
6182 Industrial
Computer Software
Development Kit

User
Manual

Publication 6182-UM002B-EN-P

Important User Information Solid state equipment has operational characteristics differing from those of
electromechanical equipment. "Safety Guidelines for the Application, Installation, and
Maintenance of Solid State Controls" (Publication SGI-1.1) describes some important
differences between solid state equipment and hard-wired electromechanical devices.
Because of this difference, and because of the wide variety of uses for solid state
equipment, all persons responsible for applying this equipment must satisfy themselves
that each intended application of this equipment is acceptable.

In no event will Rockwell Automation be responsible or liable for indirect or
consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes.
Because of the many variables and requirements associated with any particular
installation, Rockwell Automation cannot assume responsibility or liability for actual use
based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation with respect to use of the
information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written
permission of Rockwell Automation is prohibited.

Throughout this manual, we use notes to make you aware of safety considerations.

ATTENTION: Identifies information about practices or
circumstances that can lead to personal injury or death,
property damage, or economic loss.

Important: Identifies information that is especially important for
successful application and understanding of the product.

Using this Manual Preface

Who Should Use This Manual ...P-1
Purpose of this Manual ..P-1
Contents of this Manual ...P-1
Manual Conventions ..P-2
Allen-Bradley Support ...P-2

Introduction to the RAC6182 Chapter 1

Hardware Architecture ... 1-1
Software Architecture .. 1-6

Developing CE Drivers and
Applications for the
RAC6182

Chapter 2

General Considerations.. 2-1
Setting Up the Development System ... 2-3

RAC6182 CE SDK Chapter 3

Overview.. 3-1
Files in the C/C++ Development Kit ... 3-2

RAC6182-Specific
Extensions to the CE API

Chapter 4

Functions for Digital Output Control... 4-1
Functions to Read from and Write to the Bezel EEPROM........ 4-7
Function for Watchdog Timer Control 4-11
Functions for Use in Custom Keypad Handlers....................... 4-12
Streams Interface for Keypad Driver Control.......................... 4-14
Streams Interface for Touchscreen Control.............................. 4-14
Functions for LED Control .. 4-14
Functions for Use in PCI Device Drivers 4-18
Sample Code for a Simple PCI Slot Device 4-25
Functions for OS Update ... 4-27
Function for Registry Flush ... 4-27
Function to Adjust Allocation of DRAM................................. 4-29
Functions to Get/Set Misc Parameters 4-30
Functions for Accessing System Timers 4-33
Functions for Accessing the Hardware Monitor 4-40
Functions for Accessing Retentive Memory............................ 4-50
Streams Interface for Serial Ports .. 4-55
Application Interface to Output Debug Messages 4-57

Table of ContentsTable of ContentsTable of ContentsTable of Contents

toc-ii Table of Contents

Publication 6182-UM002B-EN-P

Appendix A

Operating System Files ...A-1
Memory Usage ..A-2
Connecting an External Debug Monitor....................................A-3

Index

Using this ManualUsing this ManualUsing this ManualUsing this Manual

Read this preface to familiarize yourself with the rest of the manual. The
preface covers the following topics:

 who should use this manual

 the purpose of the manual

 contents of the manual

 conventions used in this manual

 Allen-Bradley support

Use this manual if you are responsible for developing application
software to run on the 6182 Windows CE Industrial Computer.

This manual is a user guide for the Software Development Kit for the
6182 Windows CE Industrial Computer. It gives an overview of the
system and provides detailed information about the contents of the
software development kit.

Chapter Title Contents

Preface Describes the purpose,
background, and scope of this
manual. Also specifies the
intended audience.

1 Introduction to the
RAC6182

Provides an overview of the 6182
Computer and describes the
hardware and operating system
software.

2 Developing CE Drivers
and Applications for the
RAC6182

Provides general guidelines for
programmers. Provides detailed
procedures for setting up the
development system and installing
the RAC6182 SDK.

3 RAC6182 CE SDK Provides an overview of the 6182
CE SDK.

4 RAC6182-Specific
Extensions to the CE
API

Provides detailed descriptions of
the 6182 functions.

Appendix A Provides file lists, memory usage
information, instructions for using
an external debug monitor.

PPPPrefacerefacerefacereface

Who Should Use This
Manual

Purpose of this Manual

Contents of this Manual

P–2 Using this Manual

Publication 6182-UM002B-EN-P

The following conventions are used throughout this manual:

 Bulleted lists such as this one provide information, not procedural
steps.

 Numbered lists provide sequential steps or hierarchical information.

Allen-Bradley offers support services worldwide, with over 75
Sales/Support Offices, 512 authorized Distributors and 260 authorized
Systems Integrators located throughout the United States alone, plus
Allen-Bradley representatives in every major country in the world.

Local Product Support

Contact your local Allen-Bradley representative for:

 sales and order support

 product technical training

 warranty support

 support service agreements

Technical Product Assistance

If you need to contact Allen-Bradley for technical assistance, please
review the information in the System Troubleshooting chapter first.
Then call your local Allen-Bradley representative or contact Allen-
Bradley technical support at (440) 646-5800.

For additional product information and a description of the technical
services available, visit the Rockwell Automation/Allen-Bradley Internet
site at http://www.ab.com.

Manual Conventions

Allen-Bradley Support

Introduction to the RAC6182Introduction to the RAC6182Introduction to the RAC6182Introduction to the RAC6182

CPU

The system processor is a QED RM5231 embodying the popular MIPS
4300 RISC architecture. The RM5231 has a 225MHz clock speed, 64-
bit internal registers and a built in floating point unit.

The system processor communicates directly with various memory
devices, a V320 bus controller, and a super I/O controller by way of a
32-bit system address and data bus.

The V320 bus controller manages system dynamic RAM for the 5231. It
also provides a bridge from the system bus to the PCI bus. In addition, it
provides system timers.

Chapter Chapter Chapter Chapter 1

Hardware Architecture

1–2 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

System Timers
At least one (and in some cases, depending on the hardware revision
level, more than one) programmable hardware timer is available at the
application layer.

Memory Devices

Disk-On-Chip Flash ROM
The Disk-On-Chip device (commonly called the “DOC”) is a flash ROM
(32MB to 256MB, field upgradable) that emulates a disk device. The
Disk-On-Chip device has two partitions or logical storage areas. One
partition provides non-volatile storage for the Windows CE operating
system image. The other partition supports a FAT16 (DOS compatible)
file system, in which application programs and data can be stored.

Boot ROM
The boot code resides in a 256KB boot ROM. The boot code includes a
“Boot Loader” that loads the Windows CE image from the Disk-On-Chip
into DRAM at system startup.

The boot ROM is segmented into two 128K blocks, each of which
contains boot code. A jumper on the CPU board (J2) selects between the
2 blocks. The lower block (selected when the jumper is across pins 1
and 2) contains the primary boot code. The upper block (selected when
the jumper is across pins 2 and 3) contains boot code with debug support.
The upper block boot code performs extended power on self testing
(POST), disables restoration of user persistent registry items, and enables
debug output on COM2.

DRAM
The RAC6182 uses industry standard 3.3V, PC100 and SPD compliant,
non-ECC dynamic RAM, packaged in a DIMM. The DIMM may be
32MB to 256 MB, and is field upgradable. The DRAM provides a fast
access volatile storage space for data and program code.

The Operating System uses part of the RAM for a RAMDISK and the
other part for normal system memory. The RAMDISK portion is known
as the Object Store and provides specialized storage for the Windows CE
Registry and Windows CE system databases. The Windows CE Control
Panel System Properties tool has a slider control that allows a user to
determine how the RAM is allocated between RAMDISK Storage and
system memory. The slider control is factory set for a 50/50 split.
Application programs can control RAM allocation with the Windows CE
system call SetSystemMemoryDivision (see Microsoft’s documentation
of the CE API for details).

Introduction to the RAC6182 1–3

Publication 6182-UM002B-EN-P

Retentive Memory (Battery Backed RAM)
A 128 KB non-volatile memory provides application accessible storage
for state information and data logging operations. A Lithium battery
with a 10-year shelf life provides for long term data retention. It is
recommended that applications using the retentive memory monitor
battery voltage; this is easily done with system calls to the RAC6182’s
hardware monitor. If the battery voltage should start to decline, the
battery should be replaced. Battery replacement is facilitated by the
presence of a “super-cap”, which provides sufficient current to sustain
the memory data for up to eight hours following a power down of the
system.

Super I/O

The National PC97317 super I/O chip provides several key functions.

PS/2 Keyboard and Mouse Ports
The super I/O chip provides two PS/2 ports to support connection of an
external keyboard and/or mouse.

Serial Ports
The super I/O chip provides two 16550A compatible serial ports. The
CE operating system identifies these ports as COM1 and COM2.
Applications can control both COM ports via standard WIN32 API
function calls.

COM1 is provided with a DB9 connector and supports RS232 (TXD,
RXD, RTS, CTS) and RS422/485 (TX422+, TX422-, RX422+, RX422-)
signaling at standard communication data rates up to 115 Kbps. The
configuration (RS-232/RS-422/485) for this port is software-selectable.
COM1 serves as the primary serial port for application use; it remains
available to applications for serial I/O even when debug mode is enabled.

COM2 is provided with a DB9 connector and supports “standard” RS232
signaling only. COM2 may serve either as an application RS232 port or
as a debugging port. When the operating system is in debugging mode it
will output debug messages to COM2 port. An application developer or
device tester can utilize these messages to determine the current state of
the operating system, or to identify problems such as device failures or
application exceptions.

Parallel Port
The super I/O chip provides one bi-directional parallel port to support
connection of a local printer or other peripheral device.

1–4 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

Real Time Clock
The super I/O chip provides a Real Time Clock which keeps the system
date and time.

Watch Dog
The super I/O chip provides a watchdog timer that can be used to trigger
a system reset.

At system initialization, the watchdog is disabled. It can be enabled by
an application. Once the watchdog is enabled, one or more applications
must periodically “tag” (restart) it to prevent it from timing out. If the
watchdog times out, a system reset (warm-boot) is initiated. Once the
system has been restarted, an application can inquire about the event that
caused the restart and learn that the watchdog timed out. A condition
code indicating this remains latched and detectable by software until it is
cleared by a cold-boot.

The watchdog timer has a maximum resolution of 1 msec.

GP I/O Subsystem
The super I/O chip provides a bridge between the system bus and a
general purpose I/O bus. This general purpose I/O bus supports several
additional devices.

Relay Output

A relay output is provided for application level control of an external
device.

Hardware Monitor

An application accessible hardware monitor provides real-time
temperature, voltage and battery monitoring. Thresholds for warnings
can be established by application programs. Applications also have
access to the system LEDs.

Keypad

Certain configurations of the RAC6182 provide function keys, a numeric
keypad and cursor control keys integrated into the front bezel. The
number of function keys can vary. Some function keys are re-
legendable.

Extended software support for the bezel keypad is provided with the
RAC6182 Windows CE operating system in the form of a keypad
handler DLL. The keypad handler intercepts and operates on codes
produced by the keypad driver before passing them tot he application
with current focus. The keypad handler can optionally re-map keys
(assign different virtual key codes) and effect specialized processing
such as the generation of key macros (strings of virtual key codes) or the
launching of a new program from single key strokes. The standard

Introduction to the RAC6182 1–5

Publication 6182-UM002B-EN-P

keypad handler can be replaced by a custom keypad handler to provide
special key code mappings.

Touch Screen

An integral, resistive analog touch screen with a serial controller
provides mouse-like operator input. The touch screen is a factory
installed option associated with an integral display.

PCI Subsystem

The V320 chip provides a bridge between the 32-bit system address/data
bus and the PCI bus. Several devices are attached to the PCI bus.

Display Controller
An MQ200 video controller, configured as device z on PCI bus 0,
supports bezel mounted LCDs as well as external monitors. The MQ200
provides 2 MB of video RAM.

Table A
Display Options

Integral 8” Diagonal Display* Integral 12” Diagonal Display* External Monitor

Type STN LCD with LVDS digital
interface

TFT LCD with LVDS digital
interface

Any type, with VGA/HD-15
analog interface

Resolution 640x480 (VGA) 800x600 (SVGA) up to 1024x768 (XGA)

Color Depth(s) 256, 64K or 16M 256, 64K or 16M 256, 64K or 16M at <=
800x600, 256 or 64K at
1024x768

*The bezel mounted LCD display is a factory installed option.

USB Ports
A USB0672 USB Controller Chip, configured as device x on PCI bus 0,
provides basic OHCI host support for up to two USB peripheral devices.
This basic support will facilitate use of various USB keyboards, printers,
bar code readers, etc. when the appropriate device specific drivers are
available.

On-board Ethernet
An Intel 82559 Fast Ethernet Multifunction Controller, configured as
device x on PCI bus 0, provides Ethernet communications support via
one 10/100-BaseT RJ45 port.

PCMCIA Slots
A PCMCIA slot connector supports 2 Type II PC Cards or 1 Type III PC
Card. The PC Cards can be memory or I/O devices. The system
supports concurrent operation of PC Cards as follows: One for memory

1–6 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

expansion and one for communications; one or two for memory
expansion; one or two for communications.

PCI Slot
One half-length PCI slot provides an expansion capability for
communication and I/O. The PCI slot can accommodate a large
assortment of specialized and commercially available PCI add-in cards
when suitable drivers are available. The device installed in the PCI slot
will be device x on PCI bus 1.

RAC6182 Windows CE OS

The initial release of the RAC6182 provided Windows CE Version 2.12
with the latest service packs. Currently, the RAC6182 is provided with
Windows CE V3.0

The system software includes the following components:

 Hardware Initialization and Boot Loader, situated in the boot ROM

 Windows CE Kernel with adaptations (Hardware Adaptation Layer
customized for the RAC6182 hardware, Built-in ISRs), situated in the
boot image stored in the operating system partition of the Disk-On-
Chip

 Windows CE Default Registry, which is part of the boot image. (A
persistent registry, containing information relative to specific
configurations, is maintained in the file system and merged with the
default registry at boot.)

 Windows CE Modules and Device Drivers (File system support, ...),
implemented as part of the boot image or as files (dlls, exes, etc.)
stored in the FAT16 partition of the Disk-On-Chip

 GUI Desktop Shell, implemented

 Control Panel and System Configuration/View Tools

Boot Sequence

The boot code in the Boot ROM gets control of the microprocessor at
power-on, initializes the hardware, performs power-on self-tests (POST),
and moves the compressed Windows CE operating system image from
the boot partition of the Disk-On-Chip persistent storage device into
DRAM. Several seconds are required for the decompression and copy
operation. Finally, the boot loader jumps to the start address of the
Windows CE image and control passes to the Windows CE operating
system. Windows CE then loads drivers, including the driver for the
Disk-On-Chip FAT16 file system (on the “storage card” partition),
restores the registry, establishes the video modes, and finally loads the
start-up applications into memory and runs them.

Software Architecture

Introduction to the RAC6182 1–7

Publication 6182-UM002B-EN-P

The operating system image that is loaded resides in the operating
system partition of the Disk-On-Chip device. However, before loading
the Disk-On-Chip boot image, the boot code checks for the presence of a
PCMCIA memory device that is capable of supplying a boot image. The
flow diagram that follows describes the boot sequence.

Hardware Initialization
The boot code first initializes the CPU and V320 system controller; it
then tests video RAM, which it needs to use for stack and heap until the
system DRAM is fully available. If debug is enabled, the debug serial
port is initialized and a 1 second delay is introduced to give the baud rate

1–8 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

generator time to stabilize. Finally, system DRAM is tested. In the
interest of reducing boot time, this test is limited to an address check; no
attempt is made to identify bit errors at given addresses.

Tests for Boot Devices
When hardware testing has been completed, the boot code starts looking
for PCMCIA devices capable of supplying a compressed operating
system image.

The boot code first checks for the presence of a PCMCIA ATA memory
device. If it finds such a device with a FAT16 file system containing a
file recognizable by its name as a compressed boot image, it will attempt
to use that image. The image will be tested for validity. If valid it will
be used to overwrite any existing image on the Disk-On-Chip. Operating
system loading will then commence.

Note: The boot process configures the PCI controller and any
NE2000 Ethernet device in the PCI slot to the extent that,
after boot, applications will be able to obtain necessary
address and interrupt information by querying the device.
This basic POST setup does not necessarily configure all
configuration space registers such a device may use.
Though many PCI devices will not need any other
configuration space registers configured after boot, some
have special power-management or other registers to
configure. These registers vary widely by card and should
be setup by application after boot using Win API calls to
access PCI configuration space.

Load of Compressed Operating System
The boot code reads the compressed operating system image from the
Disk-On-Chip operating system partition, decompresses it and loads it
into memory. (It loads the executable operating system code into
program memory and a default system registry into the RAMDISK
section of memory.) Control then passes to the operating system image
in memory.

“Cold Boot”
The operating system begins a “cold boot” by loading the driver for the
FAT file system on the Disk-On-Chip.

It then attempts to find the primary persistent registry file. If this file is
not present, it attempts to find the backup persistent registry file. If no
persistent registry file is found, system boot continues with the default
registry already in memory.

If a persistent registry file is found, the system merges the default
operating system registry and this saved persistent registry, saved
persistent registry items taking precedence.

Introduction to the RAC6182 1–9

Publication 6182-UM002B-EN-P

“Warm Boot”
After the registry merge, a “warm boot” is begun. Control passes to the
operating system kernel, which can now use the registry image to
initialize various subsystems. The file system drivers, the graphical
subsystem drivers, serial, network, PS/2, USB, and other device drivers
are loaded and initialized.

The Windows CE Registry

The Windows CE Registry contains application and system configuration
data. The Control Panel provides the user interfaces for managing the
system settings that are configurable by the user. Applications access the
Registry via the Win32 API. Application developers can manipulate the
registry using the tools in Microsoft’s Widows CE Toolkit for Visual
C++ 6.0, Windows CE Toolkit for Visual Basic 6.0 or Windows
Embedded Tools V3.0.

The default Registry resides in the operating system image in the Disk-
On-Chip. During runtime, the Registry is loaded into and resides in
RAM in the Object Store (RAMDISK).

When the system is powered-on, the registry is restored from Flash
Memory to DRAM during “cold boot”.

At system shutdown, a persistent copy of the registry is written to flash
memory by a FlushRegistry() operation. Likewise, when the built-in
Control Panel application, used to manage system settings, is closed, a
persistent copy of the registry is written using a FlushRegistry() call.
FlushRegistry() may also be called by an application.

Table B
Registry Files

File Name Description

\storage card\Registry.rlz Primary persistent Registry file

\storage card\regbak.rlz Backup persistent Registry file

\storage card\regtemp.rlz Temporary persistent Registry file

These files are accessed by RegistryFlush and other operating system
functions. Applications should never access them directly. The primary
and backup persistent Registry files have the read-only, hidden, and
system attribute bits set to prevent accidental corruption or deletion by
application.

The only time these files should be deliberately touched is during a
condition of suspected Registry corruption, wherein, the user decides to
revert to the default Registry. Deleting both files and restarting will
revert to the default Registry.

1–10 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

The operating system boot process is responsible for merging the default
operating system Registry keys with the keys from the persistent
Registry. If the same keys exist, preference is given to the persistent
registry file. A few default keys are exceptions to this rule and are
bypassed during the merge; e.g. the O/S version number is acquired from
the O/S image.

The process of merging default and persistent registry information allows
operating system upgrades to add new registry keys and values and have
these be used in addition to any saved registry state. Since the saved
registry information has precedence, users’ saved registry keys for
control panel applets and other operating system items will be
maintained even in the case of operating system upgrades.

