorID instruction to your code block, you can handle program errors
within your program block.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 235

Basic instructions

7.8 Program control

GetError

Table 7- 118 GetError instruction

LAD / FBD SCL Description
i ; GET_ERROR (_o | Indicates that a local program block execution error has occurred and fills a
'ENE"E":"HD | ut); predefined error data structure with detailed error information.
ERROA |

Table 7- 119 Data types for the parameters

Parameter Data type Description
ERROR ErrorStruct Error data structure: You can rename the structure, but not the members within the
structure.

Table 7- 120 Elements of the ErrorStruct data structure

Structure components Data type Description
ERROR_ID Word Error ID
FLAGS Byte Shows if an error occurred during a block call.
e 16#01: Error during a block call.
e 16#00: No error during a block call.
REACTION Byte Default reaction:
e 0: Ignore (write error),
e 1: Continue with substitute value "0" (read error),
e 2: Skip instruction (system error)
CODE_ADDRESS CREF Information about the address and type of block
BLOCK_TYPE Byte Type of block where the error occurred:
e 1:0B
e 2:FC
e 3:FB
CB_NUMBER Ulnt Number of the code block
OFFSET UDInt Reference to the internal memory
MODE Byte Access mode: Depending on the type of access, the following
information can be output:
Mode (A) (B) (€) (D) (E)
0
1 Offset
2 Area
3 Location | Scope Number
4 Area Offset
5 Area DB no. Offset

S7-1200 Programmable controller
236 System Manual, 04/2012, ASE02486680-06

Basic instructions

7.8 Program contro/

Structure components Data type Description
6 PtrNo. Area DB no. Offset
/Acc
7 PtrNo./ | Slot No./ Area DB no. Offset
Acc Scope
OPERAND_NUMBER Ulnt Operand number of the machine command
POINTER_NUMBER _ Ulnt (A) Internal pointer
LOCATION
SLOT_NUMBER_SCOPE Ulint (B) Storage area in internal memory
DATA_ADDRESS NREF Information about the address of an operand
AREA Byte (C) Memory area:
e L:16#40 - 4E, 86, 87, 8E, 8F, CO - CE
o | 16#81
o Q:16#82
o M: 16#83
o DB: 16#84, 85, 8A, 8B
DB_NUMBER Ulnt (D) Number of the data block
OFFSET UDInt (E) Relative address of the operand
GetErrorlD
Table 7- 121 GetErrorID instruction
LAD / FBD SCL Description
R GET_ERR _ID() Ipdicgtgs that a program block execution error has occurred and reports the ID
JEN ENO = ; (identifier code) of the error.
D

Table 7- 122 Data types for the parameters

Parameter

Data type

Description

ID

Word

Error identifier values for the ErrorStruct ERROR_ID member

Table 7- 123 Error_ID values

ERROR_ID ERROR_ID Program block execution error
Hexadecimal Decimal

0 0 No error

2503 9475 Uninitialized pointer error

2522 9506 Operand out of range read error
2523 9507 Operand out of range write error
2524 9508 Invalid area read error

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

237

Basic instructions

7.8 Program control

ERROR_ID ERROR_ID Program block execution error

Hexadecimal Decimal

2525 9509 Invalid area write error

2528 9512 Data alignment read error (incorrect bit alignment)
2529 9513 Data alignment write error (incorrect bit alignment)
2530 9520 DB write protected

253A 9530 Global DB does not exist

253C 9532 Wrong version or FC does not exist

253D 9533 Instruction does not exist

253E 9534 Wrong version or FB does not exist

253F 9535 Instruction does not exist

2575 9589 Program nesting depth error

2576 9590 Local data allocation error

2942 10562 Physical input point does not exist

2943 10563 Physical output point does not exist
Operation

By default, the CPU responds to a block execution error by logging an error in the
diagnostics buffer. However, if you place one or more GetError or GetErrorID instructions
within a code block, this block is now set to handle errors within the block. In this case, the
CPU does not log an error in the diagnostics buffer. Instead, the error information is reported
in the output of the GetError or GetErrorID instruction. You can read the detailed error
information with the GetError instruction, or read just the error identifier with GetErrorID
instruction. Normally the first error is the most important, with the following errors only
consequences of the first error.

The first execution of a GetError or GetErrorID instruction within a block returns the first error
detected during block execution. This error could have occurred anywhere between the start
of the block and the execution of either GetError or GetErrorID. Subsequent executions of
either GetError or GetErrorlD return the first error since the previous execution of GetError or
GetErrorID. The history of errors is not saved, and execution of either instruction will re-arm
the PLC system to catch the next error.

The ErrorStruct data type used by the GetError instruction can be added in the data block
editor and block interface editors, so your program logic can access these values. Select
ErrorStruct from the data type drop-down list to add this structure. You can create multiple
ErrorStruct elements by using unique names. The members of an ErrorStruct cannot be
renamed.

Error condition indicated by ENO
If EN = TRUE and GetError or GetErrorlD executes, then:
e ENO = TRUE indicates a code block execution error occurred and error data is present
e ENO = FALSE indicates no code block execution error occurred

You can connect error reaction program logic to ENO which activates after an error occurs. If
an error exists, then the output parameter stores the error data where your program has
access to it.

S7-1200 Programmable controller
238 System Manual, 04/2012, ASE02486680-06

Basic instructions
7.9 Word logic operations

GetError and GetErrorlD can be used to send error information from the currently executing
block (called block) to a calling block. Place the instruction in the last network of the called
block program to report the final execution status of the called block.

7.9 Word logic operations

7.9.1 AND, OR, and XOR instructions

Table 7- 124 AND, OR, and XOR instruction

LAD / FBD SCL Description
T out := inl AND in2; AND: Logical AND
27
EN EMO~ |out := inl OR in2; OR: Logical OR
e T |out := inl XOR in2; XOR: Logical exclusive OR

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

N2 To add an input, click the "Create" icon or right-click on an input stub for one of the
[:E existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

Table 7- 125 Data types for the parameters

Parameter Data type Description
IN1, IN2 Byte, Word, DWord Logical inputs
ouT Byte, Word, DWord Logical output

1 The data type selection sets parameters IN1, IN2, and OUT to the same data type.

The corresponding bit values of IN1 and IN2 are combined to produce a binary logic result at
parameter OUT. ENO is always TRUE following the execution of these instructions.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 239

Basic instructions

7.9 Word logic operations

79.2 Invert instruction

Table 7- 126 INV instruction

LAD / FBD SCL Description
PREEN Not available Calculates the binary one's complement of the parameter IN. The one's
INV . ; . .
717 complement is formed by inverting each bit value of the IN parameter
—EM END = (changing each 0 to 1 and each 1 to 0). ENO is always TRUE following
IN our | the execution of this instruction.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 127 Data types for the parameters

Parameter Data type Description

IN Sint, Int, Dint, USInt, Ulnt, UDInt, Byte, Word, DWord Data element to invert
ouT Sint, Int, DInt, USInt, Uint, UDInt, Byte, Word, DWord Inverted output
7.9.3 Encode and decode instructions

Table 7- 128 ENCO and DECO instruction

LAD / FBD SCL Description
S out := ENCO(_in_); Encodes a bit pattern to a binary number
e The ENCO instruction converts parameter IN to the binary number
—EN END = corresponding to the bit position of the least-significant set bit of
W OuT parameter IN and returns the result to parameter OUT. If

parameter IN is either 0000 0001 or 0000 0000, then a value of 0
is returned to parameter OUT. If the parameter IN value is 0000
0000, then ENO is set to FALSE.

...... SECOT| out := DECO(_in_); Decodes a binary number to a bit pattern
mo | The DECO instruction decodes a binary number from parameter
=EN E”? - IN, by setting the corresponding bit position in parameter OUT to
IN L

a 1 (all other bits are set to 0). ENO is always TRUE following
execution of the DECO instruction.

Note: The default data type for the DECO instruction is DWORD.
In SCL, change the instruction name to DECO_BYTE or
DECO_WORD to decode a byte or word value, and assign to a
byte or word tag or address.

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
240 System Manual, 04/2012, ASE02486680-06

Basic instructions

Table 7- 129 Data types for the parameters

7.9 Word logic operations

Parameter Data type Description

IN ENCO: Byte, Word, DWord ENCO: Bit pattern to encode
DECO: Ulint DECO: Value to decode

ouT ENCO: Int ENCO: Encoded value
DECO: Byte, Word, DWord DECO: Decoded bit pattern

Table 7- 130 OUT parameter for ENCO

ENO Condition Result (OUT)
1 No error Valid bit number
0 IN is zero OUT is set to zero

The DECO parameter OUT data type selection of a Byte, Word, or DWord restricts the
useful range of parameter IN. If the value of parameter IN exceeds the useful range, then a
modulo operation is performed to extract the least significant bits shown below.

DECO parameter IN range:

® 3 bits (values 0-7) IN are used to set 1 bit position in a Byte OUT
® 4-bits (values 0-15) IN are used to set 1 bit position in a Word OUT
® 5 bits (values 0-31) IN are used to set 1 bit position in a DWord OUT

Table 7- 131 Examples

DECO IN value DECO OUT value (Decode single bit position)
Byte OUT Min. IN 00000001

8 bits Max. IN 10000000

Word OUT Min. IN 0000000000000001

16 bits Max. IN 15 1000000000000000

DWord OUT Min. IN 0 00000000000000000000000000000001

32 bits Max. IN 31 10000000000000000000000000000000

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

241

Basic instructions
7.9 Word logic operations

7.9.4 Select, Multiplex, and Demultiplex instructions

Table 7- 132 SEL (select) instruction

LAD / FBD SCL Description
= out := SEL(SEL assigns one of two input values to parameter OUT, depending
77 g:=_bool_in, on the parameter G value.
EN END = in0:-_variant_in,
G ouT inl:= variant_in);
N0
IN1

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 7- 133 Data types for the SEL instruction

Parameter Data type ! Description
G Bool o 0 selects INO
o 1 selects IN1
INO, IN1 Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, DWord, | Inputs
Time, Char
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, | Output
Time, Char

1 Input variables and the output variable must be of the same data type.

Condition codes: ENO is always TRUE following execution of the SEL instruction.

Table 7- 134 MUX (multiplex) instruction

LAD / FBD SCL Description
i out := MUX(MUX copies one of many input values to parameter OUT, depending
595 k:= unit _in, on the parameter K value. If the parameter K value exceeds (IN77- 1),
EM ENO = inl:=variant_in, then the parameter ELSE value is copied to parameter OUT.
K. ouT in2:=variant_in,
IMNO
Ci [...in32:=variant in,]
ELSE . s s
inelse:=variant_in);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

IM23E
ELSE
To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

To add an input, click the "Create" icon or right-click on an input stub for one of
the existing IN parameters and select the "Insert input" command.

S7-1200 Programmable controller

242 System Manual, 04/2012, ASE02486680-06

Basic instructions

Table 7- 135 Data types for the MUX instruction

7.9 Word logic operations

Parameter Data type Description
K Ulnt e 0 selects IN1
o 1 selects IN2
e nselects INn
INO, IN1, .. INn Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, Inputs
Time, Char
ELSE Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, Input substitute value (optional)
Time, Char
ouT Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord, Output
Time, Char
1 Input variables and the output variable must be of the same data type.
Table 7- 136 DEMUX (Demultiplex) instruction
LAD / FBD SCL Description
T DEMUX (DEMUX copies the value of the location assigned to parameter IN to
77 k:= unit in, one of many outputs. The value of the K parameter selects which
EM END - in:=variant_in, output selected as the destination of the IN value. If the value of K is
K auTad outl:=variant in, greater than the number (OUT 7 - 1) then the IN value is copied to
M s:0UTY out2:=variant in, location assigned to the ELSE parameter.
ELSE -
[...out32:=variant_in,]
outelse:=variant in);

1 For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

To add an output, click the create icon or right-click on an output stub for one of the existing
OUT parameters and select the "Insert output" command. To remove an output, right-click
on an output stub for one of the existing OUT parameters (when there are more than the

original two outputs) and select the "Delete" command.

= OUTT To add an output, click the "Create" icon or right-click on an output stub for one
LSE of the existing OUT parameters and select the "Insert output" command.

To remove an output, right-click on an output stub for one of the existing OUT parameters
(when there are more than the original two outputs) and select the "Delete" command.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

243

Basic instructions

7. 10 Shift and Rotate

Table 7- 137 Data types for the DEMUX instruction

Parameter Data type ! Description
K Ulint Selector value:
e (0 selects OUT1
e 1 selects OUT2
e nselects OUTn
IN Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, DWord, Input
Time, Char
OUTO, OUT1, .. |Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, DWord, Outputs
OUTn Time, Char
ELSE Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, DWord, Substitute output when K is
Time, Char greater than (OUTn - 1)

1 The input variable and the output variables must be of the same data type.

Table 7- 138 ENO status for the MUX and DEMUX instructions

ENO Condition Result OUT
1 No error MUX: Selected IN value is copied to OUT

DEMUX: IN value is copied to selected OUT

0 MUX: K is greater than the number of inputs -1 e No ELSE provided: OUT is unchanged,
o ELSE provided, ELSE value assigned to OUT

DEMUX: K is greater than the number of outputs -1 e No ELSE provided: outputs are unchanged,

e ELSE provided, IN value copied to ELSE

7.10 Shift and Rotate

7.101

Shift instructions

Table 7- 139 SHR and SHL instructions

LAD / FBD SCL Description
T out := SHR(Use the shift instructions (SHL and SHR) to shift the bit pattern of
Ere | in:= variant_in_, parameter IN. The result is assigned to parameter OUT.
~EM END |- n:= uint in); Parameter N specifies the number of bit positions shifted:
N ouT | .= g - I .
4 out := SHL(e SHR: Shift bit pattern right
ln:=—‘_'arl‘-fmt—ln—’ e SHL: Shift bit pattern left
n:= uint in);

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

244

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Basic instructions
7. 10 Shift and Rotate

Table 7- 140 Data types for the parameters

Parameter Data type Description

IN Byte, Word, DWord Bit pattern to shift

N Ulnt Number of bit positions to shift
ouT Byte, Word, DWord Bit pattern after shift operation

® For N=0, no shift occurs. The IN value is assigned to OUT.
® Zeros are shifted into the bit positions emptied by the shift operation.

e |f the number of positions to shift (N) exceeds the number of bits in the target value (8 for
Byte, 16 for Word, 32 for DWord), then all original bit values will be shifted out and
replaced with zeros (zero is assigned to OUT).

o ENO is always TRUE for the shift operations.

Table 7- 141 SHL example for Word data

Shift the bits of a Word to the left by inserting zeroes from the right (N = 1)
IN 1110 0010 1010 1101 OUT value before first shift: 1110 0010 1010 1101
After first shift left: 1100 0101 0101 1010
After second shift left: 1000 1010 1011 0100
After third shift left: 0001 0101 0110 1000
7.10.2 Rotate instructions

Table 7- 142 ROR and ROL instructions

LAD / FBD SCL Description
------- Y out := ROL(Use the rotate instructions (ROR and ROL) to rotate the bit pattern of
77 in:= variant_in_, parameter IN. The result is assigned to parameter OUT. Parameter N
- EN ENO - n:=_uint_in); defines the number of bit positions rotated.
I: aut out := ROR(« ROR: Rotate bit pattern right
' ' 1n:=_\.rarla.mt_1n_, e ROL: Rotate bit pattern left
n:= uint in);

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 245

Basic instructions

7. 10 Shift and Rotate

Table 7- 143 Data types for the parameters

Parameter Data type Description

IN Byte, Word, DWord Bit pattern to rotate

N Ulint Number of bit positions to rotate
ouT Byte, Word, DWord Bit pattern after rotate operation

e For N=0, no rotate occurs. The IN value is assigned to OUT.

e Bit data rotated out one side of the target value is rotated into the other side of the target
value, so no original bit values are lost.

e |f the number of bit positions to rotate (N) exceeds the number of bits in the target value
(8 for Byte, 16 for Word, 32 for DWord), then the rotation is still performed.

e ENO is always TRUE following execution of the rotate instructions.

Table 7- 144 ROR example for Word data

Rotate bits out the right -side into the left -side (N = 1)

IN 0100 0000 0000 0001 OUT value before first rotate: 0100 0000 0000 0001
After first rotate right: 1010 0000 0000 0000
After second rotate right: 0101 0000 0000 0000

S7-1200 Programmable controller
246 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.1 Date and time-of-day

8.1.1 Date and time instructions

Use the date and time instructions to program calendar and time calculations.

® T_CONV converts the data type of a time value: (Time to Dint) or (DInt to Time)
T_ADD adds Time and DTL values: (Time + Time = Time) or (DTL + Time = DTL)
T_SUB subtracts Time and DTL values: (Time - Time = Time) or (DTL - Time = DTL)

T_DIFF provides the difference between two DTL values as a Time value: DTL - DTL =
Time

T_COMBINE combines a Date value and a Time_and_Date value to create a DTL value

For information about the structure of the DTL and Time data, refer to the section on the
Time and Date data types (Page 96).

Table 8- 1 T_CONV (Time Convert) instruction

LAD / FBD SCL Description
R out := T_CONV(T_CONYV converts a Time data type to a DiInt data type, or the reverse
T_CONV . - . . .
e | in:= variant in); conversion from Dint data type to Time data type.
~EH END -
.. i

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

Table 8- 2 Data types for the T_CONV parameters

Parameter and type Data type Description
IN IN Dint, Time Input Time value or Dint value
ouT ouT Dint, Time Converted DInt value or Time value

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 247

Extended instructions

8.1 Date and time-of-day

Table 8-3 T_ADD (Time Add) and T_SUB (Time Subtract) instructions

LAD / FBD SCL Description
T ADD out := T_ADD(T_ADD adds the input IN1 value (DTL or Time data types) with the input
| 77k Tons inl:= variant in, |IN2 Time value. Parameter OUT provides the DTL or Time value result.
—EH END - in2:= time in); Two data type operations are possible:
fim ouT | - - . ' '
12 e Time + Time = Time
e DTL + Time = DTL
T out := T_SUB(T_SUB subtracts the IN2 Time value from IN1 (DTL or Time value).
297 o T | inl:= variant_in, Parameter OUT provides the difference value as a DTL or Time data
—EM END - in2:= time in); type. Two data type operations are possible:
A our | - - . . .
i e Time - Time = Time
e DTL-Time =DTL

1 For LAD and FBD: Click the "???" and select the data types from the drop-down menu.

Table 8- 4 Data types for the T_ADD and T_SUB parameters

Parameter and type Data type Description

IN11 IN DTL, Time DTL or Time value

IN2 IN Time Time value to add or subtract
ouT ouT DTL, Time DTL or Time sum or difference

1 Select the IN1 data type from the drop-down list available below the instruction name. The IN1 data type selection also
sets the data type of parameter OUT.

Table 8-5 T_DIFF (Time Difference) instruction

LAD / FBD SCL Description
—TEEET out := T _DIFF(T_DIFF subtracts the DTL value (IN2) from the DTL value (IN1).
OTL to T inl:= DTL_in, Parameter OUT provides the difference value as a Time data type.
=EH END'— in2 :=_DTL_in) ; ° DTL _ DTL = Tlme
Il ouT |
In2 [

Table 8- 6 Data types for the T_DIFF parameters

Parameter and type Data type Description

IN1 IN DTL DTL value

IN2 IN DTL DTL value to subtract
ouT ouT Time Time difference

S7-1200 Programmable controller
248 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.1 Date and time-of-day

Condition codes: ENO = 1 means no error occurred. ENO = 0 and parameter OUT =0

errors.

® |nvalid DTL value

® |nvalid Time value

Table 8-7 T_COMBINE (combine time values) instruction
LAD / FBD SCL Description
out := CONCAT_DATE_TOD (T_COMBINE combines a Date value and a
Time_Df_E;SDThSBIIJ?E Inl := _date_in, Time_of_Day value to create a DTL value.
—EN EMO = In2 : _tod_ln) ;
M1 out
Ih2

1 Note that the T_COMBINEinstruction in the Extended Instructions equates to the CONCAT_DATE_TODfunction in SCL.

Table 8- 8 Data types for the T_COMBINE parameters
Parameter and type Data type Description
IN1 IN Date Date value to be combined must be between DATE#1990-
01-01 and DATE#2089-12-31
IN2 IN Time_of_Day Time_of_Day values to be combined
ouT ouT DTL DTL value
8.1.2 Set and read system clock
Use the clock instructions to set and read the CPU system clock. The data type DTL
(Page 96) is used to provide date and time values.
Table 8- 9 System time instructions
LAD / FBD SCL Description
W | ret _val := WR_SYS_T(WR_SYS_T (Write System Time) sets the CPU time of day clock with a
i - L - in:= DTL in); DTL value at parameter IN. This time value does not include local time
N RET_VAL zone or daylight saving time offsets.
[ROSTST ret val := RD_SYS_T(RD_SYS_T (Read System Time) reads the current system time from
= L vl out=> DTL_out) ; the CPU. This time value does not include local time zone or daylight
[rervae| saving time offsets.
om
[RO ret val := RD_LOC_T(RD_LOC_T (Read Local Time) provides the current local time of the
- L - out=> DTL out); CPU as a DTL data type. This time value reflects the local time zone
RET.VAL| adjusted appropriately for daylight saving time (if configured).

ouT |

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

249

Extended instructions

8.1 Date and time-of-day

Table 8- 10 Data types for the parameters

Parameter and type Data type Description

IN IN DTL Time of day to set in the CPU system clock

RET_VAL ouT Int Execution condition code

ouT ouT DTL RD_SYS_T: Current CPU system time
RD_LOC_T: Current local time. including any adjustment for
daylight saving time, if configured

The local time is calculated by using the time zone and daylight saving time offsets that
you set in the device configuration general tab "Time of day" parameters.

Time zone configuration is an offset to UTC or GMT time.

Daylight saving time configuration specifies the month, week, day, and hour when
daylight saving time begins.

Standard time configuration also specifies the month, week, day, and hour when standard
time begins.

The time zone offset is always applied to the system time value. The daylight saving time
offset is only applied when daylight saving time is in effect.

Note
Daylight saving and standard start time configuration

The "Time of day" properties for "Start for daylight saving time" of the CPU device
configuration must be your local time.

Condition codes: ENO = 1 means no error occurred. ENO = 0 means an execution error
occurred, and a condition code is provided at the RET_VAL output.

Table 8- 11 Condition codes

RET_VAL (W#16#....)

Description

0000

The current local time is in standard time.

0001 Daylight saving time has been configured, and the current local time is in daylight saving
time.

8080 Local time not available

8081 lllegal year value

8082 lllegal month value

8083 lllegal day value

8084 lllegal hour value

8085 lllegal minute value

8086 lllegal second value

8087 lllegal nanosecond value

80B0 The real-time clock has failed.

S7-1200 Programmable controller

250 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.1.3

8.1 Date and time-of-day

Run-time meter instruction

Table 8- 12 RTM instruction

LAD / FBD SCL Description
RTM(NR:=_uint_in_, The RTM (Run Time Meter) instruction can set, start, stop, and
. AT = MODE:= byte_in_, read the run-time hour meters in the CPU.
ME FET WAL PV:= dint_in_,
MODE B co CQ=> bool_out_,
P ' Cv=>_dint_out)

Table 8- 13 Data types for the parameters

Parameter and type Data type Description
NR IN Ulnt Run-time meter number: (possible values: 0..9)
MODE IN Byte RTM Execution mode number:
¢ 0 = Fetch values (the status is then written to CQ and the
current value to CV)
e 1 = Start (at the last counter value)
e 2=Stop
e 4 = Set (to the value specified in PV)
e 5= Set (to the value specified in PV) and then start
e 6 = Set (to the value specified in PV) and then stop
e 7 =Save all RTM values in the CPU to the MC (Memory
Card)
PV IN Dint Preset hours value for the specified run-time meter
RET_VAL ouT Int Function result / error message
cQ ouT Bool Run-time meter status (1 = running)
Ccv ouT Dint Current run-time hours value for the specified meter

The CPU operates up to 10 run-time hour meters to track the run-time hours of critical
control subsystems. You must start the individual hour meters with one RTM execution for
each timer. All run-time hour meters are stopped when the CPU makes a run-to-stop
transition. You can also stop individual timers with RTM execution mode 2.

When a CPU makes a stop-to-run transition, you must restart the hour timers with one RTM
execution for each timer that is started. After a run-time meter value is greater than
2147483647 hours, counting stops and the "Overflow" error is sent. You must execute the
RTM instruction once for each timer to reset or modify the timer.

A CPU power failure or power cycle causes a power-down process that saves the current
run-time meter values in retentive memory. Upon CPU power-up, the stored run-time meter
values are reloaded to the timers and the previous run-time hour totals are not lost. The run-
time meters must be restarted to accumulate additional run-time.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 251

Extended instructions

8.1 Date and time-of-day

Your program can also use RTM execution mode 7 to save the run-time meter values in a
memory card. The states of all timers at the instant RTM mode 7 is executed are stored in
the memory card. These stored values can become incorrect over time as the hour timers
are started and stopped during a program run session. You must periodically update the
memory card values to capture important run-time events. The advantage that you get from
storing the RTM values in the memory card is that you can insert the memory card in a
substitute CPU where your program and saved RTM values will be available. If you did not
save the RTM values in the memory card, then the timer values would be lost (in a substitute
CPU).

Note
Avoid excessive program calls for memory card write operations

Minimize flash memory card write operations to extend the life of the memory card.

Table 8- 14 Condition codes
RET_VAL (W#16#....) Description
0 No error
8080 Incorrect run-time meter number
8081 A negative value was passed to the parameter PV
8082 Overflow of the operating hours counter
8091 The input parameter MODE contains an illegal value.
80B1 Value cannot be saved to MC (MODE=7)
8.14 SET_TIMEZONE instruction

Table 8- 15 SET_TIMEZONE instruction

LAD / FBD SCL Description
"oET "SET_TIMEZONE_DB" (Sets the local time zone and daylight

TIMEZONE_DE” REQ:= bool in, saving parameters that are used to

SET_TIMEZONE Timezone:=_struct in, transform the CPU system time to local
i ENDI— DONE=> bool out , time.
— FEQ DOIME |~ . - -

TimeZone BUSY = BUSY=> bool out_,
EREOE = ERROR=>_bool_out_,
STATUS STATUS=> word_out_);

T In the SCL example, "SET_TIMEZONE_DB" is the name of the instance DB.

252

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

Table 8- 16 Data types for the parameters

8.1 Date and time-of-day

Parameter and type Data type Description

REQ IN Bool REQ=1: execute function

Timezone IN TimeTransformationRule Rules for the transformation from system time to
local time

DONE ouT Bool Function complete

BUSY ouT Bool Function busy

ERROR ouT Bool Error detected

STATUS ouT Word Function result / error message

To manually configure the time zone parameters for the CPU, use the "Time of day"
properties of the "General" tab of the device configuration.

Use the SET_TIMEZONE instruction to set the local time configuration programmatically.
The parameters of the "TimeTransformationRule" structure specify the local time zone and
timing for automatic switching between standard time and daylight saving time.

Table 8- 17 "TimeTransformationRule" structure

Parameter Data type Description
Bias Int Time difference between UTC and local time [min]
DaylightBias Int Time difference between winter and summer time [min]
DaylightStartMonth USint Month of daylight saving time
DaylightStartWeek USint Week of daylight saving time:
e 1 =First occurrence of the weekday in the month
.
e 5 = Last occurrence of the weekday of the month
DaylightStartWeekday USint Weekday of daylight saving time:
e 1= Sunday
o
e 7 = Saturday
DaylightStartHour USint Hour of daylight saving time
StandardStartMonth USint Month of switching to winter time
StandardStartWeek USint Week of the changeover to winter time:
e 1 = First occurrence of the weekday in the month
.
e 5 = last occurrence of the weekday of the month
StandardStartWeekday USint Weekday of winter time:
e 1= _Sunday
L]
e 7 = Saturday
StandardStartHour USint Hour of the winter time
Time Zone Name STRING [80] Name of the zone:
(GMT +01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

253

Extended instructions

8.2 String and character

8.2

8.2.1

String and character

String data overview

String data type

String data is stored as a 2-byte header followed by up to 254 character bytes of ASCII
character codes. A String header contains two lengths. The first byte is the maximum length
that is given in square brackets when you initialize a string, or 254 by default. The second
header byte is the current length that is the number of valid characters in the string. The
current length must be smaller than or equal to the maximum length. The number of stored
bytes occupied by the String format is 2 bytes greater than the maximum length.

Initialize your String data

String input and output data must be initialized as valid strings in memory, before execution
of any string instructions.

Valid String data

8.2.2

Table 8- 18 String move instruction

A valid string has a maximum length that must be greater than zero but less than 255. The
current length must be less than or equal to the maximum length.

Strings cannot be assigned to | or Q memory areas.

For more information see: Format of the String data type (Page 97).

S_MOVE instruction

LAD / FBD SCL Description
= THEE out := in; Copy the source IN string to the OUT location. S_MOVE execution does not affect
—EN END- the contents of the source string.
IN out

Table 8- 19 Data types for the parameters

Parameter Data type Description
IN String Source string
ouT String Target address
If the actual length of the string at the input IN exceeds the maximum length of a string
stored at output OUT, then the part of the IN string which can fit in the OUT string is copied.
S7-1200 Programmable controller
254

System Manual, 04/2012, ASE02486680-06

Extended instructions

8.2.3

8.2.31

8.2 String and character

String conversion instructions

String to value and value to string conversions

You can convert number character strings to number values or number values to number
character strings with these instructions:

S_CONV converts (number string to a number value) or (humber value to a number
string)

STRG_VAL converts a number string to a number value with format options

VAL_STRG converts a number value to a number string with format options

S_CONV (String to value conversions)

Table 8- 20 String conversion instruction
LAD / FBD SCL Description
T out := Converts a character string to the corresponding value, or a value
| wPwe | <Type>_TO_<Type> (in) ; to the corresponding character string. The S_CONV instruction
—EN END - has no output formatting options. This makes the S_CONV
{IN 0uT | instruction simpler, but less flexible than the STRG_VAL and
VAL_STRG instructions.

1 For LAD / FBD: Click the "???" and select the data type from the drop-down list.

2 For SCL: Select S_CONYV from the Extended Instructions, and answer the prompts for the data types for the conversion.
STEP 7 then provides the appropriate conversion instruction.

Table 8-21 Data types (string to value)
Parameter and type Data type Description
IN IN String Input character string
ouT ouT String, Char, Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Output number value

Conversion of the string parameter IN starts at the first character and continues until the end

of the string, or until the first character is encountered that is not "0" through "9", "+", "-", or

The result value is provided at the location specified in parameter OUT. If the output

number value does not fit in the range of the OUT data type, then parameter OUT is set to 0
and ENO is set to FALSE. Otherwise, parameter OUT contains a valid result and ENO is set
to TRUE.

Input String format rules:

If a decimal point is used in the IN string, you must use the "." character.

Comma characters "," used as a thousands separator to the left of the decimal point are
allowed and ignored.

Leading spaces are ignored.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 255

Extended instructions

8.2 String and character

S_CONYV (Value to string conversions)

Table 8- 22 Data types (value to string)

Parameter and type Data type Description
IN IN String, Char, Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal Input number value
ouT ouT String Output character string

An integer, unsigned integer, or floating point value IN is converted to the corresponding
character string at OUT. The parameter OUT must reference a valid string before the
conversion is executed. A valid string consists of a maximum string length in the first byte,
the current string length in the second byte, and the current string characters in the next
bytes. The converted string replaces characters in the OUT string starting at the first
character and adjusts the current length byte of the OUT string. The maximum length byte of
the OUT string is not changed.

How many characters are replaced depends on the parameter IN data type and number
value. The number of characters replaced must fit within the parameter OUT string length.
The maximum string length (first byte) of the OUT string should be greater than or equal to
the maximum expected number of converted characters. The following table shows the
maximum possible string lengths required for each supported data type.

Table 8- 23 Maximum string lengths for each data type

IN data type | Maximum number of converted Example Total string length including maximum and
characters in OUT string current length bytes
USint 3 255 5
Sint 4 -128 6
Ulnt 5 65535 7
Int 6 -32768 8
UDInt 10 4294967295 12
Dint 11 -2147483648 13
Output String format rules:
® Values written to parameter OUT do not use a leading "+" sign.
® Fixed-point representation is used (no exponential notation).
® The period character "." is used to represent the decimal point when parameter IN is the
Real data type.
S7-1200 Programmable controller
256 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.2 String and character
STRG_VAL instruction
Table 8- 24 String-to-value instruction
LAD / FBD SCL Description
? "STRG_VAL" (Converts a number character string to the corresponding
STHG_VAL il : .
| Shing 10 777 | in:= string_ in, integer or floating point representation.
—EN END - format:= word in,
IN our p:=uint in,
-:DRHAI out=> variant_out);
1 For LAD / FBD: Click the "???" and select the data type from the drop-down list.
Table 8- 25 Data types for the STRG_VAL instruction
Parameter and type Data type Description
IN IN String The ASCII character string to convert
FORMAT IN Word Output format options
P IN Uint, Byte, USInt IN: Index to the first character to be converted
(first character = 1)
ouT ouT Sint, Int, DInt, USInt, Uint, UDInt, | Converted number value
Real, LReal

Conversion begins in the string IN at character offset P and continues until the end of the
string, or until the first character is encountered that is not "+", "-", ".", "" "e", "E", or "0" to
"9". The result is placed at the location specified in parameter OUT.

String data must be initialized before execution as a valid string in memory.

The FORMAT parameter for the STRG_VAL instruction is defined below. The unused bit
positions must be set to zero.

Table 8- 26 Format of the STRG_VAL instruction

Bit Bit 8 | Bit 7 Bit 0
16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 f r

f = Notation format 1= Exponential notation
0 = Fixed point notation

r = Decimal point format 1="," (comma character)
0 ="." (period character)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 257

Extended instructions

8.2 String and character

Table 8- 27 Values of the FORMAT parameter

FORMAT (W#16#) Notation format Decimal point representation
0000 (default) Fixed point

0001

0002 Exponential "

0003

0004 to FFFF lllegal values

Rules for STRG_VAL conversion:

e |f the period character "." is used for the decimal point, then commas "," to the left of the
decimal point are interpreted as thousands separator characters. The comma characters

are allowed and ignored.

e |f the comma character "," is used for the decimal point, then periods "." to the left of the
decimal point are interpreted as thousands separator characters. These period

characters are allowed and ignored.

® | eading spaces are ignored.

VAL_STRG instruction

Table 8- 28 Value-to-string operation

LAD / FBD SCL Description
i : "VAL_STRG" (Converts an integer, unsigned integer, or floating point
":‘;-g‘;’fm in:= variant in, value to the corresponding character string
—EH ENG — size:= usint in, representation.
I ouT prec:=_usint_in,
{5LZE format:= word in,
po :=uint in,
| FORMAT p: AT
P out=> string out);

1 For LAD / FBD: Click the "???" and select the data type from the drop-down list.

Table 8- 29 Data types for the VAL_STRG instruction

Parameter and type Data type Description
IN IN Sint, Int, DInt, USInt, Ulint, | Value to convert
UDInt, Real, LReal
SIZE IN uSint Number of characters to be written to the OUT string
PREC IN USint The precision or size of the fractional portion. This does
not include the decimal point.
FORMAT IN Word Output format options
P IN Ulint, Byte, USInt IN: Index to the first OUT string character to be replaced
(first character = 1)
ouT ouT String The converted string
S7-1200 Programmable controller
258 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.2 String and character

The value represented by parameter IN is converted to a string referenced by parameter
OUT. The parameter OUT must be a valid string before the conversion is executed.

The converted string will replace characters in the OUT string starting at character offset
count P to the number of characters specified by parameter SIZE. The number of characters
in SIZE must fit within the OUT string length, counting from character position P. This
instruction is useful for embedding number characters into a text string. For example, you
can put the numbers "120" into the string "Pump pressure = 120 psi".

Parameter PREC specifies the precision or number of digits for the fractional part of the
string. If the parameter IN value is an integer, then PREC specifies the location of the
decimal point. For example, if the data value is 123 and PREC = 1, then the result is "12.3".
The maximum supported precision for the Real data type is 7 digits.

If parameter P is greater than the current size of the OUT string, then spaces are added, up
to position P, and the result is appended to the end of the string. The conversion ends if the
maximum OUT string length is reached.

The FORMAT parameter for the VAL_STRG instruction is defined below. The unused bit
positions must be set to zero.

Table 8- 30 Format of the VAL_STRG instruction

Bit Bit 8 | Bit 7 Bit 0
16

0 0 0 0 0 0 0 0 0 0 0 0 0] f r

s = Number sign character 1= use sign character "+" and "-"
0 = use sign character "-" only

f = Notation format 1= Exponential notation
0 = Fixed point notation

r = Decimal point format 1="," (comma character)
0 ="." (period character)

Table 8- 31 Values of the FORMAT parameter

FORMAT (WORD) Number sign character Notation format Decimal point representation
W#16#0000 ""only Fixed point "

W#16#0001

W#16#0002 Exponential

W#16#0003

W#16#0004 "+"and "-" Fixed Point

W#16#0005

W#16#0006 Exponential

W#16#0007

W#16#0008 to W#16#FFFF | lllegal values

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 259

Extended instructions

8.2 String and character

Parameter OUT string format rules:

Leading space characters are added to the leftmost part of the string when the converted
string is smaller than the specified size.

When the FORMAT parameter sign bit is FALSE, unsigned and signed integer data type
values are written to the output buffer without the leading "+" sign. The "-" sign is used if
required.

<leading spaces><digits without leading zeroes>".'<PREC digits>

When the sign bit is TRUE, unsigned and signed integer data type values are written to
the output buffer always with a leading sign character.

<leading spaces><sign><digits without leading zeroes>"."<PREC digits>

When the FORMAT is set to exponential notation, Real data type values are written to the
output buffer as:

<leading spaces><sign><digit> "' <PREC digits>'E' <sign><digits without leading zero>

When the FORMAT is set to fixed point notation, integer, unsigned integer, and real data
type values are written to the output buffer as:

<leading spaces><sign><digits without leading zeroes>".'<PREC digits>

Leading zeros to the left of the decimal point (except the digit adjacent to the decimal
point) are suppressed.

Values to the right of the decimal point are rounded to fit in the number of digits to the
right of the decimal point specified by the PREC parameter.

The size of the output string must be a minimum of three bytes more than the number of
digits to the right of the decimal point.

Values are right-justified in the output string.

Conditions reported by ENO

When an error is encountered during the conversion operation, the following results will be

returned:

ENO is set to 0.
OUT is set to 0, or as shown in the examples for string to value conversion.

OUT is unchanged, or as shown in the examples when OUT is a string.

Table 8- 32 ENO status

ENO

Description

No error

lllegal or invalid parameter; for example, an access to a DB that does not exist

lllegal string where the maximum length of the string is 0 or 255

lllegal string where the current length is greater than the maximum length

The converted number value is too large for the specified OUT data type.

olojlolo|Oo |-

The OUT parameter maximum string size must be large enough to accept the number of characters
specified by parameter SIZE, starting at the character position parameter P.

260

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.2 String and character
ENO Description
0 lllegal P value where P=0 or P is greater than the current string length
0 Parameter SIZE must be greater than parameter PREC.
Table 8- 33 Examples of S_CONV string to value conversion
IN string OUT data type OUT value ENO
"123" Int or Dint 123 TRUE
"-00456" Int or Dint -456 TRUE
"123.45" Int or Dint 123 TRUE
"+2345" Int or Dint 2345 TRUE
"00123AB" Int or Dint 123 TRUE
"123" Real 123.0 TRUE
"123.45" Real 123.45 TRUE
"1.23e-4" Real 1.23 TRUE
"1.23E-4" Real 1.23 TRUE
"12,345.67" Real 12345.67 TRUE
"3.4e39" Real 3.4 TRUE
"-3.4e39" Real -3.4 TRUE
"1.17549e-38" Real 1.17549 TRUE
"12345" Sint 0 FALSE
"A123" N/A 0 FALSE
N/A 0 FALSE
"++123" N/A 0 FALSE
"+-123" N/A 0 FALSE
Table 8- 34 Examples of S_CONV value to string conversion
Data type IN value OUT string ENO
Ulint 123 "123" TRUE
Ulint 0 "0" TRUE
UDInt 12345678 "12345678" TRUE
Real -INF "INF" FALSE
Real +INF "INF" FALSE
Real NaN "NaN" FALSE
Table 8- 35 Examples of STRG_VAL conversion
IN string FORMAT OUT data type OUT value ENO
(W#16#....)
"123" 0000 Int or Dint 123 TRUE
"-00456" 0000 Int or Dint -456 TRUE

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 261

Extended instructions

8.2 String and character
IN string FORMAT OUT data type OUT value ENO
(W#16#....)
"123.45" 0000 Int or DInt 123 TRUE
"+2345" 0000 Int or DInt 2345 TRUE
"00123AB" 0000 Int or DInt 123 TRUE
"123" 0000 Real 123.0 TRUE
"-00456" 0001 Real -456.0 TRUE
"+00456" 0001 Real 456.0 TRUE
"123.45" 0000 Real 123.45 TRUE
"123.45" 0001 Real 12345.0 TRUE
"123,45" 0000 Real 12345.0 TRUE
"123,45" 0001 Real 123.45 TRUE
".00123AB" 0001 Real 123.0 TRUE
"1.23e-4" 0000 Real 1.23 TRUE
"1.23E-4" 0000 Real 1.23 TRUE
"1.23E-4" 0002 Real 1.23E-4 TRUE
"12,345.67" 0000 Real 12345.67 TRUE
"12,345.67" 0001 Real 12.345 TRUE
"3.4e39" 0002 Real +INF TRUE
"-3.4e39" 0002 Real -INF TRUE
"1.1754943e-38" 0002 Real 0.0 TRUE
(and smaller)
"12345" N/A Sint 0 FALSE
"A123" N/A N/A 0 FALSE
N/A N/A 0 FALSE
"++123" N/A N/A 0 FALSE
"+-123" N/A N/A 0 FALSE
The following examples of VAL_STRG conversions are based on an OUT string initialized as
follows:
"current Temp = XXXXXXXXXX c"

where the "x" character represents space characters allocated for the converted value.

S7-1200 Programmable controller
262 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.2 String and character

Table 8- 36 Examples of VAL_STRG conversion

Data type |IN value P SIZE FORMAT PREC OUT string ENO

(W#16#....)

Ulnt 123 16 10 0000 0 Current Temp = TRUE
Ulnt 0 16 10 0000 2 Current Temp = TRUE
UDInt 12345678 16 10 0000 3 Current Temp = TRUE
UDInt 12345678 16 10 0001 3 Current Temp - TRUE
Int 123 16 10 0004 0 Current Temp = TRUE
Int -123 16 10 0004 0 Current Temp = TRUE
Real -0.00123 16 10 0004 4 Gurzent Temp = xxx- TRUE
Real -0.00123 16 10 0006 4 Current Temp = - TRUE
Real -INF 16 10 N/A 4 Current Temp = FALSE
Real +INF 16 10 N/A 4 Current Temp = FALSE
Real NaN 16 10 N/A 4 Current Temp = FALSE
UDInt 12345678 16 6 N/A 3 Current Temp = FALSE
8.2.3.2 String-to-characters and characters-to-string conversions

Chars_TO_Strg copies an array of ASCII character bytes into a character string.

