# THE RESULT MUST AGREE GAM CONTROLS MADE BY DEUTSCHMANN! 

## ELECTRONIC CAM CONTROLS

Fast switching - even in case of dynamic speeds


Deutschmann Automation

HMI Parts Center


## Contents

Conventional cam controls up to 16 outputs
LOCON 16, 17
LOCON 200
LOCON 100
LOCON 90
Multifunctional devices $\mathbf{2 4 - 6 4}$ outputs
LOCON 24 / LOCON 48 / LOCON 64
Expandable devices for DIN-rail mounting
16 up to 144 outputs
LOCON $200+108$
LOCON $100+$ A32

High-speed devices
LOCON 200
The ROTARNOCK-family
cam control integrated in the encoder's housing ROTARNOCK 80 / ROTARNOCK 100

Cam controls with Fieldbus- and Profibus-interface
LOCON 200-PB
LOCON 100-PB
ROTARNOCK 80-PB / ROTARNOCK 100-PB
ROTARNOCK 100-FB (with integrated Fieldbus-interface)
Operating and display terminals
TERM 6 / TERM 24
Comfortable PC-programming
WINLOC $32 ®$ PC-software
DB-Generator
Absolute rotary encoders
absolute parallel
absolute SSI
Pre-assembled cables
Dynamic switching accelerators
Accessories
Glossary / Fieldbus connection

Pages 4-6, 10-12
Pages 4-6
Page 10
Page 11
Page 12

Pages 7-9

Pages 10-11
Page 10
Page 11

Pages 4, 10
Page 10

Pages 15-17

Pages 10-11, 13-17
Pages 10, 13-14
Pages 11, 13-14
Pages 15-17
Pages 15-17

Pages 18-19

Pages 20-21
Page 20
Page 21

Pages 22-29
Pages 26-29
Pages 23-25

Pages 30-31

Pages 32-34

Page 35

Pages 36-37

- Development and production of electronic cam controls since 1982.
- Since 1990 the brand names LOCON and ROTARNOCK stand for reliable and fast electronic cam controls.
- LOCON - The classical concept of separate control and separate actual value acquisition.
- ROTARNOCK - The intelligent solution: cam control and actual value acquisition combined in one housing
- There is no standing still and we are continuously working on the further development of our products and the expansion of our product range. Thus the LOCON and ROTARNOCK series were adapted to the current market needs with new models.
We were inspired especially through the implementation of the Fieldbus connection assocoiated with modern control and configuration concepts.



## LOCON 16, 17

## Multifunctional and compact

The compact solution in DIN-format $72 \mathrm{~mm} \times 96 \mathrm{~mm}$ (width $\times$ depth) at an overall depth of 70 mm only. With its integrated operating keyboard the unit is installed into the front plate; the version without keyboard is mounted on a DIN-rail. The „4-key user interface" has proven its worth many thousand times and it can be operated easily after a short training period. The basic version features 16 outputs, 16 programs, blockwise idle time compensation.


LOCON 16PM, LOCON 17PM for the DIN-rail

LOCON 16, 17 with front plate

Structure of the order code


## Basic device

| Option | Meaning | Excludes <br> or only possible with the option | $\mathbf{L 1 6}$ | $\mathbf{L 1 7}$ |
| :--- | :--- | :--- | :---: | :---: |
| $\mathbf{0 3 6 0}$ | Version for absolute encoder parallel 360 inf./rev. | All other resolutions | $\bullet$ | $\bullet$ |
| $\mathbf{0 1 0 0 0}$ | Version for absolute encoder parallel 1000 inf./rev. | All other resolutions | $\bullet$ | $\bullet$ |
| $\mathbf{0 4 0 9 6}$ | Version for absolute encoder parallel 4096 inf./rev. | All other resolutions | $\bullet$ | - |
| On | Version for absolute encoder parallel (n=encoder's resolution) | All other resolutions | $\bullet$ |  |
| S1024 | Version for SSI-absolute encoder 1024 inf./rev. | All other resolutions | - | $\bullet$ |
| S4096 | Version for SSI-absolute encoder 4096 inf./rev. | All other resolutions | $\bullet$ | $\bullet$ |
| MT | Version for SSI-absolute encoder 24 bit | All other resolutions | - | $\bullet$ |
| Zn | Version for incremental encoder (n=indicate encoder's resolution at speed indica- <br> tion): counting range in increments | All other resolutions | - | - |
| PM | Version available without integrated control panel |  | $\mathbf{1 0 2 4}$ | $\mathbf{4 0 9 6}$ |