On the other hand, the priority given to persistent registry information
over default operating system registry information makes it possible for
applications or users to cause problems with operating system startup by
changing the wrong registry keys. When manipulating the RAC6182’s
CE Registry applications and users should exercise the same degree of
caution that would required in the case of a Windows 9x or NT device.

Important: Since some applications and drivers only read the Registry
at start-up, some registry changes made by applications
will have no effect until the RAC6182 is re-started.

Policies for When Registry Flushing Occurs
Control panel applets supplied with the operating system have been
customized to automatically flush the registry upon exiting the applet.
This allows users to change typical control panel settings such as
network, device name, screen saver, etc. and have these be flushed
without having to manually issue a registry flush to save these. Since the
flush occurs on applet exit as an optimization, users just need to
remember to close the applet after making changes for the automatic
flush to occur. Due to the inner workings of the applets, it is not feasible
to only flush on applet close if a value was changed, so a flush occurs on
applet close even if no registry values were actually altered.

Other applications such as Internet Explorer, remote networking, and any
third-party packaged applications are not customizable in this fashion
and hence changes they make to the registry will not be persistent until
some other application flushes the registry. To address this, two features
of the operating system are present.

First, an executable regflush.exe supplied with the system may be
manually executed by a user at any time to flush the registry to persistent
storage; this application simply calls RegistryFlush(). Second, upon a
controlled shutdown requested by an application through the
power/shutdown driver results in an automatic flush of the registry after
applications have signaled that their cleanup is complete and before the
hardware is actually shutdown or reset.

Introduction to the RAC6182 1–11

Publication 6182-UM002B-EN-P

During an uncontrolled shutdown (i.e. hard-power down), the system
does not have enough time to flush the registry to persistent storage.
Therefore, the registry must have been flushed by one of the means
described above or else changes to the registry since the last flush will be
lost. It is recommended that the controlled shutdown procedure be used
for shutdown even if other registry flushing by applications is in place.

Local File Systems

The RAC6182 Windows CE operating system provides support for two
separate local file systems. A DOS compatible FAT16 file system is
implemented in one of the two Disk-On-Chip partitions; accordingly, its
files are persistent. A RAM file system (RAMDISK or Object Store) is
implemented in that part of the system DRAM reserved for it. The files
in the RAM file system are not persistent.

The FAT16 and RAM file systems can be viewed and manipulated by the
Windows Explorer utility. Within the Windows Explorer, these systems
appear as parts of one larger system. That is, they appear as directories
under “My Computer”. The FAT16 file system appears as “\Storage
Card”, while the RAM file system includes several directories, including
the most important, the “\Windows” directory, where system binaries are
stored.

1–12 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

Table C
RAM File System

Directory Description

\Temp Not used

\My Documents Not used

\Program Files Contains links (shortcuts) to certain
system executables

\Program Files \Communications Contains links (shortcuts) to certain
system executables

\Windows Contains system executables (*.exe),
dynamic link libraries (*.dll), fonts (*.ttf),
etc. making up the Windows CE operating
system

\Windows\Programs Contains links (shortcuts) to certain
executables in \Windows

\Windows\Programs\
Communication

Contains links (shortcuts) to certain
executables in \Windows

\Windows\Desktop Contains links (shortcuts) that define the
contents of the Windows Desktop

\Windows\Favorites Not used

\Windows\Fonts Not used

\Windows\Recent Not used

\Windows\Startup Not used

The FAT16 (persistent) file system, “\Storage Card”, is organized as
follows:

Table D
FAT16 File System

Directory Description

\Storage Card Contains backups of the system registry
and the system exceptions log.
Applications should be stored here or in
subdirectories created here.

\Storage Card\Temp

\Storage Card\Windows\Desktop Contains links to certain system
executables

\Storage Card\Windows\
Programs

Contains links to certain system
executables

Introduction to the RAC6182 1–13

Publication 6182-UM002B-EN-P

Input Device Handlers

Touch Screen
The RAC6182’s display can be equipped with a high resolution resistive
touch screen. The Windows CE operating system incorporates a driver
for the touch screen.

A user interface is provided to enable touch screen configuration and
calibration. Touch screen calibration values are stored in the registry.

Keyboards
The RAC6182 is designed to take key input from multiple sources.
Support is present in the operating system for a standard PS/2 keyboard,
a standard USB keyboard, and a bezel keypad. The key input drivers are
designed to permit any one of these devices to function alone and to
permit a bezel keypad to function together with a PS/2 or USB keyboard.

Note: There is no support for both a PS/2 and a USB keyboard
simultaneously connected

The PS/2 and USB keyboards can be individually enabled or disabled
using control panel applets.

The Windows CE architecture dictates that one keyboard device and one
only may be loaded by the GWES.EXE subsystem, and that this device
will be responsible for the default mappings of scan codes to virtual
keys, virtual keys to virtual keys, and virtual keys to Unicode characters.

Other keyboard devices are supported as device drivers loaded by
DEVICE.EXE. These drivers submit virtual keys to the primary
keyboard driver and use its mapping capability. Multiple key input
devices share modifier (SHIFT, CONTROL, ALT) states.

The primary (GWES) driver in the RAC6182 is the driver that handles
the PS/2 keyboard and mouse ports. The USB keyboard and keypad
drivers are dependent upon this driver for high level key input
processing. The following table identifies the various drivers that
constitute the keyboard input subsystem.

Table E
Drivers for the Keyboard Input Subsystem

Driver Description

\windows\kbdmouse.dll PS/2 keyboard and mouse driver, loaded by
GWES.EXE at startup. Responsible for low level
PS/2 related items and scan code to virtual key
mappings for the PS/2 keyboard. Responsible for
default virtual key to virtual key mappings based on
modifier keys and for virtual key to Unicode
mappings, for all key input devices.

1–14 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

Driver Description

\windows\usbhid.dll USB Human Interface Device driver, loaded by
DEVICE.EXE upon insertion of a USB Human
Interface Device. Handles USB keyboard and
mouse. Responsible for low-level USB related
items and scan code to virtual key mappings for
USB keyboard. Submits virtual key codes to
kbdmouse.dll.

\windows\keypad.dll RAC6182 specific keypad driver, loaded by
DEVICE.EXE at startup. Handles low-level keypad
input and scan code to virtual key mapping.
Submits virtual keys to Rockwell supplied keypad
handler for mapping and submits virtual keys to
kbdmouse.dll for virtual key to Unicode mappings.

\windows\khstub.dll Keypad handler stub. This DLL is loaded by
keypad.dll if no Rockwell supplied keypad handler
is present. The stub returns a default scan code to
virtual key mapping table for one current model of
keypad and defers all virtual key mapping to the
kbdmouse.dll driver.

\storage card\kh.dll Rockwell supplied keypad handler, loaded by
keypad.dll on boot. Responsible for mapping
virtual keys from the keypad into other virtual keys,
macros, or other actions. Any virtual keys returned
by the keypad handler’s mappings will still use
kbdmouse.dll for mapping virtual keys into
Unicode. The name of this file may be overridden
with an alternate keypad handler name via a
registry key. If key
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Keypad]
contains a REG_SZ value named
“KeypadHandlerName”, its value will instead be
used when loading the keypad handler.

Introduction to the RAC6182 1–15

Publication 6182-UM002B-EN-P

The following figure schematizes the functional relations between the
various drivers in the keyboard subsystem.

As can be seen from the table and the accompanying schematic, the
functions of the RAC6182 bezel keypad are supported by two separate
software components: a keypad driver, and a keypad handler.

Keypad Driver

The keypad driver supports low level functions associated with standard
keyboards (e.g., generation of auto-repeat sequences, mappings of scan
codes to Windows virtual key codes, etc.) and a number of Rockwell
proprietary features:

 Support for multiple types of keypads. Different keypads may have
different scan code to virtual key mappings.

 Support for non-standard keys, for example, the programmable
function keys K1 – K16 and the +* key (unshifted press results in a
‘+’, shifted press results in a ‘*’).

 Support for mapping single key presses into multiple key macros at
the virtual key level.

1–16 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

 Support for assignment of special functions to key operations by
application programs.

 Support for a ‘single-key’ mode, in which keystrokes are processed
one at a time. Following an initial key-down event, any other key-
down or key-events will be ignored until the key-up event
corresponding to the initial key-down event has been detected and
processed.

 Support for a ‘hold-off’ mode, in which successive strokes of a given
key occurring within a given time period will be ignored.

After the keypad driver is loaded by device.exe at system start-up, it
attempts to read the keypad ID from the bezel EEPROM. If it does not
find a valid ID, it exits. Otherwise, using the keypad ID, the driver
locates an entry in the CE system registry that points to the current scan
code to virtual code translation table for the keypad.

The keypad driver then attempts to load the keypad handler and verify
that it supports a set of callback functions that the driver requires it to
have. If the keypad handler dynamic link library is not present or does
not contain all the necessary callback functions, a default keypad handler
stub is loaded. This handler stub implements all the necessary callbacks
and information for mapping one particular model of keypad, but it
cannot handle changing key mappings, macros, actions, or other models
of keypad.

When a key on the keypad is pressed or released, the keypad processor
sends two codes to the keypad driver. One code is a scan code
corresponding to the key pressed or released; the other is an event code
identifying the type of event (key up or key down). Using the current
translation table, the driver converts the scan code into a Windows
Virtual key code. The driver maintains the modifier, auto-repeat, and
multiple-keys states.

The driver does additional processing of key events to determine if these
events meet the conditions of repeat mode, hold-off mode or single-key
mode, provided these modes are enabled.

Once it has finished its low level processing, the driver calls the keypad
handler function KhTranslateVkey(), passing the virtual key code to this
function. The keypad handler returns an array of translated virtual
code(s).

Finally, the driver calls a Win32 API function kbd_event() to pass the
key events to the GWES keyboard driver.

Keypad Handler

The Rockwell supplied keypad handler is an optional software
component that can be replaced with a stub or with another keypad
handler designed for a specific application. The handler operates on
Windows Virtual Key codes supplied by the keypad driver. It can

Introduction to the RAC6182 1–17

Publication 6182-UM002B-EN-P

perform translations of Virtual Key codes before the keypad driver
passes these codes to the main keyboard driver for final processing.
Thus, it functions as an intermediate processor between the keypad
driver and the main keyboard driver.

The keypad handler maintains its own key mapping and attribute tables
separate from those maintained by the keypad driver. It can maintain
these tables, in the system registry, system file storage, or wherever else
the implementer of the keypad handler chooses. Although these
mapping and attribute tables will be used by the driver, they are placed
under the control of the handler to facilitate changes in mapping or
attribute information and to facilitate the support of various keypads.
With this scheme, new features and functions can be accommodated
without modifications to the driver or other operating system level
modules.

The handler also maintains global configuration data for the keypad,
including auto-repeat settings, single key and hold off mode settings, etc.

The keypad handler is loaded and initialized by the keypad driver, and
the handler must be able to respond to an initial query from the driver for
its key mapping and attribute information.

Once the handler has been initialized by the driver, it is ready to accept
additional calls from the driver to map any incoming virtual key down
presses or releases that are currently valid (subject to the constraints of
hold off and single key mode, which are enforced by the driver). The
keypad handler may perform some action based on the key code passed
(for example, it may launch an application), it may expand a key code
into a sequence of codes (implementing a macro definition), it may filter
the code, re-map it, etc. Alternatively, it may defer mapping of the
virtual key to the normal keyboard driver.

In addition to being called back for key presses, the keypad handler will
be called back when the global configuration settings for the keypad
driver are changed. The keypad handler or some other application may
change the settings of the keypad driver using the streams interface to be
discussed later. When this occurs, the keypad handler is called back to
ensure that it is aware of the changes.

Registry keys used by KHSTUB.EXE

The operating system includes a simple keypad handler stub which may
be used when the more sophisticated capabilities in the Rockwell handler
are not required. This stub defers all mapping from the virtual key level
up to the main keyboard driver. The registry keys khstub uses to obtain
keypad mapping and other information are documented here in case
application developers wish to use the same keys.

1–18 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

Global key setting information is listed here by key and value.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Keypad\Params\TypematicRepeat]
“Enabled” REG_DWORD which is 1 for enabled, 0 for disabled
“RepeatDelay” REG_DWORD of initial repeat delay in ms.
“RepeatRate” REG_DWORD of subsequent repeat delay in ms.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Keypad\Params\SingleKeyMode]
“Enabled” REG_DWORD which is 1 for enabled, 0 for disabled
“AbortEnabled” REG_DWORD which is 1 for enabled, 0 for disabled

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Keypad\Params\HoldoffMode]
“Enabled” REG_DWORD which is 1 for enabled, 0 for disabled
“HoldoffTime” REG_DWORD of time in ms. for key hold-off

Keypad ID specific items include scan code to virtual key mappings and
the attribute flags. The key name contains the keypad ID printed as a
%04X value to reference the correct keypad mappings. The value names
contain the scan code number printed as a %02X value. A sample for a
keypad with ID 0x0A5C is given here.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Keypad\Keypads\0A5C]
“VirtualKey00” REG_DWORD giving the virtual key code for scan code 0x00
“Attributes00” REG_DWORD giving the key attributes for scan code 0x00
“VirtualKey6A” REG_DWORD giving the virtual key code for scan code 0x6A
“Attributes6A” REG_DWORD giving the key attributes for scan code 0x6A

Bezel ID EEPROM

The bezel EEPROM provides a total of 256 bytes of non-volatile storage.
The first 128 bytes are reserved for use by the CE operating system. The
remaining 128 bytes are available for use by application programs.

The bezel EEPROM is used by the operating system to identify
components of the bezel and traits specific to that bezel. These
components and traits may vary from unit to unit and so are
appropriately kept with the bezel. This allows interchange of bezels
without reprogramming or recalibration. The bezel configuration
information stored in this EEPROM is used by three major CE
subsystems: the video driver, the touch screen driver, and the keypad
driver.

Video Data
The video driver uses a 16 bit value in the bezel EEPROM to identify the
LCD by model. This ID is used to reference an area of registry for
settings used for any LCD panel of that model, such as resolution,
interface type, and panel timings.

The video driver also stores minimum and maximum values for contrast
and brightness in the bezel EEPROM. These values define limit values
presented on the control panel. They are stored in the EEPROM rather
than registry since individual panels of the same model may have
variances that require individual adjustments based on experimental data.

Introduction to the RAC6182 1–19

Publication 6182-UM002B-EN-P

The current contrast and brightness values are individual user
preferences rather than traits of the panel, so are stored in registry rather
than in the bezel EEPROM. However, if the registry contrast or
brightness value is not present or not in the min/max range specified for
the panel by the bezel EEPROM data, a default value is used from the
bezel EEPROM.

Touch screen data
The touch screen driver uses a 16 bit value in the bezel EEPROM to
identify the model of touch screen. This is used to determine what type
of touch screen interface and decoding logic to use. Also, the bezel
EEPROM is used to store touch calibration data, since calibration data
will be specific to particular touch screens even of the same model.

Keypad data
The keypad driver uses a 16 bit value in the bezel EEPROM to identify
the model of the keypad. This ID is used to determine what keypad scan
code to virtual key mapping information is obtained from the keypad
handler for the driver to use in decoding keys.

Layout of the Bezel EEPROM
The following table shows the layout of the bezel EEPROM.
Assignments within the lower 128 bytes (system area) are subject to
change. However, the upper 128 bytes (beginning at offset 0x80) are
guaranteed to be available for use by applications needing non-volatile
storage.

1–20 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

Table F
Layout of the Bezel EEPROM

Addresses (Hex) Purpose

0x00-0x01 16 bit CRC of the remainder of bezel EEPROM data

0x02-0x0F Reserved for future system use

0x10-0x11 Touch screen ID (0=4 wire res, 1=5 wire res, 0xffff =
none)

0x12-0x13 Magic cookie to tell if calibration data is valid

0x14-0x1F Reserved for future touch screen driver use

0x20-0x2F Touch screen calibration information

0x30-0x31 Keypad ID (0 = 56 key pad, 1 = 84 key pad, 0xffff = no
keypad)

0x32-0x3F Reserved for future keypad driver use

0x40-0x41 LCD panel ID (0 = 7” STN, 1 = 12” TFT, 0xffff = no LCD)

0x42 Minimum allowable contrast for this particular panel

0x43 Maximum allowable contrast for this particular panel

0x44 Default contrast for this particular panel if registry
contrast is invalid

0x45 Minimum allowable brightness for this particular panel

0x46 Maximum allowable brightness for this particular panel

0x47 Default brightness for this particular panel if registry
brightness is invalid

0x48-0x5F Reserved for future video driver use

0x60-0x7F Reserved for future operating system use

0x80-0xFF Application area. Will not be used by operating system

PCI Bus

PCI bus 0 contains the onboard Ethernet, video, USB, and PCMCIA
controllers.

PCI bus 1 contains the PCI slot. From a PCI configuration standpoint,
the virtual slot number of a device plugged in the slot is 1.

The operating system supports basic configuration, interrupt control,
memory management and IO access for PCI cards plugged into this slot.
The operating system does not support bus-mastering by the PCI slot
device.

PCMCIA

New or upgraded components of application programs and the operating
system can be copied from the PCMCIA memory card to Disk-On-Chip
flash memory to replace and upgrade the existing components.

Introduction to the RAC6182 1–21

Publication 6182-UM002B-EN-P

In the Windows Explorer, the PCMCIA Memory Card will show up as an
icon named “\Storage Card2”.

Application Run Time Environment

Path
The notion of a path to executable files is much the same as with any
other Windows or DOS system. However, unlike other systems, which
refer to an environment variable for path settings, Windows CE utilizes a
registry entry. Thus, the path can be set only by editing the value of the
registry key \HKLM\Loader\SystemPath. Note the use of spaces to
separate items in the path list, as in the following example:

“\storage card\bin\ \storage card\ \ storage card2\bin\ \storage card2\ . . .”

Launching Applications At Start-Up
The Widows CE Registry entries at key HKLM\init determine the
programs that are started during system initialization, and the order in
which they are started. The Windows CE Platform Builder development
tool (not part of the Windows CE Toolkits for Visual C++ 6.0 and Visual
Basic 6.0) is used to establish these Registry entries.

Table G
RAC6182 Launch Order

Sequence Program or File Description

Launch10 shell.exe Start the shell

Launch20 device.exe Load and start the device drivers

Launch30 postdevice.exe Start post device driver processing . . .

Depend30 14 00 when device.exe signals complete

Launch40 gwes.exe Start graphics and events subsystems .
. .

Depend40 1e 00 when postdevice.exe signals complete

Launch50 explorer.exe Start Windows Explorer . . .

Depend50 14 00 28 00 when device.exe and gwes.exe
complete startup

Launch90 (an OEM executable) Start OEM executable…

Depend90 1e 00 28 00 when postdevice.exe and gwes.exe
complete startup

Launch90 provides a launch point at startup for an OEM that assures that
the device drivers, TCP/IP, registry and GUI functions are up and
running.

Explorer is launched during initialization because it handles the GUI
shell, taskbar, running items in \windows\startup, etc. Unlike other
executable files, Windows Explorer does not properly signal that it has

1–22 Introduction to the RAC6182

Publication 6182-UM002B-EN-P

completed startup, so dependencies should not be placed directly on
explorer.exe. Consequently, the start menu, taskbar, etc. may still be
drawing when oemstartup.exe is called.

Although there is a \windows\startup folder in the file system, the
placement of a shortcut in this folder in order to start the associated
application automatically at system startup is not recommended. The
folder \windows\startup is RAM based, and its contents will not persist
from one operating session to the next.