Strg_TO_Chars copies an ASCII character string into an array of character bytes.

Note

Only the zero based array types (Array [0..n] of Char) or (Array [0..n] of Byte) are allowed as
the input parameter Chars for the Chars_TO_Strg instruction, or as the IN_OUT parameter
Chars for the Strg_TO_Chars instruction.

Table 8- 37 Chars_TO_Strg instruction

LAD / FBD SCL Description
Chare 76 Sirg Chars_TO_Strg(All or part of an array of characters is copied to a string.

—EN ENO — Chars:= variant in_, The output string must be declared before Chars_TO_Strg is
Chars Strg pChars:=_dint in_, executed. The string is then overwritten by the Chars_TO_Strg
pchars Cnt:= uint in , operation.
it Strg=>_string out); | Strings of all supported maximum lengths (1..254) may be used.

The string maximum length value is not changed by
Chars_TO_Strg operation. Copying from array to string stops
when the maximum string length is reached.

A nul character '$00' or 16#00 value in the character array works
as a delimiter and ends copying of characters into the string.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 263

Extended instructions

8.2 String and character

Table 8- 38 Data types for the parameters (Chars_TO_Strg)

Parameter and type Data type Description
Chars IN Variant The Chars parameter is a pointer to zero based array [0..n] of
characters to be converted into a string. The array can be
declared in a DB or as local variables in the block interface.
Example: "DB1".MyArray points to MyArray [0..10] of Char
element values in DB1.
pChars IN Dint Element number for the first character in the array to copy.
Array element [0] is the default value.
Cnt IN Ulnt Count of characters to copy: 0 means all
Strg ouT String Target string
Table 8- 39 Strg_TO_Chars instruction
LAD / FBD SCL Description
S O e Strg_TO_Chars(The complete input string Strg is copied to an array of
_[ET—— Strg:=_string in_, characters at IN_OUT parameter Chars.
Strg cnt pChars:=_dint_in_, The operation overwrites bytes starting at array element
pChars Cnt=> uint out , number specified by the pChars parameter.
Chars Chars:= variant inout); | gtrings of all supported max lengths (1..254) may be used.

An end delimiter is not written; this is your responsibility. To
set an end delimiter just after the last written array
character, use the next array element number [pChars+Cnt].

Table 8- 40 Data types for the parameters (Strg_TO_Chars)

Parameter and type Data type Description
Strg IN String Source string
pChars IN Dint Array element number for the first string character written to
the target array
Chars IN_OUT Variant The Chars parameter is a pointer to zero based array [0..n] of
characters copied from the input string. The array can be
declared in a DB or as local variables in the block interface.
Example: "DB1".MyArray points to MyArray [0..10] of Char
element values in DB1.
Cnt ouT Ulnt Count of characters copied
Table 8-41 ENO status
ENO Description
1 No error
0 Chars_TO_Strg: Attempt to copy more character bytes to the output string than allowed by the maximum
length byte in the string declaration
S7-1200 Programmable controller
264 System Manual, 04/2012, A5E02486680-06

Extended instructions

8.2 String and character
ENO Description
0 Chars_TO_Strg: The nul character (16#00) value was found in the input character byte array.
0 Strg_TO_Chars: Attempt to copy more character bytes to the output array than are allowed by the element
number limit
8.2.3.3 ASCII to Hex and Hex to ASCII conversions

Use the ATH (ASCII to hexadecimal) and HTA (hexadecimal to ASCII) instructions for
conversions between ASCII character bytes (characters 0 to 9 and uppercase A to F only)
and the corresponding 4-bit hexadecimal nibbles.

Table 8-42 ATH instruction

LAD / FBD SCL Description
R ret _val := ATH(Converts ASCII characters into packed hexadecimal digits.
I in:= variant in_,
=EH END = n:= int in_,
M RET_VAL| out=> variant out);
H ouT - - =

Table 8-43 Data

types for the ATH instruction

Parameter type Data Type Description

IN IN Variant Pointer to ASCII character byte array

N IN Uint Number of ASCII character bytes to convert
RET_VAL ouT Word Execution condition code

ouT ouT Variant Pointer to the converted hexadecimal byte array

Conversion begins at the location specified by parameter IN and continues for N bytes. The
result is placed at the location specified by OUT. Only valid ASCII characters 0 to 9 and
uppercase A to F can be converted. Any other character will be converted to zero.

8-bit ASCII coded characters are converted to 4-bit hexadecimal nibbles. Two ASCII
characters can be stored in a single byte.

The IN and OUT parameters specify byte arrays and not hexadecimal String data. ASCII
characters are converted and placed in the hexadecimal output in the same order as they
are read. If there are an odd number of ASCII characters, then zeros are put in the right-
most nibble of the last converted hexadecimal digit.

Table 8- 44 Examples of ASCII-to-hexadecimal (ATH) conversion

IN character bytes N OUT value ENO
'0123' 4 Wi#16#0123 TRUE
'"123AFx1a23' 10 16#123AF01023 FALSE
'a23' 3 W#16#A230 TRUE

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

265

Extended instructions

8.2 String and character

Table 8- 45 HTA instruction

LAD / FBD SCL Description
oy ret val := HTA(Converts packed hexadecimal digits to their corresponding ASCII
Y ENO — in:= variant _in_, character bytes.
N RET_WAL n:= _uint_in_,
M auT out=> variant_out)

Table 8- 46 Data types for the HTA instruction

Parameter and type Data Type Description

IN IN Variant Pointer to input byte array

N IN Ulnt Number of bytes to convert (each input byte has two 4-bit nibbles and
produces 2N ASCII characters)

RET_VAL ouT Word Execution condition code

ouT ouT Variant Pointer to ASCII character byte array

Conversion begins at the location specified by parameter IN and continues for N bytes. Each
4-bit nibble converts to a single 8-bit ASCII character and produces 2N ASCII character
bytes of output. All 2N bytes of the output are written as ASCII characters 0 to 9 through
uppercase A to F. The parameter OUT specifies a byte array and not a string.

Each nibble of the hexadecimal byte is converted into a character in the same order as they
are read in (left-most nibble of a hexadecimal digit is converted first, followed by the right-
most nibble of that same byte).

Table 8- 47 Examples of hexadecimal -to- ASCII (HTA) conversion

IN value N OUT character bytes ENO (ENO always TRUE after HTA execution)
W#16#0123 2 '0123' TRUE
DW#16#123AF012 4 '"123AF012' TRUE

Table 8- 48 ATH and HTA condition codes

RET_VAL Description ENO

(W#16#....)

0000 No error TRUE

0007 Invalid ATH input character: A character was found that was not an ASCII character 0- | FALSE
9, lowercase a-f, or uppercase A-F

8101 lllegal or invalid input pointer, for example, an access to a DB that does not exist. FALSE

8120 Input string is an invalid format, i.e., max= 0, max=255, current>max, or grant length in | FALSE
pointer < max

8182 Input buffer is too small for N FALSE

8151 Data type not allowed for input buffer FALSE

8301 lllegal or invalid output pointer, for example, an access to a DB that does not exist. FALSE

S7-1200 Programmable controller
266 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.2 String and character
RET_VAL Description ENO
(WH#16#....)
8320 Output string is an invalid format, i.e., max= 0, max=255, current>max, or grant length | FALSE
in pointer < max

8382 Output buffer is too small for N FALSE
8351 Data type not allowed for output buffer FALSE
8.24 String operation instructions

Your control program can use the following string and character instructions to create

messages for operator display and process logs.
8.24.1 LEN

Table 8- 49 Length instruction

LAD / FBD SCL Description
TEN out := LEN(in); LEN (length) provides the current length of the string IN at output OUT. An
Sirirg empty string has a length of zero.
~EM EMO -
M ouT|

Table 8- 50 Data types for the parameters

Parameter and type Data type Description
IN IN String Input string
ouT ouT Int, DInt, Real, LReal Number of valid characters of IN string

Table 8- 51 ENO status

ENO Condition ouT
1 No invalid string condition Valid string length
0 Current length of IN exceeds maximum length of IN Current length is set to 0

Maximum length of IN does not fit within allocated memory range

Maximum length of IN is 255 (illegal length)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 267

Extended instructions

8.2 String and character

8.24.2

CONCAT

Table 8- 52 Concatenate strings instruction

LAD / FBD SCL Description
out := CONCAT(inl, in2); CONCAT (concatenate strings) joins string parameters IN1 and
CONCAT . . .
Sting IN2 to form one string provided at OUT. After concatenation,
=EM END = String IN1 is the left part and String IN2 is the right part of the
(] ouT combined string.
N2

Table 8- 53 Data types for the parameters

Parameter and type Data type Description

IN1 IN String Input string 1

IN2 IN String Input string 2

ouT ouT String Combined string (string 1 + string 2)

Table 8- 54 ENO status

IN2 exceeds maximum length of IN2, or current length of OUT exceeds
maximum length of OUT (invalid string)

ENO Condition ouT
1 No errors detected Valid characters
0 Resulting string after concatenation is larger than maximum length of OUT | Resulting string characters are
string copied until the maximum length
of the OUT is reached
Current length of IN1 exceeds maximum length of IN1, current length of Current length is set to 0

Maximum length of IN1, IN2 or OUT does not fit within allocated memory
range

Maximum length of IN1 or IN2 is 255, or the maximum length of OUT is 0
or 255

268

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.2 String and character
8.24.3 LEFT, RIGHT, and MID
Table 8- 55 Left, right and middle substring operations
LAD / FBD SCL Description
= out := LEFT(in, L); LEFT (Left substring) provides a substring made of the first L
[ang characters of string parameter IN.
=EN: ENOR o IfLis greater than the current length of the IN string, then the entire
1IN ouT | L .
i IN string is returned in OUT.
e If an empty string is the input, then an empty string is returned in
OUT.
out := MID(in, L, p); MID (Middle substring) provides the middle part of a string. The middle
MID oo =
Sing substring is L characters long and starts at character position P
- EN END = (inclusive).
M ouT If the sum of L and P exceeds the current length of the string
:; parameter IN, then a substring is returned that starts at character
position P and continues to the end of the IN string.
=meRT out := RIGHT(in, L); RIGHT (Right substring) provides the last L characters of a string.
Shiing e [fLis greater than the current length of the IN string, then the entire
~EN ENOD = S .
N ouT IN string is returned in parameter OUT.
{L [e If an empty string is the input, then an empty string is returned in
OUT.
Table 8- 56 Data types for the parameters
Parameter and type Data type Description
IN IN String Input string
L IN Int Length of the substring to be created:

e LEFT uses the left-most characters number of characters in the
string

o RIGHT uses the right-most number of characters in the string

e MID uses the number of characters starting at position P within
the string

P IN Int MID only: Position of first substring character to be copied
P= 1, for the initial character position of the IN string
ouT ouT String Output string

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 269

Extended instructions

8.2 String and character

Table 8- 57 ENO status

ENO Condition ouT

1 No errors detected Valid characters

0 e LorPisless than or equal to 0 Current length is set to 0
e P is greater than maximum length of IN
e Current length of IN exceeds maximum length of IN, or current length

of OUT exceeds maximum length of OUT
¢ Maximum length of IN or OUT does not fit within allocated memory
e Maximum length of IN or OUT is 0 or 255
Substring length (L) to be copied is larger than maximum length of OUT Characters are copied until the
string. maximum length of OUT is
reached
MID only: L or P is less than or equal to 0 Current length is set to 0
MID only: P is greater than maximum length of IN
Current length of IN1 exceeds maximum length of IN1, or current length of | Current length is set to 0
IN2 exceeds maximum length of IN2 (invalid string)
Maximum length of IN1, IN2 or OUT does not fit within allocated memory
range
Maximum length of IN1, IN2 or OUT is 0 or 255 (illegal length)
8.24.4 DELETE

Table 8- 58 Delete substring instruction

LAD / FBD SCL Description
T out := DELETE(in, L, p); Deletes L characters from string IN. Character deletion starts at
DELETE " . . - A
Sirng character position P (inclusive), and the remaining substring is
=EMN END = provided at parameter OUT.
8 71
L L e If L is equal to zero, then the input string is returned in OUT.
P e Ifthe sum of L and P is greater than the length of the input
string, then the string is deleted to the end.

Table 8- 59 Data types for the parameters

Parameter and type Data type Description

IN IN String Input string

L IN Int Number of characters to be deleted

IN Int Position of the first character to be deleted: The first character of
the IN string is position number 1
ouT ouT String Output string
S7-1200 Programmable controller

270 System Manual, 04/2012, ASE02486680-06

Extended instructions

Table 8- 60 ENO status

8.2 String and character

ENO Condition ouT
1 No errors detected Valid characters
0 P is greater than current length of IN IN is copied to OUT with no
characters deleted
Resulting string after characters are deleted is larger than maximum length | Resulting string characters are
of OUT string copied until the maximum length
of OUT is reached
L is less than 0, or P is less than or equal to 0 Current length is set to 0
Current length of IN exceeds maximum length of IN, or current length of
OUT exceeds maximum length of OUT
Maximum length of IN or OUT does not fit within allocated memory
Maximum length of IN or OUT is 0 or 255
8.245 INSERT
Table 8- 61 Insert substring instruction
LAD / FBD SCL Description
il out := INSERT(inl, in2, p); |Inserts string IN2 into string IN1. Insertion begins after the
INSERT o
Shing character at position P.
=EN END -
{IN1 ouT |
{IM2
ip
Table 8- 62 Data types for the parameters
Parameter and type Data type Description
IN1 IN String Input string 1
IN2 IN String Input string 2
P IN Int Last character position in string IN1 before the insertion point for
string IN2
The first character of string IN1 is position number 1.
ouT ouT String Result string
Table 8- 63 ENO status
ENO Condition ouT
1 No errors detected Valid characters
0 P is greater than length of IN1 IN2 is concatenated with IN1

immediately following the last IN1
character

Pisless than 0

Current length is setto 0

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

271

Extended instructions

8.2 String and character

length of IN2 exceeds maximum length of IN2, or current length of
OUT exceeds maximum length of OUT (invalid string)

ENO Condition ouT
Resulting string after insertion is larger than maximum length of Resulting string characters are copied
OUT string until the maximum length of OUT is
reached
Current length of IN1 exceeds maximum length of IN1, current Current length is set to 0

Maximum length of IN1, IN2 or OUT does not fit within allocated
memory range

Maximum length of IN1 or IN2 is 255, or maximum length of OUT is
0 or 255

8.246

REPLACE

Table 8- 64 Replace substring instruction

LAD / FBD SCL Description
e out := REPLACE (Replaces L characters in the string parameter IN1. Replacement
REPLALCE o : . .
Stiing | inl:= string in_, starts at string IN1 character position P (inclusive), with
—EM END in2:= string in_, replacement characters coming from the string parameter IN2.
I ouT L:= int in ,
N2 . L T T
L p:=_int_in);
P

Table 8- 65 Data types for the parameters

Parameter and type Data type Description
IN1 IN String Input string
IN2 IN String String of replacement characters
L IN Int Number of characters to replace
P IN Int Position of first character to be replaced
ouT ouT String Result string
If parameter L is equal to zero, then the string IN2 is inserted at position P of string IN1
without deleting any characters from string IN1.
If P is equal to one, then the first L characters of string IN1 are replaced with string IN2
characters.
S7-1200 Programmable controller
272 System Manual, 04/2012, ASE02486680-06

Extended instructions

Table 8- 66 ENO status

8.2 String and character

ENO Condition ouT
1 No errors detected Valid characters
0 P is greater than length of IN1 IN2 is concatenated with IN1
immediately following the last IN1
character
P points within IN1, but fewer than L characters remain in IN1 IN2 replaces the end characters of IN1
beginning at position P
Resulting string after replacement is larger than maximum length of | Resulting string characters are copied
OUT string until the maximum length of OUT is
reached
Maximum length of IN1 is 0 IN2 characters are copied to OUT
L is less than 0O, or P is less than or equal to 0 Current length is set to 0
Current length of IN1 exceeds maximum length of IN1, current
length of IN2 exceeds maximum length of IN2, or current length of
OUT exceeds maximum length of OUT
Maximum length of IN1, IN2 or OUT does not fit within allocated
memory range
Maximum length of IN1 or IN2 is 255, or maximum length of OUT is
0 or 255
8.247 FIND

Table 8- 67 Find substring instruction

LAD / FBD SCL Description
o out := FIND(Provides the character position of the substring specified by IN2 within
Sting inl:=_string in , |the string IN1. The search starts on the left. The character position of
—EM END - in2:= string_in); |the first occurrence of IN2 string is returned at OUT. If the string IN2 is
{IN1 ouT | not found in the string IN1, then zero is returned.
{12

Table 8- 68 Data types for the parameters

Parameter and type Data type Description

IN1 IN String Search inside this string

IN2 IN String Search for this string

ouT ouT Int Character position in string IN1 of the first search match

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

273

Extended instructions

8.3 Distributed /O (PROFINET, PROFIBUS, or AS-i)

Table 8- 69 ENO status

ENO Condition ouT
1 No errors detected Valid character position
0 IN2 is larger than IN1 Character position is set to 0

Current length of IN1 exceeds maximum length of IN1, or current length
of IN2 exceeds maximum length of IN2 (invalid string)

Maximum length of IN1 or IN2 does not fit within allocated memory
range

Maximum length of IN1 or IN2 is 255

8.3 Distributed 1/0 (PROFINET, PROFIBUS, or AS-i)

8.3.1 Distributed 1/O Instructions
The following Distributed I/O instructions can be used with PROFINET, PROFIBUS, or AS-i:

e RDREC instruction (Page 275): You can read a data record with the number INDEX from
a module or device.

e WRREC instruction (Page 275): You can transfer a data record with the number INDEX
to a module or device defined by ID.

® RALRM instruction (Page 278): You can receive an interrupt with all corresponding
information from a module or device and supply this information to its output parameters.

e DPRD_DAT instruction (Page 284): You must read consistent data areas greater than
64 bytes from a module or device with the DPRD_DAT instruction.

e DPWR_DAT instruction (Page 284): You must write consistent data areas greater than
64 bytes to a module or device with the DPWR_DAT instruction.

The DPNRM_DG instruction (Page 286) can only be used with PROFIBUS. You can read
the current diagnostic data of a DP slave in the format specified by EN 50 170 Volume 2,
PROFIBUS.

S7-1200 Programmable controller
274 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.3.2

8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

RDREC and WRREC

You can use the RDREC (Read record) and WRREC (Write record) instructions with
PROFINET, PROFIBUS, and AS-i.

Table 8- 70 RDREC and WRREC instructions

LAD / FBD SCL Description
"RDREC DE" "RDREC_DB" (Use the RDREC instruction to read a data
P req:= bool_in , record with the number INDEX from the
Variant ID:= word _in_, component addressed by the ID, such as
= o index:= dint_in_, a central rack or a distributed component
— g VALID mlen:= uint in , (PROFIBUS DP or PROFINET IO).
o BLISY Ly valid=> bool out , Assign the maximum number of bytes to
NDEX ERROR L busy=> bool out 7 read in MLEN. The selected length of the
WLEN STaTUS error=> bool out target area RECORD should have at
- - = least the length of MLEN bytes.
RECORD LEN status=>_dword_out_,
len=> uint_out_,
record:= variant inout);
“WRREC DE" "WRREC_DB" (Use the WRREC instruction to transfer a
e req:= bool in , data RECORD with the record number
T [T ID:= word _in_, INDEX to a DP slave/PROFINET 10
s e index:= dint_in_, device component addressed by ID, such
—reQ DONE len:= uint in , as a module in the central rack or a
D BUSY done=> bool out) distributed component (PROFIBUS DP or
INDEX ERROR — busy=> bool out_, PROFINET10).
STATLS error=> bool out , Assign the byte length of the data record
RECORD status=> dword out , to be transmitted. The selected length of

record:= variant inout);

the source area RECORD should,
therefore, have at least the length of LEN
bytes.

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL examples, "RDREC_DB" and "WRREC_DB" are the names of the instance DBs.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

275

Extended instructions
8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Table 8- 71 RDREC and WRREC data types for the parameters

Parameter and type Data type Description
REQ IN Bool REQ = 1: Transfer data record
ID IN HW_IO (Word) Logical address of the DP slave/PROFINET IO component

(module or submodule):

e For an output module, bit 15 must be set (for example, for
address 5: ID:= DW#16#8005).

e For a combination module, the smaller of the two addresses
should be specified.

Note: The device ID can be determined in one of two ways:

¢ By making the following "Network view" selections:
— Device (gray box)
— "Properties" of the device

— "Hardware identifier"
Note: Not all devices display their Hardware identifiers,
however.

¢ By making the following "Project tree" menu selections:
— PLC tags
— Default tag table
— System constants tab

All configured device Hardware identifiers are displayed.

INDEX IN Byte, Word, USInt, Data record number
Ulint, Sint, Int, Dint
MLEN IN Byte, USInt, Ulnt Maximum length in bytes of the data record information to be
fetched (RDREC)
VALID ouT Bool New data record was received and valid (RDREC). The VALID

bit is TRUE for one scan, after the last request was completed
with no error.

DONE ouT Bool Data record was transferred (WRREC). The DONE bit is TRUE
for one scan, after the last request was completed with no error.
BUSY ouT Bool e BUSY = 1: The read (RDREC) or write (WRREC) process is

not yet terminated.
e BUSY = 0: Data record transmission is completed.

ERROR ouT Bool ERROR = 1: A read (RDREC) or write (WRREC) error has
occurred. The ERROR bit is TRUE for one scan, after the last
request was terminated with an error. The error code value at
the STATUS parameter is valid only during the single scan
where ERROR = TRUE.

STATUS ouT DWord Block status or error information
LEN OUT (RDREC) | UInt o Length of the fetched data record information (RDREC)
IN (WRREC) ¢ Maximum byte length of the data record to be transferred
(WRREC)
RECORD | IN_OUT Variant e Target area for the fetched data record (RDREC)

e Data record (WRREC)

S7-1200 Programmable controller
276 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

The RDREC and WRREC instructions operate asynchronously, that is, processing covers
multiple instruction calls. Start the job by calling RDREC or WRREC with REQ = 1.

The job status is displayed via output parameter BUSY and the two central bytes of output
parameter STATUS. The transfer of the data record is complete when the output parameter
BUSY has the value FALSE

TRUE (only for one scan) on the output parameter VALID (RDREC) or DONE (WRREC)
verifies that the data record has been successfully transferred into the target area RECORD
(RDREC) or to the target device (WRREC). In the case of the RDREC, the output parameter
LEN contains the length of the fetched data in bytes.

The output parameter ERROR (only for one scan when ERROR = TRUE) indicates that a
data record transmission error has occurred. In this case, the output parameter STATUS
(only for the one scan when ERROR = TRUE) contains the error information.

Data records are defined by the hardware device manufacturer. Refer to the hardware
manufacturer's device documentation for details about a data record.

Note

If a DPV1 slave is configured via GSD file (GSD rev. 3 and higher) and the DP interface of
the DP master is set to "S7 compatible", then you may not read any data records from the
I/O modules in the user program with "RDREC" or write to the I/O modules with "WRREC".
In this case, the DP master addresses the wrong slot (configured slot + 3).

Remedy: set the interface of the DP master to "DPV1".

Note

The interfaces of the "RDREC" and "WRREC" instructions are identical to the "RDREC" and
"WRREC" FBs defined in "PROFIBUS Guideline PROFIBUS Communication and Proxy
Function Blocks according to IEC 61131-3".

Note

If you use "RDREC" or "WRREC" to read or write a data record for PROFINET 10, then
negative values in the INDEX, MLEN, and LEN parameters will be interpreted as an
unsigned 16-bit integer.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 277

Extended instructions

8.3 Distributed /O (PROFINET, PROFIBUS, or AS-i)

8.3.3 RALRM
You can use the RALRM (Read alarm) instruction with PROFINET and PROFIBUS.
Table 8- 72 RALRM instruction
LAD / FBD SCL Description
RALAM_DB "RALRM DB" (Use the RALRM (read alarm) instruction to read diagnostic
Ja L mode:=_int in , interrupt information from PROFIBUS or PROFINET I/O

MODE MEWRL
F_ID STATUS

MLEN i
TINFO LEN
AINFO

f ID:= word in_,
mlen:= uint_in_,
new=> bool_out ,
status=>_dword_out_,
ID=> word out ,
len=> uint_out_,

modules/devices.

The information in the output parameters contains the start
information of the called OB as well as information of the
interrupt source.

Call RALRM in an interrupt OB to return information regarding
the event(s) that caused the interrupt. In the S7-1200, only

tinfo:= variant_inout_, diagnostic interrupts (OB82) are supported.

ainfo:= variant inout);

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "RALRM_DB" is the name of the instance DB.

Table 8- 73 Data types for the parameters

Parameter and type

Data type

Description

MODE

IN

Byte, USInt, Sint, Int

Operating mode

F_ID

IN

HW_IO (Word)

Logical start address of the component (module) from which interrupts
are to be received

Note: The device ID can be determined in one of two ways:
¢ By making the following "Network view" selections:
— Device (gray box)
"Properties" of the device

"Hardware identifier"
Note: Not all devices display their Hardware identifiers.

¢ By making the following "Project tree" menu selections:
PLC tags
Default tag table

— System constants tab

All configured device Hardware identifiers are displayed.

MLEN

Byte, USInt, Ulnt

Maximum length in bytes of the data interrupt information to be
received. MLEN of 0 will allow receipt of as much data interrupt
information as is available in the AINFO Target Area.

NEW

ouT

Bool

A new interrupt was received.

STATUS

ouT

DWord

Status of the RALRM instruction. Refer to "STATUS parameter for
RDREC, WRREC, and RALRM'| (Page 280) for more information.

ID

ouT

HW_IO (Word)

Hardware identifier of the I/O module that caused the diagnostic
interrupt

Note: Refer to the F_ID parameter for an explanation of how to
determine the device ID.

278

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Parameter and type Data type Description
LEN ouT DWord, Uint, UDInt, | Length of the received AINFO interrupt information
Dint, Real, LReal

TINFO IN_OUT Variant Task information: Target range for OB start and management
information. The TINFO length is always 32 bytes.

AINFO IN_OUT Variant Interrupt information: Target area for header information and additional
interrupt information. For AINFO, provide a length of at least the MLEN
bytes, if MLEN is greater than 0. The AINFO length is variable.

Note

Calling RALRM

If you call "RALRM" in an OB whose start event is not an 1/O interrupt, the instruction will
provide correspondingly reduced information in its outputs.

Make sure to use different instance DBs when you call "RALRM" in different OBs. If you
evaluate data resulting from a "RALRM" call outside of the associated interrupt OB, you
should use a separate instance DB per OB start event.

Note

The interface of the "RALRM" instruction is identical to the "RALRM" FB defined in
"PROFIBUS Guideline PROFIBUS Communication and Proxy Function Blocks according to
IEC 61131-3".

You can call the RALRM instruction in three different operating modes (MODE).

Table 8- 74 RALRM instruction operating modes

MODE Description

0 o

ID contains the hardware identifier of the /0 module that triggered the interrupt.
Output parameter NEW is set to TRUE.

LEN produces an output of 0.

AINFO and TINFO are not updated with any information.

1 ¢ ID contains the hardware identifier of the I/O module that triggered the interrupt.
e Output parameter NEW is set to TRUE.
e LEN produces an output of the amount in bytes of AINFO data that is returned.
e AINFO and TINFO are updated with interrupt-related information.
2 If the hardware identifier assigned to input parameter F_ID has triggered the interrupt then:

ID contains the hardware identifier of the 1/O module that triggered the interrupt. Should be the same
as the value at F_ID.

Output parameter NEW is set to TRUE.
LEN produces an output of the amount in bytes of AINFO data that is returned.

AINFO and TINFO are updated with interrupt-related information.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 279

Extended instructions

8.3 Distributed /O (PROFINET, PROFIBUS, or AS-i)

8.34

Note

If you assign a destination area for TINFO or AINFO that is too short, RALRM cannot return

the full information.

MLEN can limit the amount of AINFO data that is returned.

Refer to the AINFO parameters and TINFO parameters of the online information system of
STEP 7 for information on how to interpret the TINFO and AINFO data.

STATUS parameter for RDREC, WRREC, and RALRM

The output parameter STATUS contains error information that is interpreted as ARRAY[1...4]
OF BYTE, with the following structure:

Table 8- 75 STATUS output array

Array element

Name

Description

STATUS[1] Function_Num e B#16#00, if no error
e Function ID from DPV1-PDU: If an error occurs, B#16#80 is OR'ed (for read
data record: B#16#DE; for write data record: B#16#DF). If no DPV1 protocol
element is used, then B#16#CO0 will be output.
STATUS[2] Error_Decode Location of the error ID
STATUS[3] Error_Code_1 Error ID
STATUS[4] Error_Code_2 Manufacturer-specific error ID expansion

Table 8-76 STATUS[2] values

Error_decode Source Description

(B#16#....)

00 to 7F CPU No error or no warning

80 DPV1 Error according to IEC 61158-6

81 to 8F CPU B#16#8x shows an error in the "xth" call parameter of the instruction.
FE, FF DP Profile Profile-specific error

Table 8- 77 STATUS[3] values

Error_decode Error_code_1 Explanation (DVP1) Description
(B#16#....) (B#16#....)
00 00 No error, no warning
70 00 Reserved, reject Initial call; no active data record transfer
01 Reserved, reject Initial call; data record transfer has started
S7-1200 Programmable controller
280 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Error_decode Error_code_1 Explanation (DVP1) Description
(B#16#....) (B#16#....)

02 Reserved, reject Intermediate call; data record transfer already active
80 90 Reserved, pass Invalid logical start address

92 Reserved, pass lllegal type for Variant pointer

93 Reserved, pass The DP component addressed via ID or F_ID is not
configured.

96 The "RALRM (Page 278)" cannot supply the OB start
information, management information, header
information, or additional interrupt information.

For OBs 4x, 55, 56, 57, 82, and 83, you can use the
"DPNRM_DG (Page 286)" instruction to read the current
diagnostics message frame of the relevant DP slave
asynchronously (address information from OB start
information).

A0 Read error Negative acknowledgement while reading from the
module

A1 Write error Negative acknowledgement while writing to the module

A2 Module failure DP protocol error at layer 2 (for example, slave failure or
bus problems)

A3 Reserved, pass e PROFIBUS DP: DP protocol error with Direct-Data-

Link-Mapper or User-Interface/User
e PROFINET IO: General CM error

A4 Reserved, pass Communication on the communication bus disrupted

A5 Reserved, pass -

A7 Reserved, pass DP slave or modules is occupied (temporary error).

A8 Version conflict DP slave or module reports non-compatible versions.

A9 Feature not supported | Feature not supported by DP slave or module

AA to AF User specific DP slave or module reports a manufacturer-specific error
in its application. Please check the documentation from
the manufacturer of the DP slave or module.

BO Invalid index Data record not known in module; illegal data record
number = 256

B1 Write length error The length information in the RECORD parameter is
incorrect.

e With "RALRM": Length error in AINFO
Note: Refer to the online information system of
STEP 7 for immediate access to information on how
to interpret the "AINFO" returned buffers.

e With "RDREC (Page 275)" and "WRREC
(Page 275)": Length error in "MLEN"

B2 Invalid slot The configured slot is not occupied.

B3 Type conflict Actual module type does not match specified module
type.

B4 Invalid area DP slave or module reports access to an invalid area.

B5 Status conflict DP slave or module not ready

B6 Access denied DP slave or module denies access.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

281

Extended instructions

8.3 Distributed /O (PROFINET, PROFIBUS, or AS-i)

Error_decode Error_code_1
(B#16#....) (B#16#....)

Explanation (DVP1)

Description

B7

Invalid range

DP slave or module reports an invalid range for a
parameter or value.

B8

Invalid parameter

DP slave or module reports an invalid parameter.

B9

Invalid type

DP slave or module reports an invalid type:

o With "RDREC (Page 275)": Buffer too small (subsets
cannot be read)

o With "WRREC (Page 275)": Buffer too small (subsets
cannot be written)

BA to BF

User specific

DP slave or module reports a manufacturer-specific error
when accessing. Please check the documentation from
the manufacturer of the DP slave or module.

Co

Read constraint conflict

o With "WRREC (Page 275)": The data can only be
written when the CPU is in STOP mode.
Note: This means that data cannot be written by the
user program. You can only write the data online with
a PG/PC.

o With "RDREC (Page 275)": The module routes the
data record, but either no data is present or the data
can only be read when the CPU is in STOP mode.
Note: If data can only be read when the CPU is in
STOP mode, no evaluation by the user program is
possible. In this case, you can only read the data
online with a PG/PC.

C1

Write constraint conflict

The data of the previous write request to the module for
the same data record has not yet been processed by the
module.

C2

Resource busy

The module is currently processing the maximum
possible number of jobs for a CPU.

C3

Resource unavailable

The required operating resources are currently occupied.

C4

Internal temporary error. Job could not be carried out.
Repeat the job. If this error occurs often, check your
installation for sources of electrical interference.

C5

DP slave or module not available

C6

Data record transfer was cancelled due to priority class
cancellation.

Cc7

Job aborted due to warm or cold restart on the DP
master.

C8to CF

DP slave or module reports a manufacturer-specific
resource error. Please check the documentation from the
manufacturer of the DP slave or module.

Dx

User specific

DP Slave specific. Refer to the description of the DP
Slave.

81 00 to FF

Error in the initial call parameter (with "RALRM
(Page 278)": MODE)

00

lllegal operating mode

82 00 to FF

Error in the second call parameter

282

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Error_decode Error_code_1 Explanation (DVP1) Description
(B#16#....) (B#16#....)
88 00 to FF Error in the eighth call parameter (with "RALRM
(Page 278)": TINFO)
Note: Refer to the online information system of STEP 7
for immediate access to information on how to interpret
the "TINFQ" returned buffers.
01 Wrong syntax ID
23 Quantity structure exceeded or destination area too small
24 Wrong range ID
32 DB/DI number out of user range
3A DB/DI number is NULL for area ID DB/DI, or specified
DB/DI does not exist.
89 00 to FF Error in the ninth call parameter (with "RALRM
(Page 278)": AINFO)
Note: Refer to the online information system of STEP 7
for immediate access to information on how to interpret
the "AINFQO" returned buffers.
01 Wrong syntax ID
23 Quantity structure exceeded or destination area too small
24 Wrong range ID
32 DB/DI number out of user range
3A DB/DI number is NULL for area ID DB/DI, or specified
DB/DI does not exist.
8A 00 to FF Error in the 10th call parameter
8F 00 to FF Error in the 15th call parameter
FE, FF 00 to FF Profile-specific error
Array element STATUS[4]

With DPV1 errors, the DP Master passes on STATUS[4] to the CPU and to the instruction.
Without a DPV1 error, this value is set to 0, with the following exceptions for the RDREC:

o STATUS[4] contains the target area length from RECORD, if MLEN > the destination
area length from RECORD.

o STATUS[4]=MLEN, if the actual data record length < MLEN < the destination area length
from RECORD.

e STATUS[4]=0, if STATUS[4] > 255; would have to be set
In PROFINET IO, STATUS[4] has the value 0.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

283

Extended instructions

8.3 Distributed /O (PROFINET, PROFIBUS, or AS-i)

8.3.5 DPRD_DAT and DPWR_DAT

You can use the DPRD_DAT (Read consistent data) and DPWR_DAT (Write consistent
data) instructions with PROFINET and PROFIBUS.

Table 8- 78 DPRD_DAT and DPWR_DAT instructions

LAD / FBD SCL Description
—— ret_val := DPRD_DAT(Use the DPRD_DAT instruction to read the consistent
—EN ENO - laddr:= word in , data of a DP standard slave/PROFINET IO device. If no
LADDA RET_VAL

record=> variant out); |errors occur during the data transfer, the data read is

- - entered into the target area set up by the RECORD
parameter. The target area must have the same length as
you configured with STEP 7 for the selected module.
When you call the DPRD_DAT instruction, you can only
access the data of one module / DP identification under
the configured start address.

RECORD

S _— ret _val := DPWR_DAT(Use the DPWR_DAT instruction to transfer the data in
—EN - END — laddr:= word_in_, RECORD consistently to the addressed DP standard
LADDR RET_VAL record:=_variant _in_); slave/PROFINET IO device. The source area must have

RECORD the same length as you configured with STEP 7 for the

selected module.

The CPU supports up to 64 bytes of consistent data. For consistent data areas greater than
64 bytes, the DPRD_DAT and DPWR_DAT instructions must be used. If required, these
instructions can be used for data areas of 1 byte or greater. If access is rejected, error code
W#16#8090 will result.

Note

If you are using the DPRD_DAT and DPWR_DAT instructions with consistent data, you must
remove this consistent data from the process-image automatic update. Refer to 'PLC
concepts: Execution of the user program' (Page 67)) for more information.

Table 8- 79 Data types for the parameters

Parameter and type Data type Description

LADDR IN HW_IO (Word) |e Configured start address from the "I" area of the module from which
the data will be read (DPRD_DAT)

e Configured start address from the process image output area of the
module to which the data will be written (DPWR_DAT)

Addresses have to be entered in hexadecimal format (for example, an
input or output address of 100 means: LADDR:=W#16#64).

RECORD ouT Variant Destination area for the user data that were read (DPRD_DAT) or source
area for the user data to be written (DPWR_DAT). This must be exactly
as large as you configured for the selected module with STEP 7. Only the
data type Byte is permitted.

RET_VAL ouT Int If an error occurs while the function is active, the return value contains an
error code.

S7-1200 Programmable controller
284 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

DPRD_DAT operations

The destination area must have the same length as configured for the selected module with
STEP 7. If no error occurs during the data transfer, the data that have been read are entered
into the destination area identified by RECORD.

If you read from a DP standard slave with a modular design or with several DP identifiers,
you can only access the data of one module/DP identifier for each DPRD_DAT instruction
call, specifying the configured start address.

DPWR_DAT operations

You transfer the data in RECORD consistently to the addressed DP standard
slave/PROFINET 10. The data is transferred synchronously, that is, the write process is
completed when the instruction is completed.

The source area must have the same length as you configured for the selected module with
STEP 7.

If the DP standard slave has a modular design, you can only access one module of the DP
slave.

Table 8- 80 DPRD_DAT and DPWR_DAT error codes

Error code Description
0000 No error occurred
808x System error with external DP interface module
8090 One of the following cases apply:
¢ You have not configured a module for the specified logical base address.
¢ You have ignored the restriction concerning the length of consistent data.
¢ You have not entered the start address in the LADDR parameter in hexadecimal format.
8092 A type other than Byte is specified in the Any reference.
8093 No DP module/PROFINET IO device from which you can read (DPRD_DAT) or to which you can
write (DPWR_DAT) consistent data exists at the logical address specified in LADDR.
80A0 Access error detected while the 1/O devices were being accessed (DPRD_DAT).
80A1 Access error detected while the 1/0 devices were being accessed (DPWR_DAT).
80B0 Slave failure on external DP interface module
80B1 The length of the specified destination (DPRD_DAT) or source (DPWR_DAT) area is not identical to

the user data length configured with STEP 7 Basic.

80B2, 80B3, 80C2,
80Fx

System error with external DP interface module (DPRD_DAT) and (DPWR_DAT)

87xy, 808x System error with external DP interface module (DPRD_DAT)

85xy System error with external DP interface module (DPWR_DAT)

80CO0 The data have not yet been read by the module (DPRD_DAT).

80C1 The data of the previous write job on the module have not yet been processed by the module
(DPWR_DAT).

8xyy! General error information

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

285

Extended instructions

8.3 Distributed /O (PROFINET, PROFIBUS, or AS-i)

Refer to "Extended instructions, Distributed 1/O: Error information for RDREC, WRREC, and
RALRM" (Page 280) for more information on general error codes.

Note

If you access DPV1 slaves, error information from these slaves can be forwarded from the
DP master to the instruction.

8.3.6 DPNRM_DG
You can use the DPNRM_DG (Read diagnostic data) instruction with PROFIBUS.
Table 8- 81 DPNRM_DG instruction
LAD/FBD |SCL Description
T ret_val := DPNRM DG(Use the DPNRM_DG instruction to read the current diagnostic data of
PRI END req:= bool in , a DP slave in the format specified by EN 50 170 Volume 2,
Toeo E;ﬁm.:_ laddr:= word in_, PROFIBUS. The data that has been read is entered in the destination
RET_VAL record=> variant out , area indicated by RECORD following error-free data transfer.
busy=> bool out);
Table 8- 82 DPNRM_DG instruction data types for the parameters

Parameter and type Data type Description

REQ IN Bool REQ=1: Read request

LADDR IN HW_DPSLAVE | Configured diagnostic address of the DP slave: Must be the address of
the station and not for the 1/0 device. Select the station (and not the
image of the device) in the "Network" view of the "Device configuration"
to determine the diagnostic address.

Enter the addresses in hexadecimal format. For example, diagnostic
address 1022 means LADDR:=W#16#3FE.

RET_VAL ouT Int If an error occurs while the function is active, the return value contains
an error code. If no error occurs, the length of the data actually
transferred is entered in RET_VAL.

RECORD ouT Variant Destination area for the diagnostic data that were read. Only the Byte
data type is permitted. The minimum length of the data record to be
read or the destination area is 6. The maximum length of the data
record to be sent is 240.

Standard slaves can provide more than 240 bytes of diagnostic data up
to a maximum of 244 bytes. In this case, the first 240 bytes are
transferred to the destination area, and the overflow bit is set in the
data.

