User Guide

CAN

Option Module for
Unidrive

Part Number: 0460-0063
Issue Number: 2

A SAFETY INFORMATION

Persons supervising and performing the electrical installation or maintenance of a
Drive and/or an external Option Unit must be suitably qualified and competent in
these duties. They should be given the opportunity to study and if necessary to
discuss this User Guide before work is started.

The voltages present in the Drive and external Option Units are capable of inflicting
a severe electric shock and may be lethal. The Stop function of the Drive does not
remove dangerous voltages from the terminals of the Drive and external Option
Unit. Mains supplies should be removed before any servicing work is performed.

The installation instructions should be adhered to. Any questions or doubt should
be referred to the supplier of the equipment. It is the responsibility of the owner or
user to ensure that the installation of the Drive and external Option Unit, and the
way in which they are operated and maintained complies with the requirements of
the Health and Safety at Work Act in the United Kingdom and applicable legislation
and regulations and codes of practice in the UK or elsewhere.

The Drive software may incorporate an optional Auto-start facility. In order to
prevent the risk of injury to personnel working on or near the motor or its driven
equipment and to prevent potential damage to equipment, users and operators, all
necessary precautions must be taken if operating the Drive in this mode.

The Stop and Start inputs of the Drive should not be relied upon to ensure safety of
personnel. If a safety hazard could exist from unexpected starting of the Drive, an
interlock should be installed to prevent the motor being inadvertently started.

GENERAL INFORMATION

The manufacturer accepts no liability for any consequences resulting from
inappropriate, negligent or incorrect installation or adjustment of the optional
operating parameters of the equipment or from mismatching the Drive with the
motor.

The contents of this User Guide are believed to be correct at the time of printing. In
the interests of a commitment to a policy of continuous development and
improvement, the manufacturer reserves the right to change the specification of the
product or its performance, or the contents of the User Guide, without notice.

All rights reserved. No part of this User Guide may be reproduced or transmitted in
any form or by any means, electrical or mechanical including photocopying,
recording or by any information storage or retrieval system, without permission in
writing from the publisher.

Copyright: © May 00 Control Techniques SSPD
Author: Paul Bennett

Issue Code: 2

System File: V2.07.05

Firmware (UD77) V1.00.00

Contents

1 Introduction

1.1
1.2

Unidrive CAN Interface
CAN V2.0 Part B Passive

2 Mechanical Installation

2.1

Unidrive

3 Electrical Installation

3.1
3.2
3.3
3.4
3.5

CAN Connector

CAN Connections

CAN Network Termination
Maximum Network Length
External Power Supply

4 Node Configuration

4.1
4.2
4.3
4.4

CAN Enable

Data Rate

Event Task Control
Initialising Set-up Changes

5 CAN Commands

51
5.2
5.3
54
55

PUTCAN

GETCAN
CANSTATUS
ENABLECANTRIPS
RESETCANTIMER

6 Using the CAN Commands

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.7.1
6.7.2
6.8
6.8.1

What are CAN Slots?
Transmitting a CAN Frame
Configuring a Slot Mask
CAN Slot Status
Receiving a CAN Frame
Automatic Network Error Trips
Remote Transmit Request
Requesting Node
Remote Node
Event Task Trigger
Example Use of EVENT Task Trigger

NN OO

7 Diagnostic Information

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Fieldbus Code

Firmware Version

System File Version

CAN Enable

Network Data Rate

Network Status

Trip Action On Network Loss
Other UD70 Trip Codes

8 Example Application

8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9
8.1.10

9 CAN

9.1

9.2
9.21
9.2.2
9.2.3
9.2.4
9.25
9.2.6
9.2.7
9.2.8
9.2.9
9.2.10

"Easy Mode" Cyclic Data using DPLCAN
CAN lIdentifier for Transmitting Data Frames
CAN Identifier for Receiving Data Frames
SYNC Message Generator
EVENT Task Trigger
CAN Slot Allocation
Receiving Data Frames
Node Configuration
DPL Code - INITIAL Task
DPL Code - EVENT Task
DPL Code - BACKGROUND Task

Overview

What is CAN?
CAN Data Frame
CAN Identifier
Remote Transmit Request
Identifier Extension
Data Length Code
Data Field
CRC Code
ACK Slot
End Of Frame
Non-Destructive Bit Arbitration
Bit Stuffing

1

Introduction

A brand new Unidrive CAN interface will NOT communicate with any
other devices via the CAN interface. A DPL program MUST be written
and downloaded to the module before any communications over a

CAN network can be achieved.

SYPT is required to write a program that can control communications
via the CAN interface. The basic functions used to communicate
between the DPL program and the CAN controller are provided as
function blocks, and come as part of the SYPT Function Block Library.

To download a DPL program from SYPT via the PC RS232 port,
configure the COMMUNICATIONS to use the MD29MON protocol.

Although the DPL Toolkit cannot be used to write programs for the CAN
interface, it can still be used to download BIN files created using SYPT.
The FLASHER download utility program (supplied as part of SYPT and
the DPL Toolkit) will also download pre-compiled BIN files to the CAN
module.

Drive parameters are denoted in this manual by “#MM.PP”, where MM
refers to the menu number, and PP refers to the parameter number
within that menu. Please refer to the Unidrive manual for parameter

definitions.

11

Unidrive CAN Interface

The Unidrive CAN interface for Unidrive is supplied in a large option
module package. The CAN interface uses the UD70 Applications card
as a host.

The UD70 retains full functionality, allowing the user to download
normal DPL application programs. No program modifications are
required to allow existing DPL programs to run. A different UD70
operating system file (‘DPLCAN.SYS") is used, and the UD70 has this
system file pre-loaded.

System file V2.07.05 or later must be loaded to support the Unidrive
CAN interface.

Issue Number: 2 1

1.2

CAN V2.0 Part B Passive

When CAN was originally developed the CAN identifier field was
specified as 11 bits. Subsequent developments of CAN allowed
identifiers with an additional 18 bits, vastly increasing the number of
available identifiers. Bus arbitration is determined over the full 29-bit
identifier in such systems.

The Unidrive CAN interface is "CAN V2.0 Part B Passive". This means
that although 29 bit identifiers are not supported, it can co-exist on a
network with nodes that do use 29-bit identifiers (known as Part B
Active) without generating errors.

Issue Number: 2

2 Mechanical Installation

The Unidrive must be disconnected from the main supply before
installing or removing an option module.

2.1 Unidrive

Isolate the Drive from the main supply and allow 5 minutes for the DC
Bus capacitors to discharge.