The solution is to place shortcuts in \Storage Card\Windows or in a
directory under it. In a normal system initialization sequence, everything
in \Storage Card\Windows\ (in the persistent file system), including
subdirectories and their contents, is copied to \Windows (in the RAM
filesystem) following the startup of gwes.exe. This copy operation is not
performed only when the system has been placed in diagnostic mode,
either by the installation of a jumper on the system board (see
information about the boot ROM elsewhere in this manual), or by an
application, using a call to the system function rm_SetParameter (see the
description of this function elsewhere in this manual).

Process Priorities
All executable files start in user mode. Any application can change to
kernel mode or back with the Windows CE SetKMode() call. The only
known exception is nk.exe, which is started first and doesn't follow the
same rules.

System Shutdown

The system supports a soft reset and provides a shut-down indicator in
non-volatile memory.

Developing CE Drivers andDeveloping CE Drivers andDeveloping CE Drivers andDeveloping CE Drivers and
Applications for the RAC6182Applications for the RAC6182Applications for the RAC6182Applications for the RAC6182

There are two general considerations for developing drivers and
applications for the RAC6182:

 Distributing and installing applications

 Persistence considerations

Application Distribution and Installation

Application programs for the RAC6182 will consist of EXE and DLL
files that will reside in the FAT partition of the Disk-On-Chip. They will
be installed much like applications for Windows desktop operating
systems.

Typically, a RAC6182 CE application will be distributed as a package
containing the run-time components, in compressed form, and an
executable “installation script” that manages the installation process.
When the installation script (typically “Setup.exe”) is run, the run-time
components will be decompressed and moved to their assigned folder(s),
desktop icons and start menu entries will be created, and the system
registry will be edited to register the application’s components and
associated parameters. Finally, an uninstall script will be created and
saved.

Microsoft’s InstallShield tool is recommended for packaging
applications for distribution. This tool alleviates some of the difficulties
associated with the development of installation scripts and imposes a
familiar “look and feel” on the installation process.

The application developer should give some thought to the means to be
used for distributing the installation script. Generally, there are two
means available: CDROM and the internet.

Chapter Chapter Chapter Chapter 2

General Considerations

2–2 Developing CE Drivers and Applications for the RAC6182

Publication 6182-UM002B-EN-P

Installing the Application
Once the user has obtained an installation script by one of these methods
and the script resides on the user’s local desktop PC, he or she may use
any of three methods to install the application on the RAC6182.

 Perform a remote installation by running the script on a PC host that
is connected to the RAC6182 using Data Exchange.

 Copy the script from a PC host using Data Exchange or from a
PCMCIA ATA memory card to the “\storage card\” folder on the
RAC6182 and run the script on the RAC6182.

 Run the script directly from a PCMCIA ATA memory card on the
RAC6182.

Remote Installations
The install package can be quite large and the decompression process can
consume high levels of memory, so remote installation is an attractive
option. Data Exchange, using CeAppMgr.exe on the host PC and
WCEload.exe on the RAC6182, supports remote installation.

Application Upgrades
The application developer should make appropriate provisions for
issuing application upgrades from the beginning, adopting good practice
for source version control, bug reporting, etc. When upgrades are
required, typically by the desire to add new features or to implement bug
fixes, decisions will have to be made relating to the notification of users
and the distribution of the upgrades. Considerations for the distribution
and installation of application upgrades are exactly the same as those
discussed above for initial distribution and installation.

Persistence Considerations

Installation of a new application program on the RAC6182 typically adds
a new icon to the Windows CE Desktop and sometimes a new entry in
the Start Menu, in order to enable the user to launch the new program or
to launch it automatically. Shortcuts in the folder “\Windows\Desktop”
create the Icons on the desktop. Shortcuts and subfolders in the folder
“\Windows\Programs” form the Start Menu. A shortcut in the folder
“\Windows\Startup” will automatically launch a program at startup. A
control panel applet that was added by an application has a file extension
*.CPL and resides in the folder “\Windows.

All this appears very Windows-like and ordinary until one considers that
the “\Windows” folder is effectively a RAM disk that is recreated when
cold-started; i.e. it is not persistent. When the operating system boots it
creates a new file system including “\Windows” and that effectively
removes all traces of the end-user applications that once existed. With
that in mind, special considerations are necessary for applications on the

Developing CE Drivers and Applications for the RAC6182 2–3

Publication 6182-UM002B-EN-P

RAC6182 and all similar embedded devices since the Icons, the Start
Menu, and application-provided Control Panel Applets must be re-
created at startup.

The solution is to place shortcuts in \Storage Card\Windows or in a
directory under it. In a normal system initialization sequence, everything
in \Storage Card\Windows\ (in the persistent file system), including
subdirectories and their contents, is copied to \Windows (in the RAM
filesystem) following the startup of gwes.exe. (For further information
see “Launching Applications At Start-Up” above.)

Typically, development will take place on an x86 machine running a
Microsoft Win32 operating system and Microsoft cross development
tools. The development system will be connected to the target RAC6182
by Ethernet or serial link, and MIPS binary files generated on the
development system will be downloaded to the target for testing and
debugging.

While for the most part the Microsoft development tools will run on
Windows 95, Windows 98 and Windows 2000, certain special functions,
like emulation of the target platform on the x86 host, are available to the
developer only with Windows NT 4.0.

Application development can be carried out using either C/C++ or Basic.
Note that the C/C++ development system normally produces MIPS
binaries that are directly executable on the RAC6182, while the Basic
development system produces application code modules (.vb files) that
must be run with the help of a Basic interpreter on the RAC6182. The
Basic development system includes an application installer that bundles
the application code module with the interpreter (consisting of MIPS
executables) so that all the components necessary for program execution
will be properly installed on the RAC6182. Device driver developers
should plan to use C/C++.

Setting Up the Host Machine for C/C++ Development

First, Microsoft Windows CE Services (Active Sync) must be installed
on the host system. This package provides utilities needed to download
applications to the RAC6182 and to support a number of remote
development tools. Windows CE Services is provided on CDROM with
the RAC6182. The RAC6182 User’s Manual (Chapter 14) contains
detailed information about installation.

Next, the following Microsoft development tools must be installed on the
host system, in the order given:

 Microsoft Visual C++ 6.0 (from Visual Studio 6.0, Professional or
Enterprise Edition)

Setting Up the
Development System

2–4 Developing CE Drivers and Applications for the RAC6182

Publication 6182-UM002B-EN-P

 Windows CE Toolkit for Visual C++ 6.0

 Platform SDK for H/PC – MIPSFP (from Windows CE Toolkit for
Visual C++ 6.0)

Or,

 Embedded Visual C++ 6.0 (from Microsoft Embedded Visual Tools
3.0)

 Platform SDK for H/PC – MIPSFP (from Microsoft Embedded Visual
Tools 3.0)

Note: The user of the Windows CE Toolkit for Visual C++ 6.0
should note that a special configuration step is necessary to
work around a known limitation of that package. (See
configuration details below.)

While the Windows CE Toolkit for Visual C++ 6.0 is an
extension of the Visual C++ 6.0 tool from Visual Studio and
depends upon it, Embedded Visual C++ 6.0 is a stand-alone
tool that does not require the installation of Visual C++ 6.0
from Visual Studio. However, Embedded Visual C++ 6.0
supports development for CE platforms only, and not for
Windows desktop operating systems. Developers
contemplating ports to CE of applications written originally
for Windows desktop operating systems will probably want
the support for both CE and desktop OS development that
is available with Visual C++ 6.0 extended with the
Windows CE Toolkit.

On the other hand, Microsoft Embedded Visual Tools 3.0 is
available without charge, except for a nominal shipping and
handling charge. Accordingly, it is an economical tool for
developers of new CE only applications.

Finally, while Embedded Visual Tools 3.0 is not integrated
with Visual Studio’s tools, it can co-exist with these tools.

Device driver developers should consider also installing the Microsoft
Windows CE Platform Builder, which contains support for kernel level
CE development that is not found in the other toolkits. However,
Platform builder is not necessary for most driver development work.

Details of the installation procedures are beyond the scope of this
manual. Please follow the instructions provided by Microsoft.

Finally, the RAC6182 SDK should be installed. (See detailed
instructions below.)

Developing CE Drivers and Applications for the RAC6182 2–5

Publication 6182-UM002B-EN-P

Setting Up the Host Machine for Basic Development

First, Microsoft Windows CE Services (Active Sync) must be installed
on the host system. This package provides utilities needed to download
applications to the RAC6182, and to support a number of remote
development tools. Windows CE Services is provided on CDROM with
the RAC6182. The RAC6182 User’s Manual (Chapter 14) contains
detailed information about installation.

2–6 Developing CE Drivers and Applications for the RAC6182

Publication 6182-UM002B-EN-P

Next, the following Microsoft tools must be installed on the development
platform in the order given:

 Microsoft Visual Basic 6.0 (from Visual Studio 6.0, Professional or
Enterprise Edition)

 Windows CE Toolkit for Visual Basic 6.0

 Platform SDK for H/PC - MIPSFP (from Windows CE Toolkit for
Visual Basic 6.0)

Or,

 Embedded Visual Basic (from Microsoft Embedded Visual Tools 3.0)

 Platform SDK for H/PC - MIPSFP (from Microsoft Embedded Visual
Tools 3.0)

Note: While the Windows CE Toolkit for Visual Basic 6.0 is an
extension of the Visual Basic 6.0 tool from Visual Studio
and depends upon it, Embedded Visual Basic is a stand-
alone tool that does not require the installation of Visual
Basic 6.0 from Visual Studio. However, Embedded Visual
Basic supports development for CE platforms only, and not
for Windows desktop operating systems. Developers
contemplating ports to CE of applications written originally
for Windows desktop operating systems will probably want
the support for both CE and desktop OS development that
is available with Visual Basic 6.0 extended with the
Windows CE Toolkit.

On the other hand, Microsoft Embedded Visual Tools 3.0 is
available without charge, except for a nominal shipping and
handling charge. Accordingly, it is an economical tool for
developers of new CE only applications.

Finally, while Embedded Visual Tools 3.0 is not integrated
with Visual Studio’s tools, it can co-exist with these tools.

Details of the installation procedures are beyond the scope of this
manual. Please follow the instructions provided by Microsoft.

Finally, install the RAC6182 SDK.

Installing the RAC6182 SDK

Installing the RAC6182 SDK is the final step in setting up the
development system.

Developing CE Drivers and Applications for the RAC6182 2–7

Publication 6182-UM002B-EN-P

The RAC6182 SDK is provided on CDROM. The CDROM contains
two different development kits, one for the RAC6182 with CE V2.12,
and one for the RAC6182 with CE V3.0. Either of these development
kits may be installed separately. Most users will want to install the SDK
for CE V3.0.

Before installing the SDK for CE V3.0, it is recommended that any
existing installation of the SDK for CE V2.12 be removed. All
RAC6182s with CE V2.12 can be easily upgraded to CE V3.0.
Applications developed to run on V2.12 should port to V3.0 without
difficulty, and all subsequent development can proceed on V3.0.

Each development kit includes two executable files, one containing an
SDK for Visual C++ and the other containing an SDK for Visual Basic.
Both can be installed on the same machine if desired; however, it is not
necessary to install both.

The following installation instructions pertain to the SDK for CE V3.0.
The procedure for installing the CE V2.12 SDK is similar.

To install, insert the RAC6182 CDROM in the host machine’s CDROM
drive (normally drive D:) and from the Windows GUI issue the
following instructions:

Start Run D:\Win CE 3.0\RAC6182VB-2.00.exe (for Visual Basic
installation)

or

Start Run D:\Win CE 3.0\RAC6182VC-2.00.exe (for Visual C++
installation)

The installer will be prompted for acceptance of a license agreement.
Following that, the SDK should install itself automatically on the host
machine without further operator intervention. When installation is
complete the following message should appear: “The SDK was
successfully installed”. The installer must press the “Done” button in the
install window to exit.

2–8 Developing CE Drivers and Applications for the RAC6182

Publication 6182-UM002B-EN-P

The RAC6182 SDK CDROM contains the following additional files:

 VBSDKReadme.txt - Information about the Visual Basic SDK

 VCSDKReadme.txt - Information about the Visual C++ SDK

 6182api.txt - Visual Basic function definitions file

Configuration

After installing the SDK for CE V2.12, some special configuration is
required. This applies only to the SDK for CE V2.12. The following
steps are not required for the CE V3.0 SDK.

Users of Embedded Visual C++ will want to set up some directories
immediately after installing the RAC6182 SDK. In the Embedded
Visual C++ IDE

Under Tools Options Directories Include Files

Add c:\Windows CE Tools\WCE212\RAC6182\User Files\Vc\Inc

Under Tools Options Directories Library Files

Add c:\Windows CE Tools\WCE212\RAC6182\User
Files\Vc\Lib\mipsfp

Users of Windows CE Toolkit for Visual C++ 6.0 will want to set up the
following directories immediately after installing the RAC6182 SDK. In
the Visual C++ IDE

Under Tools Options Directories Executable Files

Change c:\Windows CE Tools\WCE212\bin

TO c:\Windows CE Tools\WCE211\bin

Under Tools Options Directories Include Files

Add c:\Windows CE Tools\WCE212\RAC6182\User Files\Vc\Inc

Under Tools Options Directories Library Files

Add c:\Windows CE Tools\WCE212\RAC6182\User
Files\Vc\Lib\mipsfp

Developing CE Drivers and Applications for the RAC6182 2–9

Publication 6182-UM002B-EN-P

No special configuration is necessary for Embedded Visual Basic.

RAC6182 CE SDKRAC6182 CE SDKRAC6182 CE SDKRAC6182 CE SDK

The RAC6182 SDK provides developers with access to an extensive set
of functions that are specific to the RAC6182 hardware and constitute
extensions of the standard Windows CE API. These functions, like the
standard Windows CE functions, are implemented in the C language and
can be called directly from C or C++ programs.

Basic programs can also call these functions. However, Basic programs
must declare the functions in the proper form before invoking them. For
example, a Basic program might contain the following

‘ Basic declaration of the C library function Watchdog_Tag()
Const WATCHDOG_OK = &0
Declare Function Watchdog_Tag Lib "watchdog.lib" Alias "Watchdog_Tag"
(ByVal dwTimeout As Long) As Long
....
‘ Invocation of the function
if (Watchdog_Tag(3000) equ WATCHDOG_OK) then
‘ do something
endif

A file called “6182api.txt” is included in the RAC6182 SDK. This file
includes Basic declarations for all the constants, data structures and
functions associated with the RAC6182 SDK C language libraries.
Basic programmers can copy declarations from this file into their
programs as needed, just as they can copy the declarations for the
standard CE functions from a Microsoft provided file called
“winceapi.txt”.

C/C++ language developers should note that the headers included the
RAC6182 SDK contain conditionals that allow them to be included in C
and C++ modules without modification. A C++ program should include
a #define __cplusplus directive prior to an #include <sdk_header>
directive, or else the __cplusplus macro should be defined on the
compiler command line. Users of the Microsoft Visual C++ 6.0 IDE
will not have to make any special provisions in their programs, since this
IDE makes C++ is default for a new project and defines this macro for
them.

Chapter Chapter Chapter Chapter 3

Overview

3–2 RAC6182 CE SDK

Publication 6182-UM002B-EN-P

On the other hand, users of this IDE who wish to write in standard C
should keep in mind that this default situation will require all standard C
modules to be conditionally bracketed in the same way that the headers
in the SDK are bracketed. For example:

#ifdef __cplusplus
extern “C” {
#endif

/* C code goes here */

#ifdef __cplusplus
}
#endif

Table H
Files in the C/C++ Development Kit

Component C Header Static Library
Dynamic Library
(Part of the OS)

Aux
Microcontroller

atmelapi.h ATMEL.lib atmel.dll

Bezel EEPROM bezeleeprom.h BEZEL.lib bezel.dll

PCI Subsystem Ceddk.h ceddk.lib ceddk.dll

CE Shell shlobj.h ceshell.lib ceshell.dll

Digital Outputs DiagnosticOutputAPI.h DiagnosticOutput.lib DiagnosticOutput.dll

Voltage and
Temperature
Monitor

HardwareMonitorAPI.h HardwareMonitor.lib HardwareMonitor.dll

Keypad Driver KeypadAPI.h keypad.dll

Keypad Handler khapi.h kh.dll , khstub.dll

Misc. System miscsystem.h MISCSYSTEM.lib miscsystem.dll

LEDs nledapi.h (none required) coredll.dll

Operating
System

OSUpdateAPI.h OSUPdate.lib OSUpdate.dll

Serial Ports othersdk.h coredll.dll

Keypad Mapping RAC6182OEMVkeys.h

Registry regflush.h coredll.dll

Battery Backed
RAM

RetentiveMemAPI.h RetentiveMem.lib RetentiveMem.dll

System Timers usertimers.h usertimers.lib usertimers.dll

Watchdog Timer watchdog.h watchdog.lib

Files in the C/C++
Development Kit

RAC6182-Specific Extensions toRAC6182-Specific Extensions toRAC6182-Specific Extensions toRAC6182-Specific Extensions to
the CE APIthe CE APIthe CE APIthe CE API

The functions described in this section provide application level access
to all digital outputs on the RAC6182 via a common interface. The
digital outputs include four diagnostic outputs on pins A, B, C and D of
header J10 on the system board, and a relay output, with contacts
terminated at connector J16, which accessible from the rear of the
RAC6182.

These functions allow getting, setting, and toggling of outputs, either
individually or simultaneously.

These functions are prototyped in the c header file
DiagnosticOutputAPI.h. This file also defines macros for bit masks to
be used to access individual outputs. These bit masks may be ORed for
simultaneous access of multiple outputs.

do_ReadPort

This function reads digital outputs. It is prototyped in
DiagnosticOutputAPI.h.

Syntax
#include <Windows.h>
#include <DiagnosticOutputAPI.h>

BOOL do_ReadPort(UCHAR *pucData)

Remarks
pucData is a pointer to a caller allocated UCHAR variable in which
current settings of all discrete outputs are to be stored. Settings of
individual outputs are accessible via bit masks defined as macros in the
header file. These masks are to be applied (separately or bitwise ORed
together) to the variable following the call to this function.

Note that the relay contacts are normally closed (i.e., closed when the
relay is not energized). Thus, when the relay output is set to 1 or TRUE,
the contacts will be open and vice versa.

Macro Digital Output

MASK_DIAG_PIN_A J10, pin A (no external access)

MASK_DIAG_PIN_B J10, pin B (no external access)

MASK_DIAG_PIN_C J10, pin C (no external access)

Chapter Chapter Chapter Chapter 4

Functions for Digital
Output Control

4–2 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Macro Digital Output

MASK_DIAG_PIN_D J10, pin D (no external access)

MASK_RELAY_PIN J16 (Relay, contacts NC)

Return Value
TRUE if read operation was successful, else FALSE.

Portability
This function is specific to the RAC6182 hardware.

Example
#include <Windows.h>
#include <DiagnosticOutputAPI.h>

int main(void)
{
UCHAR pucData;
char buffer[256];

if (do_ReadPort(&pucData))
printf(“Relay is %s\n”, (pucData &

MASK_RELAY_PIN) ? “open” : “closed”);
else printf(“Error reading digital outputs\n”);

return(0);
}

See Also
do_WritePort

do_WritePort

This function writes digital output. It is prototyped in
DiagnosticOutputAPI.h.

Syntax
#include <Windows.h>
#include <DiagnosticOutputAPI.h>

BOOL do_WritePort(UCHAR ucMask, UCHAR ucData)

Remarks
ucMask is a bit mask that determines which outputs are modified. If the
mask bit for a given output is set to 1, that output will be modified to
reflect the corresponding bit in ucData; otherwise the output will not be
modified, regardless of the setting of the corresponding bit in ucData.