BUSY ouT Bool BUSY=1: The read job is not yet completed

You start the read job by assigning 1 to the input parameter REQ in the DPNRM_DG
instruction call. The read job is executed asynchronously, in other words, it requires several
DPNRM_DG instruction calls. The status of the job is indicated by the output parameters
RET_VAL and BUSY.
S7-1200 Programmable controller
286 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.3 Distributed I/O (PROFINET, PROFIBUS, or AS-i)

Table 8- 83 Slave diagnostic data structure
Byte Description
0 Station status 1
1 Station status 2
2 Station status 3
3 Master station number
4 Vendor ID (high byte)
5 Vendor ID (low byte)
6 ... Additional slave-specific diagnostic information
Table 8- 84 DPNRM_DG instruction error codes
Error code Description Restriction
0000 No error -
7000 First call with REQ=0: No data transfer active; BUSY has the value 0. -
7001 First call with REQ =1: No data transfer active; BUSY has the value 1. Distributed 1/Os
7002 Interim call (REQ irrelevant): Data transfer already active; BUSY has the Distributed 1/0Os
value 1.
8090 Specified logical base address invalid: There is no base address. -
8092 The type specified in the Any reference is not Byte. -
8093 e This instruction is not permitted for the module specified by LADDR -
(S7-DP modules for S7-1200 are permitted).
o LADDR specifies the 1/0 device instead of specifying the station. Select
the station (and not the image of the device) in the "Network" view of
the "Device configuration" to determine the diagnostic address for
LADDR.
80A2 o DP protocol error at layer 2 (for example, slave failure or bus problems) | Distributed 1/0s
e For ET200S, data record cannot be read in DPV0 mode.
80A3 DP protocol error with user interface/user Distributed 1/Os
80A4 Communication problem on the communication bus The error occurs between the
CPU and the external DP
interface module.
80B0 e The instruction is not possible for module type. -
e The module does not recognize the data record.
e Data record number 241 is not permitted.
80B1 The length specified in the RECORD parameter is incorrect. Specified length > record
length
80B2 The configured slot is not occupied. -
80B3 Actual module type does not match the required module type. -
80C0 There is no diagnostic information. -
80C1 The data of the previous write job for the same data record on the module | -

have not yet been processed by the module.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

287

Extended instructions

8.4 Interrupts
Error code Description Restriction
80C2 The module is currently processing the maximum possible number of jobs | -
for a CPU.
80C3 The required resources (memory, etc.) are currently occupied. -
80C4 Internal temporary error. The job could not be processed. -

Repeat the job. If this error occurs frequently, check your system for
electrical disturbance sources.

80C5 Distributed I/Os not available Distributed 1/Os

80C6 Data record transfer was stopped due to a priority class abort (restart or Distributed 1/0s
background)

8xyy! General error codes

Refer to "Extended instructions, Distributed 1/O: Error information for RDREC, WRREC, and
RALRM" (Page 280) for more information on general error codes.

8.4 Interrupts

841 Attach and detach instructions

You can activate and deactivate interrupt event-driven subprograms with the ATTACH and
DETACH instructions.

Table 8- 85 ATTACH and DETACH instructions

LAD / FBD SCL Description
ret val := ATTACH (ATTACH enables interrupt OB subprogram
&8 ATTAEH EnO L ob nr:= int_in , execution for a hardware interrupt event.
0E_MR FET Wl event: =_event_att_in_,
EVEMT add:= bool_in_);
= 40D
ret_val := DETACH(DETACH disables interrupt OB subprogram
_F a— END L ob nr:= int in , execution for a hardware interrupt event.
OE_NR FET WAL event:= event_att_ in);
EVENT
S7-1200 Programmable controller
288 System Manual, 04/2012, ASE02486680-06

Extended instructions

Table 8- 86 Data types for the parameters

8.4 Interrupts

Parameter and type Data type Description

OB_NR IN OB_ATT Organization block identifier: Select from the available hardware
interrupt OBs that were created using the "Add new block" feature.
Double-click on the parameter field, then click on the helper icon to
see the available OBs.

EVENT IN EVENT_ATT Event identifier: Select from the available hardware interrupt events
that were enabled in PLC device configuration for digital inputs or
high-speed counters. Double-click on the parameter field, then click
on the helper icon to see the available events.

ADD IN Bool e ADD = 0 (default): This event replaces all previous event

(ATTACH only) attachments for this OB.

e ADD = 1: This event is added to previous event attachments for
this OB.

RET_VAL ouT Int Execution condition code

Hardware interrupt events

The following hardware interrupt events are supported by the CPU:

® Rising edge events (all built-in CPU digital inputs and SB digital inputs)

— Arrising edge occurs when the digital input transitions from OFF to ON as a response
to a change in the signal from a field device connected to the input.

Falling edge events (all built-in CPU digital inputs and SB digital inputs)
— Afalling edge occurs when the digital input transitions from ON to OFF.

High-speed counter (HSC) current value = reference value (CV = RV) events (HSC 1
through 6)

— A CV =RV interrupt for a HSC is generated when the current count transitions from an
adjacent value to the value that exactly matches a reference value that was previously
established.

HSC direction changed events (HSC 1 through 6)

— A direction changed event occurs when the HSC is detected to change from
increasing to decreasing, or from decreasing to increasing.

HSC external reset events (HSC 1 through 6)

— Certain HSC modes allow the assignment of a digital input as an external reset that is
used to reset the HSC count value to zero. An external reset event occurs for such a
HSC, when this input transitions from OFF to ON.

Enabling hardware interrupt events in the device configuration

Hardware interrupts must be enabled during the device configuration. You must check the
enable-event box in the device configuration for a digital input channel or a HSC, if you want
to attach this event during configuration or run time.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 289

Extended instructions
8.4 Interrupts

Check box options within the PLC device configuration:
e Digital input
— Enable rising edge detection
— Enable falling edge detection
® High-speed counter (HSC)
— Enabile this high-speed counter for use
— Generate interrupt for counter value equals reference value count
— Generate interrupt for external reset event

— Generate interrupt for direction change event

Adding new hardware interrupt OB code blocks to your program

By default, no OB is attached to an event when the event is first enabled. This is indicated by
the "HW interrupt:" device configuration "<not connected>" label. Only hardware-interrupt
OBs can be attached to a hardware interrupt event. All existing hardware-interrupt OBs
appear in the "HW interrupt:" drop-down list. If no OB is listed, then you must create an OB
of type "Hardware interrupt" as follows. Under the project tree "Program blocks" branch:

1. Double-click "Add new block", select "Organization block (OB)" and choose "Hardware
interrupt".
2. Optionally, you can rename the OB, select the programming language (LAD or FBD), and

select the block number (switch to manual and choose a different block number than that
suggested).

3. Edit the OB and add the programmed reaction that you want to execute when the event
occurs. You can call FCs and FBs from this OB, to a nesting depth of four.

OB_NR parameter

All existing hardware-interrupt OB names appear in the device configuration "HW interrupt:"
drop-down list and in the ATTACH / DETACH parameter OB_NR drop-list.

EVENT parameter

When a hardware interrupt event is enabled, a unique default event name is assigned to this
particular event. You can change this event name by editing the "Event name:" edit box, but
it must be a unique name. These event names become tag names in the "Constants" tag
table, and appear on the EVENT parameter drop-down list for the ATTACH and DETACH
instruction boxes. The value of the tag is an internal number used to identify the event.

General operation

Each hardware event can be attached to a hardware-interrupt OB which will be queued for
execution when the hardware interrupt event occurs. The OB-event attachment can occur at
configuration time or at run time.

S7-1200 Programmable controller
290 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.4 Interrupts

You have the option to attach or detach an OB to an enabled event at configuration time. To
attach an OB to an event at configuration time, you must use the "HW interrupt:" drop-down
list (click on the down arrow on the right) and select an OB from the list of available
hardware-interrupt OBs. Select the appropriate OB name from this list, or select "<not

connected>" to remove the attachment.

You can also attach or detach an enabled hardware interrupt event during run time. Use the
ATTACH or DETACH program instructions during run time (multiple times if you wish) to
attach or detach an enabled interrupt event to the appropriate OB. If no OB is currently
attached (either from a "<not connected>" selection in device configuration, or as a result of
executing a DETACH instruction), the enabled hardware interrupt event is ignored.

DETACH operation

Use the DETACH instruction to detach either a particular event or all events from a particular
OB. If an EVENT is specified, then only this one event is detached from the specified
OB_NR; any other events currently attached to this OB_NR will remain attached. If no
EVENT is specified, then all events currently attached to OB_NR will be detached.

Condition codes

8.4.2

8.4.2.1

Table 8- 87 Condition codes

RET_VAL (W#16#....) ENO Description

0000 1 No error

0001 1 Nothing to Detach (DETACH only)
8090 0 OB does not exist

8091 0 OB is wrong type

8093 0 Event does not exist

Cyclic interrupts

SET_CINT (Set cyclic interrupt)

Table 8- 88 SET_CINT (Set cyclic interrupt instruction)

LAD / FBD SCL Description
ret _val := SET_CINT(Set the specified interrupt OB to begin cyclic execution
e SET_CINT - ob nr:= int in_, that interrupts the program scan.
OF MNP RET AL cycle:= udint_in_,

CYCLE
PHASE

phase:=_udint_in);

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

291

Extended instructions

8.4 Interrupts

Table 8- 89 Data types for the parameters

Parameter and type Data type Description
OB_NR IN OB_CYCLIC OB number (accepts symbolic name)
CYCLE IN UDInt Time interval, in microseconds
PHASE IN UDInt Phase shift, in microseconds
RET_VAL ouT Int Execution condition code

Time parameter examples:

e |f the CYCLE time = 100 us, then the interrupt OB referenced by OB_NR interrupts the
cyclic program scan every 100 us. The interrupt OB executes and then returns execution

control to th

e program scan, at the point of interruption.

e |fthe CYCLE time = 0, then the interrupt event is deactivated and the interrupt OB is not

executed.

o The PHASE (phase shift) time is a specified delay time that occurs before the CYCLE

time interva

| begins. You can use the phase shift to control the execution timing of lower

priority OBs.

If lower and higher priority OBs are called in the same time interval, the lower priority OB is
only called after the higher priority OB has finished processing. The execution start time for

the low priority

OB
Higher priority

OB can shift depending on the processing time of higher priority OBs.
OB call without phase shift

JN
b

OB
low priority

t t t

” t e vl e

1014

. A

If you want to start the execution of a lower priority OB on a fixed time cycle, then phase shift

time should be

greater then the processing time of higher priority OBs.

OB-call with phase shift

RUN
®

OB
Higher priority

OB
low priority

292

) t ," t ol t Ll t ,‘
Il
Cotet e e

il

Phase shift

Y

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.4 Interrupts
Table 8- 90 Condition codes
RET_VAL (W#16#....) Description
0000 No error
8090 OB does not exist or is of wrong type
8091 Invalid cycle time
8092 Invalid phase shift time
80B2 OB has no attached event
8.42.2 QRY_CINT (Query cyclic interrupt)
Table 8- 91 QRY_CINT (Query cyclic interrupt)
LAD / FBD SCL Description
ret val := QRY CINT(Get parameter and execution status from a cyclic
o QRY_CINT - ob_nr:= int in_, interrupt OB. The values that are returned existed
OB MR RET VAL cycle=> udint_out_, at the time QRY_CINT was executed.
CYELE phase=> udint out__,
PHASE status=>_word out_);
STATUS
Table 8- 92 Data types for the parameters
Parameter and type Data type Description
OB_NR IN OB_CYCLIC OB number (accepts symbolic name like OB_MyOBName)
RET_VAL ouT Int Execution condition code
CYCLE ouT UDInt Time interval, in microseconds
PHASE ouT UDInt Phase shift, in microseconds
STATUS ouT Word Cyclic interrupt status code:
e Bits 0 to 4, see the STATUS table below
e Other bits, always 0

Table 8-93 STATUS parameter

Bit Value | Description
0 0 During CPU RUN
1 During startup
1 0 The interrupt is enabled.
1 Interrupt is disabled via the DIS_IRT instruction.
2 0 The interrupt is not active or has elapsed.
1 The interrupt is active.
4 0 The OB identified by OB_NR does not exist.
1 The OB identified by OB_NR exists.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 293

Extended instructions

8.4 Interrupts
Bit Value | Description
Other Bits Always 0
If an error occurs, RET_VAL displays the appropriate error code and the parameter STATUS
=0.
Table 8- 94 RET_VAL parameter
RET_VAL (W#16#....) Description
0000 No error
8090 OB does not exist or is of wrong type.
80B2 OB has no attached event.
8.4.3 Time delay interrupts

You can start and cancel time delay interrupt processing with the SRT_DINT and CAN_DINT
instructions, or query the interrupt status with the QRY_DINT instruction. Each time delay
interrupt is a one-time event that occurs after the specified delay time. If the time delay event
is cancelled before the time delay expires, the program interrupt does not occur.

Table 8- 95 SRT_DINT, CAN_DINT, and QRY_DINT instructions

LAD / FBD SCL Description
ret_val := SRT DINT(SRT_DINT starts a time delay interrupt that
e SRT_DINT enoL ob_nr:= int in_, executes an OB when the delay time specified by
OB_MR FET WAl dtime:=_time_in , parameter DTIME has elapsed.
DTIME sign:=_word _in_);
SIGH
ret_val := CAN_DINT(CAN_DINT cancels a time delay interrupt that has
e CAR_DINT END ob nr:= int_in); already started. The time delay interrupt OB is not
0B_NR RET WAL executed in this case.
ret val := QRY DINT(QRY_DINT queries the status of the time delay
e QRY_DINT EnO ob nr:= int in_, interrupt specified by the OB_NR parameter.
OE_MR FET AL status=>_word_out_) ;
STATUS

Table 8- 96 Data types for the parameters

Parameter and type Data type Description
OB_NR IN OB_DELAY Organization block (OB) to be started after a time-delay: Select from
the available time-delay interrupt OBs that were created using the "Add
new block" project tree feature. Double-click on the parameter field,
then click on the helper icon to see the available OBs.
DTIME 1 IN Time Time delay value (1 to 60000 ms)
S7-1200 Programmable controller
294 System Manual, 04/2012, A5E02486680-06

Extended instructions

8.4 Interrupts
Parameter and type Data type Description
SIGN 1 IN Word Not used by the S7-1200: Any value is accepted. A value must be
assigned to prevent errors.
RET_VAL ouT Int Execution condition code
STATUS ouT Word QRY_DINT instruction: Status of the specified time-delay interrupt OB,
see the table below

1 Only for SRT_DINT

Operation

The SRT_DINT instruction specifies a time delay, starts the internal time delay timer, and
associates a time delay interrupt OB subprogram with the time delay timeout event. When
the specified time delay has elapsed, a program interrupt is generated that triggers the
execution of the associated time delay interrupt OB. You can cancel an in-process time
delay interrupt before the specified time delay occurs by executing the CAN_DINT
instruction. The total number of active time delay and cyclic interrupt events must not exceed
four.

Adding time delay interrupt OB subprograms to your project

Only time delay interrupt OBs can be assigned to the SRT_DINT and CAN_DINT
instructions. No time delay interrupt OB exists in a new project. You must add time delay
interrupt OBs to your project. To create a time-delay interrupt OB, follow these steps:

1.

Double-click the "Add new block" item in the "Program blocks" branch of the project tree,
select "Organization block (OB)", and choose "Time delay interrupt".

You have the option to rename the OB, select the programming language, or select the
block number. Switch to manual humbering if you want to assign a different block number
than the number that was assigned automatically.

Edit the time delay interrupt OB subprogram and create programmed reaction that you
want to execute when the time delay timeout event occurs. You can call other FC and FB
code blocks from the time delay interrupt OB, with a maximum nesting depth of four.

. The newly assigned time delay interrupt OB names will be available when you edit the

OB_NR parameter of the SRT_DINT and CAN_DINT instructions.

QRY_DINT parameter STATUS

Table 8- 97 If there is an error (REL_VAL <> 0), then STATUS = 0.

Bit Value Description

0 0 In RUN
1 In startup

1 0 The interrupt is enabled.
1 The interrupt is disabled.

2 0 The interrupt is not active or has elapsed.
1 The interrupt is active.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 295

Extended instructions

Description

An OB with an OB number given in OB_NR does not exist.

An OB with an OB number given in OB_NR exists.

8.4 Interrupts
Bit Value
4 0
1
Other bits

Always 0

Condition codes

Table 8- 98 Condition codes for SRT_DINT, CAN_DINT, and QRY_DINT

RET_VAL (W#16#...) Description

0000 No error occurred

8090 Incorrect parameter OB_NR

8091 Incorrect parameter DTIME

80A0 Time delay interrupt has not started.
8.4.4 Asynchronous event interrupts

Use the DIS_AIRT and EN_AIRT instructions to disable and enable alarm interrupt
processing.

Table 8- 99 DIS_AIRT and EN_AIRT instructions

LAD / FBD SCL Description
DIS_AIRT() ; DIS_AIRT delays the processing of new interrupt events. You can execute
OI5_AIRT .
e =g B DIS_AIRT more than once in an OB.
RET_ WAL
e EN_AIRT() ; EN_AIRT enables the processing of interrupt events that you previously disabled
JEN | EnOk with the DIS_AIRT instruction. Each DIS_AIRT execution must be cancelled by an
FET L EN_AIRT execution.
The EN_AIRT executions must occur within the same OB, or any FC or FB called
from the same OB, before interrupts are enabled again for this OB.
A WARNING
If the filter time for a digital input channel is changed from a previous setting, a new "0"
level input value may need to be presented for up to 20.0 ms accumulated duration before
the filter becomes fully responsive to new inputs. During this time, short "0" pulse events of
duration less than 20.0 ms may not be detected or counted.
This changing of filter times can result in unexpected machine or process operation, which
may cause death or serious injury to personnel, and/or damage to equipment.
To ensure that a new filter time goes immediately into effect, a power cycle of the CPU
must be applied.
S7-1200 Programmable controller
296 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

Table 8- 100 Data types for the parameters

Parameter and type

Data type Description

RET_VAL

‘ ouT Int Number of delays = number of DIS_AIRT executions in the queue.

The DIS_AIRT executions are counted by the operating system. Each of these remains in
effect until it is cancelled again specifically by an EN_AIRT instruction, or until the current OB
has been completely processed. For example: if you disabled interrupts five times with five
DIS_AIRT executions, you must cancel these with five EN_AIRT executions before interrupts
become enabled again.

After the interrupt events are enabled again, the interrupts that occurred while DIS_AIRT was
in effect are processed, or the interrupts are processed as soon as the current OB has been
executed.

Parameter RET_VAL indicates the number of times that interrupt processing was disabled,
which is the number of queued DIS_AIRT executions. Interrupt processing is only enabled
again when parameter RET_VAL = 0.

8.5 Diagnostics (PROFINET or PROFIBUS)

8.5.1 Diagnostic instructions

The following diagnostic instructions can be used with either PROFINET or PROFIBUS:

® GET_DIAG instruction (Page 302): You can read the diagnostic information from a
specified device.

® DeviceStates instruction (Page 299): You can retrieve the operational states for a
distributed 1/0 device within an 1/O subsystem.

® ModuleStates instruction (Page 301): You can retrieve the operational states for the
modules in a distributed I/O device.

® LED instruction (Page 298): You can read the state of the LEDs for a distributed /O
device.

8.5.2 Diagnostic events for distributed 1/O

Note

With a PROFIBUS 10 system, after a download or power cycle, the CPU will go to RUN
mode unless the hardware compatibility is set to allow acceptable substitute modules
(Page 123) and one or more modules is missing or is not an acceptable substitute for the
configured module.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 297

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

As shown in the following table, the CPU supports diagnostics that can be configured for the
components of the distributed I/O system. Each of these errors generates a log entry in the
diagnostic buffer.

Table 8- 101 Handling of diagnostic events for PROFINET and PROFIBUS

Type of error Diagnostic information for Entry in the diagnostic CPU operating mode
the station? buffer?

Diagnostic error Yes Yes Stays in RUN mode

Rack or station failure Yes Yes Stays in RUN mode

I/O access error ! No Yes Stays in RUN mode

Peripheral access error 2 No Yes Stays in RUN mode

Pull / plug event Yes Yes Stays in RUN mode

1 1/O access error example cause: A module that has been removed.

2 Peripheral access error example cause: Acyclic communication to a submodule that is not communicating.

Use the GET_DIAG instruction (Page 302) for each station to obtain the diagnostic
information. This will allow you to programmatically handle the errors encountered on the
device and if desired take the CPU to STOP mode. This method requires you to specify the
hardware device from which to read the status information.

The GET_DIAG instruction uses the "L address" (LADDR) of the station to obtain the health
of the entire station. This L Address can be found within the Network Configuration view and
by selecting the entire station rack (entire gray area), the L Address is shown in the
Properties Tab of the station. You can find the LADDR for each individual module either in
the properties for the module (in the device configuration) or in the default tag table for the
CPU.

853 LED instruction

Table 8- 102 LED instruction

LAD / FBD SCL Description
ret val := LED(Use the LED instruction to read the state of the LEDs on a CPU or
I LED s laddr:= word in_, interface. The specified LED state is returned by the RET_VAL
LADDR Ret_al LED:= uint_in); output.
LED

Table 8- 103 Data types for the parameters

Parameter and type Data type Description

LADDR IN HW_IO Identification number of the CPU or interface’

LED IN Ulnt LED identifier number
1 RUN/STOP Color 1 = green, color 2 = yellow
2 Error Color 1 =red

S7-1200 Programmable controller
298 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

Parameter and type

Data type Description

3 Maintenance

Color 1 = yellow

4 Redundancy

Not applicable

5 Link Color 1 = green
6 Tx/Rx Color 1 = yellow
RET_VAL ouT Int Status of the LED

1 For example, you can select the CPU (such as "PLC_1") or the PROFINET interface from the drop-down list of the

parameter.

Table 8- 104 Status of RET_VAL

RET_VAL (W#16#...) Description

0 to 9 LED state 0 LED does not exist
1 Off
2 Color 1 On (solid)
3 Color 2 On (Solid)
4 Color 1 flashing at 2 Hz
5 Color 2 flashing 2 Hz
6 Color 1 & 2 flashing alternatively at 2 Hz
7 Color 1 on (Tx/Rx)
8 Color 2 on (Tx/Rx)
9 State of the LED is not available

8091 Device identified by LADDR does not exist

8092 Device identified by LADDR does not support LEDs

8093 LED identifier not defined

80Bx CPU identified by LADDR does not support the LED instruction

8.5.4 DeviceStates instruction

Table 8- 105 DeviceStates instruction

LAD / FBD SCL Description
: ret_val := DeviceStates(DeviceStates retrieves the 1/0 device operational
DeviceStates A . .

— EN ER — laddr:=hw_io_in_, states of an I/0O subsystem. After execution, the
LADDR Ret_‘al mode:= uint in_, STATE parameter contains the error state of each
MODE state:= variant inout); |l/O device in a bit list (for the assigned LADDR and
STATE - - - MODE). This information corresponds with the

device status seen in the STEP 7 diagnostics view.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

299

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

Table 8- 106 Data types for the parameters

Parameter and type Data type Description
LADDR IN HW_IOSYSTEM Logical address: (Identifier for the 1/0 system)
MODE IN Ulnt Status type:
* 1: Configuration of device is active or not yet complete.
e 2: Device defective
e 3: Device disabled
e 4: Device exists
RET_VAL ouT Int Execution condition code
STATE! InOut Variant Buffer that receives the error status of each device: The data type

that you choose for the STATE parameter can be any bit type

(Bool, Byte, Word, or DWord) or an array of a bit type

e Summary bit: Bit 0 =1, if one of the state bits of the I/O devices
is 1

o State bit: State of I/O device with station number n according to
the selected MODE. For example, MODE = 2 and bit 3 = 1
means station 3 is faulty.

1 For PROFIBUS-DP, the length of the status information is 128 bits. For PROFINET 1/O, the length is 1024 bits.

After execution, the STATE parameter contains the error state of each I/O device as a bit list
(for the assigned LADDR and MODE).

Table 8- 107 Condition codes

RET_VAL (W#16#...) Description
0 No error
8091 LADDR does not exist.
8092 LADDR does not address an 1/O system.
8093 Invalid data type assigned for STATE parameter: Valid data types are (Bool, Byte, Word, or
Dword), or an array of (Bools, Bytes, Words, or Dwords)
80Bx DeviceStates instruction not supported by the CPU for this LADDR.
8452 The complete state data is too large for the assigned STATE parameter. The STATE buffer
contains a partial result.
S7-1200 Programmable controller
300 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

855 ModuleStates instruction

Table 8- 108 ModuleStates instruction

LAD / FBD SCL Description
YR ret _val := ModuleStates(ModuleStates retrieves the operational states
—En EMD laddr:= word in _, of /O modules. After execution, the STATE
LADDE Ret_al mode:= uint in, parameter contains the error state of each I/O
MODE state:= variant inout); module in a bit list (for the assigned LADDR
STATE - - and MODE). This information corresponds
with the module status seen in the STEP 7
diagnostics view.

Table 8- 109 Data types for the parameters

Parameter and type Data type Description
LADDR IN HW_DEVICE Logical address (Identifier for the I/O modules)
MODE IN Ulnt Status type:

¢ 1: Configuration of module is active or not yet complete.
e 2: Module defective

e 3: Module disabled

e 4: Module exists

RET_VAL ouT Int Status (condition code)

STATE! InOut Variant Buffer that receives the error status of each module: The data type
you use for the STATE parameter can be any bit type (Bool, Byte,
Word, or DWord) or an array of a bit type.

e Summary bit: Bit 0 =1, if one of the state bits of the /O module
is 1

e State bit: State of I/O module with slot number naccording to
the selected MODE. For example, MODE = 2 and bit 3 = 1
means station 3 is faulty.

1 A maximum of 128 bits can be assigned. The number of bits required is dependent on your I/O module usage.

Table 8- 110 Condition codes

RET_VAL (W#16#...) Description

0 No error

8091 Module identified by LADDR does not exist.

8092 Module identified by LADDR does not address an 1/O device.

8093 Invalid data type for STATE parameter: Valid data types are (Bool, Byte, Word, or Dword), or
an array of (Bools, Bytes, Words, or Dwords).

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 301

Extended instructions
8.5 Diagnostics (PROFINET or PROFIBUS)

RET_VAL (W#16#...) Description
80Bx ModuleStates instruction not supported by this CPU for this LADDR.

8452 The complete state data is too large for the assigned STATE parameter. The STATE buffer
contains a partial result.

8.5.6 GET_DIAG instruction

Description

You can use the "GET_DIAG" instruction to read out the diagnostic information of a
hardware object. The hardware object is selected with the LADDR parameter. With the
MODE parameter, you select which diagnostic information is to be read out.

Table 8- 111 GET_DIAG instruction

LAD / FBD SCL Description
ret val := GET_DIAG(Reads the diagnostic information from a
GET_DIAG . . e .
I ENO mode:= uint_in , specified hardware device.
WOOE FET WAL laddr: =_W°rd_in_,
LADDOR CMT_DIAG cnt_diag=>_ uint_out_,
DIAG diag:=_variant_inout_,
DETAIL detail:= variant_inout);

Parameters

The following table shows the parameters of the "GET_DIAG" instruction:

Table 8- 112 Data types for the parameters

Parameter and type Data type Description

MODE IN Ulnt Use the MODE parameter to select which diagnostic data is to be
output.

LADDR IN HW_ANY (Word) | Hardware ID of the device

RET_VAL ouT Int Status of the instruction

CNT_DIAG ouT Ulnt Number of output diagnostic details

DIAG InOut Variant Pointer to data area for storage of diagnostic information of the
selected mode

DETAILS InOut Variant Pointer to data area for storage of diagnostic details in accordance
with the selected mode

S7-1200 Programmable controller
302 System Manual, 04/2012, ASE02486680-06

Extended instructions

MODE parameter

8.5 Diagnostics (PROFINET or PROFIBUS)

Depending on the value at the MODE parameter, different diagnostics data is output at the
DIAG, CNT_DIAG and DETAILS output parameters:

Table 8- 113 MODE parameter

MODE Description DIAG CNT_DIAG DETAILS
0 Output of all supported Bit string of the supported 0 -
diagnostic information for a modes as DWord, where Bit
module as DWord, where Bit | X=1 indicates that mode X
X=1 indicates that mode X is | is supported.
supported.
1 Output of the inherent status | Diagnostics status: Output |0 -
of the addressed hardware in accordance with the DIS
object. structure. (Note: Refer to
the "DIS structure”
information below and
GET_DIAG instruction
example at the end of the
section.)
2 Output of the status of all Output of diagnostics data |0 Module status

subordinate modules of the
addressed hardware object.

in accordance with the DNN
structure. (Note: Refer to
the "DNN structure"
information below and
GET_DIAG instruction
example at the end of the
section.)

information in
accordance with the
DiagnosticsDetails
structure.

DIS structure

With the MODE parameter = 1, the diagnostics information is output in accordance with the
DIS structure. The following table shows the meaning of the individual parameter values:

Table 8- 114 Structure of the Diagnostic Information Source (DIS)

Parameter Data type Value Description
MaintenanceState | DWord Enum
0 No maintenance required
1 The module or device is disabled.
2 -
3 -
4 -
5 Maintenance required
6 Maintenance demanded
7 Error
8 Status unknown / error in subordinate module
9 -
10 Inputs/outputs are not available.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

303

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

Parameter

Data type

Value

Description

Componentstate
Detail

DWord

Bit array

Status of the module sub-modules:
e Bit 0 to 15: Status message of the module
e Bit 16 to 31: Status message of the CPU

Oto2
(enum)

Additional information:
e Bit 0: No additional information
e Bit 1: Transfer not permitted

Bit 3 = 1: At least one channel supports qualifiers for diagnostics.

Bit 4 = 1: Maintenance required for at least one channel or one
component

Bit 5 = 1: Maintenance demanded for at least one channel or one
component

6

Bit 6 = 1: Error in at least one channel or one component

71010

11to 14

Bit 11 = 1: PNIO - sub-module correct
Bit 12 = 1: PNIO - replacement module
Bit 13 = 1: PNIO - incorrect module

Bit 14 = 1: PNIO - module disconnected

15

16 to 31

Status information for modules generated by the CPU:
Bit 16 = 1: Module disabled

Bit 17 = 1: CiR operation active

Bit 18 = 1: Input not available

Bit 19 = 1: Output not available

Bit 20 = 1: Overflow diagnostics buffer

Bit 21 = 1: Diagnostics not available

Bit 22 - 31: Reserved (always 0)

OwnState

Uint16

Enum

The value of the OwnState parameter describes the maintenance
status of the module.

No fault

The module or device is disabled.

Maintenance required

Maintenance demanded

Error

|l [WIN|I~|O

The module or the device cannot be reached from the CPU (valid for
modules and devices below a CPU).

6

Inputs/outputs are not available.

7

10 State

Uint16

Bit array

1/0 status of the module

0

Bit 0 = 1: No maintenance required

Bit 1 = 1: The module or device is disabled.

Bit 2 = 1: Maintenance required

Bit 3 = 1: Maintenance demanded

A IWIN|=>

Bit 4 = 1: Error

304

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

Parameter Data type Value Description
5 Bit 5 = 1: The module or the device cannot be reached from the CPU
(valid for modules and devices below a CPU).
6 Inputs/outputs are not available.
7 Qualifier; bit 7 = 1, if bit 0, 2, or 3 are set
8to15 Reserved (always = 0)
OperatingState Uint16 Enum
0 -
1 In STOP / firmware update
2 In STOP / reset memory
3 In STOP / self start
4 In STOP
5 Memory reset
6 In START
7 In RUN
8 -
9 In HOLD
10 -
11 -
12 Module defective
13 -
14 No power
15 CiR
16 In STOP / without DIS
17 In
18
19
20

DiagnosticsDetail structure

With the MODE parameter = 2, the diagnostics information details are output in accordance
with the DiagnosticsDetail structure. The following table shows the meaning of the individual
parameter values:

Table 8- 115 Structure of the DiagnosticsDetail

Parameter Data type Description
ChannelNumber Ulnt Channel number

Properties Word

ALID Ulnt Identification 1D of alarm
Qualifier DWord Qualifier of diagnostic data
ErrorType UDiInt Channel error type
ExtErrorType UDInt Extended channel error type

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

305

Extended instructions
8.5 Diagnostics (PROFINET or PROFIBUS)

Parameter Data type Description

AddValue_1 Ulint Additional value
AddValue_2 Ulint Additional value
AddValue_3 Uint Additional value
AddValue_4 Ulnt Additional value

DNN structure

With the MODE parameter = 2, the diagnostics information details are output in accordance
with the DNN structure. The following table shows the meaning of the individual parameter
values:

Table 8- 116 Structure of the Diagnostic Navigation Node (DNN)

Parameter Data type Value Description

SubordinateState UINT Enum Status of the subordinate module (See parameter OwnState of
the DIS structure.)

SubordinatelOState WORD Bitarray Status of the inputs and outputs of the subordinate module (See
parameter IO State of the DIS structure.)

DNNmode WORD Bitarray e Bit 0 = 0: Diagnostics enabled
e Bit 0 = 1: Diagnostics disabled
e Bit1to 15: Reserved

RET_VAL parameter

Table 8- 117 Error codes of the RET_VAL parameter

Error code Description

(Wi#16#...)

0 No error

n The data area in the DETAILS parameter is too small. Not all details of the diagnostic data can be
output.

8080 Value in the MODE parameter is not supported.

8081 Type in the DIAG parameter is not supported with the selected mode (parameter MODE).

8082 Type in the DETAILS parameter is not supported with the selected mode (parameter MODE).

8090 LADDR does not exist.

8091 The selected channel in the CHANNEL parameter does not exist.

80C1 Insufficient resources for parallel execution

S7-1200 Programmable controller
306 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

The following ladder logic network and DB show how to use the three modes with the three

Example
structures:
e DIS
® DiagnosticsDetalil
e DNN
¥ Network 1:
Corarrent

TebAW1 2

"LADDR"

%hiD 120
"Tag_z0"

W12

"LADOR"

PEDEZ2.DEX6.0
"GET_DIAG_
Sarmple_DE".DIS_
Struct

W12

" ADDE"

FY0EZ2. DEX0.0
"GET DlAG
Sample_D3"

DEE_Struct

PEDE2 DEXZ22.0
"GET_DIAG_
Sarnple_D3"
DiagnosticsDetall
_Struct

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

GET_DIAG Sarmiple netwark

GET_DlAG
EI
MODE
LADDE
DIAG

GET_DIaG
Ell

MODE

LADDE

DIAG

GET_DIaG
EIl
MODE

LACDT

DIAG

DETAIL

ENG
RET_vAL
WhAW102
CHT_DIAG - "Tag_14"
ENG —
AW 04
RET_VAL - "Tag_1&"
AW
CHT_DIAG - "Tag_17"
ENO —
AW 0E
RET_VAL - "Tag_18"
AW
CHT_DIAG - "Tag_19"

307

Extended instructions

8.5 Diagnostics (PROFINET or PROFIBUS)

308

@

GET_DIAG_Sample_DB
Narme

| <O = Statc
2 <0 = = DN _Smuct
3 L} SubordinateState
4 = Subordinatel Ootate
5 Ll DHHmode
& 5w D5 Struct
7 = hlamTamanceStars
-] = CompanentitateDstal
9 = Chnstate
(1'} L] 105rars
1 [] OperatingState

o 0 o O < B B

12 = Channeliumbsr
14 L Fropemes
15 L ALID
(1.3 [] Cuialifier
7 = ErrarType
15-] = ExEmorType
13 [] Addvalus |
20 = Lddvalus_2
21 = Addvalues_%
22 = Addvalue_4
DNN
DIS

OXOXC,

DiagnosticsDetall

Data type

ot
Hint

viord
Werd

ful 3 &0

Diord
DWord
Ulnt
Weord
Llbne

Lt
Ward
Wt
Civiord
Ubine
LICnt
Lt
Uint
Uint
Ulnt

« DisanostcsDetal_Struct | DiagnosticsDetall

k2.0
160
20,0
220
M0
260

3]

HEORRE

KX

<

RRRRRRREEE

KK

Offset Stapdalue Retain Visible in HMI Comment

Note

In the DB, you must manually type in the data type to access each of the three structures;
there is no dropdown list selection. Type in the data types exactly as shown below:

e DNN
e DIS
e DiagnosticsDetail

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.6 Pulse

8.6.1 CTRL_PWAM instruction

Table 8- 118 CTRL_PWM (Pulse Width Modulation) instruction

8.6 Pulse

LAD / FBD SCL Description
CTRL PuM "CTRL_PWM DB" (Provides a fixed cycle time output with a variable duty
1 PWM:= word in , cycle. The PWM output runs continuously after being
CTRL_PwM ‘ enable:= bool in |, started at the specified frequency (cycle time). The
"E:‘m EE’;E: busy=>_b;ol_o;t_7 pulse width is varied as required to affect the desired
S EMABLE STATUS | status=>_word_out) control.

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "CTRL_PWM_DB" is the name of the instance DB.

CTRL_HSC

Table 8- 119 Data types for the parameters

Parameter and type Data type Description
PWM IN HW_PWM PWM identifier: Names of enabled pulse generators will become tags in
(Word) the "constant" tag table, and will be available for use as the PWM

parameter. (Default value: 0)

ENABLE IN Bool 1=start pulse generator
0 = stop pulse generator

BUSY ouT Bool Function busy (Default value: 0)

STATUS ouT Word Execution condition code (Default value: 0)

The CTRL_PWM instruction stores the parameter information in the DB. The data block
parameters are not separately changed by the user, but are controlled by the CTRL_PWM
instruction.

Specify the enabled pulse generator to use, by using its tag name for the PWM parameter.

When the EN input is TRUE, the PWM_CTRL instruction starts or stops the identified PWM
based on the value at the ENABLE input. Pulse width is specified by the value in the
associated Q word output address.

Because the CPU processes the request when the CTRL_PWM instruction is executed,
parameter BUSY will always report FALSE. If an error is detected, then ENO is set to

FALSE, and parameter STATUS contains a condition code.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

309

Extended instructions

8.6 Pulse

The pulse width will be set to the initial value configured in device configuration when the
CPU first enters RUN mode. You write values to the Q-word location specified in device
configuration ("Output addresses" / "Start address:") as needed to change the pulse width.
You use an instruction such as a move, convert, math, or PID box to write the desired pulse
width to the appropriate Q word. You must use the valid range for the Q-word value (percent,
thousandths, ten-thousandths, or S7 analog format).

Note
Digital 1/0 points assigned to PWM and PTO cannot be forced

The digital I/0 points used by the pulse-width modulation (PWM) and pulse-train output
(PTO) devices are assigned during device configuration. When digital 1/O point addresses
are assigned to these devices, the values of the assigned I/O point addresses cannot be
modified by the Watch table force function.

Table 8- 120 Value of the STATUS parameter

STATUS Description
0 No error
80A1 PWM identifier does not address a valid PWM.

Table 8- 121 Common condition codes

Condition code!

Description

8022 Area too small for input

8023 Area too small for output
8024 lllegal input area

8025 lllegal output area

8028 lllegal input bit assignment
8029 lllegal output bit assignment
8030 Output area is a read-only DB.
803A DB does not exist.

1 If one of these errors occurs when a code block is executed, the CPU goes to STOP mode unless you use the GetError
or GetErrorID instructions within that code block to create a programmed reaction to the error.

310

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.6.2

8.6 Pulse

Operation of the pulse outputs

Pulse width can be expressed as hundredths of the
cycle time (0 to 100), as thousandths (0 to 1000), as

@
i -
J ® u ® |_ ten thousandths (0 to 10000), or as S7 analog format.

The pulse width can vary from 0 (no pulse, always off)
to full scale (no pulse, always on).

@ Cycletime
® Pulse width

Since the PWM output can be varied from 0 to full scale, it provides a digital output that in
many ways is the same as an analog output. For example, the PWM output can be used to
control the speed of a motor from stop to full speed, or it can be used to control position of a
valve from closed to fully opened.

Two pulse generators are available for controlling high-speed pulse output functions: PWM
and Pulse train output (PTO). PTO is used by the motion control instructions. You can assign
each pulse generator to either PWM or PTO, but not both at the same time.

The two pulse generators are mapped to specific digital outputs as shown in the following
table. You can use onboard CPU outputs, or you can use the optional signal board outputs.
The output point numbers are shown in the following table (assuming the default output
configuration). If you have changed the output point numbering, then the output point
numbers will be those you assigned. Regardless, PTO1/PWM1 uses the first two digital
outputs, and PTO2/PWM2 uses the next two digital outputs, either on the CPU or on the
attached signal board. Note that PWM requires only one output, while PTO can optionally
use two outputs per channel. If an output is not required for a pulse function, it is available
for other uses.

NOTICE

Pulse-train outputs cannot be used by other instructions in the user program

When you configure the outputs of the CPU or signal board as pulse generators (for use
with the PWM or motion control instructions), the corresponding outputs addresses (Q0.0,
Q0.1, Q4.0, and Q4.1) are removed from the Q memory and cannot be used for other
purposes in your user program. If your user program writes a value to an output used as a
pulse generator, the CPU does not write that value to the physical output.

Table 8- 122 Default output assignments for the pulse generators

Description Pulse Direction
PTO O
Built-in 1/0 Q0.0 Q0.1
SB 1/0 Q4.0 Q4.1
PWM 0
Built-in outputs Q0.0 -
SB outputs Q4.0 -
PTO 1

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 311

Extended instructions

8.6 Pulse

8.6.3

312

Description Pulse Direction
Built-in 1/0 Q0.2 Q0.3
SB I/0 Q4.2 Q4.3
PWM 1
Built-in outputs Q0.2 -
SB outputs Q4.2 -
PTO 2
Built-in 1/0 Q0.41 Q0.5"
SB I/0 Q4.0 Q4.1
PWM 2
Built-in outputs Q0.41 -
SB outputs Q4.1 -
PTO 3
Built-in 1/0 QO0.62 QO0.72
SB I/0 Q4.2 Q4.3
PWM 3
Built-in outputs Q0.62 -
SB outputs Q4.3 -

1 The CPU 1211C does not have outputs Q0.4, Q0.5, Q0.6, or Q0.7. Therefore, these outputs
cannot be used in the CPU 1211C.

2 The CPU 1212C does not have outputs Q0.6 or Q0.7. Therefore, these outputs cannot be used in
the CPU 1212C.

3 This table applies to the CPU 1211C, CPU 1212C, CPU 1214C, and CPU 1215C PTO/PWM
functions.

Configuring a pulse channel for PWM

To prepare for PWM operation, first configure a pulse channel in the device configuration by
selecting the CPU, then Pulse Generator (PTO/PWM), and choose either PWM1 or PWM2.
Enable the pulse generator (check box). If a pulse generator is enabled, a unique default
name is assigned to this particular pulse generator. You can change this name by editing it
in the "Name:" edit box, but it must be a unique name. Names of enabled pulse generators
will become tags in the "constant" tag table, and will be available for use as the PWM
parameter of the CTRL_PWM instruction.

NOTICE

The maximum pulse frequency of the pulse output generators for the digital output is

100 KHz (for the CPU), 20 KHz (for a SB), or 200 KHz (for a high-speed SB). However,
STEP 7 does not alert you when you configure an axis that with a maximum speed or
frequency that exceeds this hardware limitation. This could cause problems with your
application, so always ensure that you do not exceed the maximum pulse frequency of the

hardware.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions
8.7 Data logging

You have the option to rename the pulse generator, add a comment, and assign parameters
as follows:

® Pulse generator used as follows: PWM or PTO (choose PWM)
e Qutput source: onboard CPU or SB
® Time base: milliseconds or microseconds
® Pulse width format:
— Hundredths (0 to 100)
— Thousandths (0 to 1000)
— Ten-thousandths (0 to 10000)
— S7 analog format (0 to 27648)

e (Cycle time: Enter your cycle time value. This value can only be changed in Device
configuration.

e |nitial pulse width: Enter your initial pulse width value. The pulse width value can be
changed during runtime.