## Hard- and software-options

| Code | Meaning | Excludes or only possible with the option | L16 | 117 |
| :---: | :---: | :---: | :---: | :---: |
| Cn | Automatic clear position ( $\mathrm{n}=$ enter the required value) | Only for devices with Z | $\square$ | - |
| D | Position / speed indication <br> Switchover takes place depending on the speed indication |  | $\square$ | $\bullet$ |
| H | Faster processor for lower cycle times |  | - | $\square$ |
| I | Bitwise idle time compensation | Not with L, LT | - | $\bullet$ |
| L | Blockwise idle time compensation | Not with I, LT | $\bullet$ | x |
| LT | Blockwise idle time compensation with separate furn on/turn-off time | Not with I, L | - | - |
| P | Screw-/plug-connector for an encoder connection instead of a connection via a 25 -pole D-SUB |  | $\square$ | ■ |
| P108 | Switching capacity 1A on 8 outputs |  | - | ■ |
| P116 | Switching capacity 1A on 16 outputs |  | $\square$ | $\square$ |
| R | Run control function on output 16 |  | $\square$ | $\square$ |
| T | Timer/program switch |  | x | x |
| U | Direction cams depending on the sense of rotation |  | - | $\square$ |
| V0 | Rotation speed/position change-over definable by the customer | Not with Vn, requires D | $\square$ | ■ |
| Vn | Locked outputs (outputs can only be changed by entering a password); $\mathrm{n}=$ number of locked outputs; max. 15 possible | Requires option A; not with option VO | $\square$ | ■ |
| $Y$ | Partial idle time compensation | Available with I or L | - | x |
| 232 | Interface RS232 | Not with option 485 | © | - |
| 485 | Interface RS485-DICNET ${ }^{\circledR}$ (network of up to 16 DA cam controls) | Not with option 232 | 0 | - |
| X004 | Four output-enable inputs | Not with P | - | - |
| X011 | Speed indication scaled to customer's value | Requires option, D, 0, S | $\square$ | $\square$ |
| X016 | Brake cam with quadratic idle time compensation |  | - | $\square$ |
| X? | Customized version | On request | $\square$ | $\square$ |
| Z | Encoder type incremental 24V signal voltage |  | x | x |

- Standard
- Optionally for an additional charge
x Optionally at no additional charge
(1) RS232/485 switchable on board
(2) The unit is alternatively available with or without integrated control panel