RAC6182-Specific Extensions to the CE API 4–3

Publication 6182-UM002B-EN-P

Note that the relay contacts are normally closed (i.e., closed when the
relay is not energized). Thus, when the relay output is set to 1 or TRUE,
the contacts will be open and vice versa.

The following macros can be used (separately or bitwise ORed together)
to evaluate ucMask.

Macro Digital Output

MASK_DIAG_PIN_A J10, pin A (no external access)

MASK_DIAG_PIN_B J10, pin B (no external access)

MASK_DIAG_PIN_C J10, pin C (no external access)

MASK_DIAG_PIN_D J10, pin D (no external access)

MASK_RELAY_PIN J16 (Relay – contacts NC)

Return Value
TRUE if write operation was successful, else FALSE.

Portability
This function is specific to the RAC6182 hardware.

Example
#include <DiagnosticOutputAPI.h>
#include <stdio.h>

int main(void)
{
UCHAR ucData = 0xff;

if (do_WritePort(MASK_RELAY_PIN, ucData))
printf(“Relay %s\n”, (MASK_RELAY_PIN & ucData) ? “closed” : “opened”);

else printf(“Error changing relay state\n”);

return(0);
}

See Also
do_SetBits, do_ClearBits, do_ToggleBits

4–4 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

do_SetBits

This function sets digital outputs. It is prototyped in
DiagnosticOutputAPI.h.

Syntax
#include <Windows.h>
#include <DiagnosticOutputAPI.h>

BOOL do_SetBits(UCHAR ucMask)

Remarks
This function sets any output whose bit is 1 in ucMask to logic TRUE.
For the relay output, logic TRUE is equivalent to closed; for TTL
outputs, it is equivalent to TTL high level. All pins whose bit is 0 in
ucMask are left unchanged.

Note that the relay contacts are normally closed (i.e., closed when the
relay is not energized). Thus, when the relay output is set to 1 or TRUE,
the contacts will be open and vice versa.

The following macros may be used (separately or bitwise ORed together)
to evaluate ucMask:

Macro Digital Output

MASK_DIAG_PIN_A J10, pin A (no external access)

MASK_DIAG_PIN_B J10, pin B (no external access)

MASK_DIAG_PIN_C J10, pin C (no external access)

MASK_DIAG_PIN_D J10, pin D (no external access)

MASK_RELAY_PIN J16 (Relay – contacts NC)

Return Value
TRUE if read operation was successful, else FALSE.

Portability
This function is specific to the RAC6182 hardware.

See Also
do_ClearBits, do_ToggleBits, do_WritePort

RAC6182-Specific Extensions to the CE API 4–5

Publication 6182-UM002B-EN-P

do_ClearBits

This function clears digital outputs. It is prototyped in
DiagnosticOutputAPI.h.

Syntax
#include <Windows.h>
#include <DiagnosticOutputAPI.h>

BOOL do_ClearBits(UCHAR ucMask)

Remarks
This function clears any output whose corresponding bit in ucMask is 1
to a logic FALSE. For the relay output, FALSE is equivalent to open;
for TTL outputs, it is equivalent to a low level. All outputs whose bits in
ucMask are 0 are left unchanged.

Note that the relay contacts are normally closed (i.e., closed when the
relay is not energized). Thus, when the relay output is set to 1 or TRUE,
the contacts will be open and vice versa.

The following macros may be used (separately or bitwise ORed together)
to evaluate ucMask:

Macro Digital Output

MASK_DIAG_PIN_A J10, pin A (no external access)

MASK_DIAG_PIN_B J10, pin B (no external access)

MASK_DIAG_PIN_C J10, pin C (no external access)

MASK_DIAG_PIN_D J10, pin D (no external access)

MASK_RELAY_PIN J16 (Relay – contacts NC)

Return Value
TRUE if read operation was successful, else FALSE.

Portability
This function is specific to the RAC6182 hardware.

See Also
do_SetBits, do_ToggleBits, do_WritePort

4–6 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

do_ToggleBits

This function toggles digital outputs. It is prototyped in
DiagnosticOutputAPI.h.

Syntax
#include <Windows.h>
#include <DiagnosticOutputAPI.h>

BOOL do_ToggleBits(UCHAR ucMask)

Remarks
Outputs corresponding to bits in ucMask that are set to 1 are toggled.
For any output whose bit is 1 in ucMask, if its previous output was
TRUE (closed or high) it will be set FALSE (open or low) and vice-
versa. All pins whose bit is 0 in ucMask are left unchanged.

Note that the relay contacts are normally closed (i.e., closed when the
relay is not energized). Thus, when the relay output is set to 1 or TRUE,
the contacts will be open and vice versa.

The following macros may be used (separately or bitwise ORed together)
to evaluate ucMask:

Macro Digital Output

MASK_DIAG_PIN_A J10, pin A (no external access)

MASK_DIAG_PIN_B J10, pin B (no external access)

MASK_DIAG_PIN_C J10, pin C (no external access)

MASK_DIAG_PIN_D J10, pin D (no external access)

MASK_RELAY_PIN J16 (Relay – contacts NC)

Return Value
TRUE if read operation was successful, else FALSE.

Portability
This function is specific to the RAC6182 hardware.

See Also
do_SetBits, do_ClearBits, do_WritePort

RAC6182-Specific Extensions to the CE API 4–7

Publication 6182-UM002B-EN-P

The bezel EEPROM provides a total of 256 bytes of non-volatile storage.
The first 128 bytes (at offsets 0x00 through 0x7f) are reserved for use by
the CE operating system and built-in device drivers (specifically, those
drivers that handle devices attached to the bezel, namely the keypad,
touch screen and display). The remaining 128 bytes (at offsets 0x80
through 0xff) are reserved for future use.

The functions described in this section can be called by applications to
read the system area of the EEPROM (for example, in order to get the
keypad identifier, at offset 0x30).

be_GetBezelEEPROMParameter

This function gets EEPROM access mode and CRC status. It is
prototyped in bezeleeprom.h.

Syntax
#include <Windows.h>
#include <bezeleeprom.h>

DWORD be_GetBezelEEPROMParameter(DWORD dwParameter, DWORD
*pdwData)

Remarks
Mode or status information is written to *pdwData, depending on the
value of dwParameter. dwParameter may be evaluated with one of the
following macros:

Macro Description

BEZEL_EEPROM_
PARAMETER_USE_
CRC

Get the current CRC mode. The value of *pdwData
will be 0 if CRC mode is disabled, or 1 if CRC mode
is enabled.

When CRC mode is enabled, the the16-bit check
value stored at offset 0x00 is protected and only the
EEPROM contents beginning at offset 0x02 may be
read or written. The CRC value at 0x00 is updated
when new data are written. Read and write
functions return CRC error codes in case of CRC
errors. The RAC6182 always boots with CRC mode
enabled.

When CRC mode is disabled the entire bezel
EEPROM is accessible for reading or writing. The
first write of new data will invalidate the CRC value
at 0x00. However, functions will not return CRC
error codes unless CRC mode is again enabled.
Thereafter, reads and writes will return CRC error
codes until the CRC value is recalculated.

BEZEL_EEPROM_
PARAMETER_CRC_
VALID

Get the current state of the CRC check value. The
value of *pdwData will be 0 if the 16-bit CRC value
stored at offset 0x00 of the EEPROM is invalid, and
to 1 if it is valid. This is the case whether CRC
mode is enabled or disabled.

Functions to Read from
and Write to the Bezel
EEPROM

4–8 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Return Value
The possible return values are represented by the following macros,
defined in bezeleeprom.h:

Macro Description

BEZEL_EEPROM_OK EEPROM present, arguments valid, function
completed successfully.

BEZEL_EEPROM_
DEVICE_NOT_
PRESENT

No EEPROM detected – either bezel not present or
EEPROM on it not functioning.

BEZEL_EEPROM_
INVALID_
PARAMETER

Bad parameter passed to function, for example a
NULL pointer or an address out of range.

BEZEL_EEPROM_
INVALID_CRC

CRC mode is enabled and the CRC on the
EEPROM is currently invalid.

Portability
This function is specific to the RAC6182 hardware.

be_SetBezelEEPROMParameter

This function sets bezel EEPROM access mode or CRC value. It is
prototyped in bezeleeprom.h.

Syntax
#include <Windows.h>
#include <bezeleeprom.h>

DWORD be_SetBezelEEPROMParameter(DWORD dwParameter, DWORD
*pdwData)

RAC6182-Specific Extensions to the CE API 4–9

Publication 6182-UM002B-EN-P

Remarks
Sets access mode or recalculates CRC, depending on dwParameter and
the value of *pdwData. dwParameter may be evaluated using one of the
following macros:

Macro Description

BEZEL_EEPROM_
PARAMETER_USE_
CRC

Set CRC mode. If the value of *pdwData is 1, CRC
mode is enabled. If the value of *pdwData is 0, CRC
mode is disabled.

When CRC mode is enabled, the the16-bit check
value stored at offset 0x00 is protected and only the
EEPROM contents beginning at offset 0x02 may be
read or written. The CRC value at 0x00 is updated
when new data are written. Read and write
functions return CRC error codes in case of CRC
errors. The RAC6182 always boots with CRC mode
enabled.

When CRC mode is disabled the entire bezel
EEPROM is accessible for reading or writing. The
first write of new data will invalidate the CRC value
at 0x00. However, functions will not return CRC
error codes unless CRC mode is again enabled.
Thereafter, reads and writes will return CRC error
codes until the CRC value is recalculated.

BEZEL_EEPROM_
PARAMETER_CRC_
VALID Recalculate the CRC value. If the value of

*pdwData is 1, the 16-bit CRC value stored at offset
0x00 of the EEPROM is recalculated. This is the
case whether CRC mode is enabled or disabled. If
the value of *pdwData is 0, there is no action.

Return Value
The possible return values are represented by the following macros,
defined in bezeleeprom.h:

Macro Description

BEZEL_EEPROM_OK EEPROM present, arguments valid, function
completed successfully.

BEZEL_EEPROM_
DEVICE_NOT_
PRESENT

No EEPROM detected – either bezel not present or
EEPROM on it not functioning.

BEZEL_EEPROM_
INVALID_
PARAMETER

Bad parameter passed to function, for example a
NULL pointer or an address out of range.

BEZEL_EEPROM_
INVALID_CRC

CRC mode is enabled and the CRC on the
EEPROM is currently invalid.

Portability
This function is specific to the RAC6182 hardware.

4–10 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

be_ReadBezelEEPROM

This function reads bezel EEPROM. It is prototyped in bezeleeprom.h.

Syntax
#include <Windows.h>
#include <bezeleeprom.h>

DWORD be_ReadBezelEEPROM(DWORD dwAdress, DWORD dwLength, UCHAR
*pucData)

Remarks
Reads dwLength bytes starting at offset dwAddress in the EEPROM into
a caller allocated buffer beginning at pucData. All reads are implicitly
mutexed.

When CRC mode is enabled, EEPROM contents are accessible for
reading beginning at offset 0x02. When the CRC is currently invalid,
any read will still return the raw data at the requested locations, but will
return BEZEL_EEPROM_INVALID_CRC error.

When CRC mode is disabled the entire bezel EEPROM is accessible for
reading. Reading any location will never result in the return of a
BEZEL_EEPROM_INVALID_CRC error, regardless of the validity of
the CRC value.

Return Value
The possible return values are represented by the following macros,
defined in bezeleeprom.h:

Macro Description

BEZEL_EEPROM_OK EEPROM present, arguments valid, function
completed successfully.

BEZEL_EEPROM_
DEVICE_NOT_
PRESENT

No EEPROM detected – either bezel not present or
EEPROM on it not functioning.

BEZEL_EEPROM_
INVALID_
PARAMETER

Bad parameter passed to function, for example a
NULL pointer or an address out of range.

BEZEL_EEPROM_
INVALID_CRC

CRC mode is enabled and the CRC on the
EEPROM is currently invalid.

Portability
This function is specific to the RAC6182 hardware.

RAC6182-Specific Extensions to the CE API 4–11

Publication 6182-UM002B-EN-P

be_WriteBezelEEPROM

This function (prototyped in bezeleeprom.h) is intended for use by
operating system developers only. Rockwell Automation recommends
against and does not support use of this function in application programs
or user implemented device drivers.

ATTENTION: Improper use of this function could result
in disruption of critical system level data.

The RAC6182 incorporates a watchdog device to allow automatic reset
in case of an application error that involves the application’s loss of
control over the hardware. Immediately following system initialization,
the watchdog device is disabled. It is enabled when an application issues
an initial Watchdog_Tag call. Once enabled, the watchdog device must
be tagged periodically by the issuance of additional tags calls to reset the
timer in the device; otherwise, the timer will time out. If a timeout
occurs, it is assumed that the application or some underlying software
has lost control, and the system is reset.

An application can set the time allowed between watchdog tags and can
enable or disable the device by calling the function described in this
section.

Watchdog_Tag

This function tags the watchdog timer. It is prototyped in watchdog.h.

Syntax
#include <Windows.h>
#include <watchdog.h>

DWORD Watchdog_Tag(DWORD dwTimeout)

Remarks
If the value of dwTimeout is 0, the watchdog timeout value is not
changed, but if the timer is running, it is reset (tagged).

If the value of dwTimeout is 0xffffffff, the watchdog timer is disabled. If
the watchdog is disabled, calling Watchdog_Tag with dwTimeout set to 0
will always return WATCHDOG_TIMEOUT_FAILED as no current
watchdog timeout value is defined.

If the value of dwTimeout is other than 0 and 0xffffffff, it is taken to
represent the time, in milliseconds, than must elapse before the watchdog
will trigger a system reset. If possible, the timer is reset to this value and

Function for Watchdog
Timer Control

4–12 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

started, but if the value of dwTimeout is out of range for the hardware
implementation of the timer, the timeout setting of the watchdog is left
unmodified and WATCHDOG_TIMEOUT_FAILED is returned. Values
of dwTimeout over 5000 should never be used, because they cannot be
guaranteed to be within range for a given hardware implementation. At
the time of writing, the maximum timeout period supported by the
hardware is 3478 msec.

The hardware implementation of the watchdog timer is such that the
timer’s precision varies with the timeout value specified. For
dwTimeout <= 13, the precision is 1 msec and the accuracy will be
within +7/-4% of the specified period. For dwTimeout > 13, the
precision is 13.64 msec; that is, actual values are always equal to or
within +13.64 msec of the specified values. Accuracy will be within
+7/-4% for the actual period, i.e., the specified period rounded up to the
next 13.64 msec increment.

Return Value
The possible return values are represented by the following macros
defined in watchdog.h:

Macro Description

WATCHDOG_OK Tag or setting of new timeout value succeeded.

WATCHDOG_NOT_
PRESENT

Low-level communication with watchdog device
failed.

WATCHDOG_
TIMEOUT_FAILED

Timeout value out of range.

Portability
This function is specific to the RAC6182 hardware.

The functions described in this section should never be called by an
application program. These are functions that must be implemented in a
keypad handler if the handler is to interact properly with the system
keypad driver (keypad.dll). The driver is the only software module that
should call them.

A keypad handler for the RAC6182 is responsible for mapping virtual
key codes supplied by the keypad driver to other virtual key codes, to
macro virtual key sequences, etc. and passing the results back to the
driver, which sends them on to the main keyboard driver for final
processing.

These handler functions are already given a general purpose
implementation in Rockwell’s keypad handler (kh.dll), and a default
implementation in Rockwell’s handler stub (khstubb.dll).

Functions for Use in
Custom Keypad Handlers

RAC6182-Specific Extensions to the CE API 4–13

Publication 6182-UM002B-EN-P

A custom handler might implement these functions in a different way.
However, these functions are subject to redefinition. Accordingly,
Rockwell Automation currently recommends against and does not
support customer implementations of these functions.

KhInitialize

Rockwell Automation currently recommends against and does not
support customer implementation of this function.

KhDeinitialize

Rockwell Automation currently recommends against and does not
support customer implementation of this function.

KhGetKeyAttributeTable

Rockwell Automation currently recommends against and does not
support customer implementation of this function.

KhGetGlobalKeySettings

Rockwell Automation currently recommends against and does not
support customer implementation of this function.

KhSetGlobalKeySettings

Rockwell Automation currently recommends against and does not
support customer implementation of this function.

KhTranslateVKey

Rockwell Automation currently recommends against and does not
support customer implementation of this function.

4–14 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

The keypad related macros and special IOCTLs defined in KeypadAPI.h
are intended for use by system developers only. Rockwell recommends
against and does not support their use by customers.

Standard I/O streams functions called with these special constants as
arguments provide a means for the calling software module to control the
system keypad driver (keypad.dll). The software module that utilizes
this means is the system keypad handler (kh.dll).

The macros and special IOCTLs defined in atmelapi.h are intended
for use by system developers only. Rockwell recommends against
and does not support their use by customers.
Standard I/O streams functions called with these special constants as
arguments provide a means for the calling software module to control the
system touch screen controller. The software module that utilizes this
means is the system control panel.

Three LEDs are available on the RAC6182 and may be accessed by
applications.

 LED 0 – Warning LED. This LED is toggled on and off during the
boot process and is set to off at the end of boot. After boot it is not
used by any operating system components and is available for use by
an application to signal warning conditions.

 LED 1 – NUMLOCK LED. The keypad driver in the operating
system controls this LED. When first loaded, the driver assumes the
default state of NUMLOCK on and accordingly turns this LED on.
The driver will set or clear this LED upon change of the keypad
NUMLOCK state. This LED is application accessible, but its use by
applications is not recommended except the RAC6182 is configured
without a keypad.

 LED 2 – Power LED. This LED is toggled on and off during the boot
process and is left on at the end of boot. The operating system does
not use this LED after boot. This LED is application accessible, but
its use by applications is not recommended except possibly in a
power fail/brownout condition.

Streams Interface for
Keypad Driver Control

Streams Interface for
Touchscreen Control

Functions for LED Control

RAC6182-Specific Extensions to the CE API 4–15

Publication 6182-UM002B-EN-P

NLedGetDeviceInfo

This function gets the LED Status Information.

Syntax
#include <Windows.h>
#include <nledapi.h>

BOOL NLedGetDeviceInfo(UINT nInfoId, void *pOutput)

Remarks
Use this function to request information about the system LEDs.

Information that is accessible with this function includes the number of
LEDs installed, the capabilities of each installed LED, and the current
settings for each installed LED. In general, an LED may be in one of
three states: on, off, or blinking. The on and off states can be obtained
without any special ado, but the blinking state can be obtained only by
specifying the values of adjustable parameters that determine the blink
rate and duty cycle Thus, the capabilities information accessible with
this function relates to the adjustability of blink parameters. The
settings information relates to the basic state and to the additional
settings that determine blink rate and duty cycle.

Note that for blink to be possible, at least two of the following
parameters must be adjustable: on time, off time, total cycle time (the
sum of on and off times.) As of this writing, the capabilities of the
RAC6182 LEDs include adjustability of only one of these parameters.
Therefore, intrinsic blink is not available. However, it is still possible to
make the LEDs blink using NLedSedDevice to toggle between the “on”
and “off” states at an interval determined by a separate timer such as is
available with the RAC6182 user timer functions.