Enter the start address to configure the output addresses. Enter the Q word address where
you want to locate the pulse width value.

NOTICE

Pulse-train outputs cannot be used by other instructions in the user program

When you configure the outputs of the CPU or signal board as pulse generators (for use
with the PWM or motion control instructions), the corresponding outputs addresses (Q0.0,
Q0.1, Q4.0, and Q4.1) are removed from the Q memory and cannot be used for other
purposes in your user program. If your user program writes a value to an output used as a
pulse generator, the CPU does not write that value to the physical output.

The default location is QW1000 for PWM1, and QW1002 for PWM2. The value at this
location controls the width of the pulse and is initialized to the "Initial pulse width:" value
specified above each time the CPU transitions from STOP to RUN mode. You change this
Q-word value during run time to cause a change in the pulse width.

8.7 Data logging

Your control program can use the Data log instructions to store run-time data values in
persistent log files. The data log files are stored in flash memory (CPU or memory card). Log
file data is stored in standard CSV (Comma Separated Value) format. The data records are
organized as a circular log file of a pre-determined size.

The Data log instructions are used in your program to create, open, write a record, and close
the log files. You decide which program values will be logged by creating a data buffer that
defines a single log record. Your data buffer is used as temporary storage for a new log
record. New current values must be programmatically moved into the buffer during run-time.
When all of the current data values are updated, you can execute the DataLogWrite
instruction to transfer data from the buffer to a data log record.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 313

Extended instructions

8.7 Data logging

Use the built-in PLC Web server to manage your data log files. Download recent records, all
records, clear records, or delete log files with the "Data Logs" standard web page. After a
data log file is transferred to your PC, then you can analyze the data with standard
spreadsheet tools like Excel.

8.7.1 Data log record structure

The DATA and HEADER parameters of the DataLogCreate instruction assign the data type
and the column header description of all data elements in a log record.

DATA parameter for the DataLogCreate instruction

The DATA parameter points to memory used as a temporary buffer for a new log record and
must be assigned to an M or DB location.

You can assign an entire DB (derived from a PLC data type that you assign when the DB is
created) or part of a DB (the specified DB element can be any data type, data type structure,
PLC data type, or data array).

Structure data types are limited to a single nesting level. The total number of data elements
declared should correspond to the number of columns specified in the header parameter.
The maximum number of data elements you can assign is 253 (with a timestamp) or 255
(without a timestamp). This restriction keeps your record inside the 256 column limit of an
Excel sheet.

The DATA parameter can assign either retentive or non-retentive data elements in a
"Standard" (compatible with S7-300/400) or "Optimized" DB type.

In order to write a Data log record you must first load the temporary DATA record with new
process values and then execute the DataLogWrite instruction that saves new record values
in the Datalog file.

HEADER parameter for the DataLogCreate instruction

The HEADER parameter points to column header names for the top row of the data matrix
encoded in the CSV file. HEADER data must be located in DB or M memory and the
characters must follow standard CSV format rules with commas separating each column
name. The data type may be a string, byte array, or character array. Character/byte arrays
allow increased size, where strings are limited to a maximum of 255 bytes. The HEADER
parameter is optional. If the HEADER is not assigned, then no header row is created in the
Data log file.

S7-1200 Programmable controller
314 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.7.2

8.7.2.1 DataLogCreate

Table 8- 123 DatalLogCreate instruction

8.7 Data logging

Program instructions that control Data logs

LAD/FBD SCL Description
DatalogCreate_ "DataLogCreate_DB" (Creates and initializes a data log file. The
DB req:= bool_in , file is created in the PLC \Datalogs
DatalogCreats records:=_udint_in_, directory, named by the NAME
- ;[:q ng\rﬁ — format:= uint in , parameter, and implicitly opened for write
- - - - - .
—— BUSt L timestamp:= uint in , gperatlgns. You can use thg Data log
FORMAT EFRDAL. done=> bool out_, |nstrtgct|ons to progr?mmatlc;ally store .
TIMESTAMP STATUS busy=> bool out , [ﬁnc"ss process data In flash memory o
= - = e .
LaANE error=> bool out_,)
o status=> word out , STEP.7 autpmatlcally creates the _
HEADER name:= string inout associated instance DB when you insert
DIATA = _g_ —! the instruction.
ID:=_dword_inout_,
header:=_variant_inout_,
data:= variant inout);

1 In the SCL example, "DataLogCreate_DB" is the name of the instance DB.

Table 8- 124 Data types for the parameters

Parameter and type

Data type

Description

REQ

Bool

A low to high (positive edge) signal starts the operation. (Default value:
False)

RECORDS

UDint

The maximum number of data records the circular data log can contain
before overwriting the oldest entry:

The header record is not included. Sufficient available PLC load memory
must exist in order to successfully create the data log. (Default value - 1)

FORMAT

Ulint

Data log format:
e 0 - Internal format (not supported)

¢ 1 -Comma separated values "csv-eng" (Default value)

TIMESTAMP

Uint

Data time stamp format: Column headers for date and time fields are not

- UTC) and not the local time.
e 0-No time stamp

e 1 -Date and time stamp (Default value)

required. The time stamp uses the system time (Coordinated Universal Time

NAME

Variant

Data log name: You provide the name. This variant only supports a String
data type and can only be located in local, DB, or M memory. (Default value:
1 l)

The string reference is also used as the name of the data log file. The name
characters must follow the Windows file system naming restrictions.
Characters \/: * ? " <> | and the space character are not allowed.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

315

Extended instructions

8.7 Data logging

Parameter and ty,

pe

Data type

Description

ID

In/Out

DWord

Data log numeric identifier: You store this generated value for use with other
Data log instructions. The ID parameter is only used as an output with the
Datal.ogCreate instruction. (Default value: 0)

Symbolic name access for this parameter is not allowed.

HEADER

In/Out

Variant

Pointer to data log column header names for the top row of the data matrix
encoded in the CSV file. (Default value: null).

HEADER data must be located in DB or M memory.

The characters must follow standard CSV format rules with commas
separating each column name. The data type may be a string, byte array, or
character array. Character/byte arrays allow increased size, where strings
are limited to a maximum of 255 bytes.

The HEADER parameter is optional. If the HEADER is not parameterized,
then no header row is created in the Data log file.

DATA

In/Out

Variant

Pointer to the record data structure, user defined type (UDT), or array.
Record data must be located in DB or M memory.

The DATA parameter specifies the individual data elements (columns) of a
data log record and their data type. Structure data types are limited to a
single nesting level. The number of data elements declared should
correspond to the number of columns specified in the header parameter.
The maximum number of data elements you can assign is 253 (with a
timestamp) or 255 (without a timestamp). This restriction keeps your record
inside the 256 column limit of a Excel sheet.

DONE

ouT

Bool

The DONE bit is TRUE for one scan, after the last request was completed
with no error. (Default value: False)

BUSY

ouT

Bool

e 0 - No operation in progress
e 1 - Operation on progress

ERROR

ouT

Bool

The ERROR bit is TRUE for one scan, after the last request was terminated
with an error. The error code value at the STATUS parameter is valid only
during the single scan where ERROR = TRUE.

STATUS

ouT

Word

Execution condition code (Default value: 0)

316

A data log file is created with a pre-determined fixed sized based on the RECORDS and
DATA parameters. The data records are organized as a circular log file. New records are
appended to the data log file, until the maximum number of records that is specified by the
RECORDS parameter is stored. The next record written will overwrite the oldest record.
Another record write operation will overwrite the next oldest data record and so on.

Note

If you want to prevent overwriting any data records, then you can use the DataLogNewFile
instruction to create a new data log based on the current data log, after the current data log
has stored the maximum number of records. New data records are stored in the new data
log file. The old data log file and record data remain in flash memory.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.7 Data logging

Memory resource usage:
® The data logs consume only load memory.

® There is no set limit for the total number of data logs. The size of all data logs combined

is limited by the available resources of load memory. Only eight data logs may be open at
one time.

The maximum possible number for the RECORDS parameter is the limit for an UDint
number (4,294,967,295). The actual limit for the RECORD parameter depends on the
size of a single record, the size of other data logs, and the available resources of load
memory. In addition, Excel limits the number of rows allowed in an Excel sheet.

Note

A DatalLogCreate operation extends over many program scan cycles. The actual time
required for the log file creation depends on the record structure and number of records.
Your program logic must monitor and catch the DataLogCreate DONE bit's transition to
the TRUE state, before the new data log can be used for other data log operations.

Table 8- 125 Values of ERROR and STATUS

ERROR STATUS (W#16#....) Description

0 0000 No error

0 7000 Call with no REQ edge: BUSY =0, DONE =0

0 7001 First call with REQ edge (working): BUSY = 1, DONE =0

0 7002 Nth call (working): BUSY =1, DONE =0

1 8070 All internal instance memory is in use.

1 807F Internal error

1 8090 Invalid file name

1 8091 Name parameter is not a String reference.

1 8093 Data log already exists.

1 8097 Requested file length exceeds file system maximum.

1 80B3 Insufficient load memory available.

1 80B4 MC (Memory Cartridge) is write protected.

1 80C1 Too many open files: No more than eight opened data log files are allowed.
1 8253 Invalid record count

1 8353 Invalid format selection

1 8453 Invalid timestamp selection

1 8B24 Invalid HEADER area assignment: For example, pointing to local memory
1 8B51 Invalid HEADER parameter data type

1 8B52 Too many HEADER parameter data elements

1 8C24 Invalid DATA area assignment: For example, pointing to local memory
1 8C51 Invalid DATA parameter data type

1 8C52 Too many DATA parameter data elements

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 317

Extended instructions

8.7 Data logging

8.7.2.2

DataLogOpen

Table 8- 126 DatalLogOpen instruction

LAD / FBD

SCL

Description

DataLlogOpen_DE
DatalogOpen
EM EMO =~
REQ DOME =
MODE BUSY -
MAME ERROR -
0 STATUS

"DataLogOpen_DB" (

req:= bool_in_,

mode:= uint _in_,
done=> bool_out_,
busy=> bool_out_,
error=> bool out_,
status=> word out_,
name:= string inout_,
ID:= dword inout);

Opens a pre-existing data log file. A data log must be
opened before you can write new records to the log. Data
logs can be opened and closed individually. A maximum
of eight data logs can be open at the same time.

STEP 7 automatically creates the associated instance DB
when you insert the instruction.

2 In the SCL example, "DataLogOpen_DB" is the name of the instance DB.

Table 8- 127 Data types for the parameters

Parameter and type Data type Description
REQ IN Bool A low to high (positive edge) signal starts the operation. (Default value:
False)
MODE IN Ulnt Operation mode:
e 0 - Append to existing data (Default value)
e 1 -Clear all existing records
NAME IN Variant Name of an existing data log: This variant only supports a String data type
and can only be located in local, DB, or M memory. (Default value: ')
ID In/Out DWord Numeric identifier of a data log. (Default value: 0)
Note: Symbolic name access for this parameter is not allowed.
DONE ouT Bool The DONE bit is TRUE for one scan, after the last request was completed
with no error. (Default value: False)
BUSY ouT Bool ¢ 0 - No operation in progress
e 1 - Operation on progress
ERROR ouT Bool The ERROR bit is TRUE for one scan, after the last request was
terminated with an error. The error code value at the STATUS parameter
is valid only during the single scan where ERROR = TRUE.
STATUS ouT Word Execution condition code (Default value: 0)
You can provide either the NAME or an ID (ID parameter as an input) of a pre-existing data
log. If you provide both parameters and a valid ID does correspond to the NAME data log,
then the ID is used, and the NAME ignored.
S7-1200 Programmable controller
318 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.7 Data logging

The NAME must be the name of a data log created by the DataLogCreate instruction. If only
the NAME is provided and the NAME specifies a valid data log, then the corresponding ID
will be returned (ID parameter as an output).

Note

General usage of data log files
e Data log files are automatically opened after the DataLogCreate and DataLogNewFile

operations.

¢ Data log files are automatically closed after a PLC run to stop transition or a PLC power

cycle.

¢ A Data log file must be open before a new DataLogWrite operation is possible.

¢ A maximum of eight data log files may be open at one time. More than eight data log files
may exist, but some of them must be closed so no more than eight are open.

Table 8- 128 Values of ERROR and STATUS

ERROR STATUS (W#16#) Description

0 0000 No error

0 0002 Warning: Data log file already open by this application program
0 7000 Call with no REQ edge: BUSY =0, DONE =0

0 7001 First call with REQ edge (working): BUSY = 1, DONE =0

0 7002 Nt call (working): BUSY =1, DONE =0

1 8070 All internal instance memory is in use.

1 8090 Data log definition is inconsistent with existing data log file.

1 8091 Name parameter is not a String reference.

1 8092 Data log does not exist.

1 80CO0 Data log file is locked.

1 80C1 Too many open files: No more than eight opened data log files are allowed.
8.7.2.3 DataLogClose

Table 8- 129 DatalogClose instruction

LAD / FBD

SCL

Description

DatalogClose_DB
DatalogClose
EM END —
REQ) OOME =
10 BUSY -
ERROR~

STATUS

"DataLogClose DB" (
req:=_bool_in_,
done=> bool_out_,
busy=> bool_out_,
error=> bool out_,
status=> word out_,
ID:= dword inout);

Closes an open data log file. DataLogWrite operations to
a closed data log result in an error. No write operations
are allowed to this data log until another DataLogOpen
operation is performed.

A transition to STOP mode will close all open data log
files.

STEP 7 automatically creates the associated instance
DB when you insert the instruction.

2 In the SCL example, "DataLogClose_DB" is the name of the instance DB.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

319

Extended instructions

8.7 Data logging

Table 8- 130 Data types for the parameters

Parameter and type Data type Description
REQ IN Bool A low to high (positive edge) signal starts the operation. (Default value: False)
ID In/Out DWord Numeric identifier of a data log. Only used as an input for the DataLogClose

instruction. (Default value: 0)
Note: Symbolic name access for this parameter is not allowed.

DONE ouT Bool The DONE bit is TRUE for one scan after the last request was completed with
no error.
BUSY ouTt Bool e 0 - No operation in progress

e 1- Operation on progress

ERROR ouT Bool The ERROR bit is TRUE for one scan, after the last request was terminated
with an error. The error code value at the STATUS parameter is valid only
during the single scan where ERROR = TRUE.

STATUS ouT Word Execution condition code (Default value: 0)

Table 8- 131 Values of ERROR and STATUS

ERROR STATUS (W#16#) Description
0 0000 No error
0 0001 Data log not open
0 7000 Call with no REQ edge: BUSY =0, DONE =0
0 7001 First call with REQ edge (working): BUSY =1, DONE =0
0 7002 Nth call (working): BUSY =1, DONE =0
1 8092 Data log does not exist.
8.7.24 DataLogWrite

Table 8- 132 DatalLogWrite instruction

LAD / FBD SCL Description
"DataLogWrite DB" (Writes a data record into the specified data log. The pre-

DataLlogWrite_0OB

Barainawiite req:= bool in , existing target data qu must be open before a
ERl EMO— done=> bool out_, DataLogWrite operation is allowed.
RED DOMEH busy=>_bool_out_, STEP 7 automatically creates the associated instance DB
] BUSYH error=> bool out_, when you insert the instruction.
ERRORM status=> word out ,
STATUS - - -

ID:= _dword inout);

2 In the SCL example, "DatalLogWrite_DB" is the name of the instance DB.

S7-1200 Programmable controller
320 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.7 Data logging
Table 8- 133 Data types for the parameters

Parameter and type Data type Description

REQ IN Bool A low to high (positive edge) signal starts the operation. (Default value: False)

ID In/Out DWord Numeric data log identifier. Only used as an input for the DataLogWrite
instruction. (Default value: 0)
Note: Symbolic name access for this parameter is not allowed.

DONE ouT Bool The DONE bit is TRUE for one scan, after the last request was completed with
no error.

BUSY out Bool e 0 - No operation in progress
e 1 - Operation on progress

ERROR ouT Bool The ERROR bit is TRUE for one scan, after the last request was terminated
with an error. The error code value at the STATUS parameter is valid only
during the single scan where ERROR = TRUE.

STATUS ouT Word Execution condition code (Default value: 0)

The memory address and data structure of the record buffer is configured by the DATA
parameter of a DataLogCreate instruction. You must programmatically load the record buffer
with current run-time process values and then execute the DataLogWrite instruction to move
new record data from the buffer to the data log.

The ID parameter identifies a data log and data record configuration. The ID number is
generated when a data log is created.

If there are empty records in the circular data log file, then the next available empty record
will be written. If all records are full, then the oldest record will be overwritten.

CAUTION

Potential for data log data loss during a CPU power failure

If there is a power failure during an incomplete DataLogWrite operation, then the data

record being transferred to the data log could be lost.

Table 8- 134 Values of ERROR and STATUS

ERROR STATUS (W#16#) Description

0 0000 No error

0 0001 Indicates that the data log is full: Each data log is created with a specified
maximum number of records. The last record of the maximum number has been
written. The next write operation will overwrite the oldest record.

0 7000 Call with no REQ edge: BUSY =0, DONE =0

0 7001 First call with REQ edge (working): BUSY = 1, DONE =0

0 7002 Nt call (working): BUSY =1, DONE =0

1 8070 All internal instance memory is in use.

1 8092 Data log does not exist.

1 80B0 Data log file is not open (for explicit open mode only).

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 321

Extended instructions

8.7 Data logging

8.7.2.5 DataLogNewFile

Table 8- 135 DataLogNewfFile instruction

LAD / FBD

SCL

Description

OB

DataloghesFile

EN
REQ)
RECORDS
RAME

ID

DatalogHewFile

EmMO
DOME
BUSY

ERROR
STATUS

I T I

"DataLogNewFile DB" (

req:= bool_in_,
records=:_udint_in_,
done=> bool_out_,
busy=> bool_out_,
error=> bool out_,
status=> word out_,
name=: DatalLog_out_,
ID:= dword inout);

Allows your program to create a new data
log file based upon an existing data log file.

STEP 7 automatically creates the associated
instance DB when you insert the instruction.

2 In the SCL example, "DataLogNewFile_DB" is the name of the instance DB.

Table 8- 136 Data types for the parameters

Parameter and type

Data type

Description

REQ

IN

Bool

False)

A low to high (positive edge) signal starts the operation. (Default value:

RECORDS

IN

UDInt

The maximum number of data records the circular data log can contain
before overwriting the oldest entry. (Default value: 1)

The header record is not included. Sufficient available CPU load memory
must exist in order to successfully create the data log.

NAME

Variant

)

Data log name: You provide the name. This variant only supports a String
data type and can only be located in local, DB, or M memory. (Default value:

The string reference is also used as the name of the data log file. The name
characters must follow the Windows file system naming restrictions.
Characters \ / : * ? " < > | and the space character are not allowed.)

In/Out

DWord

Numeric data log identifier(Default value: 0):

e At execution, the ID input identifies a valid data log. The new data log
configuration is copied from this data log.

o After execution, the ID parameter becomes an output that returns the 1D
of the newly created data log file.

Note: Symbolic name access for this parameter is not allowed.

DONE

ouT

Bool

with no error.

The DONE bit is TRUE for one scan, after the last request was completed

BUSY

ouT

Bool

e 0 - No operation in progress

e 1 - Operation on progress

ERROR

ouT

Bool

The ERROR bit is TRUE for one scan, after the last request was terminated
with an error. The error code value at the STATUS parameter is valid only
during the single scan where ERROR = TRUE.

STATUS

ouT

Word

Execution condition code (Default value: 0)

322

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.7 Data logging

You can execute the DataLogNewFile instruction when a data log becomes full or is deemed
completed and you do not want to lose any data that is stored in the data log. A new empty
data log file can be created based on the structure of the full Data log file. The header record
will be duplicated from the original data log with the original data log properties (DATA record
buffer, data format, and timestamp settings). The original Data log file is implicitly closed and
the new Data log file is implicitly opened.

DataLogWrite parameter trigger: Your program must monitor the ERROR and STATUS
parameters of each DataLogWrite operation. When the final record is written and a data log
is full, the DataLogWrite ERROR bit = 1 and the DataLogWrite STATUS word = 1. These
ERROR and STATUS values are valid for one scan only, so your monitoring logic must use
ERROR = 1 as a time gate to capture the STATUS value and then test for STATUS = 1 (the
data log is full).

DataLogNewFile operation: When your program logic gets the data log is full signal, this
state is used to activate a DataLogNewFile operation. You must execute DataLogNewFile
with the ID of an existing (usually full) and open data log, but a new unique NAME
parameter. After the DataLogNewFile operation is done, a new data log ID value is returned
(as an output parameter) that corresponds to the new data log name. The new data log file is
implicitly opened and is ready to store new records. New DataLogWrite operations that are
directed to the new data log file, must use the ID value returned by the DataLogNewfFile
operation.

Note

A DataLogNewFile operation extends over many program scan cycles. The actual time
required for the log file creation depends on the record structure and number of records.
Your program logic must monitor and catch the DataLogNewFile DONE bit's transition to the
TRUE state, before the new data log can be used for other data log operations.

Table 8- 137 Values of ERROR and STATUS

ERROR STATUS (W#16#) Description

0 0000 No error

0 7000 Call with no REQ edge: BUSY =0, DONE =0

0 7001 First call with REQ edge (working): BUSY = 1, DONE =0
0 7002 Nt call (working): BUSY =1, DONE =0

1 8070 All internal instance memory is in use.

1 8090 Invalid file name

1 8091 Name parameter is not a String reference.

1 8092 Data log does not exist.

1 8093 Data log already exists.

1 8097 Requested file length exceeds file system maximum.
1 80B3 Insufficient load memory available.

1 80B4 MC is write protected.

1 80C1 Too many open files.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 323

Extended instructions

8.7 Data logging

8.7.3

Working with data logs

The data log files are stored as comma separated value format (*.csv) in persistent flash
memory. You can view the data logs by using the PLC Web server feature or by removing
the PLC memory card and inserting it in a standard PC card reader.

Viewing data logs with the PLC Web server feature

If the PLC PROFINET port and a PC are connected to a network, then you can use a PC
web browser like Microsoft Internet Explorer or Mozilla Firefox to access the built-in PLC
Web server. The PLC may be in run mode or stop mode when you operate the PLC Web
server. If the PLC is in run mode, then your control program continues to execute while the
PLC Web server is transferring log data through the network.

Web server access:

1. Enable the Web server in the Device Configuration for the target CPU (Page 504).
2. Connect your PC to the PLC through the PROFINET network (Page 505).

3. Log in to the built-in Web server (Page 506).
4

. Download the recent records, all records, clear records, or delete log files with the 'Data
Log" standard web page (Page 516).

5. After a copy of a data log file is downloaded to your PC, you can open the .csv file with a
spreadsheet application like Excel.

Viewing data logs on a PLC memory card

324

If the S7-1200 CPU has a "Program” type S7-1200 memory card inserted, then you can
remove the memory card and insert the card into a standard SD (Secure Digital) or MMC
(MultiMediaCard) card slot on a PC or PG. The PLC is in stop mode when the memory card
is removed and your control program is not executed.

Use the Windows file explorer and navigate to the \DatalLog directory on the memory card.
All your *.csv data log files are located in this directory.

Make a copy of the data log files and put the copies on a local drive of your PC. Then, you
can use Excel to open a local copy of a *.csv file and not the original file that is stored on the
memory card.

CAUTION

You can copy, but do not modify or delete data log files on a S7-1200 memory card using a
PC card reader

The standard Web server data log page is the recommended tool for viewing, downloading
(copying), clearing (delete the data), and deleting data log files. The Web server manages
the memory card files for you and helps prevent accidental modification or deletion of data.

Direct browsing of the memory card file system by the Windows Explorer has the risk that
you can accidentally delete/modify data log or other system files which may corrupt a file or

make the memory card unusable.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions

8.7 Data logging

Viewing data logs from a Web browser

8.7.4

Even if you do not use the Web server feature, you can view data logs directly from a Web
browser such as Internet Explorer or Mozilla Firefox. Simply enter the following text into the
address bar of your browser using the IP address of your CPU and the actual name of the
data log file you provided in STEP 7 instead of "MyDatalLog":

http://192.168.0.1/Datalog.html?FileName=MyDatalog.csv

The fixed addresses of data log files also make it possible to access them through third party
file collection tools.

Limits to the size of data log files

Data log files share PLC load memory space with the program, program data, configuration
data, user-defined web pages, and PLC system data. A large program using internal load
memory requires a large amount of load memory and there may be insufficient free space for
data log files. In this case, you can use a "Program card" to increase the size of load
memory. S7-1200 CPUs can use either internal or external load memory, but not both at
once.

Refer to the memory card chapter for details about how to create a "Program" card
(Page 112).

Maximum size rule for one Data log file

The maximum size of one Data log file may not exceed 25% of the load memory size
(internal or external). If your application requires more Data log entries, then use the
"DataLogNewFile" instruction to create a new file when all records in the first file are filled.
See the table below for the maximum sizes of one Data log file.

Table 8- 138 Load memory size and maximum size for one Data log file

Data area CPU 1211C |CPU 1212C | CPU 1214C CPU 1215C Data storage
Internal load memory 1 MB 1MB 4 MB 4 MB User program and
flash memory (250 KB max. | (250 KB max. | (500 KB max. (500 KB max. for program data,
for one Data | for one Data |for one Data log | one Data log file) configuration data,
log file) log file) file) Data logs, user-

flash memory cards

External load memory
Optional "Program card"

defined web pages,
and PLC system
data

2 MB, 12 MB or 24 MB depending on the SD card size
(500 KB max. for one Data log file using a 2 MB card)
(6 MB max. for one Data log file using a 24 MB card)

Determine the size of load memory free space

1.
2.
3.

Establish an online connection between STEP 7 and the target S7-1200 PLC.
Download the program to which you want to add data log operations.

Create any optional user-defined web pages that you need. (The standard web pages
that give you access to data logs are stored in PLC firmware and do not use load
memory).

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

325

Extended instructions

8.7 Data logging

4. Use the Online and diagnostic tools to get the load memory size and percentage of free
load memory space (Page 680).

5. Multiply the load memory size by the percentage that is free to obtain the current load
memory free space.

Maximum size rule for all data logs combined

The amount of load memory free space varies during normal operations as the operating
system uses and releases memory. You should limit the combined size of all data log files to
one half of the available free space.

Calculate the memory requirement for a single data log record

Log data is stored as character bytes in the CSV (comma separated values) file format. The
following table shows the number of bytes that are required to store each data type.

Table 8- 139 CSV file data sizes

Data type Number of bytes (data bytes plus separator comma byte)

Bool
Byte
Word
DWord
Char
String

USint
Ulnt
UDInt
Sint
Int
Dint
Real
LReal
Time
DTL

326

2
5
7
12
4

Example 1: MyString[10]

The maximum string size is assigned as 10 characters.

Text characters + automatic padding with blank characters = 10 bytes
Opening and closing double quote + comma characters = 3 bytes

10 + 3 = 13 total bytes

Example 2: Mystring2

If no size is assigned with square brackets, then 254 bytes is allocated by
default.

Text characters + automatic padding with blank characters = 254 bytes
Opening and closing double quote + comma characters = 3 bytes

254 + 3 = 257 total bytes

5
7
12
5
7
12
16
25
15
24

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions
8.7 Data logging

The DataLogCreate DATA parameter points to a structure that specifies the number of data
fields and the data type of each data field for one data log record. The table above gives the
bytes required in the CSV file for each data type. Multiply the number of occurrences of a
given data type by the number of bytes it requires. Do this for each data type in the record
and sum the number of bytes to get the total size of the data record. Add one byte for the
end of line character.

Size of a data log record = summation of bytes required for all data fields + 1 (the end of line
character).

Calculate the memory requirement for an entire data log file

The RECORDS parameter of the DataLogCreate instruction sets the maximum number of
records in a data log file. When the data log file is created the maximum memory size is
allocated.

Size of data log file = (hnumber of bytes in one record) x (number of records).

8.7.5 Data log example program

This Data log example program does not show all the program logic necessary to get sample
values from a dynamic process, but does show the key operations of the Data log
instructions. The structure and number of log files that you use depends on your process
control requirements.

Note
General usage of Data log files

¢ Data log files are automatically opened after the DataLogCreate and DataLogNew File
operations.

e Data log files are automatically closed after a PLC run to stop transition or a PLC power
cycle.

¢ A Data log file must be open before a DataLogWrite operation is possible.

¢ A maximum of eight data log files may be open at one time. More than eight data log files
may exist, but some of them must be closed so no more than eight are open.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 327

Extended instructions

8.7 Data logging

Example Data log program

Example data log names, header text, and the MyData structure are created in a data block.
The three MyData variables temporarily store new sample values. The process sample
values at these DB locations are transferred to a data log file by executing the DatalLogWrite
instruction.

My _Datalog_Vars

Marne Data type Startwalue
1 < = Static
2 |0 = MyMEWDataLogharne String "MyMEWDatalog'
3 | m MyDatalogMame String "MyDatalog'
4 4 = MyDataloglD Diiord 1]
5 |0 = MyDatalogHeaders String 'Count,Ternperature, Pressure’
6 i = w hiyData Struct
7 |« = My Caunt It 0
g3 < L htyTermperature Real 0.0
ERE T - MyPressure Real 0.0

Network 1 REQ rising edge starts the data log creation process.

"DatalogCreste_
o~
DiataLog Create
EM END —————————y
“Create DOME = "Done_Signal®
Trigger” BUSYT = Tag_d4"
—r 0 ERFIOR = "Tag 5"
Tag_2" 5 — RECORDS STATUS — "CresteStatus”
FOFAT
TIMESTAMP
“Wy_Datalog_
Wars",

MyDatalogiame — pAME

"Wy_Datalog_
Wars".
MyDataloglD — o

"Wy_Datalog_
Wars".

WyDatalogHead
BfS _ HEADER

"y_Datalog_
Wars” MyData — DATA

Network 2 Capture the DONE output from DataLogCreate because it is only valid for one
scan.

"DatalogCreated
"Done_Signal” "

] L TR 1
LI} lsl

S7-1200 Programmable controller
328 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.7 Data logging

Network 3 A positive edge signal triggers when to store new process values in the MyData

Write_Trigger” MOVE WOVE MOVE
] £ [— [i END —s
g7 Coun™ = My Dammlog. SoaledTempers Wy Damlog. SealedPressure My Damslog.
Vars” yllan re” 1N Vars” WyDac L Wars® wyama
3 DT — MyCount & OUTH — MyTenparates 45 DI — Whreasune

Network 4 The EN input state is based upon when the DataLogCreate operation is complete.
A create operation extends over many scan cycles and must be complete before executing a
write operation. The positive edge signal on the REQ input is the event that triggers an
enabled write operation.

“DatELo oS _
"Dn:uLngCrcatta oe”
Datalogrite
l— ——— N EMO
DOME = "Tag_B"
“Wirite_Trigger” BUSYT = Tag_9"
—-] P ——————————————FE0Q ERROR = "Tag_10"
“Tag_18" . “Datalog_Full
W-D’t.:';?f:_ STATUS _ smwse T
MyDataloglD — jp

Network 5 Close the data log once the last record has been written. After executing the
DataLogWrite operation that writes the last record, the log file full status is signaled when
DataLogWrite STATUS output = 1.

“DataLogllose_
DB~

DatalogClose
EN END
OOME = "Tag_12"
"Datalog_Full_ BUSY = "Tag_13"

staus” ERROR =i Tag_14"

.';U"d Iiﬁiﬂ STATUS — “Tag_15"

1 “ty_Datalog,
Wars”

MyDatalogiD — p

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 329

Extended instructions

8.7 Data logging

330

Network 6 A positive signal edge DataLogOpen REQ input simulates the user pushing a
button on an HMI that opens a data log file. If you open a Data log file that has all records
filled with process data, then the next DataLogWrite operation will overwrite the oldest
record. You may want to preserve the old Data log and instead create a new data log, as

shown in network 7.

"Open_Trigger”
ie)
Tag_22" 1]
“Wy_Datalog_
Wars®,
MyDatalogMame
“Ity_Datalog_
ars”.
MyDatalogiD

“DatalogOpen_
oe"
DataLogOpen
EnM END) ——————
DONE = "Tag_17"
REQ BUSY =1"Tag_18"
MODE ERROR = "T2g_19"

STATUS — “Tag_20°

NAME

Network 7 The ID parameter is an IN/OUT type. First, you supply the ID value of the existing
Data log whose structure you want to copy. After the DataLogNewFile operation is complete,
a new and unique ID value for the new Data log is written back to the ID reference location.
The required DONE bit = TRUE capture is not shown, refer to networks 1, 2, and 4 for an
example of DONE bit logic.

“MewFile_
Trigger™

17}

“Tag_28" 10
“hty_Datalog_

Wars”.

MyNEWDataloghl

BNE

“Ity_Data Log_

Wars",
My DatalogiD

“DatalogMewFil
e_DE"

CatalogHeswFile

EN ENG ——eeeeeeeo——i
DOME = "Tag_23"
BUSY —4"Tag_24"

FEQ) ERROR = “Tag_25"
RECORDS STATUS — "Tag_26~
MAME

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Extended instructions
8.7 Data logging

Data log files created by the example program viewed with the S7-1200 CPU Webserver

SIEMENS

Data Logs:

Download &

Date UTC Time Recent Entries Download Cloat Dalate
30002010 123202am MyDatalog - k4 b4
30002010 123502 am MINEWDatalog H H X
Number of recent entries 10 view: = 25 +
»Data Logs
Table 8- 140 Downloaded .csv file examples viewed with Excel
;v;/:(i rr:lj:r(:]rc:;ewrltten in a five record a | B | C | O | E | = |
1 |Fecord Date UTC Time Count Temperature Pressure
2 1082972010 21:01:46] 5.00E+00 5.00E+00
3 292920100 21:01:47] 5 00E+00 5 00E+00
4 |FEND
]
rF;\é(e;r:jeﬁ:)ar()j(isn:: :] Data log file with a five A | B | C | O | E | = |
1 |[RFecord Date UTC Time | Count Termperature Pressure
2 10 8/30/2010 20:26:56 1 89 BEE+01 3.52E+01
3 2 9/30/201M00 20:28:43 2 1.00E+02 3.73E+M
4 3 953020100 20:29:03 3 9.85E+01 3 BEE+01
& 41 9/30/20100 20:29:21 4/ 8.85E+01 3B4E+M
3] 8 9/30/20100 20:30:19 5 8A2E+01 3 74E+01
7
After one additional record is written to the
file above which is full, the sixth write & | 2 |UTC ? | _ | E | = |
operation overwrites the oldest record one liRecord |Date _ 'm_e Count Temperature |Pressure
with record six. Another write operation 2 6 973072010, 20:32.03 6 9.8BE+D1 3.58E+01
will overwrite record two with record 3 2 97302010, 20:28:43 2 1.00E+02 3.73E+01
seven and so on. 4 3| 973072010, 20:29:.03] 89.99E+01 3.68E+M
] 4| 9/30/2010) 20:29:21 4 9.95E+01 3.A4E+01
4] 5 973072010, 20:30:18 3] 8.82E+01 3.74E+M
7

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 331

Extended instructions

8.8 Data block control/

8.8

8.8.1

Data block control

READ_DBL, WRIT_DBL (Read from or write to a DB in load memory)

Table 8- 141 READ_DBL and WRIT_DBL instructions

LAD / FBD Description
READ_DBL (Copies DB start values or part of the
READ_DEL req:= bool_in _, values, from load memory to a target
Wariant srcblk:= variant_in_, DB in the work memory.
— EM EMO busy=> bool_out_, The content of load memory is not
= REQ RET AL dstblk=> variant out_); changed during the copy process.
SRCELK BUSY =
OSTELK
WRIT DBL (Copies DB current values or part of the
WRIT_OBL req:= bool in , values from work memory to a target
“ariant srcblk:= variant_in_, DB in load memory.
—{ EM EMO— busy=> bool_out_, The content of work memory is not
— FEQ RET AL dstblk=> variant out_); changed during the copy process.
SRCELK BUSY =1
OSTELEK

Table 8- 142 Data types for the parameters

Parameter and type Data type Description

REQ IN BOOL A high signal starts the operation, if BUSY = 0.

SRCBLK IN VARIANT READ_DBL: Pointer to the source data block in load memory
WRIT_DBL: Pointer to the source data block in work memory

RET_VAL ouT INT Execution condition code

BUSY ouT BOOL BUSY = 1 signals that the reading/writing process is not complete.

DSTBLK ouT VARIANT READ_DBL: Pointer to the destination data block in work memory
WRIT_DBL: Pointer to the destination data block in load memory

S7-1200 Programmable controller
332 System Manual, 04/2012, ASE02486680-06

Extended instructions
8.8 Data block control/

Typically, a DB is stored in both load memory (flash) and work memory (RAM). The start
values (initial values) are always stored in load memory, and the current values are always
stored in work memory. READ_DBL can be used to copy a set of start values from load
memory to the current values of a DB in work memory that is referenced by your program.
You can use WRIT_DBL to update the start values stored in internal load memory or
memory card from current values in work memory.

Note
Avoid excessive WRIT_DBL flash memory write operations
The WRIT_DBL instruction performs write operations in flash memory (internal load memory

or memory card). WRIT_DBL should be used for infrequent updates like a production
process changes.

The data blocks used by READ_DBL and WRIT_DBL must have been previously created by
STEP 7 before you can use these instructions. If the source DB is created as a "standard"
type then the destination DB must also be the "standard" type. If the source data block is
created as an "optimized" type then the destination data block must also be the "optimized"

type.

If the DBs are standard, then you can specify either a tag name or a P# value. The P# value
allows you to specify and copy any number of elements of the specified size (Byte, Word, or
DWord). Thus, you can copy part or all of a DB. If the DBs are optimized, you can only
specify a tag name; you cannot use the P# operator. If you specify a tag name for either
standard or optimized DBs (or for other work-memory types), then whatever is referenced by
this tag name is copied. This could be a user-defined type, an array, or a basic element.
Type Struct can only be used by these instructions if the DB is standard, not optimized. You
must use a user-defined type (UDT) if it is a structure in optimized memory. Only a user-
defined type ensures that the "data types" are exactly the same for both the source and
destination structures.

Note

Using a structure (data type Struct) in an "optimized" DB

When using a Struct data type with "optimzed" DBs, you must first create a user-defined
data type (UDT) for the Struct. You then configure both the source and destination DBs with

the UDT. The UDT ensures that the data types within the Struct remain consistent for both
DBs.

For "standard" DBs, you use the Struct without creating a UDT.

READ_DBL and WRIT_DBL execute asynchronously to the cyclic program scan. The
processing extends over multiple READ_DBL and WRIT_DBL calls. You start the DB
transfer job by calling with REQ = 1 and then monitor the BUSY and RET_VAL outputs to
determine when the data transfer is complete and correct.

To ensure data consistency, do not modify the destination area during the processing of
READ_DBL or the source area during the processing of WRIT_DBL (that is, as long as the
BUSY parameter is TRUE).

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 333

Extended instructions

8.8 Data block control/

SRCBLK and DSTBLK parameter restrictions:
e A data block must have been previously created before it can be referenced.
® The length of a VARIANT pointer of type BOOL must be divisible by 8.

® The length of a VARIANT pointer of type STRING must be the same in the source and
destination pointers.

Recipes and machine setup information

You can use the READ_DBL and WRIT_DBL instructions to manage recipes or machine
setup information. This essentially becomes another method of achieving retentive data for
values that do not change often, although you would want to limit the number of writes to
prevent wearing out the flash prematurely. This effectively allows you to increase the amount
of retentive memory beyond that supported for the normal power-down retentive data, at
least for values that do not change often. You could save recipe information or machine-
setup information from work memory to load memory using the WRIT_DBL instruction, and
you could retrieve such information from load memory into work memory using the
READ_DBL instruction.

Table 8- 143 Condition codes

RET_VAL Description
(Wi#16#...)
0000 No error
0081 Warning: that the source area is smaller than the destination area. The source data is copied
completely with the extra bytes in the destination area unchanged.
7000 Call with REQ = 0: BUSY =0
7001 First call with REQ = 1 (working): BUSY = 1
7002 Nt call (working): BUSY = 1
8051 Data block type error
8081 The source area is larger than the destination area. The destination area is completely filled and the
remaining bytes of the source are ignored.
8251 Source data block type error
82B1 Missing source data block
82C0 The source DB is being edited by another statement or a communication function.
8551 Destination data block type error
85B1 Missing destination data block
85C0 The destination DB is being edited by another statement or a communication function.
80C3 More than 50 READ_DBL or 50 WRIT_DBL statements are currently queued for execution.
S7-1200 Programmable controller
334 System Manual, 04/2012, ASE02486680-06

Extended instructions

8.9 Common error codes for the "Extended” instructions

8.9 Common error codes for the "Extended" instructions

Table 8- 144 Common condition codes for the extended instructions

Condition code (W#16#....)! Description

8022 Area too small for input

8023 Area too small for output

8024 lllegal input area

8025 lllegal output area

8028 lllegal input bit assignment
8029 lllegal output bit assignment
8030 Output area is a read-only DB.
803A DB does not exist.

1 If one of these errors occurs when a code block is executed the the CPU goes to STOP mode, unless you use the
GetError or GetErrorID instructions within that code block and create a programmed reaction to the error.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

335

Extended instructions

8.9 Common error codes for the "Extended” instructions

S7-1200 Programmable controller
336 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.1

High-speed counter

Table 9- 1 CTRL_HSC instruction
LAD / FBD SCL Description
o "CTRL_HSC_0_DB" (Each CTRL_HSC instruction uses a structure stored in
T CTAL_H5C hsc:=_hw_hsc_in_, a DB to maintain data. You assign the DB when the
—EH ENO — dir:=_bool_in_, CTRL_HSC instruction is placed in the editor.
T Hidaite cv:= bool in ,
Ll STATUS | - — =
oy rv:= bool_in_,
=AY period:= bool_in_,
= PERIOD new dir:= int in ,
NEW_DIR new_CV'= Int In B
NEW OV — T
HEW BV new_rv:= dint _in_,
HEW. PERIOD new_period:=_int_in_,
busy:= bool_out_,
status:= word out);

1 STEP 7 automatically creates the DB when you insert the instruction.
2 In the SCL example, "CTRL_HSC_0_DB" is the name of the instance DB.

Table 9- 2 Data types for the parameters

Parameter and type Data type Description

HSC IN HW_HSC HSC identifier

DIR".2 IN Bool 1 = Request new direction

cv? IN Bool 1 = Request to set new counter value

RV1 IN Bool 1= Request to set new reference value

PERIOD! IN Bool 1 = Request to set new period value
(only for frequency measurement mode)

NEW_DIR IN Int New direction: 1= forward, -1= backward

NEW_CV IN Dint New counter value

NEW_RV IN Dint New reference value

NEW_PERIOD IN Int New period value in seconds: 0.01, 0.1, or 1
(only for frequency measurement mode)

BUSY? ouT Bool Function is busy

STATUS ouT Word Execution condition code

1 If an update of a parameter value is not requested, then the corresponding input values are ignored.

2 The DIR parameter is only valid if the configured counting direction is set to "User program (internal direction control)".
You determine how to use this parameter in the HSC device configuration.