Insert the Unidrive CAN interface module as shown below. Ensure that
it is correctly inserted. The module will click firmly into place.

To remove the module, pull on the black tab, and the module will
disengage from the connector and pull out of the Drive.

e @ @

_ p—

2

Issue Number: 2 3

Issue Number: 2

3 Electrical Installation

3.1 CAN Connector

The Unidrive CAN Interface can be connected to a CAN network
directly onto the 9-way D-type connector (B), or by a standard 5-way
screw terminal socket (B), using the small converter board provided
with the Unidrive CAN interface.

Connectors C and D on the Unidrive CAN interface are the RS232
programming port (C) and RS485 general purpose communications port
(D) of the UD70.

I e

1 2 3 4 5
e o o o o

Al = !

cllo
cC@PooLyo

The pin connections for the D-type connector and the 5-way terminal
block connector are given in the table below.

Signal | Terminal D-type | Function
Block Terminal
Ov 1 3 Power supply OV (Black)
CAN-L 2 2 Data signal low (Blue)
SHIELD 3 5 Shield
CAN-H 4 7 Data signal high (White)
Vbc 5 9 Power Supply +24V (Red)

All diagrams in this manual illustrate connections using the 5-way
screw terminal connector block.

Issue Number: 2 5

3.2

3.3

CAN Connections

To connect a node to the CAN network, make the connections as
shown in the diagram below. The cable screen must be connected to
the middle pin of the CAN connector.

Unidrive CAN
Interface

Unidrive CAN

Interface
/ /

=
N
w
~
(8]
=
N
w
~
(6]

——— e e e —

CAN Network Termination

There is no termination resistor supplied on the Unidrive CAN Interface.
It is the user’s responsibility to ensure that BOTH ends of each section
of network cable are correctly terminated.

——— e e e —

A 120Q 0.25W resistor should be connected between the CAN_H and
CAN_L lines on the node at each end of the main trunk cable, as shown
in the diagram below. When the system is powered down,
approximately 60Q should be measured between the CAN_H and
CAN_L lines. Resistor tolerance must be £10% or better.

................................... . o CAN-L

I

:

: Unidrive CAN
\ Interface

The above method of connecting the termination resistor ensures that
the network remains terminated when the CAN connector is
disconnected from the node.

It is very important in high-speed communications networks that the
network is correctly terminated. Failure to terminate the network
properly may mean that the network operates with substantially reduced
noise immunity, or in the worst case, the network doesn’'t work at all.

Issue Number: 2

3.4 Maximum Network Length

The maximum network length depends on the data rate required. The
maximum number of nodes on a network without a repeater is 32.

Data Rate Maximum Bus
Length (m)

10 kbits/sec 1000
20 kbits/sec 1000
50 kbits/sec 1000
125 kbits/sec 500
250 kbits/sec 250
500 kbits/sec 100
800 kbits/sec 50

1.0 Mbits/sec 30

3.5 External Power Supply

The Unidrive CAN interface chipset is powered from the internal supply
of the host Drive. However, an external +24V power supply can be
connected to power the transceiver circuitry if required. This may be
desirable to keep the physical characteristics of the network the same if
nodes are to be switched on and off during network operation. Each
Unidrive CAN interface will draw 5mA from the external supply.

Issue Number: 2 7

Issue Number: 2

4 Node Configuration

4.1 CAN Enable

#20.01 -1 = CAN disabled >0 = CAN enabled

The CAN interface is enabled by setting #20.01 to a value of O or
higher. If circumstances require that the CAN interface be disabled
under certain circumstances, this can be achieved by setting #20.01 to -
1, and setting #17.19 to 1 to completely reset the UD70 and CAN
controller.

CAN does not actually implement any protocol on top of the CAN
hardware data-link layers. However, virtually every protocol in
existence does require each node to have a unique address or code.

To provide some common ground for people implementing CAN
protocols, it is recommended that #20.01 should be used as the node
address. #20.01 can also be used to simply specify the CAN identifier
to be used by the node. The DPL program can simply copy the value
directly into the 11-bit identifier of the outgoing CAN frame.

4.2 Data Rate
#20.02 Data Rate

The data rate configured at each node must be the same. There is no
automatic detection of the data rate on CAN.

#20.02 Data Rate #20.02 Data Rate
0 10 kbits/sec 4 250 kbits/sec
1 20 kbits/sec 5 500 kbits/sec
2 50 kbits/sec 6 800 kbits/sec
3 125 kbits/sec 7 1.0 Mbits/sec

Setting any other value in #17.14 will result in trip "tr62", if run-time trips
have been enabled. (#17.14 = 1)

Issue Number: 2 9

4.3

4.4

Event Task Control
#17.23 Event Task Trigger Source

#20.03 Event Task Trigger Slot

The EVENT task can be triggered by the timer/counter function inside
the UD70, or it can be triggered by the CAN network. When a CAN
data frame arrives in the slot specified in #20.03, this will trigger the
EVENT task. The slot mask must also be configured to enable the slot.

#17.23 #20.03 EVENT Task Comment

Trigger Source

X Internal UD70 | Default.
timer/counter

0to 15 CAN Network | Slot mask must be
configured in DPL with
PUTCANcOommand.

#20.03 will be defaulted to O if an invalid value is detected during
initialisation.

Initialising Set-up Changes

CAN configuration parameters are only read during the initialisation
sequence of the CAN interface, thus preventing unpredictable network
behaviour while parameters are being edited. When parameters have
been configured, the Unidrive CAN interface must be reset to
implement the changes in network set-up.

The UD70 can be reset from the Unidrive keypad in 2 ways.

Set #MM.00 to 1070 and press the red RESET button. This will
implement any changes made to the CAN configuration, but the
changes will NOT be stored. If power is lost to the Drive, the
changes made will be lost, and the UD70 will revert to the stored
configuration.

Set #17.19 to 1. This causes a full reset of the UD70, and
implements any changes made to the CAN configuration. It will
also force the UD70 to store the #20.PP parameters in FLASH
memory, thus ensuring that the changes will not be lost when
power is removed from the Drive. The UD70 will reset #17.19 to
0, when the reset sequence is complete.

10

Issue Number: 2

5 CAN Commands

The Unidrive CAN interface does not directly support any CAN protocol
that may be available. When used in conjunction with SYPT, five
function blocks (PUTCAN GETCAN CANSTATUS, ENABLECANTRIPS and
RESETCANTIMERare provided that allow the DPL programmer to have full
control over the transmit/receive slots in the CAN controller. This
means that any valid CAN message can be configured using DPL code
and sent out over the CAN network.