Note: Do not confuse this function with
NLedDriverGetDeviceInfo() described in the Microsoft CE
documentation, which is a kernel level function, not
callable by applications.

nInfoId may be evaluated with one of the following macros defined in
nleddrv.h (included by nledapi.h):

Macro Description

NLED_COUNT_
INFO_ID

Use to request the number of LEDs installed.

pOutput should point to a caller allocated structure defined (in
nleddrv.h) as follows:

struct NLED_COUNT_INFO {
 UINT cLeds; // Count of LEDs

};

4–16 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Macro Description

NLED_SUPPORTS_
INFO_ID

Use to request capability information about any one of the LEDs in
the system.

pOutput should point to a caller allocated structure defined (in
nleddrv.h) as follows:

struct NLED_SUPPORTS_INFO {
 UINT LedNum;
 LONG lCycleAdjust; Granularity (usec)
 BOOL fAdjustTotalCycleTime;
 BOOL fAdjustOnTime;
 BOOL fAdjustOffTime;
 BOOL fMetaCycleOn;
 BOOL fMetaCycleOff;
};

Prior to calling this function, the individual LED for which
information is sought must be selected by evaluating LedNum
using one of the following macros (defined in nledapi.h):

ID_WARNING_LED
ID_NUMLOCK_LED
ID_POWER_LED

When the function returns the other members of the structure will
contain information about the LED’s capabilities. For Booleans,
TRUE means that the parameter is adjustable with a
NLedSetDevice call. lCycleAdjust is the resolution of the timer (in
usec) that controls blink-on and blink-off.

NLED_SETTINGS_
INFO_ID

Use to request current settings of any one of the LEDs in the
system.

pOutput should point to a caller allocated structure defined (in
nleddrv.h) as follows:

struct NLED_SETTINGS_INFO {
 UINT LedNum;
 INT OffOnBlink; // 0=off, 1=on, 2=blink
 LONG TotalCycleTime; // (usec)
 LONG OnTime; // blink-on time(usec)
 LONG OffTime; // blink-off time(usec)
 INT MetaCycleOn; // num blink-on cycles
 INT MetaCycleOff; // numblink-off cycles
};

Prior to calling this function, the LED for which setting information
is sought must be selected. This is done by evaluating LedNum
using one of the following macros (defined in nledapi.h):

ID_WARNING_LED
ID_NUMLOCK_LED
ID_POWER_LED

When the function returns, current settings will be stored in the
corresponding members of the NLED_SETTINGS_INFO
structure.

Return Value
One of the following: TRUE or FALSE.

RAC6182-Specific Extensions to the CE API 4–17

Publication 6182-UM002B-EN-P

Portability
The arguments to this function are specific to the RAC6182 hardware.

NledSetDevice

This function sets the LEDs.

Syntax
#include <Windows.h>
#include <nledapi.h>

BOOL NLedSetDevice(UINT nDeviceId, void *pInput)

4–18 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Remarks
Use this function to set the operating states of the system LEDs.

Note: Before calling this function, it is a good idea to issue a calls
to the NLedGetDeviceInfo function to verify the presence
of the LED of interest and to get its capabilities. As of this
writing, RAC6182s with integrated LCDs are equipped
with three front panel LEDs which have only “on” and
“off” capabilities.

Note: Do not confuse this function with NLedDriverSetDevice()
described in the Microsoft CE documentation, which is a
kernel level function, not callable by applications.

nInfoId must be evaluated with the NLED_SETTINGS_INFO_ID macro
defined in nleddrv.h (included by nledapi.h).

pInput must point to a caller allocated structure, defined in nleddrv.h as
follows:

struct NLED_SETTINGS_INFO {
 UINT LedNum;
 INT OffOnBlink; // 0=off, 1=on, 2=blink
 LONG TotalCycleTime; // (usec)
 LONG OnTime; // blink-on time(usec)
 LONG OffTime; // blink-off time(usec)
 INT MetaCycleOn; // num blink-on cycles
 INT MetaCycleOff; // numblink-off cycles
};
Prior to calling this function, the LED that is to be set must be selected.
This is done by evaluating LedNum using one of the following macros
(defined in nledapi.h):

ID_WARNING_LED
ID_NUMLOCK_LED
ID_POWER_LED
Other parameters should be set, based on capabilities for the LED in
question obtained with an NLedGedDeviceInfo call.

Return Value
One of the following: TRUE or FALSE.

Portability
The arguments to this function are specific to the RAC6182 hardware.

The functions necessary to access PCI configuration space, map PCI
memory or IO space, and handle interrupts on the PCI card are HAL
(Hardware Abstraction Layer) calls and several other CE-specific Win32
calls. The basic operation of these calls is already documented by

Functions for Use in PCI
Device Drivers

RAC6182-Specific Extensions to the CE API 4–19

Publication 6182-UM002B-EN-P

Microsoft, so this document will focus just on RAC6182 specific
features or limitations and recommended usage in application level code
or user mode device drivers.

ceddk.h and ceddk.lib must be used for compilation and linking in
addition to the default libraries.

4–20 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

HalTranslateBusAddress

This function translates the PCI Bus Address.

Syntax
#include <Windows.h>
#include <ceddk.h>

BOOL HalTranslateBusAddress(
INTERFACE_TYPE InterfaceType,
ULONG BusNumber,
PHYSICAL_ADDRESS BusAddress,
PULONG AddressSpace,
PHYSICAL_ADDRESS TranslatedAddress

)

Remarks
HalTranslateBusAddress() converts a PCI memory or IO space address
into a physical address which may be used to map virtual address space
to the memory or IO using MmMapIoSpace().

Parameter Description

InterfaceType PCIBus is the only allowed

BusNumber The RAC6182 PCI slot is on bus 1.

BusAddress must have its upper 32 bits equal to 0, and lower 32
bits the PCI memory or IO space address obtained
from the PCI address space registers. Values from
PCI address space registers should have the non-
address bits such as I/O, prefetch, etc. masked off
before being put in the lower part of BusAddress

AddressSpace set to 0 for memory, 1 for IO.

Translated Address If parameters are valid, the function will return with a
value usable by MmMapIoSpace().

Return Value
One of the following: TRUE or FALSE.

Portability
The arguments to this function are specific to the RAC6182 hardware.

RAC6182-Specific Extensions to the CE API 4–21

Publication 6182-UM002B-EN-P

HalGetBusDataByOffset

This function gets the PCI Bus Data by offset.

Syntax
#include <Windows.h>
#include <ceddk.h>

ULONG HalGetBusDataByOffset(
BUS_DATA_TYPE BusDataType,
ULONG BusNumber,
ULONG SlotNumber,
PVOID Buffer,
ULONG Offset,
ULONG Length
)

Remarks
HalGetBusDataByOffset() retrieves PCI configuration space
information, such as addresses and interrupt information, for a PCI
device.

Parameter Description

BusDataType PCIConfiguration

BusNumber The RAC6182 PCI slot is on bus 1.

SlotNumber

Buffer

Offset

Length

Return Value

Portability
The arguments to this function are specific to the RAC6182 hardware.

4–22 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

HalSetBusDataByOffset

This function sets the PCI Bus Data by offset.

Syntax
#include <Windows.h>
#include <ceddk.h>

ULONG HalSetBusDataByOffset(
BUS_DATA_TYPE BusDataType,
ULONG BusNumber,
ULONG SlotNumber,
PVOID Buffer,
ULONG Offset,
ULONG Length
)

Remarks
HalSetBusDataByOffset() sets PCI configuration space information.
This function should be used only to set device-specific configuration
information.

Parameter Description

BusDataType PCIConfiguration

BusNumber The RAC6182 PCI slot is on bus 1.

SlotNumber The RAC6182 PCI slot number is 1.

Buffer

Offset

Length

Return Value
One of the following:

Portability
The arguments to this function are specific to the RAC6182 hardware.

RAC6182-Specific Extensions to the CE API 4–23

Publication 6182-UM002B-EN-P

MmMapIoSpace

This function maps the PCI IO space.

Syntax
#include <Windows.h>
#include <ceddk.h>

PVOID MmMapIoSpace(
 PHYSICAL_ADDRESS PhysicalAddress,
 ULONG NumberOfBytes,
 BOOLEAN CacheEnable
)

Remarks
MmMapIoSpace() maps a physical address range into a virtual address
range usable by an application. This function should be used on PCI
memory or IO range information obtained with
HalGetBusDataByOffset() and translated with
HalTranslateBusAddress().

Parameter Description

PhysicalAddress

NumberOfBytes

CacheEnable

InterruptInitialize

This function initializes the PCI interrupt.

Syntax
#include <Windows.h>
#include <ceddk.h>

BOOL InterruptInitialize(
 DWORD idInt,
 HANDLE hEvent,
 LPVOID pvData,
 DWORD cbData
)

Remarks
InterruptInitialize() associates a virtual interrupt number with an
application created event so that the application can use WaitFor*()
functions to wait for the interrupt to occur. For RAC6182, the virtual
interrupt is obtained from the PCI configuration space interrupt register

4–24 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

(offset 0x0C) using HalGetBusDataByOffset(). The PCI slot interrupt is
disabled until this function is called.

Portability
The argument to this function is specific to the RAC6182 hardware.

InterruptDisable

This function disables the PCI interrupt.

Syntax
#include <Windows.h>
#include <ceddk.h>

VOID InterruptDisable (DWORD idInt)

Remarks
InterruptDisable() disables the virtual interrupt.

Return Value
One of the following:

Portability
The argument to this function is specific to the RAC6182 hardware.

InterruptDone

This function cleans up after the PCI interrupt.

Syntax
#include <Windows.h>
#include <ceddk.h>

VOID InterruptDone (DWORD idInt)

Remarks
InterruptDone() signals that the application which registered for the
virtual interrupt using InterruptInitialize() is done handling the interrupt.
The interrupt is reenabled when InterruptDone() is called.

Return Value
One of the following:

RAC6182-Specific Extensions to the CE API 4–25

Publication 6182-UM002B-EN-P

Portability
The argument to this function is specific to the RAC6182 hardware.

This code assumes a simple device with one memory address space size
4K configured at PCI configuration offset 0x10 and one IO address space
size 16K configured at PCI configuration offset 0x14. It has a power
management register at offset 0x40 that must be set to bring the device
out of power down mode. The device periodically interrupts us to print
data or tell us it has died.

#include <windows.h>
#include <ceddk.h>

// values currently defined for RAC6182.
// these will be provided in a pcislot.h file
#define PCI_SLOT_BUS_NUMBER 1
#define PCI_SLOT_DEVICE_NUMBER 1

// bogus items for our simple card
#define CARD_VENDOR_ID 0x1234
#define CARD_DEVICE_ID 0x5678
#define CARD_POWER_MGMT_ON 0x00000001
#define CARD_MEMORY_SIZE (4*1024)
#define CARD_IO_SIZE (16*1024)
#define CARD_SIGNAL_DEAD 0xDEAD

int main(void)
{

PCI_COMMON_CONFIG PCIConfig;
HANDLE waitevent;
DWORD interrupt;
PHYSICAL_ADDRESS pa,pa2;
volatile UCHAR *IOSpace;
volatile UCHAR *MemSpace;
ULONG value;

NKDbgPrintfW(TEXT(“PCI card sample\n”));
if(HalGetBusDataByOffset(PCIConfiguration,PCI_SLOT_BUS_NUMBER,

PCI_SLOT_DEVICE_NUMBER,&PCIConfig,0,sizeof(PCIConfig)) !=
sizeof(PCIConfig)) {
NKDbgPrintfW(TEXT(“failed to get PCI slot config info\n”));
return(-1);

}
// check that our card is present
if(PCIConfig.VendorID!=CARD_VENDOR_ID ||

PCIConfig.DeviceID!=CARD_DEVICE_ID) {
NKDbgPrintfW(TEXT(“vendor %04x device %04x not our card\n”),

PCIConfig.VendorID,PCIConfig.DeviceID);
return(-1);

}
// power on to our bogus card to demonstrate a device-specific config
// space write
value=CARD_POWER_MGMT_ON;
if(HalSetBusDataByOffset(PCIConfiguration,PCI_SLOT_BUS_NUMBER,

PCI_SLOT_DEVICE_NUMBER,&value,0x40,sizeof(value))!=
sizeof(value)) {

Sample Code for a Simple
PCI Slot Device

4–26 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

NKDbgPrintfW(TEXT(“failed to set device specific PCI config
value\n”));

return(-1);
}
// get virtual interrupt #
interrupt=PCIConfig.u.type0.InterruptLine;
// can use manual reset or named event if desired
waitevent=CreateEvent(NULL,FALSE,FALSE,NULL);
if(!waitevent || waitevent==INVALID_HANDLE_VALUE) {

NKDbgPrintfW(TEXT(“failed createevent()\n”));
return(-1);

}
if(!InterruptInitialize(interrupt,waitevent,NULL,0)) {

NKDbgPrintfW(TEXT(”failed claiming interrupt %d\n”),interrupt);
return(-1);

}
// handle 1st address space – 4K memory
pa.HighPart=0;
pa.LowPart=PCIConfig.u.type0.BaseAddresses[0]&

PCI_ADDRESS_MEMORY_ADDRESS_MASK);
value=0;
if(!HalTranslateBusAddress(PCIBus,PCI_SLOT_BUS_NUMBER,pa,&value,&pa
2)) {

NKDbgPrintfW(TEXT(“failed translating mem address\n”));
return(-1);

}
if(!(MemSpace=MmMapIoSpace(pa2,CARD_MEMORY_SIZE,FALSE))) {

NKDbgPrintfW(TEXT(“failed mapping mem address\n”));
return(-1);

}
// handle 2nd address space – 16K IO
pa.HighPart=0;
pa.LowPart=PCIConfig.u.type0.BaseAddresses[1]&

PCI_ADDRESS_IO_ADDRESS_MASK);
value=1;
if(!HalTranslateBusAddress(PCIBus,PCI_SLOT_BUS_NUMBER,pa,&value,&pa2))
{

NKDbgPrintfW(TEXT(“failed translating io address\n”));
return(-1);

}
if(!(IOSpace=MmMapIoSpace(pa2,CARD_MEMORY_SIZE,FALSE))) {

NKDbgPrintfW(TEXT(“failed mapping IO address\n”));
return(-1);

}
// everything mapped and initialized OK, now we become an interrupt
handler
while(1) {

value=WaitForSingleObject(waitevent,1000);
if(value==WAIT_TIMEOUT) {

NKDbgPrintfW(TEXT(“<yawn!>\n”));
// do not InterruptDone() on a time out or if event other
// than the interrupt-associated event triggered

} else if(value==WAIT_OBJECT_0) {
// interrupt occurred on PCI slot device
if(*(ULONG *)MemSpace==CARD_SIGNAL_DEAD ||

*(ULONG *)IOSpace==CARD_SIGNAL_DEAD) {
// demonstrate InterruptDisable()
NKDbgPrintfW(TEXT(“card dead\n”));
InterruptDisable(interrupt);

RAC6182-Specific Extensions to the CE API 4–27

Publication 6182-UM002B-EN-P

return(0);
}
NKDbgPrintfW(TEXT(“card said mem %08x IO %08x\n”),

*(ULONG *)MemSpace,
*(ULONG *)IOSpace);

// done processing interrupt, reenable and wait again
InterruptDone(interrupt);

} else {
NKDbgPrintfW(TEXT(“waitforsingleobject failed\n”));
return(-1);

}
}

}

The functions prototyped in osupdateapi.h are intended for use by system
developers only. Rockwell Automation recommends against and does
not support use of these functions in applications and device drivers.

Methods for updating the RAC6182 operating system software are
discussed in the RAC6182 User’s Manual.

osu_UpdateOSFromFile

Rockwell Automation recommends against and does not support use of
this function.

osu_RemoteUpdateOSFromRAM

Rockwell Automation recommends against and does not support use of
this function.

A RAC6182 has a Windows CE registry which is stored in the RAM of
the device. Since RAM data are valid only while the RAC6182 is
powered on, a persistent backup of the registry is maintained on the
Disk-On-Chip

The Windows CE operating system does not automatically flush the
registry in RAM to persistent storage, therefore if registry settings are
changed by an application, the application should invoke a FlushRegistry
operation to ensure that the settings will persist from one operating
session to another.

Note: Because of the relatively large amount of time required to
flush the registry to flash, it is highly recommended that
applications adding or changing registry information
complete a set of changes before issuing a flush rather than
attempting to flush after every single update.

Functions for OS Update

Function for Registry
Flush

4–28 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

FlushRegistry

This function is the Flush Registry. It is prototyped in regflush.h.

Syntax
#include <Windows.h>
#include <regflush.h>

BOOL RegistryFlush(void)

Remarks
This function is defined as a macro in regflush.h. This function
commands the operating system to flush the entire registry to the
persistent registry storage. The procedure that occurs when this API is
invoked is as follows:

1. The entire registry information is collected from Windows CE.

2. This information is compressed to save space, and also results in a
time savings when going to flash memory such as the Disk-On-Chip.

3. Any existing temporary persistent registry file is deleted.

4. The temporary persistent registry file is created and the compressed
registry information written out.

5. Any existing backup persistent registry file is deleted.

6. Any existing primary persistent registry file is moved to the backup
persistent registry file.

7. The temporary persistent registry file is moved to the primary
persistent registry file and has its attributes set to read-only, hidden,
and system.

The function does not return unless there is an error or the flush is
successfully completed. Any fatal errors such as failing to allocate
enough working RAM, failing to create or write the temporary persistent
registry file or failure to move this file to be the primary persistent
registry file will result in failure of the function. File system errors will
result if the Disk-On-Chip is not properly formatted, has been corrupted,
or does not have enough space free.

The registry flush procedure requires 512K+2*(compressed registry size)
bytes of RAM be free as working space for storing and compressing the
registry. The Disk-On-Chip file-system needs to have (compressed
registry size rounded up to nearest cluster size) bytes free for registry
flush to succeed. Typical registry size for the base operating system are
on the order of 128K-160K uncompressed which compresses very well
to 32K-40K. Registry keys added by applications will certainly increase

RAC6182-Specific Extensions to the CE API 4–29

Publication 6182-UM002B-EN-P

the overall size and the nature of the content may also affect
compressibility.

Time involved to flush the registry varies based on size of the registry,
and can also vary based on state of the Disk-On-Chip (e.g. if flash
sectors need erased and written this takes significantly longer than just
writing to previously erased flash sectors). For the registry in the base
operating system time to flush has been seen to vary between 100 to 500
ms. The time to write to the Disk-On-Chip is by far the dominant factor;
reading the registry from CE into working RAM and compressing it
typically takes less than 10-20 ms. of this time. Larger registry sizes due
to key additions by applications can be expected to vary in a higher
range of time for a registry flush to complete.

Return Value
TRUE if successful, otherwise FALSE

Portability
This function is specific to the RAC6182 hardware.

SetSystemMemoryDivision

This function sets the amount of DRAM allocated to system. It is
prototyped in othersdk.h.

Syntax
#include <Windows.h>
#include <othersdk.h>

DWORD SetSystemMemoryDivision(DWORD dwStorePages)

Remarks
This function is called by an application to set the amount of DRAM
allocated to the system.

Total DRAM installed can be obtained with a call to rm_GetParameter(),
using RM_PARAMETER_PHYSICAL_MEMORY_SIZE as the first
argument (see description below). This memory is divided into two
logical partitions, one for the Object Store (RAMDISK), and one for
system memory. The memory available for the Object Store will be the
total amount of memory less the amount allocated to the system.

Function to Adjust
Allocation of DRAM

4–30 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

dwStorePages the number of 4KB pages to be allocated to the system.

Important: Windows CE V2.12 could exhibit problems if more than
32MB of DRAM is allocated to the system.

Return Value
TRUE if successful, otherwise FALSE.

Portability
This function is specific to the RAC6182 hardware.

The functions described here may be called by an application program to
get or set the values of certain system parameters.

The following table enumerates currently defined parameters that can be
accessed with these functions. Type of data, minimum size, and whether
set, get, or both are allowed are given. This table may be expanded in
the future to add new parameter types without adding new functions.