## Technical data

|  | Characteristics | LOCON 16 | LOCON 16PM | LOCON 17 | LOCON 17PM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Available versions | with integrated keypad - without integrated keypad | $\stackrel{\rightharpoonup}{\bullet}$ | $\bar{\bullet}$ | - | - |
| Installation | - front panel installation - DIN-rail | - | - | - | - |
| Outputs |  | 16 | 16 | 16 | 16 |
| Storable outputs |  | 16 | 16 | 16 | 16 |
| Data records (incl. output names) (number of swith-on/swith-off points) |  | 1936 | 1936 | 1936 | 1936 |
| Actual value acquisition | incremental encoder - counting range incremental -absolute encoder parallel Gray excess - absolute encoder parallel Gray code to bit-number - absolute encoder SSI Gray code - counting/direction inputs for incremental encoder - timer function (value is generated internally) | $\begin{gathered} 1024 \\ 360,1000 \\ - \\ 360,1024 \\ \square \\ 1-65535 \end{gathered}$ | $\begin{gathered} 1024 \\ 360,1000 \\ - \\ 360,1024 \\ \square \\ 1-65535 \end{gathered}$ | 4096 $360,720,1000,3600$ $9 . .12$ $360,1024,4096$ 1.65535 | 4096 $360,720,1000,3600$ $9 \ldots 12$ $360,1024,4096$ $1-65535$ |
| Idle time compensation (dynamic cam) | - blockwise <br> - bitwise <br> - separate I/O <br> - entering the idle time in steps - partial idle time compensation | $\begin{gathered} \bullet \\ - \\ - \\ \substack{\text { 1ms - } 999 \mathrm{~ms} \\ -\\ \hline} \end{gathered}$ |  |  |  |
| Cycle time <br> in some configurations the idle time might be higher, in case of using the high-speed-version it might also be lower! | - without idle time compensation (ITC) <br> - with blockwise ITC <br> - with bitwise ITC <br> - with blockwise I/O ITC <br> - high-speed-version for a lower cycle time | $500 \mu \mathrm{~s}$ $500 \mu \mathrm{~s}$ -- | $500 \mu \mathrm{~s}$ $500 \mu \mathrm{~s}$ -- | $150 \mu \mathrm{~s}$ $200 \mu \mathrm{~s}$ $550 \mu \mathrm{~s}$ $550 \mu \mathrm{~s}$ $\square 60 \mu_{\mathrm{s}}$ and more | $\begin{aligned} & 150 \mu \mathrm{~s} \\ & 200 \mu \mathrm{~s} \\ & 550 \mu \mathrm{~s} \\ & 550 \mu \mathrm{~s} \\ & \mathbf{a b} 60 \mu \mathrm{~s} \end{aligned}$ |
| Software characteristics: <br> zero point offset cams are interchangeable linewise angle/time cams direction cams lockable outputs | - within the complete range | $\begin{aligned} & \bullet \\ & \stackrel{-}{\bullet} \end{aligned}$ | $\stackrel{-}{-}$ | $\stackrel{-}{\bullet}$ |  |
| Run-control-function |  | - ${ }^{\text {a }}$ | (1) | - ${ }^{\text {2 }}$ | (1) |
| Speed indicator |  | (1) | (1) | -1) | -1) |
| Inputs | for encoder signal - for program selection -for program change - for program release | $\begin{gathered} 10 \\ 4 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 10 \\ 4 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 12 \\ 4 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 12 \\ 4 \\ 1 \\ 1 \end{gathered}$ |
| Logic functions | - logic inputs - extensive logic functions - shift register | $\begin{aligned} & - \\ & \text { - } \end{aligned}$ | - | enable function (X04) | enable function (X04) |
| Programming | - teach-in programming <br> - via integrated keypad <br> - via Deutschmann terminal <br> - via PC (WINLOC $32^{\text {® }}$-software) <br> - via cam control profile |  |  |  |  |
| Data backup | EEPROM (min. 100 years) - via transfer program on PC |  | $\bullet$ |  | $\bullet$ |
| Display seven-segment indication | - for position <br> - for speed | 6 digits | - | 6 digits $\bullet$ $\bullet$ | - |
| Status display for | - outputs - programming status - external program selection - SSI-control - error-display - run-control -R23 |  | $\stackrel{-}{\bullet}$ |  |  |
| Interface | $\begin{aligned} & \hline \text {-RS232 } \\ & \text { - RS485-DICNET } \end{aligned}$ | - switchable <br> - switchable | switchable <br> switchable | switchable swithable | - switchable - switchable |
| Voltage supply 24VDC +/-20\% |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Max. power consumption (without load) |  | 200 mA | 200 mA | 200 mA | 200 mA |
| Output driver max. load | - 300 mA each output, max. IA for 8 outputs at a time at $25^{\circ} \mathrm{C}$ ambient temperature <br> - 700 mA each output, temporarily also 1 A each ouput - outputs positive switched, short-circuit-proof |  |  |  |  |
| Analog outputs | - current output <br> - voltage output | - | - | - | - |
| Dimensions basic device in mm | $\begin{aligned} & \text { - width } \\ & \text { - height } \\ & \text { - depth } \end{aligned}$ | $\begin{aligned} & 72 \\ & 96 \\ & 70 \end{aligned}$ | $\begin{gathered} 65,5 \\ 89,5 \\ 74 \end{gathered}$ | $\begin{aligned} & 72 \\ & 96 \\ & 70 \end{aligned}$ | $\begin{gathered} 65,5 \\ 89,5 \\ 74 \end{gathered}$ |
| Front panel cutout |  | $90 \times 66$ | - | $90 \times 66$ | - |
| Protection class |  | IP54 | IP20 | IP54 | IP20 |
| Weight in grams |  | 580 | 580 | 580 | 580 |