To communicate with other CAN-based equipment, the user must have
details of the protocol that the equipment uses, and write a DPL
program to construct the necessary CAN message attributes, before
data can be transferred over the CAN network. Similarly, DPL code
must also be written to decode and handle the data contained within
messages received from other equipment on the network.

The table below gives a brief summary of the commands available for
use in controlling the CAN interface from the DPL program.

Command Description

PUTCAN Used to download data frame information,
configure CAN slot identifier masks, and
update the Remote Transmit Request
response message from the DPL program.

GETCAN Used to upload a data frame from the
specified CAN slot.
CANSTATUS Used to check the status of a CAN slot, to see

if the specified slot has a message loaded
(either a new data frame received, or a data
frame waiting to be transmitted), or if the slot
is empty.

ENABLECANTRIPS Enables certain automatic trips in the event of
network loss, bus-off condition, or invalid
configuration parameters.

RESETCANTIMER Resets the CAN controller's internal timer.
This timer is used to return the time stamp
(Time) argument from the GETCANunction.

Issue Number: 2 11

5.1 PUTCAN

This function block is used to transmit a CAN data frame, set a
message filter for message reception, send a Remote Transmit
Request (RTR) frame, and configure and RTR response data frame.

DPL CODE

status% = PUTCAN(slot%, cmd%, can_id%, len%, tx_w0%, tx_w1%)

FUNCTION BLOCK DIAGRAM

PutCAN

slot% Slot
cmd% Cmd
can_id% ID

len% Len
tx_w0% Word0

bt wodt o

Argument | Range Description

slot% 0to 15 |Destination message slot in the CAN
controller.
cmd% Oto3 Command

0 = Transmit message
1 = Configure mask for specified CAN slot.
2 = Send RTR message
3 = Configure RTR response message
can_id% 0 to 2047 | 11bit CAN ID

len% 0to8 |Number of data bytes

tx_w0% 2% 32bit data word containing byte 0 (LSB)
through to byte 3 (MSB) of the CAN data
field. Unused bytes should be set to zero

tx_w1% +2% 32bit data word containing byte 4 (LSB)
through to byte 7 (MSB) of the CAN data
field. Unused bytes should be set to zero

status% Oorl Error code
0 = Command failed
1 = Command successfully completed

12 Issue Number: 2

5.2 GETCAN

This function block examines the specified message slot, and returns
the CAN Identifier, Data Length Code and the data bytes. Unused data
bytes will be set to 0.

DPL CODE

(status%, len%, rx_w0%, rx_w1%, t_stamp%) = GETCAN(slot%)
FUNCTION BLOCK DIAGRAM

GetCAN

Q status%

Len len%
Word0 rx_w0%
Word1 rx_wl%

Slot Time Ustampb

Argument | Range Description

slot% 0to 15 |Slot from which the message is to be read.
status% Oorl Error code
0 = Command failed — slot is empty

1 = Message read successfully - all output
arguments are valid

len% Oto8 Number of data bytes

rx_w0% 2% 32bit data word containing bytes 0 (LSB)
through 3 (MSB) of the CAN data field.
Unused bytes will be set to zero

IX_W1% +2% 32bit data word containing bytes 4 (LSB)
through 7 (MSB) of the CAN data field.
Unused bytes will be set to zero

t_stamp% 0to 255 |8-bit time-stamp. 1 unit represents 32 * ty.
The value rolls over to zero when the
counter reaches 255. Only slots 0 to 7 will
return a time-stamp value, slots 8 to 15 will
always return -1. This value can be used to
determine the order in which data frames
were actually received.

A

Issue Number: 2 3

5.3 CANSTATUS

This function block returns the status of the specified message slot.

DPL CODE

status% = CANSTATU
FUNCTION BLOCK DIAGRAM

S(slot%)

Sl

CANStatus

0

Argument Range Description
slot% Oto 15 Slot Number
status% Oto2 0 = Slot is empty

1 = Message transmission in progress
2 = New message has been received

14

Issue Number:

2

5.4 ENABLECANTRIPS

This function block (with #17.14) enables the CAN system trips. This
will cause the Unidrive CAN interface to trip the Drive if certain network
error conditions are detected.

DPL CODE

status% = ENABLECANTRIPS(trip%)
FUNCTION BLOCK DIAGRAM

EngbleCANTrips
[wip% g Q1 stawsh |

Argument Range Pescription
trip% 0to2 0 = Trips disabled
1 = Bus Off trip only (tr61)
2 = All trips enabled (tr60 and tr61)
status% Oorl 0 = Operation Failed
1 = Operation Successful

Issue Number: 2 15

5.5 RESETCANTIMER

This function block resets the internal timer in the CAN controller to 0.
When messages are received in slots 0 to 7, they are time-stamped

with the contents of the CAN controller's internal timer.

function block returns the time-stamp value.

DPL CODE

The GETCAN

status% = RESETCANTIMER(reset%)

FUNCTION BLOCK DIAGRAM

ResetCanTimer
[ese g :
Argument Range Description
reset% Oor1l 0 = No action
1 = Reset CAN timer
status% Oorl 0 = Operation Failed

1 = Operation Successful

16

Issue Number:

2

6 Using the CAN Commands

6.1 What are CAN Slots?

"CAN Slots" are areas in the CAN controller where data frames are
stored temporarily. They can be configured either to receive certain
CAN frames, or to hold a CAN frame for transmission.

Each slot must be configured to receive a data frame by defining the
"slot mask" with an 11-bit CAN identifier. When a data frame has been
passed the error checking, the CAN controller compares CAN identifier
with the "slot mask" for each slot. If a slot is found where the slot mask
identifier matches the data frame identifier, the data frame is placed in
this slot and the slot status register is updated. The slot will keep the
message (rejecting subsequent messages that match the slot mask
identifier) until the CPU reads the message form the slot, and resets the
slot status register.

To transmit a CAN data frame, the CPU must load the CAN identifier,
data length code and the data bytes to be sent into a slot. The CAN
controller will generate the necessary control bits and error code to
construct the complete data frame, and will start to "arbitrate” for the
bus. Bus arbitration is handled automatically by the CAN controller, and
requires no further action from the CPU.