Table I
Get/Set Misc Parameters

Parameter Macro Identifier
Get or

Set Type
Size

(Bytes)

Physical
Memory Size

RM_PARAMETER_PHYSICAL_MEMORY_SIZE Get DWORD 4

Pointer to
Cached
Physical
Memory

RM_PARAMETER_PHYSICAL_MEMORY_CACHED_POINTER Get void * 4

Pointer to
Uncached
Physical
Memory

RM_PARAMETER_PHYSICAL_MEMORY_UNCACHED_POINT
ER

Get void * 4

CPU Speed
(Hz)

RM_PARAMETER_CPU_SPEED_HZ Get DWORD 4

Windows CE
Version

RM_PARAMETER_WINDOWS_CE_VERSION Get WCHAR 80 x 2

Operating
System Boot
Image Version

RM_PARAMETER_OS_FIRMWARE_VERSION Get WCHAR 80 x 2

Boot ROM
Firmware
Version

RM_PARAMETER_BOOTROM_FIRMWARE_VERSION Get WCHAR 80 x 2

Aux Micro-
controller
Firmware
Version

RM_PARAMETER_MICROCONTROLLER_FIRMWARE_VERSI
ON

Get WCHAR 80 x 2

Functions to Get/Set Misc
Parameters

RAC6182-Specific Extensions to the CE API 4–31

Publication 6182-UM002B-EN-P

Parameter Macro Identifier
Get or

Set Type
Size

(Bytes)

Debug output
on COM2

RM_PARAMETER_ENABLE_SERIAL_DEBUG_ON_BOOT Both BOOL 4

LCD
Brightness

RM_PARAMETER_LCD_BRIGHTNESS Both DWORD 4

LCD Contrast RM_PARAMETER_LCD_CONTRAST Both DWORD 4

MAC Addr of
on board
Ethernet

RM_PARAMETER_ONBOARD_ETHERNET_MAC_ADDRESS Get UCHAR 6

Cursor Status RM_PARAMETER_CURSOR_ENABLED Both BOOL 4

Debug output
on COM2

RM_PARAMETER_ENABLE_SERIAL_DEBUG Both BOOL 4

Memory
pointer

RM_PARAMETER_PHYSICAL_ADDRESS (CE V3.0 SDK only) Get void * 4

GetParameter

This function gets parameters. It is prototyped in miscsystem.h.

Syntax
#include <Windows.h>
#include <miscsystem.h>

DWORD rm_GetParameter(DWORD dwParameter, DWORD *dwSize, VOID
*pvData)

Remarks
dwParameter may be evaluated with any one of the following macros
defined in miscsystem.h in order to select the system parameter value to
be retrieved:

 RM_PARAMETER_PHYSICAL_MEMORY_SIZE

 RM_PARAMETER_PHYSICAL_MEMORY_CACHED_POINTER

 RM_PARAMETER_PHYSICAL_MEMORY_UNCACHED_POINTER

 RM_PARAMETER_CPU_SPEED_HZ

 RM_PARAMETER_WINDOWS_CE_VERSION

 RM_PARAMETER_OS_FIRMWARE_VERSION

 RM_PARAMETER_BOOTROM_FIRMWARE_VERSION

 RM_PARAMETER_MICROCONTROLLER_FIRMWARE_VERSION

 RM_PARAMETER_ENABLE_SERIAL_DEBUG_ON_BOOT

 RM_PARAMETER_LCD_BRIGHTNESS

4–32 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

 RM_PARAMETER_LCD_CONTRAST

 RM_PARAMETER_ONBOARD_ETHERNET_MAC_ADDRESS

 RM_PARAMETER_CURSOR_ENABLED

 RM_PARAMETER_ENABLE_SERIAL_DEBUG

 RM_PARAMETER_PHYSICAL_ADDRESS (CE V3.0 only)

dwSize is a pointer to a caller allocated DWORD whose value will
represent the number of bytes at pvData.

pvData is a pointer to a caller allocated buffer which will contain
information related to the current settings for the selected parameter.
The buffer must be large enough to contain the information requested
and must be aligned as required. For example, if a request for a
parameter will result in *pvData being filled with a DWORD value,
*pvData must be DWORD aligned. Please refer to the table in the
introduction to this section of the manual for the data types associated
with the various readable parameters.

Return Value
One of the following:

 RM_ERROR_OK - Parameter valid, size large enough, succeeded

 RM_ERROR_INVALID_PARAMETER - Bad dwParameter or
NULL dwSize or pvData

 RM_ERROR_INVALID_BUFFER_SIZE - Buffer size too small for
requested parameter

Portability
The arguments to this function are specific to the RAC6182 hardware.

SetParameter

This function sets parameters. It is prototyped in miscsystem.h.

Syntax
#include <Windows.h>
#include <miscsystem.h>

DWORD rm_SetParameter(DWORD dwParameter, DWORD *dwSize, VOID
*pvData)

Remarks
dwParameter may be evaluated with any one of the following macros
defined in miscsystem.h in order to select the system parameter to be set:

RAC6182-Specific Extensions to the CE API 4–33

Publication 6182-UM002B-EN-P

 RM_PARAMETER_ENABLE_SERIAL_DEBUG_ON_BOOT

 RM_PARAMETER_LCD_BRIGHTNESS

 RM_PARAMETER_LCD_CONTRAST

 RM_PARAMETER_CURSOR_ENABLED

 RM_PARAMETER_ENABLE_SERIAL_DEBUG

 RM_PARAMETER_PHYSICAL_ADDRESS (CE V3.0 only)

dwSize is a pointer to a caller allocated DWORD. *dwSize should be
evaluated with sizeof(<type_of_parameter>) or with the size in bytes of
the parameter type as indicated in the table at the beginning of this
section. When the function returns, the value of *dwSize will indicates
the actual number of bytes from pvData used to set the selected
parameter.

pvData is a pointer to a caller allocated buffer containing the setting data
to be applied to the selected parameter. The buffer must be sized and
aligned according to the type of the data. For example, if *pvData will
be filled with a DWORD value, it must be DWORD aligned. Please
refer to the table in the introduction to this section of the manual for
details.

Return Value
One of the following:

 RM_ERROR_OK - Parameter valid, size large enough, succeeded

 RM_ERROR_INVALID_PARAMETER - Bad dwParameter or
NULL dwSize or pvData

 RM_ERROR_INVALID_BUFFER_SIZE - Buffer size too small for
requested parameter

Portability
The arguments to this function are specific to the RAC6182 hardware.

The hardware of the RAC6182 has provides a number of timers of
varying precision, flexibility, and range. Some of these timers may be
used for other operating-system level purposes such as reschedule timer
interrupts, PWM for LCD panels, RS485 implementation, etc. However,
at least one of these timers is guaranteed to be available for general
purpose use to application programs.

Since the number of timers is only guaranteed to be at least one and
RAC6182 supports the possibility of multiple applications executing,
applications should use the timer APIs along with a fallback to less
precise Sleep() or busy-wait timing if timers are not available for their
usage.

Functions for Accessing
System Timers

4–34 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

UserTimerGetNumberOfTimers

This function gets the number of available timers. It is prototyped in
usertimers.h.

Syntax
#include <Windows.h>
#include <usertimers.h>

DWORD UserTimerGetNumberOfTimers(void)

Remarks
Returns total number of application accessible timers on the system.

Return Value
Total number of application accessible timers available.

Portability
This function is specific to the RAC6182 hardware.

See Also
UserTimerClaim

UserTimerClaim

This function claims, or releases, access to user timers. It is prototyped
in usertimers.h.

Syntax
#include <Windows.h>
#include <usertimers.h>

DWORD UserTimerClaim(DWORD TimerNumber,BOOL Claim)

RAC6182-Specific Extensions to the CE API 4–35

Publication 6182-UM002B-EN-P

Remarks
This function is used to claim or release exclusive access to a specific
timer. A timer must be claimed before any function taking a
TimerNumber as a parameter can be used. A timer must be released to
allow any other application to claim and use the timer.

Parameter Description

TimerNumber TimerNumber is 0 based (i.e. if 2 timers are present
on the system, they are timer #0 and timer #1).

Claim Claim is TRUE to claim access to a timer, FALSE to
release it.

Return Value
Possible return values are represented by macros defined in usertimers.h:

 USER_TIMER_OK - Successfully claimed or released timer

 USER_TIMER_INVALID_TIMER - Timer number not present on
system

 USER_TIMER_NOT_CLAIMED - Another application already
claimed the timer so this application could not claim it

 USER_TIMER_ALREADY_CLAIMED - This application has
already claimed this timer

Portability
This function is specific to the RAC6182 hardware.

See Also
UserTimerGetNumberOfTimers

UserTimerRequestFrequency

This function sets the frequency of user timers. It is prototyped in
usertimers.h.

Syntax
#include <Windows.h>
#include <usertimers.h>

DWORD UserTimerRequestFrequency(DWORD TimerNumber,DWORD
*Frequency)

Remarks
Requests that the timer use a frequency as close as possible to a specified
frequency for its count. Hardware timer capabilities vary significantly, so
there may only be one or certain gradations of real frequencies possible.

4–36 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Applications must check the *Frequency returned and use it in their
counter calculations.

Note: As of this writing, RAC6182 user timers operate at a fixed
frequency of 75MHz. Thus, attempts to adjust the timers to
frequencies other than 75MHz will not be effective.
However, the timers’ frequencies may become adjustable in
future releases of the RAC6182, and no guarantee can be
made that the timers will always have a fundamental
frequency of 75MHz.

ATTENTION: This function has unpredictable results if
called when the timer is running.

Parameter Description

TimerNumber Number of a timer previously claimed.

Frequency Pointer to an application allocated DWORD
containing the frequency (in Hz) to which the timer is
to be set.

When the function is successful, it changes
*Frequency to the actual value used.

Return Value
Possible return values are represented by macros defined in usertimers.h:

 USER_TIMER_OK - Successfully claimed or released timer

 USER_TIMER_INVALID_TIMER - Timer number not present on
system

 USER_TIMER_NOT_CLAIMED - Another application already has
claimed the timer so this application could not claim it

 USER_TIMER_INVALID_PARAMETER - Invalid value

Portability
This function is specific to the RAC6182 hardware.

See Also
UserTimerClaim and UserTimerSet

RAC6182-Specific Extensions to the CE API 4–37

Publication 6182-UM002B-EN-P

UserTimerSet

This function sets the count of user timer and start timing. It is
prototyped in usertimers.h.

Syntax
#include <Windows.h>
#include <usertimers.h>

DWORD UserTimerSet(DWORD TimerNumber,DWORD Count)

Remarks
Sets the timer to a given countdown value and starts the timer. The
frequency of the count is the last frequency returned from
UserTimerRequestFrequency. The countdown stops at 0 and the timer is
triggered.

Any count in progress is aborted by this function.

Parameter Description

TimerNumber Number of a timer previously claimed.

Count Number of ticks before a timeout is triggered. The
range may vary depending on the hardware
implementation of the counter.

Return Value
Possible return values are represented by macros defined in usertimers.h:

 USER_TIMER_OK - Successfully claimed or released timer

 USER_TIMER_INVALID_TIMER - Timer number not present on
system

 USER_TIMER_NOT_CLAIMED - Another application already has
claimed the timer so this application could not claim it

 USER_TIMER_SET_FAILED - Unable to set timer

 USER_TIMER_INVALID_PARAMETER - Invalid value

Portability
This function is specific to the RAC6182 hardware.

4–38 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

UserTimerStop

This function stops the user timer. It is prototyped in usertimers.h.

Syntax
#include <Windows.h>
#include <usertimers.h>

DWORD UserTimerStop(DWORD TimerNumber)

Remarks
Aborts any currently active countdown in the timer specified by
TimerNumber. TimerNumber must refer to a previously claimed timer.

Return Value
Possible return values are represented by macros defined in
usertimers.h.:

 USER_TIMER_OK - Successfully claimed or released timer

 USER_TIMER_INVALID_TIMER - Timer number not present on
system

 USER_TIMER_NOT_CLAIMED - Another application already has
claimed the timer so this application could not claim it

 USER_TIMER_NOT_RUNNING - Timer not running

Portability
This function is specific to the RAC6182 hardware

See Also
UserTimerSet

UserTimerGetValue

This function gets the count of user timer. It is prototyped in
usertimers.h.

Syntax
#include <Windows.h>
#include <usertimers.h>

DWORD UserTimerGetValue(DWORD TimerNumber, DWORD *Count)

Remarks
Requests the current countdown value of an active timer.

RAC6182-Specific Extensions to the CE API 4–39

Publication 6182-UM002B-EN-P

Parameter Description

TimerNumber Number of a previously claimed timer.

Count Pointer to a DWORD allocated by the caller in which
the current count will be stored.

Return Value
Possible return values are represented by macros defined in usertimers.h:

 USER_TIMER_OK - Successfully claimed or released timer

 USER_TIMER_INVALID_TIMER - Timer number not present on
system

 USER_TIMER_NOT_CLAIMED - Another application already has
claimed the timer so this application could not claim it

 USER_TIMER_INVALID_PARAMETER - Invalid value

 USER_TIMER_NOT_RUNNING - Timer not running

Portability
This function is specific to the RAC6182 hardware.

UserTimerGetWaitEvent

This function registers to receive notification of timeout event. It is
prototyped in usertimers.h.

Syntax
#include <usertimers.h>

DWORD UserTimerGetWaitEvent(DWORD TimerNumber,BOOL ManualReset,
HANDLE *WaitEvent)

Remarks
Creates an event handle in *WaitEvent which may be used in a
WaitForSingleObject() or WaitForMultipleObjects() call. This event is
set whenever the timer counts down to zero, allowing interrupt driven
timer handling.

Parameter Description

TimerNumber Number of a previously claimed timer.

ManualReset

WaitEvent Pointer to a caller allocated HANDLE, in which an
event handle will be stored.

4–40 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Return Value
Possible return values are represented by macros defined in usertimers.h:

 USER_TIMER_OK - Successfully claimed or released timer

 USER_TIMER_INVALID_TIMER - Timer number not present on
system

 USER_TIMER_NOT_CLAIMED - Another application already has
claimed the timer so this application could not claim it

 USER_TIMER_INVALID_PARAMETER - Invalid value

Portability
This function is specific to the RAC6182 hardware.

The RAC6182 platform provides a hardware monitor driver that can be
called by applications to monitor the status of various board parameters,
to set "warning levels", for these parameters, and to receive warning
event signals when values of the monitored parameters fall outside the
warning levels. In addition, functions for power-fail monitoring, board
reset and reboot are provided here.

The parameters that can be monitored are:

 12-Volt power supply voltage

 5-Volt power supply voltage

 3.3-Volt power supply voltage

 3-Volt battery voltage

 Board temperature

 Power fail

Note that some of the monitored parameters are of fundamentally
different types. Therefore the units of the parameters, will vary
according to the parameter being monitored. For example, when an
application sets the warning levels for the 5V-power supply monitor, the
units of the levels specified in HardwareMonitor API functions will be
Volts. However, when an application sets board temperature warning
levels, the application must specified temperature in degrees Celsius.
Parameter units are described in more detail below for each API
function.

Functions for Accessing
the Hardware Monitor

RAC6182-Specific Extensions to the CE API 4–41

Publication 6182-UM002B-EN-P

The functions exported by the HardwareMonitor driver are listed below.

hm_GetMonitorLevel

This function gets the value of monitored parameter. It is prototyped in
HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

BOOL hm_GetMonitorLevel (DWORD dwMonitorID, double *plfMonitorLevel)

Remarks
This function queries the hardware monitor for the value of the
parameter specified with dwMonitorID. The value is returned as a
double precision float in *plfMonitorLevel. The units vary depending on
the parameter.

Note that there are no readable values associated with the power fail
monitor.

Parameter Description

dwMonitorID ID of monitored parameter whose current value is
being queried. Note that only one monitored
parameter can be specified. Possible values are
represented by macros defined in
HardwareMonitorAPI.h as follows:

MONITOR_ID_SUPPLY_3V
MONITOR_ID_SUPPLY_5V
MONITOR_ID_SUPPLY_12V
MONITOR_ID_SUPPLY_BATTERY

MONITOR_ID_TEMPERATURE_BOARD

plfMonitorLevel Pointer to an application-allocated double precision
floating point value which will receive the specified
monitor's current level. Power supply values are
given in units of voltage. Temperature values are
given in units of degrees Celsius.

Return Value
Returns TRUE if the query succeeded. FALSE is returned if the query
failed.

Portability
This function is specific to the RAC6182 hardware.

See Also
hm_GetMonitorWarningLevels and hm_SetMonitorWarningLevels

4–42 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

hm_GetMonitorWarningLevels

This function gets warning levels for monitored parameter. It is
prototyped in HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

BOOL hm_GetMonitorWarningLevels (DWORD dwMonitorID, double
*plfUpperWarningLevel, double *plfLowerWarningLevel)

Remarks
This function queries the current warning levels defined for the
parameter specified with dwMonitorID. Upper and lower warning levels
specify the upper and lower bounds of the monitored parameter during
normal operation. If the parameter deviates from the defined operating
bounds, it will enter the "warning state".

Power fail is special in that it only has a lower warning level.
lfUpperWarningLevel will be the value of the macro
MONITOR_WARNING_LEVEL_UNDEFINED.

Parameter Description

dwMonitorID ID of monitored parameter whose warning levels are
being set. monitored parameter can be specified.
Note that only one monitor ID can be specified.
Possible values are represented by macros defined
in HardwareMonitorAPI.h as follows:

MONITOR_ID_SUPPLY_3V
MONITOR_ID_SUPPLY_5V
MONITOR_ID_SUPPLY_12V
MONITOR_ID_SUPPLY_BATTERY
MONITOR_ID_TEMPERATURE_BOARD
MONITOR_ID_POWER_FAIL

plfUpperWarningLevel Pointer to an application-allocated double-precision
floating point where the current upper limit value will
be written. The value represents volts or degrees
Celsius, depending on the specified parameter.

MONITOR_WARNING_LEVEL_UNDEFINED, a
macro defined in HardwareMonitorAPI.h, will be
written if the upper level bound has not been defined
and will not be used to determine if the monitor has
entered the warning state.

RAC6182-Specific Extensions to the CE API 4–43

Publication 6182-UM002B-EN-P

Parameter Description

plfLowerWarningLevel Pointer to an application-allocated double-precision
floating point where the current lower limit value will
be written. The value represents volts or degrees
Celsius, depending on the specified parameter.

MONITOR_WARNING_LEVEL_UNDEFINED, a
macro defined in HardwareMonitorAPI.h, will be
written if the upper level bound has not been defined
and will not be used to determine if the monitor has
entered the warning state.

Return Value
Returns TRUE if the warning levels were successfully queried. Returns
FALSE on failure.

Portability
This function is specific to the RAC6182 hardware.

See Also
hm_SetMonitorWarningLevels

hm_SetMonitorWarningLevels

This function sets warning levels for monitored parameter. It is
prototyped in HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

BOOL hm_SetMonitorWarningLevels (DWORD dwMonitorID, double
lfUpperWarningLevel, double lfLowerWarningLevel)

Remarks
This function sets upper and lower "warning levels" the parameter
specified with dwMonitorID. Upper and lower warning levels specify
the upper and lower bounds of the monitored parameter during normal
operation. If the parameter deviates from the specified operating bounds,
it will enter the "warning state".

The power fail monitor is a 12V supply monitor, but separate from the
regular 12V supply monitor. It is special in that it is used not merely to
trigger a warning, but also to initiate a system shutdown in case the 12V
line drops below the warning level. The power fail monitor has only a
lower warning level. If setting levels for power fail, the macro
MONITOR_WARNING_LEVEL_UNDEFINED should be used to
evaluate lfUpperWarningLevel.