- Standard
- Optionally for an additional charge

X Optionally at no additional charge

## LOCON 24, 48, 64

## The multifunctionals

Compact series with DIN size of $144 \times 144 \mathrm{~mm}$. With an overall depth of 44 mm only, these models feature $24,32,48$ or 64 outputs. 64 programs that can be selected either via the integrated control panel or that can be selected externally, a memory of
 1000 data records as well as an extensive range of functions round off the features. The version with integrated control panel for front panel installation (either IP54 or IP65) offers the operating convenience you are looking for: Seven-segment display for position and speed, 2 -line LCD with a multi-lingual, user-configurable menu, and both, a decimal keypad and a function keypad. Optionally LOCON 24 and LOCON 64 are available with 16 inputs for logic connections. This allows simple tasks to be relocated from the PLC to the cam control, thus performing these tasks much faster or enable-functions can be realized easily at a lower cost.


LOCON 24, 48, 64 with front panel IP65


LOCON 24, 48, 64 with front panel IP54

## Basic device

| Option | Meaning | Excludes or only possible with the option | L24 | L48 | 164 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PM | Version for mounting plate without keypad |  | (2) | (2) | (2) |
| 0360 | Version for absolute encoder parallel 360 inf ./rev. | All other resolutions | $\bullet$ | $\bullet$ | $\bullet$ |
| 01000 | Version for absolute encoder parallel 1000 inf ./rev. | All other resolutions | $\bullet$ | $\bullet$ | $\bullet$ |
| On | Version for absolute encoder parallel ( $\mathrm{n}=$ encoder's resolution) | All other resolutions | $\bullet$ | $\bullet$ | $\bullet$ |
| S4096 | Version for SSI-absolute encoder 4096 inf./rev. | All other resolutions | $\bullet$ | $\bullet$ | $\bullet$ |
| S8192 | Version for SSI-absolute encoder 8192 inf ./rev. | All other resolutions | $\bullet$ | $\bullet$ | $\bullet$ |
| MT | Version for SSI-absolute encoder 24 bit (16 mio.) | All other resolutions | $\bullet$ | $\bullet$ | $\bullet$ |
| Zn | Version for incremental encoder ( $\mathrm{n}=$ =indicate encoder's resolution at speed indication): counting range in increments |  | 16384 | 8192 | 8192 |