The Unidrive CAN interface has 16 slots in the CAN controller, and all
slots can be configured to transmit or receive data frames. In general,
most slots will be configured to receive messages with specified CAN
Ids, with one or two slots reserved solely for transmitting messages. If
a slot that has been configured to receive data frames with a specific
CAN identifier, it will lose that configuration if it is used to transmit a
data frame. Slot configuration is totally flexible, and slots can be re-
configured at any time.

Issue Number: 2 17

DPL CODE

6.2

Transmitting a CAN Frame

Send the CAN message identifier and data bytes to the CAN controller.
Message will be queued in the specified slot for transmission. The CAN
controller will automatically handle the arbitration for the network. If
more than one message is waiting to be transmitted, the message with
the highest priority (lowest identifier number) will be sent out when the
node next wins control of the bus.

The example below shows how to put a 16-bit data value (taken from a
Drive parameter) into two 8-bit data bytes, and transmit the message
out of slot 2. The CAN identifier is 0x0D3 (211 decimal).

tx_status% = PUTCAN(2, 0, 0x0D3, 2, #18.11, 0)

FUNCTION BLOCK DIAGRAM

6.3

PutCAN

Slot
Cmd

[ows o
[AR —{wordo
wortt 0

Configuring a Slot Mask

Most CAN protocols derive the message identifier from local node data.
Virtually all bus systems require each node to have a unique node
address. If the node address is included as part of the CAN identifier
code, this guarantees that no two nodes can produce messages with
the same CAN identifier code.

I

I

When the slot masks are configured, it is best to use identical code in
each node and get certain information from the Drive itself, rather than
use fixed numbers. This means that when a program is installed into
another node on the network, it will produce messages with unique
CAN identifier codes.

18

Issue Number: 2

The example below shows how to configure slot 8 to receive the
message transmitted in section 6.2. Typically, this command would be
issued in the INITIAL task, but this does not have to be the case.

DPL CODE

init_status% = PUTCAN(8, 1, 0x0D3, 0, 0, 0)

FUNCTION BLOCK DIAGRAM

PutCAN

Slot
Cmd
0x0D3 ID
Len
Word0

Word1 Q init_status%

To receive a message from the CAN network, a slot must be configured
with a mask for the CAN ID. If a message is received by the CAN
controller, with an identifier that matches the mask of one of the slots,
the message is put into that slot. Otherwise, the CAN controller
discards the message.

i

The mask for each slot should be configured during the INITIAL task of
the DPL program. (Setting cmd% to 1 configures the slot mask) This
allows the CAN controller to filter out messages that are not intended
for the node. By configuring the slot masks in the INITIAL task, this
guarantees that the CAN controller is always re-configured after a
RESET.

When the UD70 is reset, all CAN slots are initialised to mask identifier
0. This means that only messages with an identifier of 0 (usually
reserved) will be received by the CAN controller.

CAN slots should be configured with unique mask ids. If 2 or more slots
have the same mask id, generally the slot with the highest slot number
(0 to 15) will receive the message, although this is not guaranteed to be
the case.

A CAN slot should not be used for both transmitting and receiving
messages. If a slot has been set up to receive a message (i.e. the
mask has been set) and it is subsequently used to transmit a message,
the mask information will be lost, and the slot will not receive any more
messages. The mask must be re-configured before the slot can be
used to receive messages again.

Issue Number: 2 19

DPL CODE

6.4

CAN Slot Status

The status of each CAN slot can be determined using the CANSTATUS
function block. This function is used to find slots in the CAN controller
that have received new data frames, or slots which are waiting to
transmit data frames over the CAN network.

When a slot has received a new data frame, it will reject all subsequent
data frames with matching CAN identifiers until the data frame held is
unloaded from the slot.

; check the status of slot 8
rx_status% = CANSTATUS(8)

FUNCTION BLOCK DIAGRAM

6.5

|Check the status of slot 8 |

CANStatus
o ncsaush |

rx_status% 0 = Slot is empty
1 = Message transmission in progress
2 = New message has been received

Receiving a CAN Frame

The CAN controller will not notify the DPL program that a new message
has arrived. The program must use the CANSTATUSCommand to check
each slot and see if a new message has arrived, and use GETCANto
retrieve the data values from the CAN message.

CANSTATUSreturns the slot status very quickly, so a check of all slots
configured to receive data frames, using CANSTATUSN a DO...WHILEoop,
is an efficient way of determining if any new data frames have been
received. GETCANcan then be used to retrieve data from slots with new
data frames.

When a message arrives, it is placed into the slot with a matching
identifier mask. Subsequent messages with the same identifier will be
discarded until the DPL program has retrieved the message already in
the slot.

20

Issue Number: 2

DPL CODE

The example below shows how to check for receipt of the message
transmitted in section 6.2. The slot was configured transmit a message
over the network in section 6.3, with the following attributes:

; check the status of slot 8
rx_status% = CANSTATUS(8)

; if a new message has been received
IF rx_status% = 2 THEN

; read the data frame from slot 8
(status%, len%, rx_w0%, rx_w1%, t_stamp%) = GETCAN(8)
ENDIF

FUNCTION BLOCK DIAGRAM

|Check the status of slot 8 |

CANStatus
Sl of— pisaush

|If a new message has been received |

<>

[sttty ———iNt
N2 Q——>> NO_MESSAGE

|Read the data from slot 8 |

GetCAN

Q status%

Len len%
Word0 rx_w0%
Word1 rx_wl%

NO_MESSAGE:

Issue Number: 2 21

DPL CODE

6.6

Automatic Network Error Trips

Certain error conditions with the CAN network can be detected, and the
Drive can be tripped automatically when an error condition is detected.

The example code listed below would normally be part of the INITIAL
task, but this does not have to be the case.

#17.14=1 ; enable UD70 run-time trips
REINIT

; enable all automatic CAN network error trips
init_status% = ENABLECANTRIPS(2)

FUNCTION BLOCK DIAGRAM

6.7

‘ Enable UD70 run-time trips

1 #17.14

‘ Enable all automatic CAN network error trips ‘

EnableCANTrips
2 g QF— init status% |

By setting #17.14 to 1 and executing the REINIT command, this will
force the UD70 to read the UD70 configuration parameters (#17.PP)
again, and enable the UD70 run-time trips.

Remote Transmit Request

A "Remote Transmit Request" frame allows a node to request a data
frame from another node. The data frame that is returned is the RTR
response frame. The "remote" node will load the RTR response frame
into the CAN controller, and transmission of the RTR response frame is
handled automatically in hardware by the CAN controller. The CPU in
the "remote" node is does not even need to know that the RTR
response frame has been transmitted.