3 For an HSC on the CPU or on the SB, the BUSY parameter always has a value of 0.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

337

Technology instructions

9.1 High-speed counter

You configure the parameters for each HSC in the device configuration for the CPU:
counting mode, 1/O connections, interrupt assignment, and operation as a high-speed
counter or as a device to measure pulse frequency.

Some of the parameters for the HSC can be modified by your user program to provide
program control of the counting process:

e Set the counting direction to a NEW_DIR value

® Set the current count value to a NEW_CV value

e Set the reference value to a NEW_RYV value

e Set the period value (for frequency measurement mode) to a NEW_PERIOD value

If the following Boolean flag values are set to 1 when the CTRL_HSC instruction is executed,
the corresponding NEW_xxx value is loaded to the counter. Multiple requests (more than
one flag is set at the same time) are processed in a single execution of the CTRL_HSC
instruction.

® DIR =1 is arequest to load a NEW_DIR value, 0 = no change

e CV =1isarequesttoload a NEW_CV value, 0 = no change

e RV =1isarequesttoload a NEW_RV value, 0 = no change

e PERIOD =1 is a request to load a NEW_PERIOD value, 0 = no change

The CTRL_HSC instruction is typically placed in a hardware interrupt OB that is executed
when the counter hardware interrupt event is triggered. For example, if a CV=RV event
triggers the counter interrupt, then a hardware interrupt OB code block executes the
CTRL_HSC instruction and can change the reference value by loading a NEW_RYV value.

The current count value is not available in the CTRL_HSC parameters. The process image
address that stores the current count value is assigned during the hardware configuration of
the high-speed counter. You may use program logic to directly read the count value. The
value returned to your program will be a correct count for the instant in which the counter
was read. The counter will continue to count high-speed events. Therefore, the actual count
value could change before your program completes a process using an old count value.

Condition codes: In the case of an error, ENO is set to 0, and the STATUS output contains a
condition code.

Table 9-3 STATUS values (W#16#)

STATUS Description
0 No error
80A1 HSC identifier does not address a HSC
80B1 lllegal value in NEW_DIR
80B2 lllegal value in NEW_CV
80B3 lllegal value in NEW_RV
80B4 lllegal value in NEW_PERIOD
80CO0 Multiple access to the high-speed counter
80DO0 High-speed counter (HSC) not enabled in CPU hardware configuration

S7-1200 Programmable controller
338 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.1 High-speed counter

9.1.1 Operation of the high-speed counter
The high-speed counter (HSC) counts events that occur faster than the OB execution rate. If
the events to be counted occur within the execution rate of the OB, you can use CTU, CTD,
or CTUD counter instructions. If the events occur faster than the OB execution rate, then use
the HSC. The CTRL_HSC instruction allows your user program to programmatically change
some of the HSC parameters.
For example: You can use the HSC as an input for an incremental shaft encoder. The shaft
encoder provides a specified number of counts per revolution and a reset pulse that occurs
once per revolution. The clock(s) and the reset pulse from the shaft encoder provide the
inputs to the HSC.
The HSC is loaded with the first of several presets, and the outputs are activated for the time
period where the current count is less than the current preset. The HSC provides an interrupt
when the current count is equal to preset, when reset occurs, and also when there is a
direction change.
As each current-count-value-equals-preset-value interrupt event occurs, a new preset is
loaded and the next state for the outputs is set. When the reset interrupt event occurs, the
first preset and the first output states are set, and the cycle is repeated.
Since the interrupts occur at a much lower rate than the counting rate of the HSC, precise
control of high-speed operations can be implemented with relatively minor impact to the scan
cycle of the CPU. The method of interrupt attachment allows each load of a new preset to be
performed in a separate interrupt routine for easy state control. (Alternatively, all interrupt
events can be processed in a single interrupt routine.)
Table 9-4 Maximum frequency (KHz)
HSC Single phase Two phase and AB quadrature
HSCA1 CPU 100 KHz 80 KHz
High-speed SB 200 KHz 160 KHz
SB 30 KHz 20 KHz
HSC2 CPU 100 KHz 80 KHz
High-speed SB 200 KHz 160 KHz
SB 30 KHz 20 KHz
HSC3 CPU 100 KHz 80 KHz
HSC4 CPU 30 KHz 20 KHz
HSC5 CPU 30 KHz 20 KHz
High-speed SB 200 KHz 160 KHz
SB 30 KHz 20 KHz
HSC6 CPU 30 KHz 20 KHz
High-speed SB 200 KHz 160 KHz
SB 30 KHz 20 KHz

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

339

Technology instructions

9.1 High-speed counter

Selecting the functionality for the HSC

All HSCs function the same way for the same counter mode of operation. There are four
basic types of HSC:

e Single-phase counter with internal direction control
e Single-phase counter with external direction control
e Two-phase counter with 2 clock inputs

e A/B phase quadrature counter

You can use each HSC type with or without a reset input. When you activate the reset input
(with some restrictions, see the following table), the current value is cleared and held clear
until you deactivate the reset input.

® Frequency function: Some HSC modes allow the HSC to be configured (Type of
counting) to report the frequency instead of a current count of pulses. Three different
frequency measuring periods are available: 0.01, 0.1, or 1.0 seconds.

The frequency measuring period determines how often the HSC calculates and reports a
new frequency value. The reported frequency is an average value determined by the total
number of counts in the last measuring period. If the frequency is rapidly changing, the
reported value will be an intermediate between the highest and lowest frequency
occurring during the measuring period. The frequency is always reported in Hertz (pulses
per second) regardless of the frequency-measuring-period setting.

e Counter modes and inputs: The following table shows the inputs used for the clock,
direction control, and reset functions associated with the HSC.

The same input cannot be used for two different functions, but any input not being used
by the present mode of its HSC can be used for another purpose. For example, if HSC1
is in a mode that uses built-in inputs but does not use the external reset (10.3), then 10.3
can be used for edge interrupts or for HSC2.

Table 9- 5 Counting modes for HSC

Type Input 1 Input 2 Input 3 Function
Single-phase counter with internal Clock (Optional: - Count or frequency
direction control direction) Reset Count
Single-phase counter with external Clock Direction - Count or frequency
direction control Reset Count

Two-phase counter with 2 clock Clock up Clock down - Count or frequency
inputs Reset Count

A/B-phase quadrature counter Phase A Phase B - Count or frequency

Reset! Count

1 For an encoder: Phase Z, Home

340

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.1 High-speed counter

Input addresses for the HSC

Note

The digital /0O points used by high-speed counter devices are assigned during device
configuration. When digital 1/0 point addresses are assigned to these devices, the values of
the assigned /O point addresses cannot be modified by the force function in a watch table.

When you configure the CPU, you have the option to enable and configure each HSC. The
CPU automatically assigns the input addresses for each HSC according to its configuration.
(Some of the HSCs allow you to select whether to use either the on-board inputs of the CPU
or the inputs of an SB.)

NOTICE

As shown in the following tables, the default assignments for the optional signals for the
different HSCs overlap. For example, the optional external reset for HSC 1 uses the same
input as one of the inputs for HSC 2.

Always ensure that you have configured your HSCs so that any one input is not being used
by two HSCs.

The following table shows the HSC input assignments for both the on-board I/O of the CPU
1211C and an SB. (If the SB has only 2 inputs, only 4.0 and 4.1 inputs are available.)

® For single-phase: C is the Clock input, [d] is the optional direction input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

® For two-phase: CU is the Clock Up input, CD is the Clock Down input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

® For AB-phase quadrature: A is the Clock A input, B is the Clock B input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

Table 9- 6 HSC input assignments for CPU 1211C
HSC CPU on-board input (0.x) SB input (default 4.x) 3
0 1 2 3 4 5 0 1 2 3
HSC 11 1-phase C [d] [R] C [d] [R]
2-phase CuU CD [R] CuU CD [R]
AB-phase A B [R] A B [R]
HSC 21 1-phase [R] C [d] [R] C [d]
2-phase [R] Cu CD [R] Ccu CD
AB-phase [R] A B [R] A B
HSC 3 1-phase C [d]
2-phase Cu CD
AB-phase A B
HSC 52 1-phase C [d] [R]
2-phase Ccu CD [R]
AB-phase A B [R]
S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 341

Technology instructions

9.1 High-speed counter

HSC CPU on-board input (0.x) SB input (default 4.x) 3
0 1 2 3 4 5 0 1 2 3
HSC 6 2 1-phase [RI] c [d]
2-phase [R] cuU CD
AB-phase [R] A B

1 HSC 1 and HSC 2 can be configured for either the on-board inputs or for an SB.
2 HSC 5 and HSC 6 are available only with an SB. HSC 6 is available only with a 4-input SB.
3 An SB with only 2 digital inputs provides only the 4.0 and 4.1 inputs.

The following table shows the HSC input assignments for both the on-board 1/O of the CPU
1212C and an SB. (If the SB has only 2 inputs, only 4.0 and 4.1 inputs are available.)

® For single-phase: C is the Clock input, [d] is the optional direction input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

® For two-phase: CU is the Clock Up input, CD is the Clock Down input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

® For AB-phase quadrature: A is the Clock A input, B is the Clock B input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

Table 9-7 HSC input assignments for CPU 1212C

HSC CPU on-board input (0.x) SB input (4.x) 3
0 1 2 3 4 5 6 7 0 1 2 3
HSC 11 1-phase C [d] [R] C [d] [R]
2-phase CU | CD [R] Cu CD [R]
AB-phase A B [R] A B [R]
HSC 21 1-phase [R] C [d] [R] C [d]
2-phase [Rl | CU | CD [R] | CU | CD
AB-phase [R] A B [R] A B
HSC 3 1-phase C [d] [R]
2-phase CU | CD [R]
AB-phase A B [R]
HSC 4 1-phase [R] C [d]
2-phase [Rl | CU | CD
AB-phase [R] A B
HSC 52 1-phase C [d] [R]
2-phase CuU CD [R]
AB-phase A B [R]
HSC 62 1-phase [R] C [d]
2-phase [Rl | CU | CD
AB-phase [R] A B

1 HSC 1 and HSC 2 can be configured for either the on-board inputs or for an SB.
2 HSC 5 and HSC 6 are available only with an SB. HSC 6 is available only with a 4-input SB.
3 An SB with only 2 digital inputs provides only the 4.0 and 4.1 inputs.

S7-1200 Programmable controller
342 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.1 High-speed counter

The following two tables show the HSC input assignments for the on-board I/O of the CPU

1214C and for an optional SB, if installed.

® For single-phase: C is the Clock input, [d] is the optional direction input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

® For two-phase: CU is the Clock Up input, CD is the Clock Down input, and [R] is an

optional external reset input. (Reset is available only for "Counting" mode.)

® For AB-phase quadrature: A is the Clock A input, B is the Clock B input, and [R] is an
optional external reset input. (Reset is available only for "Counting" mode.)

Table 9- 8 HSC input assignments for CPU 1214C and CPU 1215C (on-board inputs only)
HSC Digital input 0 (default: 0.x) Digital input 1 (default: 1.x)
0 1 2 3 4 5 6 7 0 1 2 3 4 5
HSC 1! 1-phase C [d] [R]
2-phase CU | CD [R]
AB-phase A B [R]
HSC 21 1-phase [R] C [d]
2-phase [R] | CU | CD
AB-phase [R] A B
HSC 3 1-phase Cc [d] [R]
2-phase CU | CD [R]
AB-phase A B [R]
HSC 4 1-phase [R] C [d]
2-phase [Rl | CU | CD
AB-phase [R] A B
HSC 51 1-phase C [d] | [R]
2-phase CU | CD | [R]
AB-phase A B [R]
HSC 61 1-phase C [dl | [R]
2-phase CU | CD | [R]
AB-phase A B | [R]
1 HSC 1, HSC 2, HSC 5 and HSC 6 can be configured for either the on-board inputs or for an SB.
Table 9- 9 HSC input assignments for SBs
HSC SB inputs (default: 4.x) 2
0 1 2 3
HSC 1 1-phase C [d] [R]
2-phase Cu CD [R]
AB-phase A B [R]
HSC 2 1-phase [R] C [d]
2-phase [R] CuU CD
AB-phase [R] A B
S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 343

Technology instructions

9.1 High-speed counter

HSC 1 SB inputs (default: 4.x) 2
0 1 2 3
HSC 5 1-phase C [d] [R]
2-phase Cu CD [R]
AB-phase A B [R]
HSC 6 1-phase [R] C [d]
2-phase [R] Cu CD
AB-phase [R] A B

1 For CPU 1214C: HSC 1, HSC 2, HSC 5 and HSC 6 can be configured for either the on-board
inputs or for an SB.

2 An SB with only 2 digital inputs provides only the 4.0 and 4.1 inputs.

Accessing the current value for the HSC

Note

When you enable a pulse generator for use as a PTO, a corresponding HSC is assigned to
this PTO. HSC1 is assigned for PTO1, and HSC2 is assigned for PTO2. The assigned HSC
belongs completely to the PTO channel, and the ordinary output of the HSC is disabled. The
HSC value is only used for the internal functionality. You cannot monitor the current value
(for example, in ID1000) when pulses are occurring.

The CPU stores the current value of each HSC in an input (I) address. The following table
shows the default addresses assigned to the current value for each HSC. You can change
the | address for the current value by modifying the properties of the CPU in the Device
Configuration.

Table 9- 10 Current value of the HSC

HSC Data type Default address
HSC1 Dint ID1000
HSC2 Dint ID1004
HSC3 Dint ID1008
HSC4 Dint ID1012
HSC5 Dint ID1016
HSC6 Dint ID1020

S7-1200 Programmable controller
344 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.1 High-speed counter

9.1.2 Configuration of the HSC
General The CPU allows you to configure up to 6 high-speed
» General counters. You edit the "Properties” of the CPU to
b PROFIMET interface configure the parameters of each individual HSC.
b DI14DO10 Use the CTRL_HSC instruction in your user program to
b e control the operation of the HSC.

High speed counters (H5G)1 Enable the specific HSC by selecting the "Enable" option
High speed counters {H3C)2 for that HSC.

High speed counters (H3C)3 Enable
High speed counters (H3C)4
High speed counters (H3C)S
High speed counters (H3C)6
b Pulse generators (PTOFWH)
Startup
Tirne of day

Enable this high speed counter for use

4
4
4
4
4
4

Protection

Systerm and clock mermory
Cycle time
Carnmunication load

Owerview of 0 addresses

Note

When you enable the high speed counter and select input points for it, the input filter settings
for these points are configured to 800 ns. Each input point has a single filter configuration
that applies to all uses: process inputs, interrupts, pulse catch, and HSC inputs.

A\ WARNING

If the filter time for a digital input channel is changed from a previous setting, a new "0"
level input value may need to be presented for up to 20.0 ms accumulated duration before
the filter becomes fully responsive to new inputs. During this time, short "0" pulse events of
duration less than 20.0 ms may not be detected or counted.

This changing of filter times can result in unexpected machine or process operation, which
may cause death or serious injury to personnel, and/or damage to equipment.

To ensure that a new filter time goes immediately into effect, a power cycle of the CPU
must be applied.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 345

Technology instructions

9.2 PID control

9.2

346

After enabling the HSC, configure the other parameters, such as counter function, initial
values, reset options and interrupt events.

Type of counting: Counting

Operating phase: Single phase

N

Counting direction is specified by: User program (internal directic =

Initial counting direction: Count up -

For information about configuring the HSC, refer to the section on configuring the CPU
(Page 123).

PID control

STEP 7 provides the following PID instructions for the S7-1200 CPU:

® The PID_Compact instruction is used to control technical processes with continuous
input- and output variables.

® The PID_3Step instruction is used to control motor-actuated devices, such as valves that
require discrete signals for open- and close actuation.

Note

Changes that you make to the PID configuration and download in RUN mode do not take
effect until the CPU transitions from STOP to RUN mode.

Both PID instructions (PID_3Step and PID_Compact) can calculate the P-, I-, and D-
components during startup (if configured for "pretuning"). You can also configure the
instruction for "fine tuning" to allow you to optimize the parameters. You do not need to
manually determine the parameters.

Note

Execute the PID instruction at constant intervals of the sampling time (preferably in a cyclic
OB).

Because the PID loop needs a certain time to respond to changes of the control value, do
not calculate the output value in every cycle. Do not execute the PID instruction in the main
program cycle OB (such as OB 1).

The sampling time of the PID algorithm represents the time between two calculations of the
output value (control value). The output value is calculated during self-tuning and rounded to
a multiple of the cycle time. All other functions of PID instruction are executed at every call.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions
9.2 PID control

PID algorithm

The PID (Proportional/Integral/Derivative) controller measures the time interval between two
calls and then evaluates the results for monitoring the sampling time. A mean value of the
sampling time is generated at each mode changeover and during initial startup. This value is
used as reference for the monitoring function and is used for calculation. Monitoring includes
the current measuring time between two calls and the mean value of the defined controller
sampling time.

The output value for the PID controller consists of three components:

® P (proportional): When calculated with the "P" component, the output value is proportional
to the difference between the setpoint and the process value (input value).

e | (integral): When calculated with the "I" component, the output value increases in
proportion to the duration of the difference between the setpoint and the process value
(input value) to finally correct the difference.

e D (derivative): When calculated with the "D" component, the output value increases as a
function of the increasing rate of change of the difference between the setpoint and the
process value (input value). The output value is corrected to the setpoint as quickly as
possible.

The PID controller uses the following formula to calculate the output value for the
PID_Compact instruction.

T,s

y =K, [(b-w-x)+ T (w-x) + m(c- W-X)]

y Output value X Process value
Setpoint value s Laplace operator

Kp Proportional gain a Derivative delay coefficient
(P component) (D component)

T+ Integral action time b Proportional action weighting
(I component) (P component)

To Derivative action time c Derivative action weighting
(D component) (D component)

The PID controller uses the following formula to calculate the output value for the PID_3Step

instruction.
Ay =K s [bw-x wex+ —2 ey
= -s-["W-Xx)+ W—X+—C-W—x]
Y P T, s a-T,-s+1

y Output value X Process value
Setpoint value s Laplace operator

Kp Proportional gain a Derivative delay coefficient
(P component) (D component)

T4 Integral action time b Proportional action weighting
(I component) (P component)

To Derivative action time c Derivative action weighting
(D component) (D component)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 347

Technology instructions

9.2 PID control

9.2.1 Inserting the PID instruction and technological object

STEP 7 provides two instructions for PID control:

® The PID_Compact instruction and its associated technological object provide a universal
PID controller with tuning. The technological object contains all of the settings for the

control loop.

® The PID_3Step instruction and its associated technological object provide a PID
controller with specific settings for motor-activated valves. The technological object
contains all of the settings for the control loop. The PID_3Step controller provides two

additional Boolean outputs.

After creating the technological object, you must configure the parameters (Page 363). You
also adjust the autotuning parameters ("pretuning” during startup or manual "fine tuning") to
commission the operation of the PID controller (Page 365).

Table 9- 11 Inserting the PID instruction and the technological object

When you insert a PID instruction into your user program,
STEP 7 automatically creates a technology object and an
instance DB for the instruction. The instance DB contains
all of the parameters that are used by the PID instruction.
Each PID instruction must have its own unique instance
DB to operate properly.

After inserting the PID instruction and creating the
technological object and instance DB, you configure the
parameters for the technological object (Page 363).

Single
nsfance

“Call options

Data block

Mame

Murmber

O _Cormpact 1 -

(i Manual
(®) Automatic

The called function block saves its data inits own instance

dats block

More..

| I—r [cancel

348

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

Table 9- 12

9.2 PID control

(Optional) Creating a technological object from the project navigator

You can also create technological objects for your
project before inserting the PID instruction. By
creating the technological object before inserting a
PID instruction into your user program, you can
then select the technological object when you insert
the PID instruction.

| "Call options %

Data block

na Name _ -
Nuraber PID_Compact_TO

Single FID_Compect_] %

instancs () Manual
@ Automatic
The called function block saves its data in its cwn instance
data black.
More...
ok 11 cancal

To create a technological object, double-click the
"Add new object" icon in the project navigator.

~ (il PLC_ 1 [CPU 12714C DODCRY]
[I']‘ Device configuration
% Online & diagnostics
b r:EL Program blocks
w [Technological objects

Click the "Control" icon and select the technological
object for the type of PID controller (PID_Compact
or PID_3Step). You can create an optional name
for the technological object.

Click "OK" to create the technological object.

k3
o b

Weraion Frpe 2| e Coenpact (D 1130}
] MG Control Humber _:']
= [Comgnct FD vii
£ b Compact 11w @ Juwriatic
2 FID_Tieep vi £} Masainl
D sznipian

3 | Additional inf

The technilogy chyedt FD_Compec provides o

wninerisd D controller with mtegrabed funing

It enrvezponds te the mstance dats biock of the

AID_ oo paect. inceracTion,

Thais dats Block must be taaslaned when you call the
B inFtruction

Fil_Ceenpadt includes all semngy lor one spechic

cantrol loop:

When you open this technalogy objert you are

supponed

By @ special edior for cordigrumabeon of the controller.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

349

Technology instructions

9.2 PID control

9.2.2 PID_Compact instruction

The PID controller uses the following formula to calculate the output value for the
PID_Compact instruction.

_ T,'s
y = Kp [(b-w-x) + s (w-x) + m(c-w-x)]
y Output value X Process value
Setpoint value s Laplace operator
Kp Proportional gain a Derivative delay coefficient
(P component) (D component)
T4 Integral action time b Proportional action weighting
(I component) (P component)
To Derivative action time c Derivative action weighting
(D component) (D component)
Table 9- 13 PID_Compact instruction
LAD / FBD SCL Description
“PID_Compact. "PID_Compact 1" (PID_Compact provides a PID controller with
Ti" Setpoint:=_real in_, self-tuning for automatic and manual mode.
PID_I"_DmpactlE |F' Input:= real in_, PID_Qompact isa I?IDT1 controller with
Input PER:= word in , anti-windup and weighting of the P- and D-
—{En END = ManuaIEnablgz =_b301:in_, component.

Setpaint Jutput

Input Output_PER ManualValue: =_rea1_1n_,

Input_PER Dutput_ PV = Reset:= bool_in_,
State ScaledInput=> real out_,
— Errar Output=> real out_,

Output PER=> word out ,
Output PWM=> bool_ out ,
SetpointLimit_ H=> bool_out ,
SetpointlLimit_L=> bool_out ,
InputWarning H=> bool out_,
InputWarning L=> bool out_,
State=>_int_out_,

Error=> dword out);

1 STEP 7 automatically creates the technological object and instance DB when you insert the instruction. The instance
DB contains the parameters of the technological object.

2 In the SCL example, "PID_Compact_1" is the name of the instance DB.

S7-1200 Programmable controller
350 System Manual, 04/2012, ASE02486680-06

Technology instructions

Table 9- 14 Data types for the parameters

9.2 PID control

Parameter and type Data type Description
Setpoint IN Real Setpoint of the PID controller in automatic mode. Default value: 0.0
Input IN Real Process value. Default value: 0.0
You must also set sPid_Cmpt.b_Input_PER_On = FALSE.
Input_PER IN Word Analog process value (optional). Default value: W#16#0
You must also set sPid_Cmpt.b_Input_PER_On = TRUE.
ManualEnable IN Bool Enables or disables the manual operation mode. Default value: FALSE:
e PID_Compact V1.0 and V1.2: When the CPU transitions to RUN, if
the ManualEnable = TRUE, PID_Compact starts in manual mode. It
is not necessary for a FALSE to TRUE transition to place the
PID_Compact into manual mode.
e PID_Compact V1.1: When the CPU transitions to RUN and the
ManualEnable = TRUE, the PID Compact starts in the last state. A
transition from TRUE to FALSE to TRUE is required to place the
PID_Compact in manual mode.
ManualValue IN Real Process value for manual operation. Default value: 0.0
Reset IN Bool The Reset parameter restarts the controller. Default value: FALSE
See the "Response to Reset" section below for PID_Compact V1.1 and
V1.0 Reset response diagrams.
ScaledInput ouT Real Scaled process value. Default value: 0.0
Output! ouT Real Output value. Default value: 0.0
Output_PER! ouT Word Analog output value. Default value: W#16#0
Output_PWM! ouT Bool Output value for pulse width modulation. Default value: FALSE
SetpointLimit_H ouT Bool Setpoint high limit. Default value: FALSE
If SetpointLimit_H = TRUE, the absolute upper limit of the setpoint is
reached. Default value: FALSE
SetpointLimit_L ouT Bool Setpoint low limit. Default value: FALSE
If SetpointLimit_L = TRUE, the absolute lower limit of the setpoint is
reached. Default value: FALSE
InputWarning_H ouT Bool If InputWarning_H = TRUE, the process value reached or exceeded the
upper warning limit. Default value: FALSE
InputWarning_L ouT Bool If InputWarning_L = TRUE, the process value reached the lower
warning limit. Default value: FALSE
State ouT Int Current operating mode of the PID controller. Default value: 0
Use sRet.i_Mode to change the mode.
e State = 0: Inactive
e State = 1: Pretuning
e State = 2: Manual fine tuning
e State = 3: Automatic mode
e State = 4: Manual mode
ErrorBits ouT DWord The PID_Compact instruction ErrorBits parameters table (Page 354)

defines the error messages. Default value: DW#16#0000 (no error)

1 The outputs of the Output, Output_PER, and Output_PWM parameters can be used in parallel.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

351

Technology instructions

9.2 PID control

Response to Reset
The response to Reset = TRUE depends on the version of the PID_Compact instruction.
Reset response PID_Compact V1.1

A rising edge at Reset resets the errors and warnings and clears the integral action. A falling
edge at Reset triggers a change to the most recently active operating mode.

Reset A
1 —
0
>
t (ms)
i_Mode A
3 —
0
>
t (ms)
State A
3
0
>
©, ®@ ® O 1
@ Activation
@ Error
@ Reset

Reset response PID_Compact V1.0

A rising edge at Reset resets the errors and warnings and clears the integral action. The
controller is not reactivated until the next edge at i_Mode.

S7-1200 Programmable controller
352 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.2 PID control
Reset A
1 —
0
 Mod t (ms)
I_IVlode
A
4
3
0
>
t (ms)
State
P
3 —
0
O @6 © tms)
@® Activation
@ Error
@ Reset

Operation of the PID_Compact controller

b_Input_PER_On
1

CRP_IN Scale PV_ALRM InputWarning_H
Input_PER | | | =
% — RN , . InputWarning_L
0
Input
ds PIDT1
Anti Windup
Setpoint Au
Output
ManualEnable INV b_InvCitrl
' A CRP_OUT
| Output_PER
ManualValue 0 i %
. :
PWM
H — Output_PWM
Figure 9-1 Operation of the PID_Compact controller
S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 353

Technology instructions

9.2 PID control
Setpoint (w) b
— 0
! Anti Windup |
VLMt ! S 4 Kp
i — y
O 1 P
| | A —
| b= = :
C
ScaledInput (x) _=/_\ DT1
~ | N
Figure 9-2 Operation of the PID_Compact controller as a PIDT1 controller with anti-windup
9.2.3 PID_Compact instruction ErrorBit parameters
If several errors are pending, the values of the error codes are displayed by means of binary
addition. The display of error code 0003, for example, indicates that the errors 0001 and
0002 are also pending.
Table 9- 15 PID_Compact instruction ErrorBit parameters
ErrorBit (DW#16#...) Description
0000 No error
0001 The "Input" parameter is outside the process value limits.
Input > sPid_Cmpt.r_Pv_HImor
Input < sPid_Cmpt.r_Pv_LIm
You cannot start the actuator again until you eliminate the error.
0002 Invalid value at parameter "Input_PER". Check whether an error is pending
at the analog input.
0004 Error during fine tuning Oscillation of the process value could not be
maintained.
0008 Error while starting pre-tuning. The process value is too close to the
setpoint. Start fine tuning.
0010 The setpoint was changed during controller tuning.
0020 Pre-tuning may not be carried out in automatic mode or during fine tuning.
0040 Error in fine tuning The setpoint is too close to the setpoint limits.
S7-1200 Programmable controller
354 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.2 PID control
ErrorBit (DW#16#...) Description
0080 Incorrect configuration of output value limits.
Check to see if the limits of the output value are configured correctly and
match the direction in which the control is operating.
0100 Error during controller tuning has resulted in invalid parameters.
0200 Invalid value at parameter "Input": Numerical format of value is invalid.
0400 Calculating the output value failed. Check the PID parameters.
0800 Sampling time error: PID_Compact is not called within the sampling time of
the cyclic interrupt OB.
1000 Invalid value at parameter "Setpoint": Numerical format of value is invalid.

9.24 PID_3STEP instruction

The PID controller uses the following formula to calculate the output value for the PID_3Step

instruction.

Ay =K s [bw-x W+ —2ow-x]

= °S - "w-Xx)+ wW-Xx)+ ———— (c- w-X
Y g T, s a-T,-s+1

y Output value X Process value
Setpoint value Laplace operator

Kp Proportional gain a Derivative delay coefficient
(P component) (D component)

T+ Integral action time b Proportional action weighting
(I component) (P component)

To Derivative action time c Derivative action weighting

(D component)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

(D component)

355

Technology instructions

9.2 PID control

Table 9- 16 PID_3Step instruction

LAD / FBD SCL Description
“PID_35tep_Ta" "PID_3Step_1"(PID_3Step configures a PID controller with
R SetpoInt:= real in , self-tuning capabilities that has been
_35tep | = |i‘ - - - .
5 Input:= real in_, optimized for motor-controlled valves and
—{EN END — ManualValue:= real in , actuators. It provides two Boolean outputs.
EEIHE Hutpt_UP= Feedback:= real in _, PID_3Step is a PIDT1controller with anti-
it Output DN = InputPer:= word in , windup and weighting of the P- and D-
Input_PER Jutput_PER - T . components
actuator H State FeedbackPer:= word in , .
— Actuator_L Errar i ManualEnable:= bool_in_,
Feedback ErrorBits ManualUP:= bool_in_,
Feedback_PER ManualDN:= bool in ,
g = ActuatorH:= bool in_,

ActuatorL:= bool_in_,

Reset:= bool_in_,
ScaledInput=> real out_,
ScaledFeedback=> real out_,
ErrorBits=> dword out_,
OutputPer=> word out_,
State=>_int_out_,
OutputUP=> bool out_,
OutputDN=> bool out_,
SetpoIntLimitH=> bool out_,
SetpoIntLimitL=> bool_ out_,
InputWarningH=> bool_ out ,
InputWarningL=> bool_ out ,
Error=> bool out);

1 STEP 7 automatically creates the technological object and instance DB when you insert the instruction. The instance
DB contains the parameters of the technological object.

2 In the SCL example, "PID_3Step_1" is the name of the instance DB.

Table 9- 17 Data types for the parameters

Parameter and type Data type Description
Setpoint IN Real Setpoint of the PID controller in automatic mode. Default value: 0.0
Input IN Real Process value. Default value: 0.0
You must also set Config.InputPEROnN = FALSE.
Input_PER IN Word Analog process value (optional). Default value: W#16#0
You must also set Config.InputPERON = TRUE.
ManualEnable IN Bool Enables or disables the manual operation mode. Default value: FALSE
¢ On the edge of the change from FALSE to TRUE, the PID controller
switches to manual mode, State = 4, and Retain.Mode remains
unchanged.
¢ On the edge of the change from TRUE to FALSE, the PID controller
switches to the last active operating mode and
State = Retain.Mode.
S7-1200 Programmable controller
356 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.2 PID control

Parameter and type

Data type

Description

ManualUP

Bool

In manual mode, every rising edge opens the valve by 5% of the total

actuating range, or for the duration of the minimum motor actuation

time. ManualUP is evaluated only if you are not using Output_PER and

there is no position feedback. Default value: FALSE

e If Output_PER is FALSE, the manual input turns Output_UP on for
the time that corresponds to a movement of 5% of the device.

¢ If Config.ActuatorEndStopOn is TRUE, then Output_UP does not
come on if Actuator_H is TRUE.

ManualDN

Bool

In manual mode, every rising edge closes the valve by 5% of the total
actuating range, or for the duration of the minimum motor actuation
time. ManualDN is evaluated only if you are not using Output_PER and
there is no position feedback. Default value: FALSE

e If Output_PER is FALSE, the manual input turns Output_DN on for
the time that corresponds to a movement of 5% of the device.

e If Config.ActuatorEndStopOn is TRUE, then Output_DN does not
turn on if Actuator_L is TRUE.

ManualValue

Real

Process value for manual operation. Default value: 0.0

In manual mode, you specify the absolute position of the valve.
ManualValue is evaluated only if you are using OutputPer, or if position
feedback is available. Default value: 0.0

Feedback

Real

Position feedback of the valve. Default value: 0.0
To use Feedback, then set Config.FeedbackPerOn = FALSE.

Feedback_PER

Word

Analog feedback of the valve position. Default value: W#16#0

To use Feedback_PER, set Config.FeedbackPerOn = TRUE.
Feedback_PER is scaled, using the following parameters:

¢ Config.FeedbackScaling.LowerPointIn
e Config.FeedbackScaling.UpperPointin
¢ Config.FeedbackScaling.LowerPointOut
e Config.FeedbackScaling.UpperPointOut

Actuator_H

Bool

If Actuator_H = TRUE, the valve is at the upper end stop and is no
longer moved in this direction. Default value: FALSE

Actuator_L

Bool

If Actuator_L = TRUE, the valve is at the lower end stop and is no
longer moved in this direction. Default value: FALSE

Reset

Bool

Restarts the PID controller. Default value: FALSE
If FALSE to TRUE edge:

¢ "Inactive" operating mode

e Inputvalue=0

¢ Interim values of the controller are reset. (PID parameters are
retained.)
If TRUE to FALSE edge, change to the most recent active mode.

ScaledInput

ouT

Real

Scaled process value

ScaledFeedback

ouT

Real

Scaled valve position

Output_PER

ouT

Word

Analog output value. If Config.OutputPerOn = TRUE, the parameter
Output_PER is used.

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

357

Technology instructions

9.2 PID control

Parameter and type

Data type

Description

Output_UP

ouT

Bool

Digital output value for opening the valve. Default value: FALSE
If Config.OutputPerOn = FALSE, the parameter Output_UP is used.

Output_DN

ouT

Bool

Digital output value for closing the valve. Default value: FALSE
If Config.OutputPerOn = FALSE, the parameter Output_DN is used.

SetpointLimitH

ouT

Bool

Setpoint high limit. Default value: FALSE

If SetpointLimitH = TRUE, the absolute upper limit of the setpoint is
reached. In the CPU, the setpoint is limited to the configured absolute
upper limit of the actual value.

SetpointLimitL

ouT

Bool

Setpoint low limit. Default value: FALSE

If SetpointLimitL = TRUE, the absolute lower limit of the setpoint is
reached. In the CPU the setpoint is limited to the configured absolute
lower limit of the actual value.

InputWarningH

ouT

Bool

If InputWarningH = TRUE, the input value has reached or exceeded the
upper warning limit. Default value: FALSE

InputWarningL

ouT

Bool

If InputWarningL = TRUE, the input value has reached or exceeded the
lower warning limit. Default value: FALSE

State

ouT

Int

Current operating mode of the PID controller. Default value: 0
Use Retain.Mode to change the operating mode:

e State = 0: Inactive

e State = 1: Pretuning

e State = 2: Manual fine tuning

e State = 3: Automatic mode

e State = 4: Manual mode

e State = 5: Substitute output value approach

e State = 6: Transition time measurement

e State = 7: Substitute output value approach with error monitoring
e State = 8: Error monitoring

Error

ouT

Bool

If Error = TRUE, at least one error message is pending. Default value:
FALSE

ErrorBits

ouT

DWord

The PID_3STEP instruction ErrorBits parameters table (Page 362)
defines the error messages. Default value: DW#16#0000 (no error)

358

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

Setpoint (w)
HE— 0

DT1

Nn—j

r

1/Ti

0O

L

T

Figure 9-3 Operation of the PID_3Step controller as a PIDT1 controller with anti-windup

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

9.2 PID control
D K
L=
Fac/Tt Anti-windup
359

Technology instructions

9.2 PID control

PV_ALRM InputWarning_H

_ InputWarning_L

InputPerOn
| Anti Windup
Scale |
Input_PER CREAI '
% _% 1’{{_0_ Fac Int
0 —»(O—
Input PIDT |-
Anti Windup
Limit 2.0
Setpoint — mt 0
j:{ OutputPerOn — A — — — =X
0 |1
0,0
Roc_Lim|
Limit
ManualEnable
|
ManualValue I SR e K\Output_PER
1/FAC 1'{)/ %
J 0
ManualEnable
|
Manual_UP I
—1*{/— PulseOut Output_UP
Adead_B ThrStp o ﬁ ' Output_DN
A [E Manual_DN | I |
0‘ "' 1 r I 1!0 I
0 | 0,0 |
0 | 1,0
p g1 0,0
US 0

Figure 9-4 Operation of the PID_3Step controller without position feedback

S7-1200 Programmable controller
360 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.2 PID control

PV_ALRM InputWarning_H

_ InputWarning_L

InputPerOn
| Anti Windup
CRP_IN Scal
Input_PER - cae |
% [A" [
0 Int _L_ir_nit Fac
Input PIDT1 || i | =O_ B
Anti Windup . ry J AV
Setpoint _L|m|t
FeedbackPerOn
|
|
Feedback_PER | CRP-IN] | Scale s
% [[4
0
Feedback
ManualEnable
|
OutputPerOn CRP_OUT
pI ManualValue ! = N Output_PER
| 1 ¢J/ %
0,0 4 0
0 1
|
|
LY
1 ManualEnable
|
Manual_UP | Output_UP
PulseOut
Adead_B ThrStp 1 'f(

Manual DN~ © ! & Output_DN
1 ,IJ
0

Figure 9-5 Operation of the PID_3Step controller the position feedback enabled

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 361

Technology instructions

9.2 PID control
9.25 PID_3STEP instruction ErrorBit parameters
If several errors are pending, the values of the error codes are displayed by means of binary
addition. The display of error code 0003, for example, indicates that the errors 0001 and
0002 are also pending.
Table 9- 18 PID_3STEP instruction ErrorBit parameters
ErrorBit (DW#16#...) Description
0000 No error
0001 The "Input" parameter is outside the process value limits:
Input > Config.InputUpperLimit or
Input < Config.InputLowerLimit
If ActivateRecoverMode = TRUE and ErrorBehaviour = 1, the actuator
moves to the substitute output value. If ActivateRecoverMode = TRUE and
ErrorBehaviour = 0, the actuator stops in its current position. If
ActivateRecoverMode = FALSE, the actuator stops in its current position.
PID_3STEP V1.1: You can move the actuator in manual mode.
PID_3STEP V1.0: Manual mode is not possible in this state. You cannot
start the actuator again until you eliminate the error.
0002 Invalid value at parameter "Input_PER". Check whether an error is pending
at the analog input.
If automatic mode was active before the error occurred,
ActivateRecoverMode = TRUE and the error is no longer pending,
PID_3STEP switches back to automatic mode.
0004 Error during fine tuning Oscillation of the process value could not be
maintained.
0008 Error while starting pre-tuning. The process value is too close to the
setpoint. Start fine tuning.
0010 The setpoint may not be changed during fine tuning.
0020 Pre-tuning may not be carried out in automatic mode or during fine tuning.
0040 Error in fine tuning The setpoint is too close to the setpoint limits.
0080 Error in pre-tuning. Incorrect configuration of output value limits.
Check to see if the limits of the output value are configured correctly and
match the direction in which the control is operating.
0100 Error during fine tuning has resulted in invalid parameters.
0200 Invalid value at parameter "Input": Numerical format of value is invalid.
If automatic mode was active before the error occurred,
ActivateRecoverMode = TRUE and the error is no longer pending,
PID_3STEP switches back to automatic mode.
0400 Calculating the output value failed. Check the PID parameters.
0800 Sampling time error: PID_3STEP is not called within the sampling time of
the cyclic interrupt OB.
If automatic mode was active before the error occurred,
ActivateRecoverMode = TRUE and the error is no longer pending,
PID_3STEP switches back to automatic mode.
S7-1200 Programmable controller
362 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.2 PID control

ErrorBit (DW#16#...)

Description

1000

Invalid value at parameter "Setpoint": Numerical format of value is invalid.

If automatic mode was active before the error occurred,
ActivateRecoverMode = TRUE and the error is no longer pending,
PID_3STEP switches back to automatic mode.

2000

Invalid value at parameter Feedback_PER.
Check whether an error is pending at the analog input.

The actuator cannot be moved to the substitute output value and does not
move from the current position. Manual mode is not possible in this state.

You have to disable position feedback (Config. FeedbackOn = FALSE) to

move the actuator from this state.

If automatic mode was active before the error occurred,
ActivateRecoverMode = TRUE and the error is no longer pending,
PID_3STEP switches back to automatic mode.

4000

Invalid value at parameter Feedback. Numerical format of value is invalid.

The actuator cannot be moved to the substitute output value and does not
move from the current position. Manual mode is not possible in this state.

You have to disable position feedback (Config. FeedbackOn = FALSE) to

move the actuator from this state.

If automatic mode was active before the error occurred,
ActivateRecoverMode = TRUE and the error is no longer pending,
PID_3STEP switches back to automatic mode.

8000

Error in digital position feedback. Actuator_H = TRUE and Actuator_L =
TRUE.

The actuator cannot be moved to the substitute output value and does not
move from the current position. Manual mode is not possible in this state.

You have to disable "Endstop signals actuator" (Config.ActuatorEndStopOn
= FALSE) to move the actuator from this state.

If automatic mode was active before the error occurred,
ActivateRecoverMode = TRUE and the error is no longer pending,
PID_3STEP switches back to automatic mode.

9.2.6

Configuring the PID controller

The parameters of the technological object determine the operation of the PID r
controller. Use the icon to open the configuration editor.

Controller type

Genersl =% - trvErt the cortrcd loge

& Ennble ia s mode aher OFL setrair

Ingiat / autput parameters

Setpoint

- =
Input: | Crutpus
Input_FER {analeg) - itgrut_PER (analogh -

T L e

Figure 9-6 Configuration editor for PID_Compact (Basic settings)

S7-1200 Programmable controller

System Manual, 04/2012, A5E02486680-06 363

Technology instructions

9.2 PID control

Table 9- 19 Sample configuration settings for the PID_Compact instruction

Settings Description
Basic Controller type Selects the engineering units.
Invert the control logic | Allows selection of a reverse-acting PID loop.
o [f not selected, the PID loop is in direct-acting mode and the output of PID loop
increases if input value < setpoint.
o If selected, the output of the PID loop increases if the input value > setpoint.
Enable last mode after | Restarts the PID loop after it is reset or if an input limit has been exceeded and
CPU restart returned to the valid range.
Input Selects either the Input parameter or the Input_PER parameter (for analog) for the
process value. Input_PER can come directly from an analog input module.
Output Selects either the Output parameter or the Output_PER parameter (for analog) for
the output value. Output_PER can go directly to an analog output module.
Process Scales both the range and the limits for the process value. If the process value goes below the low limit or
value above the high limit, the PID loop goes to inactive mode and sets the output value to 0.
To use Input_PER, you must scale the analog process value (input value).