4–44 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

ATTENTION: When power fail lower warning level is
set, and the 12V supply subsequently drops below that
level, the system will enter a warning state, but it will also
begin an irreversible shut down. Care should be taken not
to set regular 12-Volt low warning level lower than the
power fail level; otherwise, it will not be possible to
detect a warning in case the 12V drops below its lower
level. Also, care must be taken not to set the power fail
level higher than the current 12-Volt level; otherwise, the
system will immediately enter the power fail shutdown
state.

Parameter Description

dwMonitorID ID of monitored parameter whose limits are being
set. Note that only one monitored parameter can be
specified. Possible values are represented by
macros defined in HardwareMonitorAPI.h as follows:

MONITOR_ID_SUPPLY_3V
MONITOR_ID_SUPPLY_5V
MONITOR_ID_SUPPLY_12V
MONITOR_ID_SUPPLY_BATTERY
MONITOR_ID_TEMPERATURE_BOARD
MONITOR_ID_POWER_FAIL

lfUpperWarningLevel Double precision floating point level defining the
upper bound of the parameter during normal
operation. The given value represents voltage or
degrees Celsius, depending on the specified
parameter.

If MONITOR_WARNING_LEVEL_UNDEFINED, a
macro defined in HardwareMonitorAPI.h, is
specified, the upper level bound will be undefined
and not used to determine if the monitor enters the
warning state.

lfLowerWarningLevel Double precision floating point level defining the
lower bound of the monitor parameter during normal
operation. The given value represents volts or
degrees Celsius, depending on the specified
parameter.

If MONITOR_WARNING_LEVEL_UNDEFINED, a
macro defined in HardwareMonitorAPI.h, is
specified, the lower level bound will be undefined
and not used to determine if the monitor enters the
warning state.

Return Value
Returns TRUE if the warning levels were successfully set. Returns
FALSE on failure.

RAC6182-Specific Extensions to the CE API 4–45

Publication 6182-UM002B-EN-P

Portability
This function is specific to the RAC6182 hardware.

See Also
hm_GetMonitorWarningLevels

hm_RegisterMonitorWarningEvent

This function registers to receive a warning of a parameter out-of-limit.
It is prototyped in HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

BOOL hm_RegisterMonitorWarningEvent (DWORD dwMonitorIDMask, HANDLE
*phEventHandle)

Remarks
An application that needs to be notified when one or more monitor
parameters enter the warning state should register for an event with this
function. The caller specifies, via dwMonitorIDMask, what parameters
should be used to trigger a warning event when their values exceed
warning levels. An event handle is passed to the caller in
*phEventHandle.

Note: It is possible to set an event for power fail (to trigger some
clean up before system shutdown), but this event must be a
separate event from that used for general warnings.

If this function succeeds, the caller can wait for the event using one of
the standard Win32 WaitForxxx() functions. Once the event is triggered
and the caller’s thread falls through the WaitForxxx() function, the caller
can determine which monitor sources are currently in the warning state
via the function hm_GetMonitorWarnings. If any of the monitor sources
in question are still in a warning state, the caller can act accordingly.

Note that monitor parameters will vary with time, and may oscillate
about a defined upper or lower warning level for a short period.
Therefore, when a warning state event has been triggered, the calling
application should poll the warning status of any monitor sources of
concern (using hm_GetMonitorWarnings) for a while to ensure that the
monitor source remains in a warning state before acting. Note also that,
to avoid oscillating events due to a lack of input hysteresis, the hardware
monitor driver will not signal an event when a monitor source leaves the
warning state. Applications must poll the device's warning state to
determine when/if it resumes normal operation.

4–46 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

The phEventHandle returned by this function is a standard Win32 auto-
reset event handle. However, an application should NOT close the
handle using the handle using the Win32 CloseHandle function. Instead
the application should close the handle and unregister the event using the
hm_UnregisterMonitorWarningEvent function.

Parameter Description

dwMonitorIDMask Bitmask combination of all of the monitor sources
that will trigger the returned event when entering the
warning state.

MONITOR_ID_SUPPLY_3V
MONITOR_ID_SUPPLY_5V
MONITOR_ID_SUPPLY_12V
MONITOR_ID_SUPPLY_BATTERY
MONITOR_ID_TEMPERATURE_BOARD
MONITOR_ID_POWER_FAIL

phEventHandle Pointer to an application-allocated HANDLE.

Return Value
Returns TRUE if the monitor warning event has been successfully
registered. Returns FALSE on failure.

Portability
This function is specific to the RAC6182 hardware.

See Also
hm_UnregisterMonitorWarningEvent

hm_UnregisterMonitorWarningEvent

This function cancels the registration for a warning of a parameter out-
of-limit. It is prototyped in HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

BOOL hm_UnregisterMonitorWarningEvent (HANDLE hEventHandle)

RAC6182-Specific Extensions to the CE API 4–47

Publication 6182-UM002B-EN-P

Remarks
This function unregisters and frees a warning state notification event that
had previously been created using hm_RegisterMonitorWarningEvent.
This function will automatically free hEventHandle, so the application
should not attempt to free it with CloseHandle.

Parameter Description

hEventHandle Handle of the previously registered warning event
that is now being unregistered and freed.

Return Value
Returns TRUE if the monitor warning event has been successfully
unregistered. Returns FALSE on failure.

Portability
This function is specific to the RAC6182 hardware.

See Also
hm_RegisterMonitorWarningEvent

hm_GetMonitorWarnings

This function gets warnings. It is prototyped in HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

BOOL hm_GetMonitorWarnings (DWORD *pdwMonitorID)

Remarks
This function returns a bitwise OR'd combination of all monitor sources
that are currently in the warning state. Note that this function does not
latch any previous warning states that may have previously triggered
warning notification events. Therefore, if a monitor source enters a
warning state and triggers a notification event, it is possible that the
monitor has left the warning state before an application calls this
function.

Note: A system shutdown on account of a power failure cannot be
sensed via this call. When the system is in the power fail
shutdown state, communication with the microcontroller
that this function uses to get monitor levels is already
shutdown. To sense power fail an application must use
hm_RegisterMonitorWarningEvent to register an event with
the power fail monitor.

4–48 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Parameter Description

pdwMonitorID Pointer to an application-allocated DWORD that will
receive a bitmask combination of all monitor sources
currently in the warning state. The following macros
defined in HardwareMonitorAPI.h can be used to
test for specific parameters:

MONITOR_ID_SUPPLY_3V
MONITOR_ID_SUPPLY_5V
MONITOR_ID_SUPPLY_12V
MONITOR_ID_SUPPLY_BATTERY

MONITOR_ID_TEMPERATURE_BOARD

Return Value
Returns TRUE if the function succeeds. Returns FALSE on failure.

Portability
This function is specific to the RAC6182 hardware.

hm_RebootBoard

This function reboots the system. It is prototyped in
HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

BOOL hm_RebootBoard (void)

Remarks
This function performs a reboot the RAC6182 board. The reboot reason
code is set, caches are flushed, and a full reboot is performed, including
reset of hardware chips. Applications should use this function instead of
alternatives such as using KernelIoControl to reset the board.

Return Value
Returns FALSE on failure. Function will not return on success as the
board will reset.

Portability
This function is specific to the RAC6182 hardware.

RAC6182-Specific Extensions to the CE API 4–49

Publication 6182-UM002B-EN-P

hm_GetBootReason

This function gets the reason for last boot. It is prototyped in
HardwareMonitorAPI.h.

Syntax
#include <Windows.h>
#include <HardwareMonitorAPI.h>

DWORD hm_GetBootReason (void)

Remarks
This function returns a DWORD representing the reason the board was
last booted. Magic cookies and intelligent selection of default cases are
used to distinguish as many scenarios as possible. However, the method
relies on the probability that DRAM will hold a value for 10s of
milliseconds without refresh, and on other such factors. Accordingly, the
returned value cannot be guaranteed to be correct, especially in cases of
very brief power interruptions.

Return Value
Return values are represented by macros defined in
HardwareMonitorAPI.h.

Macro Description

BOOT_REASON_
UNTRAPPED

Board was reset after a power-up boot, not by a
user or operating system call, but most likely by the
watchdog.

BOOT_REASON_
COLD_POWER_
CYCLE

Board went through a normal power-up boot.

BOOT_REASON_
POWER_DOWN_
CLEAN

Board was previously powered down when power
fail monitor level was set, and either no applications
were registered for power down event handling, or
all applications registered completed their shutdown
activities and signaled this to the operating system.

BOOT_REASON_
POWER_DOWN_
DIRTY

Board was previously power down when power fail
monitor level was set, but at least one application
registered for a power down event did not signal that
it completed its shutdown activities.

BOOT_REASON_
WARM_UNDEFINED

Board was reset for an unknown reason

BOOT_REASON_
WARM_REQUESTED

Board was reset by an application call to
hm_RebootBoard.

BOOT_REASON_
WARM_INTERNAL

Board was reset by some operating system
operation

Portability
This function is specific to the RAC6182 hardware.

4–50 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

The RAC6182 software includes a Retentive Memory driver that can be
called by applications to read and write to the RAC6182’s battery-backed
RAM. The driver is implemented as a dynamic link library ().

Retentive Memory driver functions available to applications include
functions to lock and unlock the battery-backed RAM. When an
application holds a lock on this RAM, no other application can read or
write data. There are also functions that allow applications to verify
memory contents using a checksum.

The functions exported by the RetentiveMem driver are listed below.

RetMemLock

This function locks retentive memory. It is prototyped in
RetentiveMemAPI.h.

Syntax
#include <Windows.h>
#include <RetentiveMemAPI.h>

BOOL RetMemLock(DWORD dwTimeout)

Remarks
This function locks the entire retentive memory (battery-backed RAM),
preventing other applications from reading and writing. An application
must have the lock on retentive memory before any other retentive
memory function will complete successfully; thus, this function should
always be called, and its return value checked, before any other function
retentive memory function is called.

Parameter Description

DwTimeout Number of milliseconds to wait for lock before failing.

Return Value
Returns TRUE if the lock request succeeded. Returns FALSE if the lock
request failed because another application did not release the lock within
dwTimeout milliseconds.

Portability
This function is specific to the RAC6182 hardware.

See Also
RetMemUnlock

Functions for Accessing
Retentive Memory

RAC6182-Specific Extensions to the CE API 4–51

Publication 6182-UM002B-EN-P

RetMemUnlock

This function unlocks retentive memory. It is prototyped in
RetentiveMemAPI.h.

Syntax
#include <Windows.h>
#include <RetentiveMemAPI.h>

BOOL RetMemUnlock (void)

Remarks
The application should always call this function to release a lock on
retentive memory before exiting.

Return Value
Returns TRUE if the lock is released. Returns FALSE on failure.

Portability
This function is specific to the RAC6182 hardware.

See Also
RetMemLock

RetMemWrite

This function writes to retentive memory. It is prototyped in
RetentiveMemAPI.h.

Syntax
#include <Windows.h>
#include <RetentiveMemAPI.h>

DWORD RetMemWrite (DWORD dwOffset, DWORD dwLength, BYTE *pbtBuffer)

Remarks
This function copies dwLength bytes of data from a user data buffer to a
specific area in retentive memory. If less than dwLength bytes are
available to be written, the number of available bytes are copied. In this
case, the number of bytes returned will be less than dwLength. If
another process has the memory locked, no bytes will be written and the
return value will be 0.

The total amount of available memory is represented by the macro
RET_MEM_MEMORY_SIZE, defined in RetentiveMemAPI.h.

4–52 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Parameter Description

dwOffset Starting offset in RAM at which data will be written.
Offset 0 is the first byte of RAM.

dwLength Number of bytes to be written.

pbtBuffer Pointer to a buffer containing data to be written to
the RAM.

Return Value
Returns the total number of bytes actually written

Portability
This function is specific to the RAC6182 hardware.

See Also
RetMemRead

RetMemRead

This function reads retentive memory. It is prototyped in
RetentiveMemAPI.h.

Syntax
#include <Windows.h>
#include <RetentiveMemAPI.h>

DWORD RetMemRead (DWORD dwOffset, DWORD dwLength, BYTE *pbtBuffer)

Remarks
This function copies dwLength bytes of data from an area of retentive
memory into a user data buffer. The number of bytes actually read is
returned. If fewer than dwLength bytes are available, the value returned
will be less than dwLength. If another process has the memory locked,
no bytes will be read and the return value will be 0.

The total amount of available memory (in bytes) is given by the macro
RET_MEM_MEMORY_SIZE, defined in RetentiveMemAPI.h.

Parameter Description

dwOffset Starting offset in RAM of data to be read. Offset 0 is
the first byte of RAM.

dwLength Number of bytes to be read.

pbtBuffer Pointer to the beginning of a buffer to be filled with
data from RAM.

RAC6182-Specific Extensions to the CE API 4–53

Publication 6182-UM002B-EN-P

Return Value
Returns the number of bytes actually read.

Portability
This function is specific to the RAC6182 hardware.

See Also
RetMemWrite

RetMemVerifyMemory

This function verifies retentive memory. It is prototyped in
RetentiveMemAPI.h.

Syntax
#include <Windows.h>
#include <RetentiveMemAPI.h>

BOOL RetMemVerifyMemory (void)

Remarks
This function calculates the checksum of retentive memory and
compares it to the master checksum. If the two values do not match, the
function returns FALSE, indicating the existence of corrupt data in the
memory. If the two values match, the function returns TRUE, indicating
that data are valid.

This function does not rewrite the master checksum; therefore,
successive calls to this function will return the same result.

Applications should call this function before reading from or writing to
the battery-backed RAM, to verify that its data are valid The caller must
hold a lock on the RAM in order to use this function.

Return Value
Returns TRUE if the calculated checksum matches the master checksum.
Returns FALSE if the checksums do not match or if another application
has locked memory.

Portability
This function is specific to the RAC6182 hardware.

See Also
RetMemCalculateChecksum

4–54 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

RetMemCalculateChecksum

This function calculates retentive memory checksum. It is prototyped in
RetentiveMemAPI.h.

Syntax
#include <Windows.h>
#include <RetentiveMemAPI.h>

BOOL RetMemCalculateChecksum (void)

Remarks
This function recalculates the checksum of retentive memory and writes
it as the master checksum.

ATTENTION: If any data in the retentive memory are
corrupt, as indicated by a return of FALSE from a call to
RetMemVerifyMemory, the corruptions should be
repaired before calling this function. Any data in the
memory that are corrupt at the time this function is called
will remain corrupt, and the recalculated master
checksum based on the corrupt data will render the
corruptions invisible to subsequent calls of
RetMemVerifyMemory.

If the caller cannot repair corruptions, because they have to do with data
maintained by other applications, the caller should at least ensure that all
other applications are informed that their data may not be valid prior to
issuing this call. Otherwise, some applications might interpret bad data
as if it were good.

Return Value
Returns TRUE if the checksum is recalculated. Returns FALSE if
another process has locked memory.

Portability
This function is specific to the RAC6182 hardware.

See Also
RetMemVerifyMemory

RAC6182-Specific Extensions to the CE API 4–55

Publication 6182-UM002B-EN-P

Applications can utilize the RAC6182 platform's serial ports via the
standard WIN32 API's "File I/O" interface. A complete description of
the File I/O interface is outside the scope of this document. Users are
referred to the Microsoft Win32 SDK documentation for additional
information. However, some of the arguments needed by the File I/O
functions for serial port control are specific to the RAC6182. These
arguments are represented by macros defined in the c header file
othersdk.h, and are treated here in detail.

DeviceIoControl

This function accesses the serial port. It is prototyped in Winbase.h
(included in Windows.h).

Syntax
#include <Windows.h>
#include <othersdk.h>

BOOL DeviceIoControl(
 HANDLE hDevice,
 DWORD dwIOControlCode,
 LPVOID lpInBuffer,
 DWORD nInBufferSize,
 LPVOID lpOutBuffer,
 DWORD nOutBufferSize,
 LPDWORD lpBytesReturned,
 LPOVERLAPPED lpOverlapped
)

Remarks
See the documentation in the Microsoft Windows CE development kit
for additional information.

Parameter Description

hDevice Handle to device (returned by CreateFile)

dwIOControlCode Evaluate with one of the macros defined in
othersdk.h. (See macro descriptions that follow.)

lpInBuffer Pointer to input data buffer. Used for set operations

nInBufferSize Size of input data buffer. Used for set operations.

lpOutBuffer Pointer to output data buffer. Used for get
operations.

nOutBufferSize Size of output data buffer. Used for get operations.

lpBytesReturned Pointer to count of bytes returned

lpOverlapped Pointer to overlapped information (NULL for CE)

Streams Interface for
Serial Ports

4–56 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

Macro Description

IOCTL_SERIAL_SET
_PORT_MODE

Sets the electrical interface for the specified serial
port. Note that only COM1 supports switching
electrical interfaces.

lpInBuffer should point to a caller allocated WORD
containing the code for the desired electrical
interface. The possible codes are represented by
the following macros defined in othersdk.h:

SERIAL_MODE_RS232
SERIAL_MODE_RS485
SERIAL_MODE_RS422

nInBufferSize should be sizeof(WORD).

IOCTL_SERIAL_
QUERY_PORT_
MODE

Returns the current electrical interface setup for the
specified serial port.

lpOutBuffer should point to a caller allocated WORD
where the code for the current mode will be stored.
The value of *lpOutBuffer can be decoded by
comparison with one of the following macros:

SERIAL_MODE_RS232
SERIAL_MODE_RS485
SERIAL_MODE_RS422

nOutBufferSize should be sizeof(WORD).

IOCTL_SERIAL_
ENABLE_TX_FIFO

Enable the transmit FIFO buffer for the specified
serial port. Note that this is a 16 byte buffer.

lpInBuffer should point to a caller allocated BOOL,
which should contain TRUE or FALSE as required to
enable or disable the FIFO.

nInBufferSize should be sizeof(BOOL).

IOCTL_SERIAL_
ENABLE_RX_FIFO

Enable the receiver FIFO buffer for the specified
serial port. Note that this is a 16 byte buffer.

LpInBuffer should point to a caller allocated BOOL,
which should contain TRUE or FALSE as required to
enable or disable the FIFO.

NInBufferSize should be sizeof(BOOL).

IOCTL_SERIAL_
SET_TX_FIFO_
WATERMARK

Do not use. Not supported on RAC6182.

IOCTL_SERIAL_
SET_RX_FIFO_
WATERMARK

Do not use. Not supported on RAC6182.

IOCTL_SERIAL_
QUERY_TX_FIFO_
COUNT

Do not use. Not supported on RAC6182.

IOCTL_SERIAL_
QUERY_RX_FIFO_
COUNT

Do not use. Not supported on RAC6182.

IOCTL_SERIAL_SET
_COUNTRY_CODE

Do not use. Not supported on RAC6182.

IOCTL_SERIAL_
QUERY_COUNTRY_
CODE

Do not use. Not supported on RAC6182.

RAC6182-Specific Extensions to the CE API 4–57

Publication 6182-UM002B-EN-P

Macro Description

IOCTL_SERIAL_GET
_CABLE_STATUS

Do not use. Not supported on RAC6182.

Portability
The arguments to this function are specific to the RAC6182 hardware

The RAC6182 provides support for an external debug monitor connected
at the second serial port (COM2). Normally, the second serial port is
configured as a standard communications port; in this case, it does not
handle system debug messages, which, if generated, are discarded.
However, this port can be specially set up to pass system debug
messages to an external device; in this case, the second serial port
becomes unavailable to applications for normal communications use.
Details for the setup of the port are given in an appendix to this manual.

A debug monitor can be very useful for Windows CE operating system
developers, since it can capture debug messages emitted by the operating
system by way of a serial port, even before all Windows CE services,
including display services, are operational.