A node can update its RTR response frame at any time. Depending on
the nature of the data being sent, it could be updated on a regular basis
or when a change of data occurs.

22

Issue Number: 2

6.7.1

DPL CODE

Requesting Node

The "requesting" node must transmit an RTR frame from one of the
allocated transmit slots. The CAN identifier of the RTR frame MUST
match the CAN identifier of the RTR response message expected back
from the "remote" node.

The "remote" node will reply with the pre-configured RTR message, so
the "requesting” node MUST configure a receive slot with the slot mask
set to the CAN identifier of the transmitted RTR frame. [F this is not
done, the "requesting” node will discard the RTR response frame.

; configure slot 9 to receive RTR response frame
init_status% = PUTCAN(9, 1, 0x4D3, 0, 0, 0)
tx_status% = PUTCAN(2, 2, 0x4D3, 0, 0, 0) ; send RTR frame

FUNCTION BLOCK DIAGRAM

|Configure slot 9 to receive RTR response frame

PutCAN

Slot
Cmd
0x4D3 ID
Len
Word0

Word1 Q init_status%

PutCAN

Slot
Cmd
0x4D3 ID
Len
Word0

Word1 Q tx_status%

i

Issue Number: 2 23

6.7.2

DPL CODE

Use CANSTATUSand GETCANto detect and retrieve the RTR response
frame. (See section 6.5). Usually, only one slot needs to be allocated
to receive RTR response frames, as the slot mask can be re-configured
with the appropriate CAN identifier before the RTR frame is actually
sent.

Remote Node

The "remote" node will automatically respond to an RTR frame if the
CAN identifier of the RTR frame matches the CAN identifier of the RTR
response frame held in the CAN controller. The RTR response frame
can be transmitted using one of the slots reserved for transmitting data
frames.

Use the PUTCANcommand with cmd% = 3 to define the RTR response
frame. The CAN identifier, data length code and data bytes must all be
specified. The RTR response frame is updated in the CAN controller
every time this command is executed in the DPL program.

; update RTR response frame with status word
init_status% = PUTCAN(L, 3, 0x4D3, 2, #90.11, 0)

FUNCTION BLOCK DIAGRAM

|Update RTR response frame with status word #90.11

PutCAN

Slot
Cmd
0x4D3 ID

Len
#INT90.11 Word0

Word1 Q init_status%

A typical use for RTR messages may be for a "master" node to read the
status of other nodes on the network. If every node was to transmit a
status word to the master, it could easily be overloaded. Instead, every
node simply updates the status word in the RTR slot, and the master
cycles through each node, asking for the RTR message. This prevents
overload of the master, as it only asks for new data when it is ready to
receive it.

24

Issue Number: 2

6.8

Event Task Trigger

The Unidrive CAN interface provides a facility to trigger the EVENT task
from the CAN network, instead of from the internal TIMER unit. To
trigger the EVENT task, #17.23 must be set to 1, and a valid slot
number specified in #20.03. The specified slot must be configured with
the required mask as normal.

The UD70 must be reset by setting #17.19 to 1 before any changes in
the configuration of #17.23 and #20.03 will take effect.

DPL CODE

When the EVENT task is triggered, GETCANmMust be used to retrieve the
message, and empty the slot. Failure to do this means that any
subsequent messages arriving for this slot will be discarded. CANSTATUS
is not necessary, as the EVENT task is only be triggered when a data
frame is received in the slot specified by #20.03.

INITIAL {

ev_slot% = #20.03

init_status% = PUTCAN(ev_slot%, 1, 37, 0, 0, 0)
}

EVENT {
(status%, len%, rx_w0%, rx_w1%, t_stamp%) = GETCAN(ev_slot%)
}

FUNCTION BLOCK DIAGRAM

INITIAL {

#INT20.03 ev_slot%

PutCAN

[esios —sio
D
s o
Len
Word0

Word1 Q init_status%

I

Issue Number: 2 25

6.8.1

EVENT {

GetCAN

Q status%

Len len%
Word0 rx_w0%
Word1 rx_wl%

Slot Time t_stamp%
}
Example Use of EVENT Task Trigger

This feature allows a simple strategy to be implemented to overcome
problems with data skew, particularly on a network running at a
comparatively slow data rate.

If 20 new speed references must be sent to 20 drives with minimal data
skew, the values can be sent over the network, and buffered in each
Drive when it receives the appropriate CAN message. When all
messages have been sent, a SYNC message (with a unique identifier
code) can be sent over the network to trigger the EVENT task in each
Drive, which in turn transfers the speed reference from the temporary
buffer area to the speed reference parameter.

There will still be some data skew, mainly due to fact that the speed
loop cycles in the drives will not be synchronous with each other.
However, the maximum skew will 1 speed loop cycle time (1.38ms),
and almost certainly lower than the time taken to transmit all speed
references over the CAN network.

For example, to transmit a message with a 16-bit speed reference (2
data bytes) over a CAN network running at 50 Kbits/sec will take
approximately 1.4ms. With 20 drives on the network, total transmission
time is 28ms. When compared with a maximum skew time of 1.38ms,
the data skew is reduced by 95%.

The EVENT task has a higher priority than the SPEED and ENCODER
tasks. If the EVENT task trigger function is being used to implement a
fast update of parameters in the position loop, this could cause a
problem. If the position loop code is interrupted and a new value forced
into certain registers, the position loop will continue with a different
value to the starting value, and this may cause problems.

To guarantee that this does not happen, the data should be passed to a
temporary variable in the EVENT task. The SPEED or ENCODER task
should then be used to transfer the value to the position loop
parameters. The SPEED and ENCODER task code does not run until
all system file operations attached to these tasks has been completed,
so the new value will be picked up on the next task.

26

Issue Number: 2

Diagnostic Information

7.1

Fieldbus Code

Unidrive: #20.14

The fieldbus code identifies the hardware level in the option module.
This information is vital when trying to determine what upgrades can be
performed on older modules.

The identification of the high-speed communications option module can
be read from #20.14 on the Unidrive display. (The code is also available
as #89.04.) This number is shown in the form XYZ, where X is the
fieldbus type, Y is the fieldbus flavour, and Z is the hardware revision
level.

Code | Fieldbus Fieldbus Hardware Revision
Type Flavour
520 5 2 0
(CAN) (CAN) | (UD77A and UD77B Issue 1)

System file V2.07.05 or later must be installed in the UD70 to indicate
the full fieldbus code.