Controlled type

nraral ey

= [irverert the cantind lsgic

8 Ensdle lustrmde aker CFU matan:

Input / ouipul parametedrs

Setpont
=

gt
pu_PER {anal

mo_sap Chapat

o e Euspes g =

R

S — | E il

Feedach

Hg Teedbedd idelaulls =

-

| Acmentor endatop

Aoiusese_ i

=

Actustse L

- -

Figure 9-7

Configuration editor for PID_3Step (Basic settings)

Table 9-20 Sample configuration settings for the PID_3Step instruction

Settings Description
Basic Controller type Selects the engineering units.
Invert the control logic | Allows selection of a reverse-acting PID loop.
e If not selected, the PID loop is in direct-acting mode, and the output of PID loop
increases if the input value < setpoint).
e If selected, the output of the PID loop increases if the input value > setpoint.
Enable last mode after | Restarts the PID loop after it is reset or if an input limit has been exceeded and
CPU restart returned to the valid range.
Input Selects either the Input parameter or the Input_PER parameter (for analog) for the
process value. Input_PER can come directly from an analog input module.
S7-1200 Programmable controller
364 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.2 PID control

Settings Description
Output Selects either to use the digital outputs (Output_UP and Output_DN) or to use the
analog output (Output_PER) for the output value.
Feedback Selects the type of device status returned to the PID loop:
e No feedback (default)
e Feedback
e Feedback _PER
Process Scales both the range and the limits for the process value. If the process value goes below the low limit or
value above the high limit, the PID loop goes to inactive mode and sets the output value to 0.
To use Input_PER, you must scale the analog process value (input value).
Actuator Motor transition Sets the time from open to close for the valve. (Locate this value on the data sheet or
time the faceplate of the valve.)

Minimum ON time

Sets the minimum movement time for the valve. (Locate this value on the data sheet or
the faceplate of the valve.)

Minimum OFF
time

Sets the minimum pause time for the valve. (Locate this value on the data sheet or the
faceplate of the valve.)

Error behavior

Defines the behavior of the valve when an error is detected or when the PID loop is
reset. If you select to use a substitute position, enter the "Safety position". For analog
feedback or analog output, select a value between the upper or lower limit for the
output. For digital outputs, you can choose only 0% (off) or 100% (on).

Scale Position
Feedback'!

e "High stop" and "Lower limit stop" define the maximum positive position (full-open)
and the maximum negative position (full-closed). "High stop" must be greater than
"Lower limit stop".

e "High limit process value" and "Low limit process value" define the upper and lower
positions of the valve during tuning and automatic mode.

e "FeedbackPER" ("Low" and "High") defines the analog feedback of the valve
position. "FeedbackPER High" must be greater than "FeedbackPER Low".

1 "Scale Position Feedback" is editable only if you enabled "Feedback" in the "Basic" settings.

9.2.7

Commissioning the PID controller

Use the commissioning editor to configure the PID controller for autotuning at startup e
and for autotuning during operation. To open the commissioning editor, click the icon
on either the instruction or the project navigator. I4

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 365

Technology instructions

9.3 Motion conftrol

Table 9-21 Sample configuration screen (PID_3Step)
e Measurement: To display the setpoint, the

T g b s process value (input value) and the output value in a
L AR real-time trend, enter the sample time and click the
2 e o . "Start" button.

“ . : e Tuning mode: To tune the PID loop, select either
£ - "Pretuning" or "Fine tuning" (manual) and click the
£ nen "Start" button. The PID controller runs through
- Mo S i multiple phases to calculate system response and

o " update times. The appropriate tuning parameters are
el i calculated from these values.

T =cerc Zixsl ee 4 After the completion of the tuning process, you can

g i e i ki store the new parameters by clicking the "Upload PID

i L o g | e parameters" button in the "PID Parameters" section of

Smwur L : e il

ot _l_l;— b o the commissioning editor.
e — If an error occurs during tuning, the output value of the
] i P i S |_:| PID goes to 0. The PID mode then is set to "inactive"
— mode. The status indicates the error.
9.3 Motion control

The CPU provides motion control functionality for the operation of stepper motors and servo

motors with pulse interface. The motion control functionality takes over the control and

monitoring of the drives.

® The "Axis" technology object configures the mechanical drive data, drive interface,
dynamic parameters, and other drive properties.

® You configure the pulse and direction outputs of the CPU for controlling the drive.

® Your user program uses the motion control instructions to control the axis and to initiate
motion tasks.

e Use the PROFINET interface to establish the online connection between the CPU and
the programming device. In addition to the online functions of the CPU, additional
commissioning and diagnostic functions are available for motion control.

Note
Changes that you make to the motion control configuration and download in RUN mode
do not take effect until the CPU transitions from STOP to RUN mode.
S7-1200 Programmable controller
366 System Manual, 04/2012, A5E02486680-06

Technology instructions

9.3 Motion conftrol

PROFINET

Pulse and direction outputs

Power section for stepper motor

®E 000

Power section for servo motor

The DC/DC/DC variants of the CPU S7-1200 have onboard
outputs for direct control of drives. The relay variants of the
CPU require the signal board with DC outputs for drive

‘ol {@; | control.

A signal board (SB) expands the onboard /O to include a few additional I/O points. An SB
with 2 digital outputs can be used as pulse and direction outputs to control one motor. An SB
with 4 digital outputs can be used as pulse and direction outputs to control two motors. Built-
in relay outputs cannot be used as pulse outputs to control motors.

Note
Pulse-train outputs cannot be used by other instructions in the user program

When you configure the outputs of the CPU or signal board as pulse generators (for use with
the PWM or motion control instructions), the corresponding output addresses (Q0.0 to QO0.3,
Q4.0 to Q4.3) are removed from the Q memory and cannot be used for other purposes in
your user program. If your user program writes a value to an output used as a pulse
generator, the CPU does not write that value to the physical output.

Table 9- 22 Maximum number of controllable drives

Type of CPU No SB installed With an SB With an SB
(2 x DC outputs) (4 x DC outputs)

CPU 1211C DC/DC/DC 2 2 2
AC/DC/RLY 0 1 2
DC/DC/RLY 0 1 2

CPU 1212C DC/DC/DC 2 2 2
AC/DC/RLY 0 1 2
DC/DC/RLY 0 1 2

CPU 1214C DC/DC/DC 2 2 2
AC/DC/RLY 0 1 2
DC/DC/RLY 0 1 2

CPU 1215C DC/DC/DC 4 4 4
AC/DC/RLY 0 1 2
DC/DC/RLY 0 1 2

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 367

Technology instructions

9.3 Motion conftrol

Table 9- 23 Limit frequencies of pulse outputs

Pulse output Frequency

Onboard 2 PTO: 2Hz <f< 100 KHz
2PTO:2Hz<f<20KHz

Standard SB 2Hz<f<20KHz

High-speed (200 KHz) SBs MC V2 instructions: 2 Hz < f < 200 KHz
MC V1 instructions: 2 Hz < f < 100 KHz 1

T MC V1 instructions support a maximum frequency of 100 KHz.

NOTICE

The maximum pulse frequency of the pulse output generators is 100 KHz for the digital
outputs of the CPU, 20 KHz for the digital outputs of the standard SB, and 200 KHz for the
digital outputs of the high-speed SBs (or 100 KHz for MC V1 instructions).

Configuring a pulse generator
1. Add a Technological object:

S7-1200 Programmable controller
368 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

— In the Project tree, expand the node "Technological Objects" and select "Add new
object".

— Select the "Axis" icon (rename if required) and click "OK" to open the configuration
editor for the axis object.

— Display the "Select PTO for Axis Control" properties under the "Basic parameters" and
select the desired pulse. Note the two Q outputs assigned for pulse and direction.

Note

If the PTO has not been previously configured in the CPU Properties, the PTO is
configured to use one of the onboard outputs.

If you use an output signal board, then select the "Device configuration" button to go
to the CPU Properties. Under "Parameter assignment"”, in the "Pulse options",
configure the output source to a signal board output. "Pulse_1" and "Pulse_3"are the
only pulse outputs available on the signal board.

— Configure the remaining Basic and Extended parameters.

2. Program your application: Insert the MC_Power instruction in a code block.
— For the Axis input, select the axis technology object that you created and configured.
— Setting the Enable input to TRUE allows the other motion instructions to function.

— Setting the Enable input FALSE cancels the other motion instructions.

Note

Include only one MC_Power instruction per axis.

3. Insert the other motion instructions to produce the required motion.

Note

Configuring a pulse generator to signal board outputs: Select the "Pulse generators
(PTO/PWM)" properties for a CPU (in Device configuration) and enable a pulse generator.
Two pulse generators are available for each S7-1200 CPU V1.0, V2.0, V2.1, and V2.2.
S7-1200 CPU V3.0 CPUs have four pulse generators available. In this same configuration
area under "Pulse options", select Pulse generator used as: "PTO".

Note

The CPU calculates motion tasks in "slices" or segments of 10 ms. As one slice is being
executed, the next slice is waiting in the queue to be executed. If you interrupt the motion
task on an axis (by executing another new motion task for that axis), the new motion task
may not be executed for a maximum of 20 ms (the remainder of the current slice plus the
queued slice).

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 369

Technology instructions
9.3 Motion control

9.3.1 Configuring the axis

STEP 7 provides the configuration tools, the commissioning tools, and the diagnostic tools
for the "Axis" technological object.

Om | @l | © 4

@ Drive ® Commissioning
@) Technological object ® Diagnostics
® Configuration

Note

The PTO requires the internal functionality of a high-speed counter (HSC). This means the
corresponding high-speed counter cannot be used elsewhere.

The assignment between PTO and HSC is fixed. When PTO1 is activated, it will be
connected to HSC1. If PTO2 is activated, it will be connected to HSC2. This is only true for
S7-1200 V1.0, V2.0, V2.1, and V2.2 CPUs. S7-1200 V3.0 CPUs do not have this restriction.

You cannot monitor the current value (for example, in ID 1000) when pulses are occurring.

Table 9-24 STEP 7 tools for motion control

Tool Description

Configuration Configures the following properties of the "Axis" technology object:
e Selection of the PTO to be used and configuration of the drive interface
e Properties of the mechanics and the transmission ratio of the drive (or machine or system)

e Properties for position limits, dynamics, and homing
Save the configuration in the data block of the technology object.

Commissioning Tests the function of your axis without having to create a user program. When the tool is started,
the control panel will be displayed. The following commands are available on the control panel:

e Enable and disable axis

¢ Move axis in jog mode

e Position axis in absolute and relative terms
e Home axis

e Acknowledge errors

The velocity and the acceleration / deceleration can be specified for the motion commands. The
control panel also shows the current axis status.

Diagnostics Monitors of the current status and error information for the axis and drive.

S7-1200 Programmable controller
370 System Manual, 04/2012, ASE02486680-06

Technology instructions

Toxbmubagy sbpect - Ak

AdLrams | i

Hadwae bereiae

I - Eonn b pr—

e i o LT

b s vt
i

9.3 Motion conftrol

After you create the technological object for the
axis, you configure the axis by defining the basic
parameters, such as the PTO and the configuration
of the drive interface. You also configure the other
properties of the axis, such as position limits,
dynamics, and homing.

NOTICE

You may have to adapt the values of the input parameters of motion control instructions to
the new dimension unit in the user program.

B e e o

Farme ol e e Farmer g b

st g g iyt ey ————
I e L L .
Fon e

] S e
T T P
P

by
] ot

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Configure the properties for the drive signals, drive
mechanics, and position monitoring (hardware and
software limit switches).

You configure the motion dynamics and the
behavior of the emergency stop command.

Welaity it
-

371

Technology instructions

9.3 Motion conftrol

9.3.2

You also configure the homing behavior (passive and active).

Vit o Fereoniing sl vt b
o v

(S

S —— PR ———

e

— e bt ey e

et W s
S i W S P p—

e L T T
B bt aledmd Bkt AR s
[o veb

e b

g

— ot b Pt

Use the "Commissioning" control panel to test the functionality independently from your user

program.

14 Click the "Startup" icon to commission the axis.

The control panel shows the current status of the axis. Not only can you enable and disable
the axis, but you can also test the positioning of the axis (both in absolute and relative terms)
and can specify the velocity, acceleration and deceleration. You can also test the homing
and jogging tasks. The control panel also allows you to acknowledge errors.

Configuring the TO_CommandTable_PTO

You can configure a CommandTable instruction using the Technological objects.

Adding a Technological object

372

1. In the Project tree, expand the node "Technological Objects" and select "Add new object".

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

. Select the "CommandTable" icon (rename if required), and click "OK" to open the

configuration editor for the CommandTable object.

"Add niew object

Tlanme

Lommand table_1

Name versi TPE Ik [TO_CommandTable IO
=[] Motesn Comtrad Hhumber 3]
w AT 200 iEamen Jentral WO
il (8 Butormastes
|19 5 IO /a0) el
—_— Dezirpuon

12 | Additional information

ReSHES R ——

e 10_CormnmandTable FTO W30 thetechnalogy obiect "Cormmand table®

10 ComanandTatde_ FTO0 lets wou cre dte motion
contrel tomnands snd rmoBon profdes o s 1akle
uaing FLCopen The dtoated profiles are apphied b a
Phivical dive vth the *2az” tachnelogy obyedt

¢} 0 ¥

Planning the steps for your application

You can create the desired movement sequence in the "Command Table" configuration
window, and check the result against the graphic view in the trend diagram.

You can select the command types that are to be used for processing the command table.
Up to 32 steps can be entered. The commands are processed in sequence, easily producing
a complex motion profile.

Table 9-25 MC_CommandTable command types

Command type

Description

Empty The empty serves as a placeholder for any commands to be added. The empty entry is
ignored when the command table is processed
Halt Pause axis.

Note: The command only takes place after a "Velocity setpoint" command.

Positioning Relative

Positions the axis based upon distance. The command moves the axis by the given
distance and velocity.

Positioning Absolute

Positions the axis based upon location. The command moves the axis to the given
location, using the velocity specified.

Velocity setpoint

Moves the axis at the given velocity.

Wait

Waits until the given period is over. "Wait" does not stop an active traversing motion.

Separator

Adds a "Separator" line above the selected line. The separator line allows more than one
profile to be defined in a single command table.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 373

In the figure below, "Command complete" is used as the transition to the next step. This type
of transition allows your device to decelerate to the start/stop speed and then accelerate
once again at the start of the next step.

Technology instructions

9.3 Motion conftrol

Gamneistal

Tochnology ebjoct - command tabls

Bhamee | Coarunand tatde |
Command takls
B Enatis wamings
Seep - Command fpe Postiontravel pat.. Vielooas{menti|
Separatsn
1 st 0 %0
l 1606 50
= s
7]) e
] Ermphy = =
) Eragey - -
7 Emng = -

Sanple aat =

Whe aus paramters B
Detsvenls] Nedviep Hep code
“
- Coavinand 4 pinglete het [
= i haf

ud damplete
i foomplete [0
Coammand complete

Duration]s]

=)

@ Axis decelerates to the start/stop speed between steps.

In the figure below, "Blending motion" is used as the transition to the next step. This type of
transition allows your device to maintain its velocity into the start of the next step, resulting in
a smooth transition for the device from one step to the next. Using blending can shorten the
total time required for a profile to execute completely. Without blending, the example takes
seven seconds to run. With blending, the execution time is reduced by one second to a total

of six seconds.

Ganrtal

Tochnology objoct - command table

Bharme | Comrunand tabde_1

Comamand tabis

B Enatie camng:

Step Cosnmand tpe
Teparatoe

i Formoransg bz she =1]

2 Posmoang ibaohts 1008

Formorens Sbache _'v-

Pasmonang b ohte

Erigt

Postiantrgl pat. Weloony mendi|

=5
500

"

ie ok

0o

&
Emgey -

Wie dus paramitars Boim | -

Batanior]s]

stnpde aaz [=

N step SEp cods
Hendinganation e [
Blee g andhin \aigar

umand <omplere -l
Coammand complets

Duration]s]

@ Axis continues to move and accelerates or decelerates to the next step velocity, saving time and

mechanical wear.

374

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

The operation of your CommandTable is controlled by an MC_CommandTable instruction,
as shown below:

- Hetwork 1:

Camment

S
CoammandTable_

e
ME_CommiandTable
. ¥ a9

EN BT
Drorie =

SRms_ 1" — Ras 4

“Command table_ nd
1" — CornmandTabl= Error =
-'.ul.lﬂv

—| I-— Execute

StanSrep Currentitep - “Cumentitep”

4 — Enditep
" Staplode - “Sraplodse”
9.3.3 Motion control instructions

Note

The CPU calculates motion tasks in "slices" or segments of 10 ms. As one slice is being
executed, the next slice is waiting in the queue to be executed. If you interrupt the motion
task on an axis (by executing another new motion task for that axis), the new motion task
may not be executed for a maximum of 20 ms (the remainder of the current slice plus the
queued slice).

9.3.3.1 MC_Power instruction

NOTICE

If the axis is switched off due to an error, it will be enabled again automatically after the
error has been eliminated and acknowledged. This requires that the Enable input
parameter has retained the value TRUE during this process.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 375

Technology instructions

9.3 Motion conftrol

Table 9- 26 MC_Power instruction

LAD / FBD SCL Description
"MC_Power_DB" "MC_Power_DB" (The MC_Power motion control instruction enables
WC, Fower T Axis:= multi fb in_, or disables an axis. Before you can enable or
Elke Enable:= bool in , disable the axis, ensure the following conditions:

— EN EM b .= ; . i

s stotue e StopMode:=_int in , e The technology object has been configured

Status=> bool t ,
— Enable » . a ui 0y i° —:u — correctly.
usy= (o]} ou ’ . . . G e
StopMode Error = y=r_ - - e There is no pending enable-inhibiting error.

Error=> bool out_,
ErrorID=> word out ,
ErrorInfo=> word out_);

The execution of MC_Power cannot be aborted by
a motion control task. Disabling the axis (input
parameter Enable = FALSE) aborts all motion
control tasks for the associated technology object.

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_Power_DB" is the name of the instance DB.

Table 9- 27 Parameters for the MC_Power instruction

Parameter and type

Data type

Description

Axis

TO_Axis_1

Axis technology object

Enable

Bool

FALSE (default): All active tasks are aborted according to the
parameterized "StopMode" and the axis is stopped.

TRUE: Motion Control attempts to enable the axis.

StopMode

Int

0: Emergency stop: If a request to disable the axis is pending, the
axis brakes at the configured emergency deceleration. The axis is
disabled after reaching standstill.

1: Immediate stop: If a request to disable the axis is pending, this
axis is disabled without deceleration. Pulse output is stopped
immediately.

2: Emergency stop with jerk control: If a request to disable the axis is
pending, the axis brakes at the configured emergency stop
deceleration. If the jerk control is activated, the configured jerk is
taken into account. The axis is disabled after reaching standstill.

Status

ouT

Bool

Status of axis enable:

FALSE: The axis is disabled:

— The axis does not execute motion control tasks and does not
accept any new tasks (exception: MC_Reset task).

— The axis is not homed.

— Upon disabling, the status does not change to FALSE until the
axis reaches a standstill.

TRUE: The axis is enabled:

— The axis is ready to execute motion control tasks.

— Upon axis enabling, the status does not change to TRUE until
the signal "Drive ready" is pending. If the "Drive ready" drive
interface was not configured in the axis configuration, the status
changes to TRUE immediately.

376

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Parameter and type Data type Description
Busy ouT Bool FALSE: MC_Power is not active.
TRUE: MC_Power is active.
Error ouT Bool FALSE: No error
TRUE: An error has occurred in motion control instruction "MC_Power"
or in the associated technology object. The cause of the error can be
found in parameters "ErrorID" and "Errorinfo".
ErrorlD ouT Word Error ID for parameter "Error™"
Errorinfo ouT Word Error info ID for parameter "Error|D"
A N
r A
MC_Power — MC_Power 4
Axis_1 - Axis Status |- Status_1 Ena_1 (1) B 1 1 | -t
Ena_1 - Enable Busy |- Busy_1 [o
1 - StopMode Error |- Error_1 1 | - :(_ _| | - _I I_ -
ErrorlD |- Status_1 o r4 » t
Errorinfo |- 1+ - - - - - - - -
Busy_1 o] £]] | | >t
1T o o o o o o o e L D —— . — — o — — — -
L Error_1 o £ I I >t
— MC_Reset
MC_Reset - -9 -"=—"="="-—"=—=—=--- | e
; —= Exe_2 g <. >t
Axis_1 - Axis Done |~ Done_2 ” v
Exe_2 —{Execut Busy |- Busy_2 L e ettty ey ittt
xe_ xecute Eusy usy._. Done_2 P ‘I_I .
rror j— 4 ol
ErrorlD [~ "“—--—-—-—-—-—-—-—-—-"—-"=-"="=-"=—-"=-"=---- I] ————————————
Errorinfo |- Busy 2 o S} >t
— Drive Interface 1
[o | I .
Drive Enabled 0 I L 55 I >t
L P I
| DriveReady o] £ |] > t

O) An axis is

enabled and then disabled again. After the drive has signaled "Drive ready" back to the CPU, the

successful enable can be read out via "Status_1".

@ Following

an axis enable, an error has occurred that caused the axis to be disabled. The error is eliminated and

acknowledged with "MC_Reset". The axis is then enabled again.

To enable an axis with configured drive interface, follow these steps:
1. Check the requirements indicated above.

2. Initialize input parameter "StopMode" with the desired value. Set input parameter
"Enable" to TRUE.

The enable output for "Drive enabled" changes to TRUE to enable the power to the drive.
The CPU waits for the "Drive ready" signal of the drive.

When the "Drive ready" signal is available at the configured ready input of the CPU, the
axis becomes enabled. Output parameter "Status" and technology object tag <Axis
name>.StatusBits.Enable indicates the value TRUE.

To enable an axis without configured drive interface, follow these steps:
1. Check the requirements indicated above.

2. Initialize input parameter "StopMode" with the desired value. Set input parameter
"Enable" to TRUE. The axis is enabled. Output parameter "Status" and technology object
tag <Axis name>.StatusBits.Enable indicate the value TRUE.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 377

Technology instructions

9.3 Motion conftrol

To disable an axis, follow these steps:

1. Bring the axis to a standstill.

You can identify when the axis is at a standstill in technology object tag <Axis
name>.StatusBits.StandStill.

2. Setinput parameter "Enable" to FALSE after standstill is reached.

3. If output parameters "Busy" and "Status" and technology object tag <Axis
name>.StatusBits.Enable indicate the value FALSE, disabling of the axis is complete.

9.3.3.2

Table 9- 28 MC_Reset instruction

MC_Reset instruction

LAD / FBD SCL Description
“KIC_Pezet DE" "MC_Reset DB" (Use the MC_Reset instruction to acknowledge
WC_ Resat =0 Axis:= multi_fb _in_, "Operating error with axis stop" and
= L Execute:= bool in , "Configuration error". The errors that require
—En ENG - Restart:= bool in , acknowledgement can be found in the "List of
ol Pone;s Done=> bool out , ErroriDs and Errorinfos" under "Remedy".
:Emm E,m: Busy=>_bool_out_, Before using the MC_Reset instruction, you
Error=> bool out , must have eliminated the cause of a pending
» ErrorID=> word out , configuration error requiring acknowledgement

ErrorInfo=> word out);

(for example, by changing an invalid
acceleration value in "Axis" technology object
to a valid value).

As of V3.0 and later, the Restart command
allows the axis configuration to be downloaded
to the work memory in the RUN operating
mode.

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_Reset_DB" is the name of the instance DB.

The MC_Reset task cannot be aborted by any other motion control task. The new MC_Reset
task does not abort any other active motion control tasks.

Table 9- 29 Parameters of the MC_Reset instruction

Parameter and type Data type Description
Axis IN TO_Axis_1 Axis technology object
Execute IN Bool Start of the task with a positive edge
Restart IN Bool TRUE = Download the axis configuration from the load memory to the
work memory. The command can only be executed when the axis is
disabled.
FALSE = Acknowledges pending errors
Done ouT Bool TRUE = Error has been acknowledged.
Busy ouT Bool TRUE = The task is being executed.
S7-1200 Programmable controller
378 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Parameter and type Data type Description
Error ouT Bool TRUE = An error has occurred during execution of the task. The
cause of the error can be found in parameters "ErrorID" and
"Errorinfo".
ErrorlD OuUTP Word Error ID for parameter "Error™
Errorinfo ouT Word Error info ID for parameter "ErrorID"
To acknowledge an error with MC_Reset, follow these steps:
1. Check the requirements indicated above.
2. Start the acknowledgement of the error with a rising edge at the Execute input parameter.
3. The error has been acknowledged when Done equals TRUE and the technology object
tag <Axis name>.StatusBits.Error equals FALSE.
9.3.3.3 MC_Home instruction

Table 9-30 MC_Home instruction

LAD / FBD SCL

Description

"MC_Home_DE"
MC_Horme [— |11
|| %

— EN EMO b
Ais Done
— Execute -

Pasitian
Made -
Error =

"MC_Home_DB" (

Axis:= multi_ fb in_,
Execute:= bool_in_,
Position:= real_ in _,
Mode:=_int in_,

Done=> bool out_,
Busy=> bool out_,
CommandAborted=> bool_out ,
Error=> bool_out_,
ErrorID=> word out ,
ErrorInfo=> word out);

Use the MC_Home instruction to match
the axis coordinates to the real, physical
drive position. Homing is required for
absolute positioning of the axis:

In order to use the MC_Home instruction,
the axis must first be enabled.

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_Home_DB" is the name of the instance DB.

The following types of homing are available:

® Direct homing absolute (Mode = 0): The current axis position is set to the value of
parameter "Position".

® Direct homing relative (Mode = 1): The current axis position is offset by the value of
parameter "Position".

® Passive homing (Mode = 2): During passive homing, the MC_Home instruction does not
carry out any homing motion. The traversing motion required for this step must be
implemented by the user via other motion control instructions. When the reference point
switch is detected, the axis is homed.

® Active homing (Mode = 3): The homing procedure is executed automatically.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

379

Technology instructions

9.3 Motion conftrol

Table 9- 31 Parameters for the MC_Home instruction

Parameter and type Data type Description

Axis IN TO_Axis_PTO Axis technology object

Execute IN Bool Start of the task with a positive edge

Position IN Real e Mode =0, 2, and 3 (Absolute position of axis after

completion of the homing operation)
e Mode = 1 (Correction value for the current axis position)
Limit values: -1.0e'2 < Position < 1.0e'2

Mode IN Int Homing mode

e 0: Direct homing absolute
New axis position is the position value of parameter
"Position".

e 1: Direct homing relative
New axis position is the current axis position + position
value of parameter "Position".

e 2: Passive homing
Homing according to the axis configuration. Following
homing, the value of parameter "Position" is set as the
new axis position.

e 3: Active homing
Reference point approach in accordance with the axis
configuration. Following homing, the value of parameter
"Position" is set as the new axis position.

Done ouT Bool TRUE = Task completed

Busy ouT Bool TRUE = The task is being executed.

CommandAborted ouT Bool TRUE = During execution the task was aborted by another
task.

Error ouT Bool TRUE = An error has occurred during execution of the task.
The cause of the error can be found in parameters "Error|D"
and "Errorinfo".

ErrorlD ouT Word Error ID for parameter "Error™

Errorinfo ouT Word Error info ID for parameter "ErrorID"

Note

Axis homing is lost under the following conditions

¢ Disabling of axis by the MC_Power instruction

e Switchover between automatic control and manual control

e Upon start of active homing (After successful completion of the homing operation, axis

homing is available again.)
e After power-cycling the CPU
o After CPU restart (RUN-to-STOP or STOP-to-RUN)
S7-1200 Programmable controller

380 System Manual, 04/2012, ASE02486680-06

Technology instructions

To home the axis, follow these steps:

1. Check the requirements indicated above.

9.3 Motion conftrol

2. Initialize the necessary input parameters with values, and start the homing operation with

a rising edge at input parameter "Execute".

3. If output parameter "Done" and technology object tag <Axis
name>.StatusBits.HomingDone indicate the value TRUE, homing is complete.

Table 9- 32 Override response
Mode Description
Oor1 The MC_Home task cannot be aborted by any other motion control task. The new MC_Home task does not
abort any active motion control tasks. Position-related motion tasks are resumed after homing according to
the new homing position (value at the Position input parameter).
2 The MC_Home task can be aborted by the following motion control tasks:
MC_Home task Mode = 2, 3: The new MC_Home task aborts the following active motion control task.
MC_Home task Mode = 2: Position-related motion tasks are resumed after homing according to the new
homing position (value at the Position input parameter).
3 The MC_Home task can be aborted by the following | The new MC_Home task aborts the following active
motion control tasks: motion control tasks:
¢ MC_Home Mode =3 ¢ MC_Home Mode =2, 3
e MC_Halt e MC_Halt
¢ MC_MoveAbsolute ¢ MC_MoveAbsolute
e MC_MoveRelative ¢ MC_MoveRelative
e MC_MoveVelocity e MC_MoveVelocity
¢ MC_Movedog ¢ MC_Movedog
9.3.34 MC_Halt instruction
Table 9- 33 MC_Halt instruction
LAD / FBD SCL Description
"MC_Halt_DB" "MC_Halt DB"(Use the MC_Halt instruction to stop all
WMEC Fal Axis:= multi fb in , motion and to brings the axis to a stand-
. Execute:= bool_in , still. The stand-still position is not defined.
— e END — Done=> bool_out_, In order to use the MC_Halt instruction,
:‘X'S t fone . Busy=> bool out_, the axis must first be enabled.
) FREE - CommandAborted=> bool out_,
- Error=> bool_out_,
Error 1. ErrorID=> word out_,
ErrorInfo=> word out);

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_Halt_DB" is the name of the instance DB.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

381

Technology instructions

9.3 Motion conftrol

Table 9- 34 Parameters for the MC_Halt instruction

Parameter and type Data type Description

Axis IN TO_Axis_1 Axis technology object

Execute IN Bool Start of the task with a positive edge

Done ouT Bool TRUE = Zero velocity reached

Busy ouT Bool TRUE = The task is being executed.

CommandAborted ouT Bool TRUE = During execution the task was aborted by another
task.

Error ouT Bool TRUE = An error has occurred during execution of the task.
The cause of the error can be found in parameters "Error|D"
and "Errorinfo".

ErrorlD ouT Word Error ID for parameter "Error"

Errorinfo ouT Word Error info ID for parameter "ErrorID"

: A A
MC_MoveVelocity —Velocity A/ Y4 A\
Axis_1 - Axis InVelocity |- InVel_1 - - - - - -
Exe_1 - Execute Busy |- Busy_1 Bxe 1 o :;LI L >t
50.0 - Velocity CommandAborted |- Abort_1 InVel 1 L I_l ________ P I_l_ TIT T]_:)
1 - Direction Error |- -0 ” >t
0 — Current ErroriD |- 1| p—— | — — — == = I | - —I - -
Errorinfo |- Busy_1 o 55 > t
1 —
L_Abort 1 ¢ 46 I I > t
—MC_ Halt
MC_Halt U I S NN A IS B .
Axis_1 - Axis Done |- Done_2 Exe_2 g I l £ | L >t
Exe_2 - Execute Busy |- Busy_2 T
CommandAborted |- Abort_2 Done_2 g I I ¢ >t
Error |- P I N I: _______________
ErrorlD |- Busy_2 g | I « | | >t
Errorinfo |— ’ e

| Abort_2 o '(’(I I >t
500} - - —p— - - - - -4 - - - - - -

Velocity /
Axis_1 0.0 £ » t

The following values were configured in the "Dynamics > General" configuration window: Acceleration = 10.0 and
Deceleration = 5.0

©) The axis is braked by an MC_Halt task until it comes to a standstill. The axis standstill is signaled via "Done_2".
@) While an MC_Halt task is braking the axis, this task is aborted by another motion task. The abort is signaled via
"Abort_2".

S7-1200 Programmable controller
382 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3.3.5

9.3 Motion conftrol

Override response

The MC_Halt task can be aborted by the The new MC_Halt task aborts the following
following motion control tasks: active motion control tasks:

e MC_Home Mode = 3 ¢ MC_Home Mode = 3

e MC_Halt e MC_Halt

e MC_MoveAbsolute e MC_MoveAbsolute

e MC_MoveRelative e MC_MoveRelative

e MC_MoveVelocity o MC_MoveVelocity

e MC_Moveldog ¢ MC_Movedog

MC_MoveAbsolute instruction

Table 9- 35 MC_MoveAbsolute instruction

LAD / FBD SCL Description
"MC_ "MC_MoveAbsolute_ DB" (Use the MC_MoveAbsolute
MDVE*"E'JBS,P'UTE- Axis:= multi fb in_, instruction to start a positioning
Execute:= bool in , motion of the axis to an absolute
MC_Movedbsalu™ =717 L. - T . iti
dm|| Ty Position:= real in_, position.
—EN END — Velocity:= real in_, In order to use the
Ais Dohe - Done=> bool out , MC_MoveAbsolute instruction, the
— Execute — Busy=> bool out , axis must first be enabled and also
Position CommandAborted=> bool out |, must be homed.
W elocity — _ - - -
Error Error=> bool_ out_,
ErrorID=> word out_,
. ErrorInfo=> word out);

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_MoveAbsolute_DB" is the name of the instance DB.

Table 9- 36 Parameters for the MC_MoveAbsolute instruction

Parameter and type Data type Description
Axis IN TO_Axis_1 Axis technology object
Execute IN Bool Start of the task with a positive edge (Default value: False)
Position IN Real Absolute target position (Default value: 0.0)
Limit values: -1.0e'2 < Position < 1.0e12
Velocity IN Real Velocity of axis (Default value: 10.0)
This velocity is not always reached because of the configured
acceleration and deceleration and the target position to be
approached.
Limit values: Start/stop velocity < Velocity < maximum velocity
Done ouT Bool TRUE = Absolute target position reached
Busy ouT Bool TRUE = The task is being executed.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 383

Technology instructions

9.3 Motion conftrol

Parameter and type Data type Description
CommandAborted ouT Bool TRUE = During execution the task was aborted by another task.
Error ouT Bool TRUE = An error has occurred during execution of the task. The
cause of the error can be found in parameters "ErrorID" and
"Errorinfo".
ErrorlD ouT Word Error ID for parameter "Error" (Default value: 0000)
Errorinfo ouT Word Error info ID for parameter "ErrorID" (Default value: 0000)
A N
e N\ A
MC_MoveAbsolute rMovet T S .
Axis_1 - Axis Done |- Done_1 Exe_1 I I £ I I >t
Exe_1 —| Execute Busy |- Busy_1 1L - - - o — L L
1000.0 o Position CommandAborted |- Abort_1 Done_1 g I I P >t
50.0 - Velocity Error |- 1 ” o
ErrorID |- N I I ____________
Errorlnfo |- Busy 1 ¢ 45 > t
1P == = = = = - - = - - = I—r - - — -
|_Abort 1 o 1’1’ > t
MC_MoveAbsolute Move 2 T _
Axis_1 - Axis Done |- Done_2 Exe_2 I I £ I I: t
Exe_2 —|Execute Busy |- Busy_2 Wbl L __________ }
1500.0 ~|Position CommandAborted - Done_2 4 _I] P 11 t
30.0 - Velocity Error |- 7 v
ErrorID |- r----—---- Iﬁ —————— I I -
Errorinfo | L Busy_2 0 '('(>t

500} — - — — —
300 — — /= — = A\~ 4 — 5
Velocity
Axis_1 0.0

15000F + — — — — — = = =/ = = = — S Om—— - — — — = — — — — — — —
10000F — — — = — — — O™ — — — — — — — — — — — — — _

Position

Axis_1 0.0 <

7

The following values were configured in the "Dynamics > General" configuration window: Acceleration = 10.0 and
Deceleration = 10.0

@

384

An axis is moved to absolute position 1000.0 with a MC_MoveAbsolute task. When the axis reaches the target
position, this is signaled via "Done_1". When "Done_1" = TRUE, another MC_MoveAbsolute task, with target
position 1500.0, is started. Because of the response times (e.g., cycle time of user program, etc.), the axis comes
to a standstill briefly (see zoomed-in detail). When the axis reaches the new target position, this is signaled via
"Done_2".

An active MC_MoveAbsolute task is aborted by another MC_MoveAbsolute task. The abort is signaled via
"Abort_1". The axis is then moved at the new velocity to the new target position 1500.0. When the new target
position is reached, this is signaled via "Done_2".

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

Override response

The MC_MoveAbsolute task can be
aborted by the following motion control

tasks:
¢ MC_Home Mode =3
e MC_Halt

¢ MC_MoveAbsolute
¢ MC_MoveRelative

9.3 Motion conftrol

The new MC_MoveAbsolute task aborts
the following active motion control tasks:

MC_Home Mode = 3
MC_Halt
MC_MoveAbsolute
MC_MoveRelative
MC_MoveVelocity

e MC_MoveVelocity e MC_Moveldog
e MC_Movedog
9.3.3.6 MC_MoveRelative instruction
Table 9- 37 MC_MoveRelative instruction
LAD / FBD SCL Description
"M "MC_MoveRelative DB" (Use the MC_MoveRelative

Maveltelative_ Axis:= multi_fb in_,

. Execute:= bool in ,
MC_MD\-ERBI&UV_.- 7] - - .

’ Distance:= real in_,

ErrorID=> word out_,

ErrorInfo=> word out);

—EM EMD = Velocity:= real in _,
Auxis Dane = Done=> bool out_,
gy EHEEE - Busy=> bool out ,
Distance - " -
) CommandAborted=> bool out ,
“elocity — - - -
Error o Error=> bool_ out_,

instruction to start a positioning
motion relative to the start position.

In order to use the
MC_MoveRelative instruction, the
axis must first be enabled.

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_MoveRelative_DB" is the name of the instance DB.

Table 9- 38 Parameters for the MC_MoveRelative instruction

Parameter and type Data type Description

Axis IN TO_Axis_1 Axis technology object

Execute IN Bool Start of the task with a positive edge (Default value: False)

Distance IN Real Travel distance for the positioning operation (Default value: 0.0)
Limit values: -1.0e'2 < Distance < 1.0e'2

Velocity IN Real Velocity of axis (Default value: 10.0)
This velocity is not always reached on account of the configured
acceleration and deceleration and the distance to be traveled.
Limit values: Start/stop velocity < Velocity < maximum velocity

Done ouT Bool TRUE = Target position reached

Busy ouT Bool TRUE = The task is being executed.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

385

Technology instructions

9.3 Motion conftrol

Parameter and type Data type Description
CommandAborted ouT Bool TRUE = During execution the task was aborted by another task.
Error ouT Bool TRUE = An error has occurred during execution of the task. The
cause of the error can be found in parameters "ErrorID" and
"Errorinfo".
ErrorlD ouT Word Error ID for parameter "Error" (Default value: 0000)
Errorinfo ouT Word Error info ID for parameter "ErrorID" (Default value: 0000)
A A
Al N 7 N
MC_MoveRelative —Move 1 n - - .
Axis_1 —{ Axis Done |- Done_1 Exe_1 I £ I I >t
Exe_1 - Execute Busy |- Busy_1 1
1000.0 | Distance CommandAborted |- Abort_1 Busy 1
50.0 - Velocity Error |- v-1o
ErrorID |- 1
Errorinfo |- Done_1 ¢
1
L_Abort_1 ¢
MC_MoveRelative rMove2
Axis_1 —]Axis Done |~ Done_2 Exe_2 0
Exe_2 —{Execute Busy |~ Busy_2 1
500.0 | Distance CommandAborted |~ Busy 2
30.0 Velocity Error |- -2 0
ErrorID |- 1
Errorinfo |- Done_2
50.0
30.0
Velocity
Axis_1 g0
15000 — — —j)= — = = = = - - — o O= — m — — — = — — —— - — — — — — -
10000F — = V- - - — s — — - - — — — - — - - — = = = = -
Positon | -~~~/ -~~~ -~~~ - - T - T T T T~ 5
Axis_1 0.0 (4

7”7

The following values were configured in the "Dynamics > General" configuration window: Acceleration = 10.0 and

Deceleration = 10.0

@

The axis is moved by an MC_MoveRelative task by the distance ("Distance") 1000.0. When the axis reaches the

target position, this is signaled via "Done_1". When "Done_1" = TRUE, another MC_MoveRelative task, with travel
distance 500.0, is started. Because of the response times (for example, cycle time of user program), the axis
comes to a standstill briefly (see zoomed-in detail). When the axis reaches the new target position, this is signaled

via "Done_2".
An active MC_MoveRelative task is aborted by another MC_MoveRelative task. The abort is signaled via

"Abort_1". The axis is then moved at the new velocity by the new distance ("Distance") 500.0. When the new target
position is reached, this is signaled via "Done_2".

386

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

Override response

The MC_MoveRelative task can be aborted
by the following motion control tasks:

¢ MC_Home Mode = 3
e MC_Halt

e MC_MoveAbsolute

¢ MC_MoveRelative

e MC_MoveVelocity

9.3 Motion conftrol

The new MC_MoveRelative task aborts the
following active motion control tasks:

MC_Home Mode = 3
MC_Halt
MC_MoveAbsolute
MC_MoveRelative
MC_MoveVelocity

e MC_Moveldog ¢ MC_Movedog
9.3.3.7 MC_MoveVelocity instruction
Table 9-39 MC_MoveVelocity instruction
LAD / FBD SCL Description
"ML "MC_MoveVelocity DB" (Use the MC_MoveVelocity

aneVeEcity_
OB"

1} I:_Move\-’elnciq;

—EN EMD

Axis In elocity =

— Execute —
Yelocity

]

= Currernt Error =1

Axis:=
Execute:= bool_in _,

multi fb in_,

. Velocity:= real in _,
Direction:=_int_in_,
Current:=_bool_in_,
InVelocity=> bool_ out_,
Busy=> bool out_,
CommandAborted=> bool_ out_,
Error=> bool_out_,
ErrorID=> word out_,
ErrorInfo=> word out);

instruction to move the axis
constantly at the specified velocity.

In order to use the
MC_MoveVelocity instruction, the
axis must first be enabled.

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_MoveVelocity_DB" is the name of the instance DB.

Table 9- 40 Parameters for the MC_MoveVelocity instruction

Parameter and type Data type Description

Axis IN TO_Axis_1 Axis technology object

Execute IN Bool Start of the task with a positive edge (Default value: False)
Velocity IN Real Velocity specification for axis motion (Default value: 10.0)

Limit values: Start/stop velocity < |Velocity| < maximum velocity
(Velocity = 0.0 is allowed)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

387

Technology instructions

9.3 Motion conftrol

Parameter and type Data type Description

Direction IN Int Direction specification:

o 0: Direction of rotation corresponds to the sign of the value in
parameter "Velocity" (Default value)

e 1: Positive direction of rotation (The sign of the value in
parameter "Velocity" is ignored.)

e 2: Negative direction of rotation (The sign of the value in
parameter "Velocity" is ignored.)