## Hard- and software-options

| Code | Meaning | Excludes or only possible with the option | L24 | 148 | L64 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A32 | Extension to 32 outputs | Not with A2 | $\square$ | - | - |
| A2 | 2 analog outputs (restriction: encoder's resolution max. 13 bit) | Not with A32 | $\square$ | $\square$ | - |
| D | Binary coded speed indication on the 8 upper outputs |  | $\square$ | $\square$ | $\square$ |
| E16 | 16 inputs with logic function and shift register |  | $\square$ | $\square$ | - |
| G | Encoder monitoring (for postively counting adjusted devices only) |  | $\square$ | $\square$ | $\square$ |
| H08 | Highly dynamic idle time compensation on the first 8 outputs, all other outputs can be compensated bit by bit | Not with L, LT | $\square$ | $\square$ | $\square$ |
| I | Bitwise idle time compensation | Not with L, LT | $\bullet$ | $\bullet$ | $\bullet$ |
| IP65 | Front plate; version IP65 |  | $\square$ | $\square$ | $\square$ |
| L | Blockwise idle time compensation | Not with I, LT | X | X | X |
| LT | Blockwise idle time compensation with separate furn on and turn off time | Not with I, L | $\square$ | $\square$ | $\square$ |
| N | Extension to 1500 data records |  | $\square$ | $\square$ | $\square$ |
| P108 | Switching capacity IA on 8 outputs |  | $\square$ | $\square$ | $\square$ |
| P116 | Switching capacity 1A on 16 outputs |  | $\square$ | $\square$ | $\square$ |
| U | Direction cams |  | $\square$ | $\square$ | $\square$ |
| T | Timer/programmable switch |  | X | X | X |
| Vn | Locked outputs |  | $\square$ | $\square$ | $\square$ |
| W16/W32 | Angle/time cams on the first 16/32 outputs possible (restriction: encoder resolution max. 13 Bit) |  | $\square$ | $\square$ | $\square$ |
| X? | Customized version | On request | $\square$ | $\square$ | $\square$ |

- Standard
- Optionally for an additional charge

X Optionally at no additional charge
(1) RS232/485 switchable on board
(2) The unit is alternatively available with or without integrated control panel
(3) The unit is only available for DIN-rail mounting