7.2

Firmware Version
Unidrive: #20.15

The version of firmware fitted to the CAN interface can be read from
#20.15 on Unidrive.

Code Firmware Hardware
Version Revision
Unidrive 100 V1.00.00 0

The Hardware Revision column shows the hardware levels that can
accept each version of firmware.

Issue Number: 2

27

7.3

7.4

7.5

System File Version
Unidrive : #17.02

The system file installed in the UD70 must be the correct file for the
communications option installed. The system file for the Unidrive CAN
interface is “DPLCAN.SYS".

The system file that must be installed can depend on the level of
hardware and firmware in the module. In general, new system files are
backward compatible with older versions of firmware and hardware, but
there may be some limitations when upgrading older modules.

The system file version can be read from parameter #17.02 on the
Unidrive.

Firmware | Hardware System Comments
Revision File
V1.00.00 0 V2.07.05 or | V2.07.05 was the first system
later file release for the Unidrive
CAN interface.

CAN Enable
Unidrive: #20.01

The CAN interface must be enabled to communicate with the DPL
program. If #20.01 is set to -1, the CAN controller is completely
disabled.

Most communications systems require that each node on a network is
assigned some sort of unique address. When DPL code is written to
implement a protocol, #20.01 should be used to configure the node
address.

Network Data Rate
Unidrive : #20.02

Every node on the system MUST be configured to run at the same data
rate. Failure to ensure this can cause unpredictable results, as nodes
attempting to communicate at different data rates can corrupt data
frames on the network.

If a node has been configured to run at a data rate that is different to the
rest of the network, bus-off errors on some or all nodes may result. In
general, the data rate should be configured on a node BEFORE it is
physically connected to the network.

28

Issue Number: 2

7.6 Network Status
Unidrive: #20.50

#20.50 on Unidrive indicates the status of the CAN network. Under
normal conditions, #20.50 should indicate that the network is running.
The loss of network condition cannot be detected until the node
attempts to transmit a data frame over the network.

#20.50 is updated immediately when a change of status is detected,
otherwise the status indication is updated every second.

#20.50 Status Description
1 Network CAN network OK, data frames can be
running transmitted or received.
0 Initialising | UD70 is initialising the CAN interface.
hardware
-1 Loss of Data frames are not being acknowledged.

network Possible causes are faulty network
connections, or the node is the only node
present on the network.

-2 Bus Off Bus Off condition requires a UD70 reset.
Indicates that the node is having trouble
transmitting messages, or faulty wiring
somewhere on the network.

7.7 Trip Action On Network Loss

To enable the automatic trips when a network error occurs, the
ENABLECANTRIPSfunction block must be called from the DPL program.
(See section 6.6.)

#17.14 Mode [[Action

0 Ride- The Unidrive will continue to operate with the
through || previous values received from the network
1 Trip Automatic CAN trips are enabled, provided the

ENABLECANTRIPSunction block has been
executed in the DPL program.

If a DPL program is present in the UD70, this will continue to run as
normal. (An ERROR task is not raised.) If #17.14 is changed, the
UD70 must be reset by setting #MM.00 to 1070, and pressing RESET
to make the trip mode change take effect.

Issue Number: 2 29

7.8

Trip Fault Possible Causes
Code Description

tr60 Network Loss | "tr60 occurs when a node sends a data
frame, and no other node acknowledges
receipt of the frame message. This can
happen if there is only one node on the
network, the network connection has been
lost, or the node is transmitting corrupted
data frames.

tré61 Bus Off Error | "tr61" indicates the Can "Bus Off"
condition. A complete reset of the CAN
controller is required to clear this

condition.
tr62 Configuration | "tr62" indicates an error in the set-up of
Error the CAN interface. Ensure parameters

#20.01, #20.02 and #20.03 have been
configured correctly.

Problems can occur during initialisation, particularly with only 2 nodes
on a network. If the first node completes initialisation before the second
node, it will trip on "tr60". As the second node has not been initialised
yet, it will not acknowledge receipt of the data frame, causing the first
node to think it is transmitting error frames and trip.

The ENABLECANSTATUSunction block allows full error detection to be
enabled when network operation has been fully established. This can
be enabled during any task, e.g. when the first network message from a
remote node is received.

Other UD70 Trip Codes

If certain errors occur, the Unidrive will trip and show the trip code in the
upper window.

Trip Error
Code

tr56 The UD70 does not contain the correct operating system.
Download the system file “DPLCAN.SYS".

tr57 An illegal operating system call has been made, e.g.
WRNETs a CTNet command, and is not available with
CAN.

Issue Number: 2

8 Example Application

The example application below implements the "Easy Mode" cyclic data
available with CTNet. The node, menu and parameter mappings are
defined in exactly the same way and use the same parameters as with
CTNet, with one node (the "pseudo-master") being responsible for
generating the data synchronisation interrupt.

This example addresses the allocation of CAN slots for transmitting and
receiving data frames, allocation of CAN identifier codes, and use of the
EVENT task trigger.

8.1 "Easy Mode" Cyclic Data using DPLCAN

The basic specification for data transfer is that each node has 3 IN and
3 OUT data channels. CTNet is a "producer-orientated" network, i.e.
the target node data (target node address and data channel) is only
configured in the transmitting node.

8.1.1 CAN Identifier for Transmitting Data Frames

The source (producing) node knows where the data is to be sent, but
the target node has no idea where the data is coming from. This means
that the target node must have fixed CAN identifiers, and the source
node must assign the CAN identifier such that it matches the CAN
identifier in the intended target node. This example will limit the number
of nodes to 31, with 3 OUT data channels per node, so the CAN
identifier will be assigned as shown below.

can_identifier% = (target_channel% * 32) + target_node%

Variable Range Description
can_identifier% 33to 127 | The CAN identifier that is
assigned for each outgoing data
frame.
target_channel% 1to3 Defines the target channel into

which the data will be written in
the target node. (O is reserved.)

target_node% 1to 31 Defines the target node for the
data frame.

Issue Number: 2 31

8.1.2

8.1.3

8.1.4

CAN lIdentifier for Receiving Data Frames

The target node does not know where the data is actually going to
come from, so the input slots can be configured with fixed CAN
identifiers. If a source node produces a message that matches one of
the configured slot masks in target node, the data will be loaded into the
appropriate CAN slot.

can_slot_mask% = (in_channel% * 32) + node_address%

Variable Range Description
can_slot_mask% 33to 127 The CAN identifier that is
assigned for each outgoing data
frame.
in_channel% 1to3 Defines the target channel into

which the data will be written in
the target node. (O is reserved.)

node_address% 1to31 Defines the target node for the
data frame.