Current IN Bool Maintain current velocity:

e FALSE: "Maintain current velocity" is deactivated. The values
of parameters "Velocity" and "Direction" are used. (Default
value)

o TRUE: "Maintain current velocity" is activated. The values in

parameters "Velocity" and "Direction" are not taken into
account.

When the axis resumes motion at the current velocity, the
"InVelocity" parameter returns the value TRUE.
InVelocity ouT Bool TRUE:

e If "Current" = FALSE: The velocity specified in parameter
"Velocity" was reached.

e [f "Current" = TRUE: The axis travels at the current velocity at
the start time.

Busy ouT Bool TRUE = The task is being executed.

CommandAborted ouT Bool TRUE = During execution the task was aborted by another task.

Error ouT Bool TRUE = An error has occurred during execution of the task. The
cause of the error can be found in parameters "ErrorID" and
"Errorinfo".

ErrorlD ouT Word Error ID for parameter "Error" (Default value: 0000)

Errorinfo ouT Word Error info ID for parameter "ErrorID" (Default value: 0000)

S7-1200 Programmable controller
388 System Manual, 04/2012, ASE02486680-06

Technology instructions

— Move 1

MC_MoveVelocity 1
Axis_1 - Axis InVelocity - InVel_1 Exe_1 g
Exe_1 — Execute Busy |- Busy_1 1
50.0 - Velocity CommandAborted |- Abort_1 Busy 1 o

1] Direction Error |- -
0 — Current ErroriD |- 1
Errorinfo |- InVel_1 o
1
_Abort_1 0
MC_MoveVelocity rMove2
Axis_1 -] Axis InVelocity |- InVel_2 Exe_2 ¢
Exe_2 —{Execute Busy |- Busy_2 1
15.0 {Velocity CommandAborted |- Busy_2 0

1 - Direction Error |-

0 —Current ErrorlD |- 1
Errorinfo |- InVel_2 g
50.0
Velocity 15.0
Axis_1 0.0

9.3 Motion conftrol

The following values were configured in the "Dynamics > General" configuration window: Acceleration = 10.0 and
Deceleration = 10.0

@

®

An active MC_MoveVelocity task signals via "InVel_1" that its target velocity has been reached. It is then aborted
by another MC_MoveVelocity task. The abort is signaled via "Abort_1". When the new target velocity 15.0 is
reached, this is signaled via "InVel_2". The axis then continues moving at the new constant velocity.

An active MC_MoveVelocity task is aborted by another MC_MoveVelocity task prior to reaching its target velocity.
The abort is signaled via "Abort_1". When the new target velocity 15.0 is reached, this is signaled via "InVel_2".

The axis then continues moving at the new constant velocity.

Override response

The MC_MoveVelocity task can be aborted
by the following motion control tasks:

¢ MC_Home Mode =3

e MC_Halt

¢ MC_MoveAbsolute

¢ MC_MoveRelative
e MC_MoveVelocity
e MC_Moveldog

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

The new MC_MoveVelocity task aborts the
following active motion control tasks:

MC_Home Mode = 3
MC_Halt
MC_MoveAbsolute
MC_MoveRelative
MC_MoveVelocity
MC_Movedog

389

Technology instructions

9.3 Motion conftrol

Note

Behavior with zero set velocity (Velocity = 0.0)

An MC_MoveVelocity task with "Velocity" = 0.0 (such as an MC_Halt task) aborts active
motion tasks and stops the axis with the configured deceleration. When the axis comes to a
standstill, output parameter "InVelocity" indicates TRUE for at least one program cycle.

"Busy" indicates the value TRUE during the deceleration operation and changes to FALSE
together with "InVelocity". If parameter "Execute” = TRUE is set, "InVelocity" and "Busy" are
latched.

When the MC_MoveVelocity task is started, status bit "SpeedCommand" is set in the
technology object. Status bit "ConstantVelocity" is set upon axis standstill. Both bits are
adapted to the new situation when a new motion task is started.

9.3.3.8 MC_MoveJog instruction

Table 9-41 MC_Movedog instruction

LAD / FBD SCL Description
“MC_Movelog_ "MC_MoveJog_DB" (Use the MC_MoveJog instruction to move
oe” Axis:= multi fb in_, the axis constantly at the specified
MC_Movelog |3 |T' JogForward:= bool in _, velocity in jog mode. This instruction is
JogBackward:= bool in , typically used for testing and
—EM EMD — Velocity:= real in , commissioning purposes.
Axis Ity el ocity =1 . — - =
I L, InVelocity=> bool out , In order to use the MC_MoveJog
— JogBackward Busy=> bool out_, instruction, the axis must first be enabled.
Y elocity . CommandAborted=> bool_out_,
Error . Error=>_bool out_,
ErrorID=> word out_,
- ErrorInfo=> word out)

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_MoveJog_DB" is the name of the instance DB.

Table 9- 42 Parameters for the MC_MoveJog instruction

Parameter and type Data type Description
Axis IN TO_Axis_1 Axis technology object
JogForward’ IN Bool As long as the parameter is TRUE, the axis moves in the positive
direction at the velocity specified in parameter "Velocity". The sign of
the value in parameter "Velocity" is ignored. (Default value: False)
JogBackward' IN Bool As long as the parameter is TRUE, the axis moves in the negative
direction at the velocity specified in parameter "Velocity". The sign of
the value in parameter "Velocity" is ignored. (Default value: False)
Velocity IN Real Preset velocity for jog mode (Default value: 10.0)
Limit values: Start/stop velocity < |Velocity| < maximum velocity
S7-1200 Programmable controller
390 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Parameter and type Data type Description

InVelocity ouT Bool TRUE = The velocity specified in parameter "Velocity" was reached.

Busy ouT Bool TRUE = The task is being executed.

CommandAborted ouT Bool TRUE = During execution the task was aborted by another task.

Error ouT Bool TRUE = An error has occurred during execution of the task. The
cause of the error can be found in parameters "ErrorID" and
"Errorinfo".

ErrorlD ouT Word Error ID for parameter "Error" (Default value: 0000)

Errorinfo ouT Word Error info ID for parameter "ErrorID" (Default value: 0000)

1 If both the JogForward and JogBackward parameters are simultaneously TRUE, the axis stops with the configured
deceleration. An error is indicated in parameters "Error", "ErrorID", and "Errorinfo".

A A

—MoveJog 4 N\ N
MC_MoveJog b o— .
Axis_1 —| Axis InVelocity [~ InVel_1 Jog_ F o [| 45 > t
Jog_F —{JogForward Busy [~ Busy_1 bt oo e L _o_.
Jog_B - JogBackward CommandAborted |~ Jog_B g poa I I >t

. -) »

50.0 -] Velocity Error |- y

ErroriD (= InVel_1 ¢ I I (4 I I >t

Errorinfo |-) 4 >
Busy_1 g | 45 I I >t
500 — — —p— - - -~ — — — — — —— — — — = — = — = — — -

Velocity

Axis_1 0.0 _,,%_/ >t
SO0 - - - - - o - - - -

The following values were configured in the "Dynamics > General" configuration window: Acceleration = 10.0 and

Deceleration = 5.0

@ The axis is moved in the positive direction in jog mode via "Jog_F". When the target velocity 50.0 is reached, this is
signaled via "InVelo_1". The axis brakes to a standstill again after Jog_F is reset.
® The axis is moved in the negative direction in jog mode via "Jog_B". When the target velocity 50.0 is reached, this

is signaled via "InVelo_1". The axis brakes to a standstill again after Jog_B is reset.

Override response

The MC_Movedog task can be aborted by
the following motion control tasks:

MC_Home Mode = 3

MC_Halt

MC_MoveAbsolute
MC_MoveRelative

MC_MoveVelocity

MC_Movedog

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

The new MC_MovelJog task aborts the
following active motion control tasks:

MC_Home Mode = 3
MC_Halt
MC_MoveAbsolute
MC_MoveRelative
MC_MoveVelocity
MC_Movedog

391

Technology instructions

9.3 Motion conftrol

9.3.3.9

MC_CommandTable instruction

Table 9-43 MC_CommandTable instruction

LAD / FBD

SCL

Description

"ML,

CommandTable_

OB

— EM

Az
CommandTa...
— Execute
Startindex
Endindex

MC_CommandTal™ =771
&l Y

Currentlndex

EMO b
Done

Error =

Code

"MC_CommandTable DB" (

CommandAborted=> bool out_,

Axis:= multi_fb in_,

CommandTable:= multi_fb in_,

Execute:= bool_in_,
StartIndex:= uint _in_,
EndIndex:= uint in_,
Done=> bool out_,
Busy=> bool out_,

Error=> bool out_,
ErrorID=> word out_,
ErrorInfo=> word out_,
CurrentIndex=> uint_out_,
Code=> word out);

Executes a series of individual
motions for a motor control axis
that can combine into a
movement sequence.

Individual motions are configured
in a technology object command
table for pulse train output
(TO_CommandTable_PTO).

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_CommandTable_DB" is the name of the instance DB.

Table 9- 44 Parameters for the MC_CommandTable instruction

Parameter and type Data type Initial value | Description
Axis IN TO_Axis_1 - Axis technology object
Table IN TO_CommandTable_1 |- Command table technology object
Execute IN Booll FALSE Start job with rising edge
Startindex IN Int 1 Start command table processing with this step
Limits: 1 < Startindex < Endindex
Endindex IN Int 32 End command table processing with this step
Limits: Startindex < Endindex < 32
Done ouT Bool FALSE MC_CommandTable processing completed
successfully
Busy ouT Bool FALSE Operation in progress
CommandAborted ouT Bool FALSE The task was aborted during processing by
another task.
Error ouT Bool FALSE An error ocurred during processing. The cause is
indicated by the parameters ErrorID and Errorinfo.
ErrorlD ouT Word 16#0000 Error identifier
Errorinfo ouT Word 16#0000 Error information
Step ouT Int 0 Step currently in process
Code ouT Word 16#0000 User defined identifier of the step currently in
process
You can create the desired movement sequence in the "Command Table" configuration
window and check the result against the graphic view in the trend diagram.
S7-1200 Programmable controller
392 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

srenenial

Tochnlogy objocd - command tabls

Mlaarie) * Codranaed Lable_ |

Coerenand table

o Enatie e Wi i P drreebers Wom | Cergbe e i

Irap Command rae Posmen T aeel par Veleossamds | Ouraton(i] Nest ites Sep code

= G
e

Coseanand complets W fml

Positerrang ihsoluie

Fl Bangs = -_ i
| Errypt - - =
4 Earpt = - - iy
Ernpd - - - - &
Potiion
[rem])
- 1 =
; ! ; T i
= \ : .
o 1 (i ;
15 L e 4
-3 H il -\\._.
102 / ™
- /__,—-"] i \\ 3
T 4 TN R, o R, BB o serovemrrA L
] oS 1 18 2 25
E . |
= . |
Buratiands]

You can select the command types that are to be used for processing the command table.
Up to 32 jobs can be entered. The commands are processed in sequence.

Table 9- 45 MC_CommandTable command types

Command type

Description

Empty The empty serves as a placeholder for any commands to be added. The empty entry is
ignored when the command table is processed
Halt Pause axis.

Note: The command only takes place after a "Velocity setpoint" command.

Positioning Relative

Positions the axis based upon distance. The command moves the axis by the given
distance and velocity.

Positioning Absolute

Positions the axis based upon location. The command moves the axis to the given
location, using the velocity specified.

Velocity setpoint

Moves the axis at the given velocity.

Wait

Waits until the given period is over. "Wait" does not stop an active traversing motion.

Separator

Adds a "Separator" line above the selected line. The separator line allows more than one
profile to be defined in a single command table.

S7-1200 Programmable

Prerequisites for MC_CommandTable execution:
® The technology object TO_Axis_PTO V2.0 must be correctly configured.
® The technology object TO_CommandTable_PTO must be correctly configured.

® The axis must be released.

controller

System Manual, 04/2012, A5E02486680-06 393

Technology instructions

9.3 Motion conftrol

9.3.3.10

Override response

The MC_CommandTable task can be
aborted by the following motion control

tasks: N

e MC_Home Mode =3 .
e MC_Halt .
e MC_MoveAbsolute .
e MC_MoveRelative .
e MC_MoveVelocity .
e MC_Movedog .
e MC_CommandTable .

MC_ChangeDynamic

Table 9- 46 MC_ChangeDynamic instruction

The new MC_CommandTable task aborts the
following active motion control tasks:

MC_Home Mode = 3
MC_Halt
MC_MoveAbsolute
MC_MoveRelative
MC_MoveVelocity
MC_Movedog
MC_CommandTable

The current motion control job with the
launch of the first "Positioning Relative",
"Positioning Absolute", "Velocity setpoint”
or "Halt" command

LAD / FBD

SCL

Description

"MC_
Changelynamic
oB*

"MC_ChangeDynamic DB" (
Execute:= bool_in_,

EM
Als

MC_ChanpeDynamic

= Execute

ChangeRampUp:= bool_in_,
END f— . -
Bane RampUpTime:=_real in_,
Errorf ChangeRampDown:= bool_ in ,

RampDownTime:= real in ,
ChangeEmergency:= bool_ in ,
EmergencyRampTime:=_real in ,
ChangeJerkTime:= bool_in ,
JerkTime:= real in ,

Done=> bool_ out_,
Error=> bool out_,
ErrorID=> word out_,

ErrorInfo=> word out);

Changes the dynamic settings of
a motion control axis:

e Change the ramp-up time
(acceleration) value

e Change the ramp-down time
(deceleration) value

e Change the emergency stop
ramp-down time (emergency
stop deceleration) value

e Change the smoothing time
(jerk) value

1 STEP 7 automatically creates the DB when you insert the instruction.

2 In the SCL example, "MC_ChangeDynamic_DB" is the name of the instance DB.

Table 9- 47 Parameters for the MC_ChangeDynamic instruction

Parameter and type Data type Description
Axis IN TO_Axis_1 Axis technology object
Execute IN Bool Start of the command with a positive edge. Default value:
FALSE
S7-1200 Programmable controller
394 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Parameter and type Data type Description

ChangeRampUp IN Bool TRUE = Change ramp-up time in line with input parameter
"RampUpTime". Default value: FALSE

RampUpTime IN Real Time (in seconds) to accelerate from standstill to the configured
maximum velocity without jerk limit. Default value: 5.00
The change will influence the tag <Axis name>.
Config.DynamicDefaults.Acceleration. The effectiveness of the
change is shown in the description of this tag.

ChangeRampDown IN Bool TRUE = Change ramp-down time in line with input parameter
"RampDownTime". Default value: FALSE

RampDownTime IN Real Time (in seconds) to decelerate axis from the configured
maximum velocity to standstill without jerk limiter. Default value:
5.00
The change will influence the tag <Axis name>.
Config.DynamicDefaults.Deceleration. The effectiveness of the
change is shown in the description of this tag.

ChangeEmergency IN Bool TRUE = Change emergency stop ramp-down time in line with
input parameter "EmergencyRampTime" Default value: FALSE

EmergencyRampTime IN Real Time (in seconds) to decelerate the axis from configured
maximum velocity to standstill without jerk limiter in emergency
stop mode. Default value: 2.00
The change will influence the tag <Axis name>.
Config.DynamicDefaults.EmergencyDeceleration. The
effectiveness of the change is shown in the description of this
tag.

ChangeJerkTime IN Bool TRUE = Change smoothing time according to the input
parameter "JerkTime". Default value: FALSE

JerkTime IN Real Smoothing time (in seconds) used for the axis acceleration and
deceleration ramps. Default value: 0.25
The change will influence the tag <Axis name>.
Config.DynamicDefaults.Jerk. The effectiveness of the change is
shown in the description of this tag.

Done ouT Bool TRUE = The changed values have been written to the
technology data block. The description of the tags will show
when the change becomes effective. Default value: FALSE

Error ouT Bool TRUE = An error occurred during execution of the command.
The cause of the error can be found in parameters "ErrorID" and
"Errorinfo". Default value: FALSE

ErrorlD ouT Word Error identifier. Default value: 16#0000

Errorinfo IN Word Error information. Default value: 16#0000

Prerequisites for MC_ ChangeDynamic execution:

® The technology object TO_Axis_PTO V2.0 must be correctly configured.

® The axis must be released.

Override response

An MC_ChangeDynamic command cannot be aborted by any other Motion Control
command.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

395

Technology instructions

9.3 Motion conftrol

A new MC_ChangeDynamic command does not abort any active Motion Control jobs.

Note

The input parameters "RampUpTime", "RampDownTime", "EmergencyRampTime" and
"RoundingOffTime" can be specified with values that makes the resultant axis parameters

"acceleration", "delay", "emergency stop-delay" and "jerk" outside the permissible limits.

Make sure you keep the MC_ChangeDynamic parameters within the limits of the dynamic
configuration settings for the axis technological object.

9.34 Operation of motion control for S7-1200

9.3.4.1 CPU outputs used for motion control

The CPU provides four pulse output generators. Each pulse output generator provides one
pulse output and one direction output for controlling a stepper motor drive or a servo motor
drive with pulse interface. The pulse output provides the drive with the pulses required for
motor motion. The direction output controls the travel direction of the drive.

Pulse and direction outputs are permanently assigned to one another. Onboard CPU outputs
and outputs of a signal board can be used as pulse and direction outputs. You select
between onboard CPU outputs and outputs of the signal board during device configuration
under Pulse generators (PTO/PWM) on the "Properties" tab. Only PTO (Pulse Train Output)
applies to motion control.

The PTO output generates a square wave output of variable frequency. Pulse generation is
controlled by configuration and execution information supplied through H/W configuration
and/or SFCs/SFBs.

Based upon the user’s selection while the CPU is in RUN mode, either the values stored in
the image register or the pulse generator outputs drive the digital outputs. In STOP mode,
the PTO generator does not control the outputs.

Table 9- 48 Address assignments of the pulse and direction outputs

Usag_;e of outputs for motion control
Pulse Direction
PTO O
Built-in 1/0 Q0.0 Q0.1
SB 1/0 Q4.0 Q4.1
PTO 1
Built-in 1/0 Q0.2 Q0.3
SB 1/0 Q4.2 Q4.3
PTO 2
Built-in 1/0 Q0.41 Q0.5"
SB 1/0 Q4.0 Q4.1
PTO 3

S7-1200 Programmable controller
396 System Manual, 04/2012, ASE02486680-06

Technology instructions

Drive interface

9.34.2

9.3 Motion conftrol

Usage of outputs for motion control

Built-in I/O Q0.62 Q0.72

SB 1/0 Q4.2 Q4.3

T The CPU 1211C does not have outputs Q0.4, Q0.5, Q0.6, or Q0.7. Therefore, these outputs
cannot be used in the CPU 1211C.

2 The CPU 1212C does not have outputs Q0.6 or Q0.7. Therefore, these outputs cannot be used in
the CPU 1212C.

3 This table applies to the CPU 1211C, CPU 1212C, CPU 1214C, and CPU 1215C PTO functions

For motion control, you can optionally configure a drive interface for "Drive enabled" and
"Drive ready". When using the drive interface, the digital output for the drive enable and the
digital input for "drive ready" can be freely selected.

Note

The firmware will take control via the corresponding pulse and direction outputs if the PTO
(Pulse Train Output) has been selected and assigned to an axis.

With this takeover of the control function, the connection between the process image and I/O
output is also disconnected. While the user has the possibility of writing the process image of
pulse and direction outputs via the user program or watch table, this is never transferred to
the 1/0 output. Accordingly, it is also not possible to monitor the I/O output via the user
program or watch table. The information read merely reflects the value of the process image
and does not match the actual status of the I/O output in any respect.

For all other CPU outputs that are not used permanently by the CPU firmware, the status of
the 1/0 output can be controlled or monitored via the process image, as usual.

Hardware and software limit switches for motion control

Use the hardware and software limit switches to limit the "allowed travel range" and the
"working range" of your axis.

A
[
% 4 Ll
% B
[l C
. . >
0] ® ® ® @ O]
@ Mechanical stop A Allowed travel range for the axis
@) Lower and upper hardware limits B Working range of the axis
® Lower and upper software limits C Distance

Hardware and software limit switches must be activated prior to use in the configuration or in
the user program. Software limit switches are only active after homing the axis.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 397

Technology instructions

9.3 Motion conftrol

Hardware limit switches

398

Hardware limit switches determine the maximum travel range of the axis. Hardware limit
switches are physical switching elements that must be connected to interrupt-capable inputs
of the CPU. Use only hardware limit switches that remain permanently switched after being
approached. This switching status may only be revoked after a return to the allowed travel

range.

Table 9- 49 Available inputs for pulse generators

Description RPS LIM- LIM+
PTO 0
Built-in 1/0 10.0-11.5
SB I/0 14.0-14.3
PTO 1
Built-in 1/0 10.0-11.5
SB I/0 14.0-14.3
PTO 2
Built-in 1/0 10.0-11.5
SB I/0 14.0-14.3
PTO 3
Built-in I/O 10.0-11.5
SB I/0 14.0-14.3

When the hardware limit switches are approached, the axis brakes to a standstill at the
configured emergency deceleration. The specified emergency deceleration must be
sufficient to reliably stop the axis before the mechanical stop. The following diagram
presents the behavior of the axis after it approaches the hardware limit switches.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

	A	
	A	
[I L [
O - g ©)		
[[[[o		
	B	
% >
>
D E F D
©) The axis brakes to a standstill at the configured emergency decleration.
@ Range in which the hardware limit switches signal the stats "approached".
A [Velocity]
B Allowed travel range
Cc Distance
D Mechanical stop
E Lower hardware limit switch
F Upper hardware limit switch
A WARNING

If the filter time for a digital input channel is changed from a previous setting, a new "0"
level input value may need to be presented for up to 20.0 ms accumulated duration before
the filter becomes fully responsive to new inputs. During this time, short "0" pulse events of
duration less than 20.0 ms may not be detected or counted.

This changing of filter times can result in unexpected machine or process operation, which
may cause death or serious injury to personnel, and/or damage to equipment.

To ensure that a new filter time goes immediately into effect, a power cycle of the CPU
must be applied.

Software limit switches

Software limit switches limit the "working range" of the axis. They should fall inside the
hardware limit switches relative to the travel range. Because the positions of the software
limit switches can be set flexibly, the working range of the axis can be restricted on an
individual basis depending on the current traversing profile. In contrast to hardware limit
switches, software limit switches are implemented exclusively by means of the software and
do not require their own switching elements.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 399

Technology instructions

9.3 Motion conftrol

If software limit switches are activated, an active motion is stopped at the position of the
software limit switch. The axis is braked at the configured deceleration. The following
diagram presents the behavior of the axis until it reaches the software limit switches.

A
A

|
|
|
| o [
|
|
|

|
:
©) ®
|
|
|
|
|

v

A

v

D E

The axis brakes to a standstill at the configured deceleration.
[Velocity]

Working range

Distance

Lower software limit switch

ITIUOW:D@

Upper software limit switch

Use additional hardware limit switches if a mechanical endstop is located after the software
limit switches and there is a risk of mechanical damage.

Additional information

400

Your user program can override the hardware or software position limits by enabling or
disabling both hardware and software limits functionality. The selection is made from the
Axis DB.

® To enable or disable the hardware limit functionality, access the "Active" tag (Bool) in the
DB path "<axis name>/Config/PositonLimits_HW". The state of the "Active" tag enables
or disables the use of hardware position limits.

® To enable or disable software position limit functionality, access "Active" tag (Bool) in the
DB path "<axis name>/Config/Position Limits_SW". The state of this "Active" tag enables
or disables the software position limits.

You can also modify the software position limits with your user program (for example, to add
flexibility for machine setup or to shorten machine change-over time). Your user program can
write new values to the " MinPosition " and " MaxPosition " tags (engineering units in Real
format) in the DB "<axis name>/Config/PositionLimits_SW".

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

9.34.3 Homing

Homing refers to the matching of the axis coordinates to the real, physical drive position. (If
the drive is currently at position x, the axis will be adjusted to be in position x.) For position-
controlled axes, the entries and displays for the position refer exactly to these axis
coordinates.

Note

The agreement between the axis coordinates and the real situation is extremely important.
This step is necessary to ensure that the absolute target position of the axis is also achieved
exactly with the drive.

The MC_Home instruction initiates the homing of the axis.

There are 4 different homing functions. The first two functions allow the user to set the
current position of the axis and the second two position the axis with respect to a Home
reference Sensor.

® Mode 0 - Direct Referencing Absolute: When executed this mode tells the axis exactly
where it is. It sets the internal position variable to the value of the Position input of the
Homing instruction. This is used for machine calibration and setup.

The axis position is set regardless of the reference point switch. Active traversing motions
are not aborted. The value of the Position input parameter of the MC_Home instruction is
set immediately as the reference point of the axis. To assign the reference point to an
exact mechanical position, the axis must be at a standstill at this position at the time of
the homing operation.

® Mode 1 - Direct Referencing Relative: When executed this mode uses the internal
position variable and adds the value of the Position input on the Homing instruction to it.
This is typically used to account for machine offset.

The axis position is set regardless of the reference point switch. Active traversing motions
are not aborted. The following statement applies to the axis position after homing: New
axis position = current axis position + value of the Position parameter of the MC_Home
instruction.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 401

Technology instructions

9.3 Motion conftrol

® Mode 2 - Passive Referencing: When the axis is moving and passes the Reference Point
Switch the current position is set as the home position. This feature will help account for
normal machine wear and gear backlash and prevent the need for manual compensation
for wear. The Position input on the Homing instruction, as before, adds to the location
indicated by the Reference Point Switch allowing easy offset of the Home position.

During passive homing, the MC_Home instruction does not carry out any homing motion.
The traversing motion required for this step must be implemented by the user via other
motion control instructions. When the reference point switch is detected, the axis is
homed according to the configuration. Active traversing motions are not aborted upon
start of passive homing.

® Mode 3 - Active Referencing: This mode is the most precise method of Homing the Axis.
The initial direction and velocity of movement is configured in the Technology Object
Configuration Extended Parameters-Homing. This is dependent upon machine
configuration. There is also the ability to determine if the leading edge or falling edge of
the Reference Point Switch signal is the Home position. Virtually all sensors have an
active range and if the Steady State On position was used as the Home signal then there
would be a possibility for error in the Homing position since the On signal active range
would cover a range of distance. By using either the leading or falling edge of that signal
a much more precise Home position results. As with all other modes the value of the
Position input on the Homing instruction is added to the Hardware referenced position.

In active homing mode, the MC_Home instruction performs the required reference point
approach. When the reference point switch is detected, the axis is homed according to
the configuration. Active traversing motions are aborted.

Modes 0 and 1 do not require that the axis be moved at all. They are typically used in setup
and calibration. Modes 2 and 3 require that the axis move and pass a sensor that is
configured in the "Axis" technology object as the Reference Point Switch. The reference
point which can be placed in the work area of the axis or outside of the normal work area but
within movement range.

Configuration of homing parameters

402

Configure the parameters for active and passive homing in the "Homing" configuration
window. The homing method is set using the "Mode" input parameter of the motion control
instruction. Here, Mode = 2 means passive homing and Mode = 3 means active homing.

NOTICE

Use one of the following measures to ensure that the machine does not travel to a
mechanical endstop in the event of a direction reversal:

o Keep the approach velocity low
¢ Increase the configured acceleration/deceleration
¢ Increase the distance between hardware limit switch and mechanical stop

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Table 9- 50 Configuration parameters for homing the axis

Parameter Description
Input reference point switch Select the digital input for the reference point switch from the drop-down list box. The
(Active and passive homing) input must be interrupt-capable. The onboard CPU inputs and inputs of an inserted

signal board can be selected as inputs for the reference point switch.

The default filter time for the digital inputs is 6.4 ms. When the digital inputs are used
as a reference point switch, this can result in undesired decelerations and thus
inaccuracies. Depending on the reduced velocity and extent of the reference point
switch, the reference point may not be detected. The filter time can be set under
"Input filter" in the device configuration of the digital inputs.

The specified filter time must be less than the duration of the input signal at the
reference point switch.

Auto reverse after reaching the Activate the check box to use the hardware limit switch as a reversing cam for the
hardware limit switches reference point approach. The hardware limit switches must be configured and
(Active homing only) activated for direction reversal.

If the hardware limit switch is reached during active homing, the axis brakes at the
configured deceleration (not with the emergency deceleration) and reverses direction.
The reference point switch is then sensed in reverse direction.

If the direction reversal is not active and the axis reaches the hardware limit switch

during active homing, the reference point approach is aborted with an error and the
axis is braked at the emergency deceleration.

Approach direction With the direction selection, you determine the "approach direction" used during
(Active and passive homing) active homing to search for the reference point switch, as well as the homing
direction. The homing direction specifies the travel direction the axis uses to
approach the configured side of the reference point switch to carry out the homing

operation.
Reference point switch ¢ Active homing: Select whether the axis is to be referenced on the left or right side
(Active and passive homing) of the reference point switch. Depending on the start position of the axis and the

configuration of the homing parameters, the reference point approach sequence
can differ from the diagram in the configuration window.

e Passive homing: With passive homing, the traversing motions for purposes of
homing must be implemented by the user via motion commands. The side of the
reference point switch on which homing occurs depends on the following factors:

"Approach direction" configuration
"Reference point switch" configuration
— Current travel direction during passive homing

Approach velocity Specify the velocity at which the reference point switch is to be searched for during
(Active homing only) the reference point approach.

Limit values (independent of the selected user unit):
Start/stop velocity < approach velocity < maximum velocity

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 403

Technology instructions

9.3 Motion conftrol

Parameter

Description

Reduced velocity
(Active homing only)

homing.

Specify the velocity at which the axis approaches the reference point switch for

Limit values (independent of the selected user unit):
Start/stop velocity < reduced velocity < maximum velocity

Home position offset
(Active homing only)

If the desired reference position deviates from the position of the reference point
switch, the home position offset can be specified in this field.

If the value does not equal 0, the axis executes the following actions following
homing at the reference point switch:

1. Move the axis at reduced velocity by the value of the home position offset.

2. When the position of the home position offset is reached, the axis position is set
to the absolute reference position. The absolute reference position is specified via
parameter "Position" of motion control instruction "MC_Home".

Limit values (independent of the selected user unit):
-1.0e12 < home position offset < 1.0e12

Table 9- 51 Factors that affect homing

Influencing factors: Result:
Configuration Configuration Current travel direction Homing on
Approach direction Reference point switch Reference point switch

Positive "Left (negative) side" Positive direction Left
Negative direction Right

Positive "Right (positive) side" Positive direction Right
Negative direction Left

Negative "Left (negative) side" Positive direction Right
Negative direction Left
Negative "Right (positive) side" Positive direction Left
Negative direction Right

Sequence for active homing

You start active homing with motion control instruction "MC_Home" (input parameter
Mode = 3). Input parameter "Position" specifies the absolute reference point coordinates in
this case. Alternatively, you can start active homing on the control panel for test purposes.

The following diagram shows an example of a characteristic curve for an active reference
point approach with the following configuration parameters:

e "Approach direction" = "Positive approach direction"

e "Reference point switch" = "Right (positive) side"

® Value of "home position offset" > 0

404

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Table 9- 52 Velocity characteristics of MC homing

Operation Notes

A | Approach velocity

Reduced velocity

Home position coordinate

O|0|®

Home position offset

O) Search phase (blue curve segment): When active homing starts, the axis accelerates to the configured "approach
velocity" and searches at this velocity for the reference point switch.

® Reference point approach (red curve section): When the reference point switch is detected, the axis in this example
brakes and reverses, to be homed on the configured side of the reference point switch at the configured "reduced
velocity".

® Travel to reference point position (green curve segment): After homing at the reference point switch, the axis travels
to the "Reference point coordinates" at the "reduced velocity". On reaching the "Reference point coordinates”, the
axis is stopped at the position value that was specified in the Position input parameter of the MC_Home instruction".

Note

If the homing search does not function as you expected, check the inputs assigned to the
hardware limits or to the reference point. These inputs may have had their edge interrupts
disabled in device configuration.

Examine the configuration data for the axis technology object of concern to see which inputs
(if any) are assigned for "HW Low Limit Switch Input", "HW High Limit Switch Input", and
"Input reference point switch". Then open the Device configuration for the CPU and examine
each of the assigned inputs. Verify the "Enable rising edge detection" and "Enable falling
edge detection" are both selected. If these properties are not selected, delete the specified
inputs in the axis configuration and select them again.

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 405

Technology instructions

9.3 Motion conftrol

9.34.4 Jerk limit

With the jerk limit you can reduce the stresses on your mechanics during an acceleration
and deceleration ramp. The value for the acceleration and deceleration is not changed
abruptly when the step limiter is active; it is adapted in a transition phase. The figure below
shows the velocity and acceleration curve without and with jerk limit.

Table 9- 53 Jerk limit

Travel without step limiter

Travel with step limiter

A
\

v

A
v

v

The jerk limit gives a "smoothed" velocity profile of the axis motion. This ensures soft starting
and braking of a conveyor belt for example.

406

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

9.3.5 Commissioning

"Status and error bits" diagnostic function

Use the "Status and error bits" diagnostic function to monitor the most important status and
error messages for the axis. The diagnostic function display is available in online mode in
"Manual control" mode and in "Automatic control" when the axis is active.

Table 9- 54 Status of the axis

Status Description

Enabled The axis is enabled and ready to be controlled via motion control tasks.
(Tag of technology object: <Axis name>.StatusBits.Enable)

Homed The axis is homed and is capable of executing absolute positioning tasks of motion control
instruction "MC_MoveAbsolute". The axis does not have to be homed for relative homing. Special
situations:

e During active homing, the status is FALSE.
¢ If a homed axis undergoes passive homing, the status is set to TRUE during passive homing.
(Tag of technology object: <Axis name>.StatusBits.HomingDone)

Error An error has occurred in the "Axis" technology object. More information about the error is available
in automatic control at the ErrorlD and Errorinfo parameters of the motion control instructions. In
manual mode, the "Last error" field of the control panel displays detailed information about the
cause of error.

(Tag of technology object: <Axis name>.StatusBits.Error)

Control panel active | The "Manual control" mode was enabled in the control panel. The control panel has control priority
over the "Axis" technology object. The axis cannot be controlled from the user program.

(Tag of technology object: <Axis name>.StatusBits.ControlPanelActive)

Table 9- 55 Drive status

Status Description

Drive ready The drive is ready for operation.
(Tag of technology object: <Axis name>.StatusBits.DriveReady)

Error The drive has reported an error after failure of its ready signal.

(Tag of technology object: <Axis name>.ErrorBits.DriveFault)

Table 9- 56 Status of the axis motion

Status Description

Standstill The axis is at a standstill.
(Tag of technology object: <Axis name>.StatusBits.StandStill)

Accelerating The axis accelerates.
(Tag of technology object: <Axis name>.StatusBits.Acceleration)

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 407

Technology instructions

9.3 Motion conftrol

Status

Description

Constant velocity

The axis travels at constant velocity.
(Tag of technology object: <Axis name>.StatusBits.ConstantVelocity)

Decelerating

The axis decelerates (slows down).
(Tag of technology object: <Axis name>.StatusBits.Deceleration)

Table 9- 57 Status of the motion mode

Status

Description

Positioning

The axis executes a positioning task of motion control instruction "MC_MoveAbsolute" or
"MC_MoveRelative" or of the control panel.

(Tag of technology object: <Axis name>.StatusBits.PositioningCommand)

Speed Command

The axis executes a task at set speed of motion control instruction "MC_MoveVelocity" or
"MC_MovedJog" or of the control panel.

(Tag of technology object: <Axis name>.StatusBits.SpeedCommand)

Homing

The axis executes a homing task of motion control instruction "MC_Home" or the control
panel.

(Tag of technology object: <Axis name>.StatusBits.Homing)

Table 9- 58 Error bits

Error

Description

Min software limit reached

The lower software limit switch has been reached.
(Tag of technology object: <Axis name>.ErrorBits.SwLimitMinReached)

Min software limit exceeded

The lower software limit switch has been exceeded.
(Tag of technology object: <Axis name>.ErrorBits.SwLimitMinExceeded)

Max software limit reached

The upper software limit switch has been reached.
(Tag of technology object: <Axis name>.ErrorBits.SwLimitMaxReached)

Max software limit exceeded

The upper software limit switch has been exceeded.
(Tag of technology object: <Axis name>.ErrorBits.SwLimitMaxExceeded)

Negative hardware limit

The lower hardware limit switch has been approached.
(Tag of technology object: <Axis name>.ErrorBits.HwLimitMin)

Positive hardware limit

The upper hardware limit switch has been approached.
(Tag of technology object: <Axis name>.ErrorBits.HwLimitMax)

PTO and HSC already used

A second axis is using the same PTO and HSC and is enabled with "MC_Power".
(Tag of technology object: <Axis name>.ErrorBits.HwUsed)

Configuration error

The "Axis" technology object was incorrectly configured or editable configuration data
were modified incorrectly during runtime of the user program.

(Tag of technology object: <Axis name>.ErrorBits.ConfigFault)

General Error

An internal error has occurred.

(Tag of technology object: <Axis name>.ErrorBits.SystemFault)

408

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions
9.3 Motion control

"Motion status" diagnostic function

Use the "Motion status" diagnostic function to monitor the motion status of the axis. The
diagnostic function display is available in online mode in "Manual control" mode and in
"Automatic control" when the axis is active.

Table 9-59 Motion status

Status Description

Target position The "Target position" field indicates the current target position of an active positioning task of
motion control instruction "MC_MoveAbsolute" or "MC_MoveRelative" or of the control panel.
The value of the "Target position" is only valid during execution of a positioning task.

(Tag of technology object: <Axis name>.MotionStatus.TargetPosition)

Current position The "Current position" field indicates the current axis position. If the axis is not homed, the
value indicates the position value relative to the enable position of the axis.

(Tag of technology object: <Axis name>.MotionStatus.Position)

Current velocity The "Current velocity" field indicates the actual axis velocity.
(Tag of technology object: <Axis name>.MotionStatus.Velocity)

Table 9- 60 Dynamic limits

Dynamic limit Description
Velocity The "Velocity" field indicates the configured maximum velocity of the axis.
(Tag of technology object: <Axis name>.Config.DynamicLimits.MaxVelocity)
Acceleration The "Acceleration” field indicates the currently configured acceleration of the axis.
(Tag of technology object: <Axis name>.Config.DynamicDefaults.Acceleration)
Deceleration The "Deceleration" field indicates the currently configured deceleration of the axis.
(Tag of technology object: <Axis name>.Config.DynamicDefaults.Deceleration)

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 409

Technology instructions

9.3 Motion conftrol

9.3.6 Monitoring active commands

9.3.6.1 Monitoring MC instructions with a "Done" output parameter

Motion control instructions with the output parameter "Done" are started by the input
parameter "Execute" and have a defined conclusion (for example, with motion control
instruction "MC_Home": Homing was successful). The task is complete and the axis is at a
standstill.

The output parameter "Done" indicates the value TRUE, if the task has been successfully
completed.

The output parameters "Busy", "CommandAborted", and "Error" signal that the task is still
being processed, has been aborted or an error is pending. The motion control instruction
"MC_Reset" cannot be aborted and thus has no "CommandAborted" output parameter.

— During processing of the motion control task, the output parameter "Busy" indicates
the value TRUE. If the task has been completed, aborted, or stopped by an error, the
output parameter "Busy" changes its value to FALSE. This change occurs regardless
of the signal at input parameter "Execute".

— Output parameters "Done", "CommandAborted", and "Error" indicate the value TRUE
for at least one cycle. These status messages are latched while input parameter
"Execute" is set to TRUE.

The tasks of the following motion control instructions have a defined conclusion:

MC_Reset
MC_Home
MC_Halt
MC_MoveAbsolute
MC_MoveRelative

The behavior of the status bits is presented below for various example situations.

410

The first example shows the behavior of the axis for a completed task. If the motion
control task has been completely executed by the time of its conclusion, this is indicated
by the value TRUE in output parameter "Done". The signal status of input parameter
"Execute" influences the display duration in the output parameter "Done".

The second example shows the behavior of the axis for an aborted task. If the motion
control task is aborted during execution, this is indicated by the value TRUE in output
parameter "CommandAborted". The signal status of the input parameter "Execute"
influences the display duration in the output parameter "CommandAborted".

The third example shows the behavior of the axis if an error occurs. If an error occurs
during execution of the motion control task, this is indicated by the value TRUE in the
output parameter "Error". The signal status of the input parameter "Execute" influences
the display duration in the output parameter "Error".

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

Table 9- 61 Example 1 - Complete execution of task

9.3 Motion conftrol

A

1 e ee——— | — — — —
Busy I |

|
|

1 - - — ————‘ ——————
Execute0 | | |
|
|
|

T
Done | n
0 | |
| |
| |
1 -t N
Command I |
Aborted ° ; |
| |
1 - - L ____ N
Error :
|

® @ 6

If "Execute" = FALSE during the processing of the task

v

Execute

1
Bus
y 0

Done
0

Command
Aborted

Error

v

O @ 6 o

If "Execute" = FALSE after completion of the task

@ The task is started with a positive edge at the input parameter "Execute". Depending on the programming, "Execute"
can still be reset to the value FALSE during the task, or the value TRUE can be retained until after completion of the task.

@ While the task is active, the output parameter "Busy" indicates the value TRUE.

(® With conclusion of the task (for example, for motion control instruction "MC_Home": Homing was successful), output

parameter "Busy" changes to FALSE and "Done" to TRUE.

@ If "Execute" retains the value TRUE until after completion of the task, then "Done" also remains TRUE and changes its

value to FALSE together with "Execute".

@ If "Execute" has been set to FALSE before the task is complete, "Done" indicates the value TRUE for only one

execution cycle.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

411

Technology instructions

9.3 Motion conftrol

Table 9- 62 Example 2 - Aborting the task

Abort\i Abort\i

1 1
] 1 ; 1

r — = - I'\ _____________ r — = L

Execute 0 | | 1 Execute 0 I 1
1 1

1 1

1 1

Busy1___|_r _____________ Busy;___I_E _____ T
1
1
1

1T F-=-+--- Fl—— — — — — — — — — — — . 1T F-=-+--- F—— - - - - - - ==
Done 1 Done 1 |
0 [} 0] [
| Il 1 |
1 1 |
L R e » 1 ek m — — p——— -
Command n Command
Aborted ° : : Aborted © X ‘
| Il 1 |
1 F-—-L - __ Li_ . 1 F-—-L - - L_ _ I
| I 1 |
Error 0 - Error 0 . ‘
1 1 |
” OJoI6 ®
If "Execute" = FALSE before the task is aborted If "Execute" = FALSE after the task is aborted

@ The task is started with a positive edge at the input parameter "Execute". Depending on the programming, "Execute"
can still be reset to the value FALSE during the task, or the value TRUE can be retained until after completion of the task.