Application developers can also make use of these facilities, provided
their programs written to produce debug output via the NKDbgPrintfW()
function described below. However, since the use of an external debug
monitor requires a special configuration of the RAC6182, it is
recommended that the use of external debug output be limited to logging
fatal or unusual error conditions. If an application developer believes a
fatal error is occurring, the RAC6182 can be set up to pass error
messages that might allow him or her to diagnose the problem more
easily.

When debug mode is enabled, applications should not open COM2 or
they will interfere with debug output messages. When debug mode is
not enabled, all debug output is silently ignored and COM2 is available
for general application use.

Application Interface to
Output Debug Messages

4–58 RAC6182-Specific Extensions to the CE API

Publication 6182-UM002B-EN-P

NKDbgPrintfW

This function generates output to an external debug monitor. It is
prototyped in dbgapi.h.

Syntax
#include <Windows.h>
#include <dbgapi.h>

void NKDbgPrintfW(LPWSTR lpszFmt, …)

Remarks
This is a var-args function similar to any of the printf() family, which
takes a Unicode formatting string and zero or more other arguments.
dbgapi.h defines macros RETAILMSG() and DEBUGMSG() which may
be useful in setting up conditional debug outputs.

Return Value
Nothing

Portability
This function is specific to the RAC6182 hardware.

Appendix AAppendix AAppendix AAppendix A

Table J
Operating System Files

System Executables
in Windows

Function

async.asy
(ActiveSync)

cmd.exe

control.exe

ctlpnl.exe Control Panel

explorer.exe
(Windows Explorer)

Windows Explorer

flashavr.exe

format.exe

iesample.exe (Internet
Explorer)

LocalOSUpdate.exe

osmonitor.exe

pegterm.exe
(Terminal)

ping.exe

rapisvr.exe

regflush.exe Saves RAM based registry to persistent storage

remnet.exe (Remote
Networking)

repllog.exe (PC Link) Used to establish communications with a host f

rnaapp.exe

wplayer.exe

system dynamic link
libraries in \Windows

IECEExt.dll

mlang.dll

mscefile.dll

mshtml.dll

rsabase.dll

shdocvw.dll

shlwapi.dll

urlmon.dll

wininet.dll

AppendixAppendixAppendixAppendix AAAA

Operating System Files

A–2 Appendix A

Publication 6182-UM002B-EN-P

System Executables
in Windows

Function

system icons

cplmain.cpl

Table K
RAM Usage

Component
Memory
Usage

RAM FS space - Core OS components (kernel, networking,
drivers)

4.0 MB

RAM FS space - Windows desktop (commctrl, explorer, ctl panel,
fonts)

3.0 MB

RAM FS space – Internet explorer (browser object, HTML,
javascript)

5.0 MB

Reserved/global variable area used by drivers, kernel 64 KB

Network DMA buffers 128 KB

USB DMA buffers, private memory 32 KB

Heap and stack used by core OS components 1.0 MB

Heap and stack used by Windows desktop components 1.0 MB

Heap and stack used by Internet Explorer varies
greatly

Table L
Flash (Disk on Chip) Usage

Component
Memory
Usage

Core OS + Windows desktop= 7.0M* 2/3 for LZ compression 4.7MB

Core OS + desktop+IE=12.0M*2/3 for LZ compression 8.0MB

Space for compressed non-volatile registry (2 1.0M areas for
safety)

2.0MB

Memory Usage

Appendix A A–3

Publication 6182-UM002B-EN-P

The RAC6182 provides support for an external debug monitor connected
at the second serial port.

A debug monitor can be very useful for Windows CE operating system
developers, since it can capture debug messages emitted by the operating
system by way of a serial port, even before all Windows CE services,
including display services, are operational.

Application developers can also make use of these facilities, provided
their programs written to produce debug output via the NKDbgPrintfW()
function described elsewhere in this manual.

In order to cause the operating system to direct debug information
emitted via this function to the second serial port, it is necessary to
perform either one of the following setups:

 Set the debug jumper associated with the boot ROM on the system
circuit board

 Set the system debug flag (by means of a program that calls the
system function rm_SetParameter)

Once the system has been set up to use COM2 as the debug port, it is
necessary to connect an external debug monitor to this port. Any display
device with a serial interface can be used as a monitor. However, the
most common choice will be a desktop computer running Windows and
a Windows communications application such as Hyperterminal.

The RAC6182 should be connected to the debug monitor using a null
modem cable. (But note that it might be necessary to install a jumper at
the serial port connector that attaches to the RAC6182.)

The monitor device should be set up for serial communications as
follows:

 57,600 Baud

 8 Data Bits

 No Parity

 1 Stop Bit

 Hardware Flow Control

Connecting an External
Debug Monitor

B

Bezel ID EEPROM, 1-18

C

Central processing unit (CPU), 1-1

D

Debug messages, 4-60

F

Files
C/C++ Development Kit, 3-2
local file systems, 1-11
Windows CE Registry, 1-9

Functions
bezel EEPROM

be_GetBezelEEPROMParameter, 4-7
be_ReadBezelEEPROMParameter, 4-10
be_SetBezelEEPROMParameter, 4-8
be_WriteBezelEEPROMParameter, 4-11

custom keypad handlers
KhDeinitialize, 4-13
KhGetGlobalKeySettings, 4-13
KhGetKeyAttributeTable, 4-13
KhInitialize, 4-13
KhSetGlobalKeySettings, 4-13
KhTranslateVKey, 4-14

debug messages
NKDbgPrintW, 4-61

DRAM
SetSystemMemoryDivision, 4-30

hardware monitors
hm_GetMonitorLevel, 4-43
hm_GetMonitorWarningLevels, 4-44
hm_GetMonitorWarnings, 4-50
hm_GetRebootReason, 4-52

hm_RebootBoard, 4-51
hm_RegisterMonitorWarningEvent, 4-48
hm_SetMonitorWarningLevels, 4-45
hm_UnregisterMonitorWarningEvent, 4-49

LED
NledGetDeviceInfo, 4-16
NledSetDevice, 4-18

main
do_ClearBits, 4-5
do_ReadPort, 4-1
do_SetBits, 4-4
do_ToggleBits, 4-6
do_WritePort, 4-2

operating system
osu_RemoteUpdateOSFromRAM, 4-28
osu_UpdateOSFromFile, 4-28

parameters
GetParameter, 4-32
SetParameter, 4-33

PCI drivers
HalGetBusDataByOffset, 4-22
HalSetBusDataByOffset, 4-23
HalTranslateBusAddress, 4-21
InterruptDisable, 4-25
InterruptDone, 4-25
InterruptInitialize, 4-24
MmMaploSpace, 4-24

registry
FlushRegistry, 4-29

retentive memory
RetMemCalculateChecksum, 4-57
RetMemLock, 4-53
RetMemRead, 4-55
RetMemUnlock, 4-54
RetMemVerifyMemory, 4-56
RetMemWrite, 4-54

serial ports
DeviceIoControl, 4-58

timers

IIIIndexndexndexndex

I–2 Index

Publication 6182-UM002B-EN-P

UserTimerClaim, 4-35
UserTimerGetNumberOfTimers, 4-35
UserTimerGetValue, 4-40
UserTimerGeWaitEvent, 4-41
UserTimerRequestFrequency, 4-36
UserTimerSet, 4-39
UserTimerStop, 4-40

watchdog timer
Watchdog_Tag, 4-11

H

Hardware
architecture, 1-1
CPU, 1-1
memory devices

battery backed RAM, 1-3
boot ROM, 1-2
Disk-on-Chip, 1-2
DRAM, 1-2

PCI subsystem, 1-5
super I/O, 1-3

host system
setting up

Basic development, 2-5
C/C++ development, 2-3

I

Input device handlers, 1-13
Installation

development system, 2-3
distribution, 2-1
methods, 2-2
persistence considerations, 2-2
RAC6182 SDK, 2-6
setting up host machine

Basic development, 2-5
C/C++ development, 2-3

upgrades, 2-2

M

Memory devices
battery backed RAM, 1-3
boot ROM, 1-2
Disk-on-Chip, 1-2
DRAM, 1-2

O

Operating systems
boot sequence, 1-6
local file systems, 1-11
Windows CE, 1-6

P

PCI bus, 1-20
PCI device

sample code, 4-26

R

RAC6182
hardware

architecture, 1-1
battery backed RAM, 1-3
boot ROM, 1-2
CPU, 1-1
Disk-on-Chip, 1-2
DRAM, 1-2
PCI subsystem, 1-5
super I/O, 1-3

SDK
configuration, 2-8
debug messages, 4-60
files, 3-2
functions, 4-7, 4-11, 4-12, 4-15, 4-19, 4-28,
4-34, 4-42, 4-53
functions for digital output control, 4-1
installing, 2-6
overview, 3-1
streams interface, 4-15, 4-58

Index I–3

Publication 6182-UM002B-EN-P

software
archicture, 1-6
bezel ID EEPROM, 1-18
boot sequence, 1-6
development system, 2-3
distribution, 2-1
input device handlers, 1-13
installation, 2-2
local file systems, 1-11
operating system, 1-6
PCI bus, 1-20
persistence considerations, 2-2
registry, 1-9
runtime environment, 1-21
system shutdown, 1-22
upgrades, 2-2

Registry, 1-9
Runtime environment, 1-21

S

SDK
configuration, 2-8
debug messages, 4-60
files, 3-2
functions

be_GetBezelEEPROMParameter, 4-7
be_ReadBezelEEPROMParameter, 4-10
be_SetBezelEEPROMParameter, 4-8
be_WriteBezelEEPROMParameter, 4-11
do_ClearBits, 4-5
do_ReadPort, 4-1
do_SetBits, 4-4
do_ToggleBits, 4-6
do_WritePort, 4-2
FlushRegistry, 4-29
GetParameter, 4-32
HalGetBusDataByOffset, 4-22
HalSetBusDataByOffset, 4-23
HalTranslateBusAddress, 4-21
hm_GetMonitorLevel, 4-43
hm_GetMonitorWarningLevels, 4-44

hm_GetMonitorWarnings, 4-50
hm_GetRebootReason, 4-52
hm_RebootBoard, 4-51
hm_RegisterMonitorWarningEvent, 4-48
hm_SetMonitorWarningLevels, 4-45
hm_UnregisterMonitorWarningEvent, 4-49
InterruptDisable, 4-25
InterruptDone, 4-25
InterruptInitialize, 4-24
KhDeinitialize, 4-13
KhGetGlobalKeySettings, 4-13
KhGetKeyAttributeTable, 4-13
KhInitialize, 4-13
KhSetGlobalKeySettings, 4-13
KhTranslateVKey, 4-14
MmMaploSpace, 4-24
NKDbgPrintW, 4-61
NledGetDeviceInfo, 4-16
NledSetDevice, 4-18
osu_RemoteUpdateOSFromRAM, 4-28
osu_UpdateOSFromFile, 4-28
RetMemCalculateChecksum, 4-57
RetMemLock, 4-53
RetMemRead, 4-55
RetMemUnlock, 4-54
RetMemVerifyMemory, 4-56
RetMemWrite, 4-54
SetParameter, 4-33
SetSystemMemoryDivision, 4-30
UserTimerClaim, 4-35
UserTimerGetNumberOfTimers, 4-35
UserTimerGetValue, 4-40
UserTimerGetWaitEvent, 4-41
UserTimerRequestFrequency, 4-36
UserTimerSet, 4-39
UserTimerStop, 4-40
Watchdog_Tag, 4-11

installing, 2-6
overview, 3-1
streams interface

DeviceIoControl, 4-58

I–4 Index

Publication 6182-UM002B-EN-P

Software
bezel ID EEPROM, 1-18
boot sequence, 1-6
input device handlers, 1-13
local file systems, 1-11
PCI bus, 1-20
runtime environment, 1-21
system shutdown, 1-22
Windows CE OS, 1-6
Windows CE Registry, 1-9

Publication 6182-UM002B-EN-P 41061-225-01(B)
Copyright 2001 Rockwell Automation Corporation. All rights reserved. Printed in USA.

IBM is a registered trademark of International Business Machines Corporation.

VGA is a trademark of International Business Machines Corporation.

PC AT is a trademark of International Business Machines Corporation.

Microsoft is a registered trademark of Microsoft Corporation.

Microsoft Windows is a trademark of Microsoft Corporation.

Rockwell Automation helps its customers receive a superior return on their investment by bringing
together leading brands in industrial automation, creating a broad spectrum of easy-to-integrate
products. These are supported by local technical resources available worldwide, a global network of
system solutions providers, and the advanced technology resources of Rockwell.

Worldwide representation.

Argentina Australia Austria Bahrain Belgium Bolivia Brazil Bulgaria Canada Chile China, People’s Republic of Colombia Costa Rica Croatia Cyprus Czech
Republic Denmark Dominican Republic Ecuador Egypt El Salvador Finland France Germany Ghana Greece Guatemala Honduras Hong Kong Hungary
Iceland India Indonesia Iran Ireland Israel Italy Jamaica Japan Jordan Korea Kuwait Lebanon Macau Malaysia Malta Mexico Morocco The Netherlands
New Zealand Nigeria Norway Oman Pakistan Panama Peru Philippines Poland Portugal Puerto Rico Qatar Romania Russia Saudi Arabia Singapore
Slovakia Slovenia South Africa, Republic of Spain Sweden Switzerland Taiwan Thailand Trinidad Tunisia Turkey United Arab Emirates United Kingdom United
States Uruguay Venezuela
Rockwell Automation Headquarters, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414 382-2000, Fax: (1) 414 382-4444
Rockwell Automation European Headquarters, Avenue Hermann Debroux, 46 1160 Brussels, Belgium, Tel: (32) 2 663 06 00, Fax: (32) 2 663 06 40
Rockwell Automation Asia Pacific Headquarters, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846
World Wide Web: http://www.ab.com

	6182-UM002B-EN-P, 6182 Industrial Computer Software Development Kit User Manual
	Important User Information
	Table of Contents
	Preface
	Who Should Use This Manual
	Purpose of this Manual
	Contents of this Manual
	Manual Conventions
	Allen-Bradley Support
	Local Product Support
	Technical Product Assistance

	1 - Introduction to the RAC6182
	Hardware Architecture
	CPU
	System Timers

	Memory Devices
	Disk-On-Chip Flash ROM
	Boot ROM
	DRAM
	Retentive Memory (Battery Backed RAM)

	Super I/O
	PS/2 Keyboard and Mouse Ports
	Serial Ports
	Parallel Port
	Real Time Clock
	Watch Dog
	GP I/O Subsystem

	PCI Subsystem
	Display Controller
	USB Ports
	On-board Ethernet
	PCMCIA Slots
	PCI Slot

	Software Architecture
	RAC6182 Windows CE OS
	Boot Sequence
	Hardware Initialization
	Tests for Boot Devices
	Load of Compressed Operating System
	“Cold Boot”
	“Warm Boot”

	The Windows CE Registry
	Policies for When Registry Flushing Occurs

	Local File Systems
	Input Device Handlers
	Touch Screen
	Keyboards

	Bezel ID EEPROM
	Video Data
	Touch screen data
	Keypad data
	Layout of the Bezel EEPROM

	PCI Bus
	PCMCIA
	Application Run Time Environment
	Path
	Launching Applications At Start-Up
	Process Priorities

	System Shutdown

	2 - Developing CE Drivers and Applications for the RAC6182
	General Considerations
	Application Distribution and Installation
	Installing the Application
	Remote Installations
	Application Upgrades

	Persistence Considerations

	Setting Up the Development System
	Setting Up the Host Machine for C/C++ Development
	Setting Up the Host Machine for Basic Development
	Installing the RAC6182 SDK
	Configuration

	C

	3 - RAC6182 CE SDK
	Overview
	Files in the C/C++ Development Kit

	4 - RAC6182-Specific Extensions to the CE API
	Functions for Digital Output Control
	do_ReadPort
	Syntax
	Remarks
	Return Value
	Portability
	Example
	See Also

	do_WritePort
	Syntax
	Remarks
	Return Value
	Portability
	Example
	See Also

	do_SetBits
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	do_ClearBits
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	do_ToggleBits
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	Functions to Read from and Write to the Bezel EEPROM
	be_GetBezelEEPROMParameter
	Syntax
	Remarks
	Return Value
	Portability

	be_SetBezelEEPROMParameter
	Syntax
	Remarks
	Return Value
	Portability

	be_ReadBezelEEPROM
	Syntax
	Remarks
	Return Value
	Portability

	be_WriteBezelEEPROM

	Function for Watchdog Timer Control
	Watchdog_Tag
	Syntax
	Remarks
	Return Value
	Portability

	Functions for Use in Custom Keypad Handlers
	KhInitialize
	KhDeinitialize
	KhGetKeyAttributeTable
	KhGetGlobalKeySettings
	KhSetGlobalKeySettings
	KhTranslateVKey

	Streams Interface for Keypad Driver Control
	Streams Interface for Touchscreen Control
	Functions for LED Control
	NLedGetDeviceInfo
	Syntax
	Remarks
	Return Value
	Portability

	NledSetDevice
	Syntax
	Remarks
	Return Value
	Portability

	Functions for Use in PCI Device Drivers
	HalTranslateBusAddress
	Syntax
	Remarks
	Return Value
	Portability

	HalGetBusDataByOffset
	Syntax
	Remarks
	Return Value
	Portability

	HalSetBusDataByOffset
	Syntax
	Remarks
	Return Value
	Portability

	MmMapIoSpace
	Syntax
	Remarks

	InterruptInitialize
	Syntax
	Remarks
	Portability

	InterruptDisable
	Syntax
	Remarks
	Return Value
	Portability

	InterruptDone
	Syntax
	Remarks
	Return Value
	Portability

	Sample Code for a Simple PCI Slot Device
	Functions for OS Update
	osu_UpdateOSFromFile
	osu_RemoteUpdateOSFromRAM

	Function for Registry Flush
	FlushRegistry
	Syntax
	Remarks
	Return Value
	Portability

	Function to Adjust Allocation of DRAM
	SetSystemMemoryDivision
	Syntax
	Remarks
	Return Value
	Portability

	Functions to Get/Set Misc Parameters
	GetParameter
	Syntax
	Remarks
	Return Value
	Portability

	SetParameter
	Syntax
	Remarks
	Return Value
	Portability

	Functions for Accessing System Timers
	UserTimerGetNumberOfTimers
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	UserTimerClaim
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	UserTimerRequestFrequency
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	UserTimerSet
	Syntax
	Remarks
	Return Value
	Portability

	UserTimerStop
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	UserTimerGetValue
	Syntax
	Remarks
	Return Value
	Portability

	UserTimerGetWaitEvent
	Syntax
	Remarks
	Return Value
	Portability

	Functions for Accessing the Hardware Monitor
	hm_GetMonitorLevel
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	hm_GetMonitorWarningLevels
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	hm_SetMonitorWarningLevels
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	hm_RegisterMonitorWarningEvent
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	hm_UnregisterMonitorWarningEvent
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	hm_GetMonitorWarnings
	Syntax
	Remarks
	Return Value
	Portability

	hm_RebootBoard
	Syntax
	Remarks
	Return Value
	Portability

	hm_GetBootReason
	Syntax
	Remarks
	Return Value
	Portability

	Functions for Accessing Retentive Memory
	RetMemLock
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	RetMemUnlock
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	RetMemWrite
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	RetMemRead
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	RetMemVerifyMemory
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	RetMemCalculateChecksum
	Syntax
	Remarks
	Return Value
	Portability
	See Also

	Streams Interface for Serial Ports
	DeviceIoControl
	Syntax
	Remarks
	Portability

	Application Interface to Output Debug Messages
	NKDbgPrintfW
	Syntax
	Remarks
	Return Value
	Portability

	Appendix A
	Operating System Files
	Memory Usage
	Connecting an External Debug Monitor

	Index
	Back Cover