SYNC Message Generator

One node on the network must be responsible for generating the SYNC
message. This is the message that informs the other nodes that it is
time to send their configured messages again. This node is known as
the "pseudo-master".

The TIMER unit is used in the pseudo-master to trigger the EVENT task
on a regular defined time-base. Once the EVENT task has been
triggered, the SYNC message is immediately loaded into the CAN
controller for transmission. This message format is fixed, with CAN
identifier set to 1 to give very high priority, and no data bytes.

The data frames for transmission out of channels 1, 2 and 3 are also
configured and downloaded to the CAN controller in the EVENT task. If
separate CAN slots are used for each OUT channel, all three data
frames can be downloaded immediately, and the CAN controller left to
handle transmission automatically.

EVENT Task Trigger

A signal is required from the "pseudo-master” to indicate that it is time
to construct and transmit the cyclic OUT data frames. By allocating a
slot as the EVENT Task Trigger slot, and setting the slot mask to 1, the
EVENT task can be used to configure and load the data frames onto
the CAN controller.

32

Issue Number: 2

8.1.5

8.1.6

CAN Slot Allocation

CAN slots need to be allocated for each function. The allocation
chosen for this example is shown in the table below.

Slot Function Description

0 IN | EVENT Trigger |Configured with slot mask =1. This is
the slot used to trigger the EVENT
task in the "slave" drives.

1 IN IN Channel 1 | IN data channel 1. Data is
automatically transferred to _S90%.

2 IN IN Channel 2 | IN data channel 2. Data is
automatically transferred to _S91%.

3 IN IN Channel 3 | IN data channel 3. Data is
automatically transferred to _S92%.

Not used

Not used

Not used

Not used

Not used

(| N|o|0| >

Not used

10 |OUT | SYNC Telegram | Slot used to transmit the SYNC
telegram data frame

11 |OUT| OUT Channel 1 |OUT data channel 1. Data is picked
up from _R90%.

12 |OUT| OUT Channel 2 | OUT data channel 2. Data is picked
up from _R91%.

13 |OUT| OUT Channel 3 | OUT data channel 3. Data is picked
up from _R92%.

14 Not used

15 Not used

Receiving Data Frames

Receiving data frames cannot be done in the EVENT task, as the time
delay before incoming data frames are received cannot be predicted.
As the EVENT task has priority over all tasks except the INITIAL task. it
cannot wait for all messages to be received, as this will prevent all other
tasks from running.

Any of the time-base tasks (SPEED, ENCODER or CLOCK) can be
used to check for messages received but the slower the task, the
greater the potential delay between receiving a data frame and updating
the destination parameter. For this reason, this example uses a
continuous loop in the BACKGROUND task.

Issue Number: 2 33

8.1.7

Node Configuration

The DPL code in this section implements the above specifications to
produce regular data transfer, with virtually identical configuration to
CTNet "Easy Mode" cyclic data.

Function Unidrive Setting
Node Address #20.01 l1to31
Network Data Rate #20.02 Oto7
Synchronisation #20.13 1to 130ms
Message
EVENT Trigger Slot #20.03 0
Slot Source/Destination Destination Node
Parameter
IN Slot 1 #20.10 (MMPP)
IN Slot 2 #20.11 (MMPP)
IN Slot 3 #20.12 (MMPP)
OUT Slot 1 #20.05 (MMPP) #20.04 (NNNSS)
OUT Slot 2 #20.07 (MMPP) #20.06 (NNNSS)
OUT Slot 3 #20.09 (MMPP) #20.08 (NNNSS)

The source and destination parameters are entered in the form MMPP,
where MM is the menu number and PP is the parameter number. The
destination node and slot is entered in the form NNNSS, where NNN is
the destination node address, and SS is the IN slot to write to.

34

Issue Number:

2

8.1.8 DPL Code - INITIAL Task

INITIAL {
node_address% = #20.01

; master mode
IF #20.13 > 0 THEN
master% = 1
#17.23=0 ; trigger EVENT task from timer

; configure TIMER unit

#85.04 = LIMIT(#20.13, 100) * 500 ; re-load value
#85.01 = 0x17
; slave mode
ELSE
master% = 0
#17.23=1 ; trigger EVENT task from slot 0
; slot 0 receives SYNC telegram, CAN-ID = 1
init_status% = PUTCAN(0, 1, 1, 0, 0, 0)
ENDIF
REINIT ; force UD&O to re-read #17.23

; configure the masks for slots 1 to 3 to receive IN data

slot% =1

DO
; calculate and configure masks for IN slots 1,2,3
slot_mask% = (slot% * 32) + node_address%
init_status% = PUTCAN(slot%, 1, slot_mask%, 0, 0, 0)
slot% = slot% + 1

LOOP WHILE slot% <=3

; parameter mapping configuration for input and output data

target1% = #20.04 ; target node and channel
out_sourcel% = #20.05 ; source parameter
target2% = #20.06 ; target node and channel
out_source2% = #20.07 ; source parameter
target3% = #20.08 ; target node and channel
out_source3% = #20.09 ; source parameter
in_dest1% = #20.10 ; destination parameter
in_dest2% = #20.11 ; destination parameter
in_dest3% = #20.12 ; destination parameter

}

Issue Number: 2

8.1.9

DPL Code - EVENT Task

EVENT {
; task is triggered by the timer on master, and by the
; SYNC telegram on slave

; if master, transmit SYNC telegram
IF master% = 1 THEN
tx_status% = PUTCAN(10, 0, 1, 0, 0, 0)

; if slave, empty slot 0
ELSE

(get_status%,len%,rx_w0%,rx_w1%,ts%) = GETCAN(0)
ENDIF

; channel 1, update value, calculate CAN-ID and send data frame
IF out_sourcel% <> 0 AND targetl% <> 0 THEN

_R90% = #out_sourcel%

can_id1% = ((target1% % 100) * 32) + (target1% / 100)

tx_status1% = PUTCAN(11, O, can_id1%, 4, _R90%, 0)
ENDIF

; channel 2, update value, calculate CAN-ID and send data frame
IF out_source2% <> 0 AND target2% <> 0 THEN