@ While the task is active, the output parameter "Busy" indicates the value TRUE.

® During task execution, the task is aborted by another motion control task. If the task is aborted, output parameter
"Busy" changes to FALSE and "CommandAborted" to TRUE.

@ If "Execute" retains the value TRUE until after the task is aborted, then "CommandAborted" also remains TRUE and
changes its value to FALSE together with "Execute".

@ If "Execute" has been set to FALSE before the task is aborted, "CommandAborted" indicates the value TRUE for only
one execution cycle.

S7-1200 Programmable controller
412 System Manual, 04/2012, ASE02486680-06

Technology instructions

Table 9- 63

Example 3 - Error during task execution

9.3 Motion conftrol

Error \i

1 F-- -F----------
Execute 0 | I

Busy1 ___I_r __________

Done

Command

Aborted 0

1 F-=-L--- I-l ——————————
|
Error 0 ‘

v

If "Execute" = FALSE before the error occurs

| 1
| 1
Execute I 1
| 1
[1
| 1

Busy1___l_[______ K

Done I 1

Command I 1

Aborted 0

Error

v

D@06 @

If "Execute" = FALSE after the error occurs

@ The task is started with a positive edge at the input parameter "Execute". Depending on the programming, "Execute"
can still be reset to the value FALSE during the task, or the value TRUE can be retained until after completion of the task.

@ While the task is active, the output parameter "Busy" indicates the value TRUE.

® An error occurred during task execution. When the error occurs, the output parameter "Busy" changes to FALSE and

"Error" to TRUE.

@ If "Execute" retains the value TRUE until after the error occurs, then "Error" also remains TRUE and only changes its

value to FALSE together with "Execute".

@ If "Execute" has been set to FALSE before the error occurs, "Error" indicates the value TRUE for only one execution

cycle.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

413

Technology instructions

9.3 Motion conftrol

9.3.6.2 Monitoring the MC_Velocity instruction

The tasks of motion control instruction "MC_MoveVelocity" constantly at the specified
velocity.

® The tasks of motion control instruction "MC_MoveVelocity" do not have a defined end.
The task objective is fulfilled when the parameterized velocity is reached for the first time
and the axis travels at constant velocity. When the parameterized velocity is reached, this
is indicated by the value TRUE in output parameter "InVelocity".

® The task is complete when the parameterized velocity has been reached and input
parameter "Execute" has been set to the value FALSE. However, the axis motion is not
yet complete upon completion of the task. For example, the axis motion can be stopped
with motion control task "MC_Halt".

® The output parameters "Busy", "CommandAborted", and "Error" signal that the task is still
being processed, has been aborted or an error is pending.

— During execution of the motion control task, output parameter "Busy" indicates the
value TRUE. If the task has been completed, aborted, or stopped by an error, the
output parameter "Busy" changes its value to FALSE. This change occurs regardless
of the signal at input parameter "Execute".

— The output parameters "InVelocity", "CommandAborted", and "Error" indicate the
value TRUE for at least one cycle, when their conditions are met. These status
messages are latched while input parameter "Execute" is set to TRUE.

The behavior of the status bits is presented below for various example situations.

® The first example shows the behavior when the axis reaches the parameterized velocity.
If the motion control task has been executed by the time the parameterized velocity is
reached, this is indicated by the value TRUE in output parameter "InVelocity". The signal
status of the input parameter "Execute" influences the display duration in the output
parameter "InVelocity".

® The second example shows the behavior if the task is aborted before achieving the
parameterized velocity. If the motion control task is aborted before the parameterized
velocity is reached, this is indicated by the value TRUE in output parameter
"CommandAborted". The signal status of input parameter "Execute" influences the
display duration in output parameter "CommandAborted".

® The third example shows the behavior of the axis if an error occurs before achieving the
parameterized velocity. If an error occurs during execution of the motion control task
before the parameterized velocity has been reached, this is indicated by the value TRUE
in the output parameter "Error". The signal status of the input parameter "Execute"
influences the display duration in the output parameter "Error".

S7-1200 Programmable controller
414 System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Table 9- 64 Example 1 - If the parameterized velocity is reached

A

|
|
1 - - — - - - -~ ‘ —————————
Execute 0 | I |
|
|
|

ey [[
us'
yO

T

InVelocity 0 | n
| |
| |
| |

L i [
Command [|
Aborted © | |
| |

1 oL ____L - .
Error :
|

® @ 6

If "Execute" = FALSE before the configured velocity is
reached

v

[

Execute 0 I

B ! |
usy 0

InVelocity

1 __________
Command

|
|
|
|
Aborted 0 :
|
|
|

Error 0

v

© @ 6 O

If "Execute" = FALSE after the configured velocity is
reached

reached.

together with "Busy".

@ The task is started with a positive edge at the input parameter "Execute". Depending on the programming, "Execute"
can be reset to the value FALSE event before the parameterized velocity is reached, or alternatively only after it has been

@ While the task is active, the output parameter "Busy" indicates the value TRUE.
® When the parameterized velocity is reached, the output parameter "InVelocity" changes to TRUE.

@ If "Execute" retains the value TRUE even after the parameterized velocity has been reached, the task remains active.
"InVelocity" and "Busy" retain the value TRUE and only change their status to FALSE together with "Execute".

® If "Execute" has been reset to FALSE before the parameterized velocity is reached, the task is complete when the
parameterized velocity is reached. "InVelocity" indicates the value TRUE for one execution cycle and changes to FALSE

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

415

Technology instructions

9.3 Motion conftrol

Table 9- 65 Example 2 - If the task is aborted prior to reaching the parameterized velocity

v

A '
1 [
== - r
Execute 0 | I 1
[
1
1

1 - — —
Busy 0 | | :
1
[
1
1bF-=-+--- i
InVelocity 1
0 T
1
[
Command | | -|
Aborted © T
1
1 F-=-L--- LI
1
Error 0 —
1

If "Execute" =

FALSE before the task is aborted

Abort\¢

1 k-

Execute 0 I

1
Bus!
y 0

1 - =+ - - =
InVelocity 0

Command

Aborted 0

Error

OJONO,

If "Execute" = FALSE after the task is aborted

v

®

one execution cycle.

(@ While the task is active, the output parameter "Busy" indicates the value TRUE.

(D The task is started with a positive edge at the input parameter "Execute". Depending on the programming, "Execute"
can still be reset to the value FALSE during the task, or the value TRUE can be retained until after the task is aborted.

® During task execution, the task is aborted by another motion control task. If the task is aborted, output parameter
"Busy" changes to FALSE and "CommandAborted" to TRUE.

@ If "Execute" retains the value TRUE until after the task is aborted, then "CommandAborted" also remains TRUE and
changes its status to FALSE together with "Execute".

@ If "Execute" has been reset to FALSE before the task is aborted, "CommandAborted" indicates the value TRUE for only

Note

Under the following conditions, an abort is not indicated in output parameter
"CommandAborted":
e The parameterized velocity has been reached, input parameter "Execute" has the value
FALSE, and a new motion control task is initiated.
e When the parameterized velocity is reached and input parameter "Execute" has the value
FALSE, the task is complete. Therefore, the start of a new task is not indicated as an
abort.

416

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Table 9- 66 Example 3 - If an error occurs prior to reaching the parameterized velocity

Error \i Error \¢

1 F-- - - == - 1 | — = pre——— o —
Execute 0 1 Execute I I

o

BUSY;___I_[_____________ Busy;___l_[_____________

B B il I I R i S
InVelocity 1 InVelocity
0 T 0
1
1 - - bl - — - - - - . T
Command 1 Command
Aborted ! Aborted

EITOF; ___j____l-l _____________ Error (1) _______ I—[______
oJolee) Y Yo

If "Execute" = FALSE before the error occurs If "Execute" = FALSE after the error occurs

v

v

@ The task is started with a positive edge at the input parameter "Execute". Depending on the programming, "Execute"
can still be reset to the value FALSE during the task, or the value TRUE can be retained until after the error has occurred.

@ While the task is active, the output parameter "Busy" indicates the value TRUE.

® An error occurred during task execution. When the error occurs, the output parameter "Busy" changes to FALSE and
"Error" to TRUE.

@ If "Execute" retains the value TRUE until after the error has occurred, then "Error" also remains TRUE and only
changes its status to FALSE together with "Execute".

@ If "Execute" has been reset to FALSE before the error occurs, "Error" indicates the value TRUE for only one execution
cycle.

Note

Under the following conditions, an error is not indicated in output parameter "Error":

e The parameterized velocity has been reached, input parameter "Execute" has the value
FALSE, and an axis error occurs (software limit switch is approached, for example).

o When the parameterized velocity is reached and input parameter "Execute" has the value
FALSE, the task is complete. After completion of the task, the axis error is only indicated
in the motion control instruction "MC_Power".

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 417

Technology instructions

9.3 Motion conftrol

9.3.6.3

418

Monitoring the MC_MovedJog instruction
The tasks of motion control instruction "MC_MovedJog" implement a jog operation.

® The motion control tasks "MC_Movedog" do not have a defined end. The task objective is

fulfilled when the parameterized velocity is reached for the first time and the axis travels
at constant velocity. When the parameterized velocity is reached, this is indicated by the
value TRUE in output parameter "InVelocity".

The order is complete when input parameter "JogForward" or "JogBackward" has been
set to the value FALSE and the axis has come to a standstill.

The output parameters "Busy", "CommandAborted", and "Error" signal that the task is still
being processed, has been aborted or an error is pending.

— During processing of the motion control task, the output parameter "Busy" indicates
the value TRUE. If the task has been completed, aborted, or stopped by an error, the
output parameter "Busy" changes its value to FALSE.

— The output parameter "InVelocity" indicates the status TRUE, as long as the axis is
moving at the parameterized velocity. The output parameters "CommandAborted" and
"Error" indicate the status for at least one cycle. These status messages are latched
as long as either input parameter "JogForward" or "JogBackward" is set to TRUE.

The behavior of the status bits is presented below for various example situations.

® The first example shows the behavior or the axis if the parameterized velocity is reached

and maintained. If the motion control task has been executed by the time the
parameterized velocity is reached, this is indicated by the value TRUE in output
parameter "InVelocity".

The second example shows the behavior of the axis if the task is aborted. If the motion
control task is aborted during execution, this is indicated by the value TRUE in output
parameter "CommandAborted". The behavior is independent of whether or not the
parameterized velocity has been reached.

The third example shows the behavior of the axis if an error occurs. If an error occurs
during execution of the motion control task, this is indicated by the value TRUE in output
parameter "Error". The behavior is independent of whether or not the parameterized
velocity has been reached.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Table 9- 67 Example 1 - If the parameterized velocity is reached and maintained

A

|
JogForward |
|
|
[

JogBackward

Busy

InVelocity

Command !

Aborted ©

Error

JogForward

v

JogForward

JogBackward

Busy

InVelocity

Command
Aborted

Error

JogBackward

4
1

0

changes its status to FALSE.

value to FALSE.

(@ The task is started with a positive edge at the input parameter "JogForward" or "JogBackward".
@ While the task is active, the output parameter "Busy" indicates the value TRUE.
® When the parameterized velocity is reached, the output parameter "InVelocity" changes to TRUE.

@® When the input parameter "JogForward" or "JogBackward" is reset to the value FALSE, the axis motion ends. The axis
starts to decelerate. As a result, the axis no longer moves at constant velocity and the output parameter "InVelocity"

® If the axis has come to a standstill, the motion control task is complete and the output parameter "Busy" changes its

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

419

Technology ins

fructions

9.3 Motion conftrol

Table 9- 68 Example 2 - If the task is aborted during execution

4

JogForward r
0

Abort Abort

_____ 1
| JogForward ‘ ! ‘

JogBackward !
0

1 +
JogBackward 0

|
|
1 b = - p—— - — — — -~ — — — 1 F — — e — — — — — — — I - - - — .
Busy . I Busy 0 ‘
1 | 1 |
1 | 1 |
__________________ U T S [[
InVelocity ! 1 InVelocity |] |
0 1 0 T T T
1 | 1 |
1 | 1 |
Command ' [~~~ 1 Command ' |~ - e
Aborted 0 \ Aborted 0]
1 I 1 |
1 | 1 |
1T r--r-—3-—"=—"=-"=-=-95-=---- 1T F--F =A== == == === ==-
Error o . Error 0 | 1 |
1 | 1 |
000 @ YeXe >
JogForward JogBackward

@ The task is s

tarted with a positive edge at the input parameter "JogForward" or "JogBackward".

(@ While the task is active, the output parameter "Busy" indicates the value TRUE.

® During task execution, the task is aborted by another motion control task. If the task is aborted, output parameter

"Busy" changes

to FALSE and "CommandAborted" to TRUE.

@ When the input parameter "JogForward" or "JogBackward" is reset to the value FALSE, the output parameter
"CommandAborted" changes its value to FALSE.

420

Note

The task abort is indicated in the output parameter "CommandAborted" for only one
execution cycle, if all conditions below are met:

The input parameters "JogForward" and "JogBackward" have the value FALSE (but the axis
is still decelerating) and a new motion control task is initiated.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Technology instructions

9.3 Motion conftrol

Table 9-69 Example 3 - If an error has occurred during task execution

A
A o [S
JogForward o | ' | ogrorwar 0 ‘ . ‘
| 1 | | 1 |
| 1 | | 1 |
L e JogBackward | | "~ — -
JogBackward [1 | ogBackwar o
0 T L) 1 '
| 1 | | 1 |
| 1 | | 1 |
1 - p—f - - - — - T ——
1 - -p——t------ ‘- -
Busy | Busy0 |
0 ‘ [
| 1 | | 1 |
| 1 | | 1 |
T
InVelocty ~ |~~~ T tT T ¢ T InVelocity .)
0 : : : 0 \ 1 \
| 1 | | 1 |
: . ‘ P L o
Command ' [~ " rFr~~"1- "~~~ ~-7- -~~~ Command : K B
Aborted 0 : . ‘ Aborted 0 ‘ . ‘
: : : | 1 |
1 | 1 | Lo ____1 L _
Error ___‘___]—I _____ Error ‘]—I
0 0 ‘
| 1 | | 1 | I
— >

v

JogForward JogBackward

(@ The task is started with a positive edge at the input parameter "JogForward" or "JogBackward".
@ While the task is active, the output parameter "Busy" indicates the value TRUE.

® An error occurred during task execution. When the error occurs, the output parameter "Busy" changes to FALSE and
"Error" to TRUE.

@® When the input parameter "JogForward" or "JogBackward" is reset to the value FALSE, the output parameter "Error"
changes its value to FALSE.

Note

An error occurrence is indicated in the output parameter "Error" for only one execution cycle,
if all the conditions below are met:

The input parameters "JogForward" and "JogBackward" have the value FALSE (but the axis
is still decelerating) and a new error occurs (software limit switch is approached, for
example).

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 421

Technology instructions

9.3 Motion conftrol

S7-1200 Programmable controller
422 System Manual, 04/2012, ASE02486680-06

Communication 1 O

The S7-1200 offers several types of communication between CPUs and programming
devices, HMls, and other CPUs.

PROFINET

PROFINET is used for exchanging data through the user program with other
communications partners through Ethernet:

® The CPU provides the following PROFINET and PROFIBUS support:

— In V3.0, PROFINET supports 16 10 devices with a maximum of 256 submodules.
PROFIBUS allows 3 independent PROFIBUS DP Masters, supporting 32 10 devices
with a maximum of 512 submodules per IO device.

— InV2.2. PROFINET supports 8 IO devices with a maximum of 128 submodules (if
eight or less PROFIBUS slaves or submodules are configured). PROFIBUS supports
a maximum of 16 PROFIBUS |0 devices on a single master with a maximum of 256
submodules per 10 device.

® S7 communication

e User Datagram Protocol (UDP) protocol
® |SO on TCP (RFC 1006)

® Transport Control Protocol (TCP)

PROFINET RT IO controller

As an 10 controller using PROFINET RT, the CPU provides the following support on the
local PN network or through a PN/PN coupler (link). Refer to PROFIBUS and PROFINET
International, PI (www.us.profinet.com) for more information:

® In V3.0, the S7-1200 communicates with up to 16 PN devices.
® |n V2.2, the S7-1200 communicates with up to 8 PN devices.

PROFIBUS

PROFIBUS is used for exchanging data through the user program with other
communications partners through the PROFIBUS network:

e With CM 1242-5, the CPU operates as a PROFIBUS DP slave.
e With CM 1243-5, the CPU operates as a PROFIBUS DP master class1.

® |n V3.0, PROFIBUS DP Slaves, PROFIBUS DP Masters, and ASi (the 3 left-side
communication modules) and PROFINET are separate.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 423

http://www.us.profinet.com/�

Communication

10. 1 Number of asynchronous communication connections supported

® |n V2.2, The CPU provides the following PROFINET and PROFIBUS support:

— Atotal of 16 devices and 256 submodules, with a maximum of 16 PROFIBUS DP
slave devices and 256 submodules (if no PROFINET 1O devices or submodules are
configured).

Note

In V2.2, the total of 16 PROFINET and PROFIBUS devices includes the following:

e The PROFIBUS DP slave modules attached by the PROFIBUS DP master
(CM 1243-5)

¢ Any PROFIBUS DP slave module (CM 1242-5) connected to the CPU
e Any PROFINET device connected to the CPU over the PROFINET port
For example, a configuration with three PROFIBUS CMs (one CM 1243-5 master and

two CM 1242-5 slave modules) will reduce the maximum number of slave modules
that can be accessed by the PROFIBUS DP Master (CM 1243-5) to 14.

® AS-i: The S7-1200 CM 1243-2 AS-i Master allows the attachment of an AS-i network to
an S7-1200 CPU.

e CPU-to-CPU S7 communication

Teleservice communication

In TeleService via GPRS, an engineering station on which STEP 7 is installed communicates
via the GSM network and the Internet with a SIMATIC S7-1200 station with a CP 1242-7.
The connection runs via a telecontrol server that serves as an intermediary and is connected
to the Internet.

10.1 Number of asynchronous communication connections supported

The CPU supports the following maximum number of simultaneous, asynchronous
communication connections for PROFINET and PROFIBUS:

® 8 connections for Open User Communications (active or passive): TSEND_C, TRCV_C,
TCON, TDISCON, TSEND, and TRCV.

® 3 CPU-to-CPU S7 connections for server GET/PUT data
® 8 CPU-to-CPU S7 connections for client GET/PUT data

Note

S7-1200, S7-300, and S7-400 CPUs use the GET and PUT instructions for CPU-to-CPU
S7 communication. An S7-200 CPU uses ETHx_XFER instructions for CPU-to-CPU
S7 communication.

S7-1200 Programmable controller
424 System Manual, 04/2012, ASE02486680-06

Communication
10.2 PROFINET

o HMI connections: The CPU provides dedicated HMI connections to support up to 3 HMI
devices. (You can have up to 2 SIMATIC Comfort panels.) The total number of HMI is
affected by the types of HMI panels in your configuration. For example, you could have
up to three SIMATIC Basic panels connected to your CPU, or you could have up to two
SIMATIC Comfort panels with one additional Basic panel.

® PG connections: The CPU provides connections to support 1 programming device (PG).

® \Webserver (HTTP) connections: The CPU provides connections for the Webserver.

10.2 PROFINET

10.21 Local/Partner connection

A Local / Partner (remote) connection defines a logical assignment of two communication
partners to establish communication services. A connection defines the following:

® Communication partners involved (One active, one passive)
® Type of connection (for example, a PLC, HMI, or device connection)
® Connection path

Communication partners execute the instructions to set up and establish the communication
connection. You use parameters to specify the active and passive communication end point
partners. After the connection is set up and established, it is automatically maintained and
monitored by the CPU. Refer to the section on ['Configuring the Local/Partner connection"
(Page [127) for information about configuring the parameters for the connection.

If the connection is terminated (for example, due to a line break), the active partner attempts
to re-establish the configured connection. You do not have to execute the communication
instruction again.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 425

Communication

10.2 PROFINET

The CPU can communicate with other CPUs, with programming devices, with HMI devices,
and with non-Siemens devices using standard TCP communications protocols.

Programming device connected to the

— CPU

HMI connected to the CPU

A CPU connected to another CPU

Ethernet switching

The PROFINET port on the CPU 1211C, 1212C, and 1214C does not contain an Ethernet
switching device. A direct connection between a programming device or HMI and a CPU
does not require an Ethernet switch. However, a network with more than two CPUs or HMI
devices requires an Ethernet switch.

@ CPU 1215C

® CsSMm1277
Ethernet switch

S7-1200 Programmable controller
426 System Manual, 04/2012, A5E02486680-06

Communication
10.2 PROFINET

The CPU 1215C does have a 2-port Ethernet switch built into it. You can have a network
with a CPU 1215C and two other S7-1200 CPUs. You can also use the rack-mounted
CSM1277 4-port Ethernet switch for connecting multiple CPUs and HMI devices.

10.2.2 Open user communication

10.2.2.1 Connection IDs for the PROFINET instructions

When you insert the TSEND_C, TRCV_C or TCON PROFINET instructions into your user
program, STEP 7 creates an instance DB to configure the communications channel (or
connection) between the devices. Use the "Properties” of the instruction to configure the
parameters for the connection. Among the parameters is the connection ID for that
connection.

® The connection ID must be unique for the CPU. Each connection that you create must
have a different DB and connection ID.

® Both the local CPU and the partner CPU can use the same connection ID number for the
same connection, but the connection ID numbers are not required to match. The
connection ID number is relevant only for the PROFINET instructions within the user
program of the individual CPU.

® You can use any number for the connection ID of the CPU. However, configuring the
connection IDs sequentially from "1" provides an easy method for tracking the number of
connections in use for a specific CPU.

Note

Each TSEND_C, TRCV_C or TCON instruction in your user program creates a new
connection. It is important to use the correct connection ID for each connection.

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 427

Communication

10.2 PROFINET

428

The following example shows the communication between two CPUs that utilize 2 separate
connections for sending and receiving the data.

® The TSEND_C instruction in CPU_1 links to the TRCV_V in CPU_2 over the first
connection ("connection ID 1" on both CPU_1 and CPU_2).

® The TRCV_C instruction in CPU_1 links to the TSEND_C in CPU_2 over the second
connection ("connection ID 2" on both CPU_1 and CPU_2).

CPU 1 CPU 2 @® TSEND_C on CPU_1 creates a
. — connection and assigns a connection
e ID to that connection (connection ID 1
for CPU_1).

® TRCV_C on CPU_2 creates the
connection for CPU_2 and assigns the
connection ID (connection ID 1 for
CPU_2).

® TRCV_C on CPU_1 creates a second

StEmEns|

TRCV C connection for CPU_1 and assigns a
- different connection ID for that
connection (connection ID 2 for

TSEND_C

CPU_1).

TSEND C @® TSEND_C on CPU_2 creates a
- second connection and assigns a

TRCV_C

different connection ID for that

connection (connection ID 2 for
CPU_2).

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06

Communication
10.2 PROFINET

The following example shows the communication between two CPUs that utilize 1
connection for both sending and receiving the data.

® FEach CPU uses a TCON instruction to configure the connection between the two CPUs.

® The TSEND instruction in CPU_1 links to the TRCV instruction in CPU_2 by using the
connection ID ("connection ID 1") that was configured by the TCON instruction in CPU_1.
The TRCV instruction in CPU_2 links to the TSEND instruction in CPU_1 by using the
connection ID ("connection ID 1") that was configured by the TCON instruction in CPU_2.

® The TSEND instruction in CPU_2 links to the TRCV instruction in CPU_1 by using the
connection ID ("connection ID 1") that was configured by the TCON instruction in CPU_2.
The TRCV instruction in CPU_1 links to the TSEND instruction in CPU_2 by using the
connection ID ("connection ID 1") that was configured by the TCON instruction in CPU_1.

CPU 1 CPU 2 @® TCON on CPU_1 creates a
’ A — connection and assigns a connection
ID for that connection on CPU_1
(ID=1).
® TCONon CPU_2 creates a
connection and assigns a connection
ID for that connection on CPU_2

(ID=1).

TCON TCON (® TSEND and TRCV on CPU_1 use the
connection ID created by the TCON
on CPU_1 (ID=1).

TSEND and TRCV on CPU_2 use the

TSEND TRCV connection ID created by the TCON
on CPU_2 (ID=1).

TRCV TSEND

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 429

Communication

10.2 PROFINET

As shown in the following example, you can also use individual TSEND and TRCV
instruction to communication over a connection created by a TSEND_C or TRCV_C
instruction. The TSEND and TRCYV instructions do not themselves create a new connection,
so must use the DB and connection ID that was created by a TSEND_C, TRCV_C or TCON
instruction.

@® TSEND_C on CPU_1 creates a
connection and assigns a connection
ID to that connection (ID=1).

® TRCV_Con CPU_2 creates a
connection and assigns the
connection ID to that connection on
CPU_2 (ID=1).

® TSEND and TRCV on CPU_1 use the
connection ID created by the

TRCV_C TSEND_C on CPU_1 (ID=1).

TSEND and TRCV on CPU_2 use the
connection ID created by the TRCV_C
on CPU_2 (ID=1).

CPU_1

TSEND_C

TRCV TSEND

TSEND TRCV

See also

Configuring the Local/Partner connection path (Page 127)

10.2.2.2 Protocols

The integrated PROFINET port of the CPU supports multiple communications standards
over an Ethernet network:

® Transport Control Protocol (TCP)
® |SO on TCP (RFC 1006)
e User Datagram Protocol (UDP)

Table 10- 1 Protocols and communication instructions for each

Protocol Usage examples Entering data in the Communication Addressing type
receive area instructions
TCP CPU-to-CPU Ad hoc mode Only TRCV_C and Assigns port numbers to
communication TRCV the Local (active) and
Transport of frames | Data reception with TSEND_C, TRCV_C, Partner (passive)
specified length TCON, TDISCON, devices
TSEND, and TRCV

S7-1200 Programmable controller
430 System Manual, 04/2012, A5E02486680-06

Communication

communication

User program
communications

10.2 PROFINET
Protocol Usage examples Entering data in the Communication Addressing type
receive area instructions
ISO on TCP CPU-to-CPU Ad hoc mode Only TRCV_C and Assigns TSAPs to the
communication TRCV Local (active) and
Message Protocol-controlled TSEND_C, TRCV_C, | Partner (passive)
fragmentation and re- TCON, TDISCON, devices
assembly TSEND, and TRCV
UDP CPU-to-CPU User Datagram Protocol | TUSEND and TURCV | Assigns port numbers to

the Local (active) and
Partner (passive)
devices, but is not a
dedicated connection

S7 communication | CPU-to-CPU Data transmission and GET and PUT Assigns TSAPs to the
communication reception with specified Local (active) and
Read/write data length Paaner (passive)
from/to a CPU devices

PROFINET RT CPU-to-PROFINET Data transmission and Built-in Built-in
10 device reception with specified
communication length

10.2.2.3 Ad hoc mode

Typically, TCP and ISO-on-TCP receive data packets of a specified length, ranging from 1 to
8192 bytes. However, the TRCV_C and TRCV communication instructions also provide an
"ad hoc" communications mode that can receive data packets of a variable length from 1 to

1472 bytes.

Note

If you store the data in an "optimized" DB (symbolic only), you can receive data only in
arrays of Byte, Char, USInt, and Sint data types.

To configure the TRCV_C or TRCV instruction for ad hoc mode, set the LEN parameter to
65535 (OxFFFF).

If you do not call the TRCV_C or TRCV instruction in ad hoc mode frequently, you could
receive more than one packet in one call. For example: If you were to receive five 100-byte
packets with one call, TCP would deliver these five packets as one 500-byte packet, while
ISO-on-TCP would restructure the packets into five 100-byte packets.

10.2.2.4 TCP and ISO on TCP

Transport Control Protocol (TCP) is a standard protocol described by RFC 793:
Transmission Control Protocol. The primary purpose of TCP is to provide reliable, secure
connection service between pairs of processes. This protocol has the following features:

e An efficient communications protocol since it is closely tied to the hardware
e Suitable for medium-sized to large data amounts (up to 8192 bytes)

® Provides considerably more facilities for applications, notably error recovery, flow control,
and reliability

S7-1200 Programmable controller

System Manual, 04/2012, ASE02486680-06 431

Communication

10.2 PROFINET

A connection-oriented protocol

Can be used very flexibly with third-party systems which exclusively support TCP
Routing-capable

Only static data lengths are applicable.

Messages are acknowledged.

Applications are addressed using port numbers.

Most of the user application protocols, such as TELNET and FTP, use TCP.

Programming effort is required for data management due to the SEND / RECEIVE
programming interface.

International Standards Organization (ISO) on Transport Control Protocol (TCP) (RFC 1006)
(ISO on TCP) is a mechanism that enables ISO applications to be ported to the TCP/IP
network. This protocol has the following features:

An efficient communications protocol closely tied to the hardware
Suitable for medium-sized to large data amounts (up to 8192 bytes)

In contrast to TCP, the messages feature an end-of-data identification and are message-
oriented.

Routing-capable; can be used in WAN
Dynamic data lengths are possible.

Programming effort is required for data management due to the SEND / RECEIVE
programming interface.

Using Transport Service Access Points (TSAPs), TCP protocol allows multiple connections
to a single IP address (up to 64K connections). With RFC 1006, TSAPs uniquely identify
these communication end point connections to an IP address.

TSEND_C and TRCV_C

The TSEND_C instruction combines the functions of the TCON, TDISCON and TSEND
instructions. The TRCV_C instruction combines the functions of the TCON, TDISCON, and
TRCYV instructions. (Refer to "TCON, TDISCON, TSEND, AND TRCV (Page 439)" for more
information on these instructions.)

432

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06

Communication

10.2 PROFINET

The minimum size of data that you can transmit (TSEND_C) or receive (TRCV_C) is one
byte; the maximum size is 8192 bytes. TSEND_C does not support the transmission of data
from boolean locations, and TRCV_C will not receive data into boolean locations. For
information transferring data with these instructions, see the section on data consistency
(Page 153).

Note

Initializing the communication parameters

After you insert the TSEND_C or TRCV_C instruction, use the "Properties” of the instruction
(Page 127) to configure the communication parameters. As you enter the parameters for the

communication partners in the inspector window, STEP 7 enters the corresponding data in
the DB for the instruction.

If you want to use a multi-instance DB, you must manually configure the DB on both CPUs.

Table 10-2 TSEND_C and TRCV_C instructions

LAD / FBD SCL Description
“TISEND_C_DE" "TSEND_C_DB" (TSEND_C establishes a TCP or ISO on TCP
T TSEND.C req:= bool in_, communication connection to a partner station,
—EN ENQ = cont:= bool in , sends data, and can terminate the connection.
—~REQ DONE len:= uint in , After the connection is set up and established, it
‘ffE':':T E::'E:: done=> bool_out_, is automatically maintained and monitored by
| COMMELCT STATUS | busy=> bool_out_, the CPU.
{ DA error=> bool out ,
- COM_RST status=> word_out_,
connect:=_struct_inout_,
data:= variant_ inout_,
com rst:= bool inout);
S "TRCV_C_DB" (TRCV_C establishes a TCP or ISO on TCP
TROV € en _r:= bool in _, communication connection to a partner CPU,
—EH - END — cont:= bool in , receives data, and can terminate the connection.
~ENR DIONE = len:= uint in , After the connection is set up and established, it
- CONT BUSY done=> bool out , is automatically maintained and monitored by
LEM ERROR = - - - the CPU.
CONNECT STATUS | busy=> bool_out_,
DATA RCVD_LEM error=> bool out_,
= COM_RST status=> word out_,
rcvd len=> uint out_,
connect:=_struct_inout_,
data:= variant_ inout_,
com rst:= bool inout);

1 STEP 7 automatically creates the DB when you insert the instruction.

S7-1200 Programmab|

le controller

System Manual, 04/2012, A5E02486680-06 433

Communication

10.2 PROFINET

Table 10-3 TSEND_C and TRCV_C data types for the parameters

Parameter and type Data type Description
REQ IN Bool Control parameter REQ starts the send job with the connection
(TSEND_C) described in CONNECT on a rising edge.
EN_R IN Bool Control parameter enabled to receive: When EN_R = 1,
(TRCV_C) TRCV_C is ready to receive. The receive job is processed.
CONT IN Bool e 0: Disconnect
e 1: Establish and hold connection
LEN IN Ulint Maximum number of bytes to be sent (TSEND_C) or received
(TRCV_C):
e Default = 0: The DATA parameter determines the length of
the data to be sent (TSEND_C) or received (TRCV_C).
¢ Ad hoc mode = 65535: A variable length of data is set for
reception (TRCV_C).
CONNECT IN_OUT TCON_Param Pointer to the connection description
DATA IN_OUT Variant e Contains address and length of data to be sent (TSEND_C)
e Contains start address and maximum length of received
data (TRCV_C).
COM_RST IN_OUT Bool Allows restart of the instruction:
e O: Irrelevant
¢ 1: Complete restart of the function block, existing connection
will be terminated.
DONE ouT Bool e 0: Job is not yet started or still running.
e 1: Job completed without error.
BUSY ouT Bool e 0: Job is completed.
e 1:Job is not yet completed. A new job cannot be triggered.
ERROR ouT Bool Status parameters with the following values:
e 0: No error
e 1: Error occurred during processing. STATUS provides
detailed information on the type of error.
STATUS ouT Word Status information including error information. (Refer to the
"Error and Status Parameters" table below.)
RCVD_LEN ouT Int Amount of data actually received, in bytes
(TRCV_C)
Note
The TSEND_C instruction requires a low-to-high transition at the REQ input parameter to
start a send job. The BUSY parameter is then set to 1 during processing. Completion of the
send job is indicated by either the DONE or ERROR parameters being set to 1 for one scan.
During this time, any low-to-high transition at the REQ input parameter is ignored.
S7-1200 Programmable controller
434 System Manual, 04/2012, ASE02486680-06

Communication

10.2 PROFINET

Note

The default setting of the LEN parameter (LEN = 0) uses the DATA parameter to determine
the length of the data being transmitted. Ensure that the DATA transmitted by the TSEND_C
instruction is the same size as the DATA parameter of the TRCV_C instruction.

TSEND_C operations

The following functions describe the operation of the TSEND_C instruction:
® To establish a connection, execute TSEND_C with CONT = 1.

e After successful establishing of the connection, TSEND_C sets the DONE parameter for
one cycle.

® To terminate the communication connection, execute TSEND_C with CONT = 0. The
connection will be aborted immediately. This also affects the receiving station. The
connection will be closed there and data inside the receive buffer could be lost.

® To send data over an established connection, execute TSEND_C with a rising edge on
REQ. After a successful send operation, TSEND_C sets the DONE parameter for one
cycle.

® To establish a connection and send data, execute TSEND_C with CONT =1 and REQ =
1. After a successful send operation, TSEND_C sets the DONE parameter for one cycle.

TRCV_C operations

The following functions describe the operation of the TRCV_C instruction:
® To establish a connection, execute TRCV_C with parameter CONT = 1.

® To receive data, execute TRCV_C with parameter EN_R = 1. TRCV_C receives the data
continuously when parameters EN_R = 1 and CONT = 1.

® To terminate the connection, execute TRCV_C with parameter CONT = 0. The
connection will be aborted immediately, and data could be lost.

TRCV_C handles the same receive modes as the TRCV instruction. The following table
shows how data is entered in the receive area.

Table 10- 4 Entering the data into the receive area

Protocol Entering the data in the | Parameter Value of the LEN parameter | Value of the RCVD_LEN
variant receive area "connection_type" parameter (bytes)
TCP Ad hoc mode B#16#11 65535 110 1472
TCP Data reception with B#16#11 0 (recommended) or 1 to 1to 8192

specified length 8192, except 65535
ISOon TCP | Ad hoc mode B#16#12 65535 110 1472
ISO on TCP | Protocol-controlled B#16#12 0 (recommended) or 1 to 1to 8192

8192, except 65535

S7-1200 Programmable controller
System Manual, 04/2012, A5E02486680-06 435

Communication

10.2 PROFINET

Note
Ad hoc mode

The "ad hoc mode" exists with the TCP and ISO on TCP protocol variants. You set "ad hoc
mode" by assigning "65535" to the LEN parameter. The receive area is identical to the area
formed by DATA. The length of the received data will be output to the parameter
RCVD_LEN.

If you store the data in an "optimized" DB (symbolic only), you can receive data only in
arrays of Byte, Char, USInt, and Sint data types.

Note
Importing of S7-300/400 STEP 7 projects containing "ad hoc mode" into the S7-1200
In S7-300/400 STEP 7 projects, "ad hoc mode" is selected by assigning "0" to the LEN

parameter. In the S7-1200, you set "ad hoc mode" by assigning "65535" to the LEN
parameter.

If you import an S7-300/400 STEP 7 project containing "ad hoc mode" into the S7-1200, you
must change the LEN parameter to "65535".

Note

Due to the asynchronous processing of TSEND_C, you must keep the data in the sender
area consistent until the DONE parameter or the ERROR parameter assumes the value
TRUE.

For TSEND_C, a TRUE state at the parameter DONE means that the data was sent
successfully. It does not mean that the connection partner CPU actually read the receive
buffer.

Due to the asynchronous processing of TRCV_C, the data in the receiver area are only
consistent when parameter DONE = 1.

Table 10-5 TSEND_C and TRCV_C instructions BUSY, DONE, and ERROR parameters

BUSY DONE ERROR Description

TRUE irrelevant irrelevant The job is being processed.

FALSE TRUE FALSE The job is successfully completed.

FALSE FALSE TRUE The job was ended with an error. The cause of the error can be found

in the STATUS parameter.
FALSE FALSE FALSE A new job was not assigned.
S7-1200 Programmable controller

436 System Manual, 04/2012, ASE02486680-06

Communication

10.2 PROFINET

Error and Status Parameters
Table 10-6 TSEND_C and TRCV_C condition codes for ERROR and STATUS

ERROR STATUS Description

0 0000 Job executed without error

0 7000 No job processing active

0 7001 Start job processing, establishing connection, waiting for connection partner

0 7002 Data being sent or received

0 7003 Connection being terminated

0 7004 Connection established and monitored, no job processing active

1 8085 LEN parameter is greater than the largest permitted value.

1 8086 The CONNECT parameter is outside the permitted range.

1 8087 Maximum number of connections reached; no additional connection possible.

1 8088 LEN parameter is not valid for the memory area specified in DATA.

1 8089 The CONNECT parameter does not point to a data block.

1 8091 Maximum nesting depth exceeded.

1 809A The CONNECT parameter points to a field that does not match the length of the

connection description.
809B The local_device_id in the connection description does not match the CPU.

1 80A1 Communications error:
e The specified connection was not yet established

e The specified connection is currently being terminated; transmission over this
connection is not possible

e The interface is being reinitialized

1 80A3 Attempt being made to terminate a nonexistent connection

1 80A4 IP address of the remote partner connection is invalid. For example, the remote partner
IP address is the same as the local partner IP address.

1 80A5 Connection ID is already in use.

1 80A7 Communications error: You called TDISCON before TSEND_C was complete.

1 80B2 The CONNECT parameter points to a data block that was generated with the keyword
UNLINKED.

1 80B3 Inconsistent parameters:

e Error in the connection description

e Local port (parameter local_tsap_id) is already present in another connection
description.

¢ ID in the connection description different from the ID specified as parameter

S7-1200 Programmable controller
System Manual, 04/2012, ASE02486680-06 437

Communication

10.2 PROFINET

ERROR STATUS Description

1 80B4 When using the ISO on TCP (connection_type = B#16#12) to establish a passive
connection, condition code 80B4 alerts you that the TSAP entered did not conform to
one of the following address requirements:

e Foralocal TSAP length of 2 and a TSAP ID value of either EO or E1 (hexadecimal)
for the first byte, the second byte must be either 00 or 01.

e For alocal TSAP length of 3 or greater and a TSAP ID value of either EQ or E1
(hexadecimal) for the first byte, the second byte must be either 00 or 01 and all
other bytes must be valid ASCII characters.

e For alocal TSAP length of 3 or greater and the first byte of the TSAP ID does not
have a value of either EO or E1 (hexadecimal), then all bytes of the TSAP ID must
be valid ASCII characters.

Valid ASCII characters are byte values from 20 to 7E (hexadecimal).

1 80B7 Data type and/or length of the transmitted data does not fit in the area in the partner
CPU in which it is to be written.

1 80C3 All connection resources are in use.

1 80C4 Temporary communications error:
e The connection cannot be established at this time
e The interface is receiving new parameters

e The configured connection is currently being removed by a TDISCON.

1 8722 CONNECT parameter: Source area invalid: area does not exist in DB.

1 873A CONNECT parameter: Access to connection description is not possible (for example,
DB not available)

1 877F CONNECT parameter: Internal error such as an invalid ANY reference

1 893A Parameter contains the number of a DB that is not loaded.

Connection Ethernet protocols

Every CPU has an integrated PROFINET port, which supports standard PROFINET
communications. The TSEND_C and TRCV_C and TSEND and TRCV instructions all
support the TCP and ISO on TCP Ethernet protocols.

Refer to "Device Configuration: Configuring the Local/Partner connection path (Page 127)"
for more information.

See also
Parameters for the PROFINET connection (Page 129)

S7-1200 Programmable controller
438 System Manual, 04/2012, ASE02486680-06

Communication

10.2 PROFINET

TCON, TDISCON, TSEND, AND TRCV

Ethernet communication using TCP and ISO on TCP protocols

Note
TSEND_C and TRCV_C instructions
To help simplify the programming of PROFINET/Ethernet communication, the TSEND_C

instruction and the TRCV_C instruction combine the functionality of the TCON, TDISCON.
TSEND and TRCYV instructions:

e TSEND_C combines the TCON, TDISCON and TSEND instructions.
e TRCV_C combines the TCON, TDISCON and TRCYV instructions.

The following instructions control the communication process:

® TCON establishes the TCP/IP connection between the client and server (CPU) PC.
e TSEND and TRCV send and receive data.

e TDISCON breaks the connection.

The minimum size of data that you can transmit (TSEND) or receive (TRCV) is one byte; the
maximum size is 8192 bytes. TSEND does not support the transmission of data from
boolean locations, and TRCV will not receive data into boolean locations. For information
transferring data with these instructions, see the section on data consistency (Page 153).

TCON, TDISCON, TSEND, and TRCV operate asynchronously, which means that the job
processing extends over multiple instruction executions. For example, you start a job for
setting up and establishing a connection by executing an instruction TCON with parameter
REQ = 1. Then you use additional TCON executions to monitor the job progress and test for
job completion with parameter DONE.

The following table shows the relationships between BUSY, DONE, and ERROR. Use the
table to determine the current job status.

Table 10- 7 Interactions between the BUSY, DONE, and ERROR parameters
BUSY DONE ERROR Description
TRUE irrelevant irrelevant The job is being processed.
FALSE TRUE FALSE The job succe