_R91% = #out_source2%

can_id2% = ((target2% % 100) * 32) + (target2% / 100)

tx_status2% = PUTCAN(12, 0, can_id2%, 4, _R91%, 0)
ENDIF

; channel 3, update value, calculate CAN-ID and send data frame
IF out_source3% <> 0 AND target3% <> 0 THEN
_R92% = #out_source3%
can_id3% = ((target3% % 100) * 32) + (target3% / 100)
tx_status3% = PUTCAN(13, 0, can_id3%, 4, _R92%, 0)
ENDIF
}

36

Issue Number:

2

8.1.10 DPL Code - BACKGROUND Task

BACKGROUND {
TOP:

; check slots 1,2,3 for new received CAN frames
slot% =1
DO

rx_status% = CANSTATUS(slot%)

; if CAN slot has a new data frame
IF rx_status% = 2 THEN
(status%,len%,rx_w0%,rx_w19%,ts%) = GETCAN(slot%)

; slot 1 holds data for IN channel 1

IF slot% = 1 THEN
_S90% =rx_word0% ; update _S90%
#in_dest1% = _S90% ; update dest param

; slot 2 holds data for IN channel 2

ELSEIF slot% = 2 THEN
_S91% =rx_word0% ; update _S91%
#in_dest2% = _S91% ; update dest param

; slot 3 holds data for IN channel 3
ELSEIF slot% = 3 THEN
_S92% =rx_word0% ; update _S92%
#in_dest3% = _S92% ; update dest param
ENDIF
ENDIF
slot% = slot% + 1
LOOP WHILE slot% <=3

GOTO TOP:
}

Issue Number: 2

37

38

Issue Number:

2

9 CAN Overview

9.1 What is CAN?

CAN specifies a "physical layer" which defines the method used for
transmitting individual bits of data over an electrical transmission line. It
also specifies a "message protocol layer®, which determines the
structure of control bits, data bytes and error detection codes for each
individual frame. This layer, known as the "CAN Data Frame", ensures
the integrity of each group of data bytes as they are passed between
nodes.

CAN does NOT specify a "system protocol layer". This layer actually
uses the data bytes transmitted over the physical layer, and grouped
and checked by the message protocol layer, to implement instructions
defined by the system protocol. CANOpen and DeviceNet are
examples of system protocols that use the CAN hardware and message
layers.

The user must choose and implement the system protocol that is to use
the CAN hardware. The Unidrive CAN allows the user to implement the
protocol of their choice using DPL code, by providing access to the
message protocol layer for transmission and receipt of data frames.
Provided each node has the same protocol implemented, they will be
able to communicate over a CAN network.

9.2 CAN Data Frame

Data
" Identifier Length ACK End Of
Identifier Extension Code CRC Code Slot Frame

abis [1] 11bis |11 [1[abits [orosbyes | 1sbis [af1a] 7bis | >=3bits

Start of . CRC ACK Interframe
Frame RTR RO Data Field Delimiter Delimiter Space

9.2.1 CAN Identifier

The single most important part of the message is the CAN identifier.
CAN uses this 11-bit number to determine which node will have control
of he network to transmit a message. The lower the number in the
identifier field, the higher the priority of the message. (See non-
destructive bit arbitration.)

9.2.2 Remote Transmit Request

This bit indicates that the CAN frame is a remote frame, and is
requesting another node on the network (with a matching identifier field)
to transmit the pre-configured RTR response frame.

Issue Number: 2 39

9.2.3

9.2.4

9.25

9.2.6

9.2.7

9.2.8

Identifier Extension

CAN 2.0 Part B can use 11 bits and/or 29 bit identifiers. Part B Passive
nodes only use 11 bit identifiers, but can co-exist with nodes using 29-
bit identifiers without generating errors. The Unidrive CAN interface is
CAN V2.0 Part B Passive. Part B Active nodes use 29-bit identifiers.

Data Length Code

This is a 4-bit code that indicates the number of data bytes contained in
the message. Data bytes can be from O to 8 bytes.

Data Field

The data field contains the actual data bytes for the message. Up to 8
data bytes can be included in a single CAN data frame.

CRC Code

The Cyclic Redundancy Check code is calculated using the bit pattern
of the whole message. It is calculated automatically in hardware by the
CAN controller when the relevant data is passed to it, and added to the
final CAN frame to be transmitted.

When a CAN controller receives a data frame, it will re-calculate the
CRC code on the received message, and check it against the CRC
code included in the message. If the calculated CRC code matches the
received CRC code, the message is deemed to have been transmitted
error free.

If the CRC error check fails, the CAN controller discards the message.

ACK Slot

When transmitting a message, the node sets this bit passive (1). If ANY
node on the network received the message error-free, it will set this bit
dominant (0). If the transmitting node sees this bit dominant, it
assumes that the message was transmitted OK.

End Of Frame

This is a 7 bit code that indicates the end of the CAN message. A delay
of at least 3 bits will also occur before the cycle starts again.

40

Issue Number: 2

9.2.9 Non-Destructive Bit Arbitration

All communications network must have a method of ensuring that only
one node can transmit over the network at any point in time. This is
necessary to prevent 2 or more nodes from attempting to transmit and
corrupting each other's data message.

Node A
ID 1493 1]oJ1 1 1jofj1]o]J11]0]1
Node B I I |
ID 1501 1101 1 1jofj111 1:0:1
| Lol
Node C . . - .
ID 1877 1|1 1:0:1:0:1i0:1:0:1
Bus Signal | | |
ID 1493 1]JoJ1 1 1jofj1]o]11]0]1
| | |
Start Of 4 4
Frame t1 t2

CAN use non-destructive bit arbitration to prevent data collisions.

9.2.10 Bit Stuffing

Non-Destructive Bit Arbitration relies on the timing between the bits on
the message. This makes CAN intolerant of cable delays, and also
requires that the various nodes on the network are kept synchronised.

A problem could occur if a message had a long sequence of
consecutive 1's or 0’'s. If 20 consecutive bits have the same value, a
5% error in the clock frequency of a node (50ns at 1Mbit/sec) could
cause a node to get out of synchronisation. To solve this problem, CAN
uses a technique known as “Bit Stuffing”.

“Bit-stuffing” is implemented in the hardware of the CAN controllers, and
requires no action on the part of the programmer. If a message
contains a sequence with more then 5 consecutive bits of the same
value, a bit with the opposite value is inserted into the bitstream.
Receiving nodes will have counted 5 consecutive bits of the same
value, and will expect to see a transition on the sixth bit. When this
occurs, each node discards the “stuff bit” so that the reconstituted
message is the same as the transmitted message.

If a node receives a message containing 6 consecutive bits with the
same value, it will flag an error, and discard the message.

Issue Number: 2 41