## Technical data

|  | Characteristics | LOCON 24 | LOCON 24PM | LOCON 48 | LOCON 48PM | LOCON 64 | LOCON 64PM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Available versions | - with integrated keypad - without integrated keypad | $\stackrel{\bullet}{\bullet}$ | $\bar{\bullet}$ | $\stackrel{\rightharpoonup}{\bullet}$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Installation | - front panel installation <br> - mounting plate <br> - DIN-rail | without front | without front | - without front | without front | - without front | - without front |
| Outputs |  | $24$ $\text { ■ } \quad 32$ | $\begin{gathered} \hline 24 \\ ■ 32 \end{gathered}$ | $48$ | 48 | 64 <br> - | 64 <br> - |
| Storable programs |  | 64 | 64 | 64 | 64 | 64 | 64 |
| Data records (incl. output names) (number of switch-on/switch-off points) |  | $\begin{aligned} & 1000 \\ & \text { ■ } 1500 \end{aligned}$ | $\begin{gathered} 1000 \\ \text { ■ } 1500 \end{gathered}$ | $\begin{gathered} 1000 \\ \text { ■ } 1500 \end{gathered}$ | $\begin{gathered} 1000 \\ \text { ■ } 1500 \end{gathered}$ | $\begin{gathered} 1000 \\ ■_{1500} \end{gathered}$ | $\begin{gathered} 1000 \\ ■ 1500 \end{gathered}$ |
| Actual value acquisition | - incremental encoder - counting range incremental absolute encoder Gray excess <br> -absolute encoder parallel Gray code to bit number - absolute encoder SSI Gray code (at option MT) - count/direction inputs for incremental encoders - timer function (value is generated internally) | 16384 $360,720,1000,3600$, 7200 $2 \ldots 13$ $2 . .13,(24)$ $\Phi$ 1.65535 | 16384 $360,720,1000,3600$, 7200 $2 \ldots 13$ $2 \ldots 113,(24)$ $\square$ 1.65535 | 15192 $360,720,1000,3600$, 7200 $2 \ldots .13$ $2 . .13,(24)$ $X$ 1.65535 | 8192 $360,720,1000,3600$, 7200 $2 \ldots 13$ $2 . .13,(24)$ $\boxed{X}$ 1.65535 | 8192 $360,720,1000,3600$, 7200 $2 \ldots 13$ $2 . .13,(24)$ $\boxed{X}$ 1.65535 | 15192 $360,720,1000,3600$, 7200 $2 \ldots .13$ $2 . .13,(24)$ $\mathbb{X}$ 1.65535 |
| Idle time compensation (dynamic cam) | - blockwise <br> - bitwise <br> - separate I/0 <br> - entering the idle time in steps - partial idle time compensation <br> - highly dynamic ITC for number of outputs | $\begin{gathered} \text { X } \\ \bullet \\ \text { 1ms-999ms } \\ -\quad \\ \mathbf{B}_{8} \end{gathered}$ |  |  | $\begin{gathered} \mathrm{X} \\ \bullet \\ \mathbf{1 m s}-999 \mathrm{~ms} \\ -\quad \\ \mathbf{-} \\ \hline 8 \end{gathered}$ | $\begin{gathered} \text { X } \\ \bullet \\ \text { 1ms-999ms } \\ -\quad \\ \mathbf{m}_{8} \end{gathered}$ |  |
| Cycle time <br> In some configurations the cycle time may be higher, in case of using the high-speed-version it may also be lower! | - without idle time compensation (ITC) <br> - with blockwise ITC <br> - with bitwise ITC <br> - with blockwise I/O ITC | $\begin{aligned} & 75 \mu \mathrm{~s} \\ & 150 \mu \mathrm{~s} \\ & 300 \mu \mathrm{~s} \\ & 250 \mu \mathrm{~s} \end{aligned}$ | $\begin{aligned} & 75 \mu \mathrm{~s} \\ & 150 \mu \mathrm{~s} \\ & 300 \mu \mathrm{~s} \\ & 250 \mu \mathrm{~s} \end{aligned}$ | $100 \mu \mathrm{~s}$ <br> $200 \mu \mathrm{~s}$ <br> $500 \mu \mathrm{~s}$ <br> $400 \mu \mathrm{~s}$ | $100 \mu \mathrm{~s}$ <br> $200 \mu \mathrm{~s}$ <br> $500 \mu \mathrm{~s}$ <br> $400 \mu \mathrm{~s}$ | $150 \mu \mathrm{~s}$ <br> $250 \mu \mathrm{~s}$ <br> $600 \mu \mathrm{~s}$ <br> $500 \mu \mathrm{~s}$ | $150 \mu \mathrm{~s}$ <br> $250 \mu \mathrm{~s}$ <br> $600 \mu \mathrm{~s}$ <br> $500 \mu \mathrm{~s}$ |
| Software characteristics: zero point offset cams are interchangeable linewise angle/time cams direction cams lockable outputs scalable encoder value | - within the complete range |  |  |  |  |  |  |
| Run-control-function |  | - (relay) |
| Speed indicator |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | - |
| Inputs | - for encoder signal <br> - for program selection <br> - for program change <br> - for program release | $\begin{gathered} 13 \\ 6 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 13 \\ 6 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 13 \\ 6 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 13 \\ 6 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 13 \\ 6 \\ 1 \\ 1 \end{gathered}$ | $\begin{gathered} 13 \\ 6 \end{gathered}$ |
| Logic functions | - logic inputs extensive logic functions - shift register | $\stackrel{1}{16}$ | $\stackrel{\bullet}{16}$ | $\stackrel{\square}{16}$ | $\stackrel{\bullet}{16}$ | - | - |
| Programming | - teach-in programming <br> - via integrated keypad <br> - via Deutschmann terminal <br> - via PC (WINLOC $32^{\text {® }}$-software) <br> - via cam control profile | $\stackrel{\bullet}{\bullet}$ | $\stackrel{-}{\bullet}$ | $\stackrel{\bullet}{\bullet}$ | $\stackrel{-}{\bullet}$ | $\stackrel{\bullet}{\bullet}$ |  |
| Data backup | EEPROM (min. 100 years) - via transfer program on PC |  |  |  |  |  |  |
| Display seven-segment indication | - for position <br> - for speeed |  | - |  | - |  | - |
| Status display for | - outputs <br> programming status <br> -external program selection <br> - SSI-control <br> error-display <br> - run-control |  |  |  |  |  |  |
| Interface | $\begin{aligned} & \text { - RS232 } \\ & \text { - RS485-DICNET® } \end{aligned}$ | - swithable - switchable | - switchable <br> - swithable | - switchable <br> - switchable | - switchable - switchable | - switchable - switchable | - swithable <br> - swithable |
| Voltage supply 24VDC + /-20\% |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Max. power consumption (without load) |  | 200 mA |
| Output driver max. load | - 300 mA per output, max. IA for 8 outputs at a time at $25^{\circ} \mathrm{C}$ ambient temperature <br> - 700 mA per output, temporarily also 1 IA per output - outputs positive switching, short-circuit-proof |  |  |  |  |  |  |
| Analog outputs | - current output <br> - voltage output | $\begin{gathered} \mathbf{\square} 2 \text { or } \\ ■ 2 \end{gathered}$ | $\begin{gathered} \text { ■ or } \\ ■ 2 \end{gathered}$ | $\begin{gathered} \text { ■ or } \\ \text { ■ } \end{gathered}$ | $\begin{gathered} \text { ■ or } \\ ■ 2 \end{gathered}$ | - | - |
| Dimensions basic device in mm | - width <br> - height <br> - depth | $\begin{aligned} & 144 \\ & 144 \\ & 44 \end{aligned}$ | $\begin{gathered} 144 \\ 144 \\ 44 \end{gathered}$ | $\begin{gathered} 144 \\ 144 \\ 44 \end{gathered}$ | $\begin{aligned} & 144 \\ & 144 \\ & 44 \end{aligned}$ | $\begin{gathered} 144 \\ 144 \\ 44 \end{gathered}$ | $\begin{gathered} 144 \\ 144 \\ 44 \end{gathered}$ |
| Front panel cutout |  | $138 \times 138$ | - | $138 \times 138$ | - | $138 \times 138$ | - |
| Protection class |  |  | $\begin{gathered} \text { \|P20 }{ }^{11} \\ - \\ - \end{gathered}$ |  | $\begin{gathered} \text { PP20 }{ }^{11} \\ - \\ - \end{gathered}$ | $\begin{aligned} & \text { IP20 11 } \\ & \text { IP54 } \\ & \text { \|l\| } \\ & \text { \|P65 } \end{aligned}$ | $\begin{gathered} \text { IP20 }{ }^{11} \\ - \\ - \end{gathered}$ |
| Weight in grams |  | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |

- Standard
- Optionally for an additional charge

X Optionally at no additional charge
区 Freely configurable

## Without housing

${ }^{\text {2) }}$ Standard version for front panel installation
${ }^{3)}$ Version for front panel installation IP65

## LOCON 200

## Fast and modular

LOCON 200 consists of a basic unit with the tasks of the central actual-value acquisition, communication with the periphery, voltage supply and some further administration topics.
The complete performance capacity is achieved by using the expansion module with $8 \mathrm{I} / \mathrm{O}$ s each.
Through the consistent arrangement as $\mathrm{I} / \mathrm{O}$ s the basic module as well as the expansion unit achieve highest possible flexibility and best possible utilization of the hardware.
If, for instance only 8 externally selectable programs are required, the otherwise usually reserved pins are not useless but they can be used elsewhere.

The system is limited to one basic unit and max. $161 / 0$-modules. Through the use of a separate processor for each module the cycle time in the overall system remains constant and depends upon con-
 figuration, encoder type, resolution as well as used software-performance characteristics. All modern actual value acquisition systems from incremental to multiturn encoder are supported. Alternatively the device can also be operated as program control unit (timer function). The time basis is generated internally and can be adjusted in the range from 1 to 65535 ms .
The connection to Fieldbus systems is a matter of course just like the configuration via a PC-program that is to be operated intuitively. The alternative operation through an external terminal or the complete integration in the Fieldbuses come naturally with us. A version with integrated ProfibusDP is optionally available.


## Expansion module I/08

With this module LOCON 200 is expanded by $8 \mathrm{I} / \mathrm{Os}$ up to the maximum configuration level of $144 \mathrm{I} / 0$ s step by step.
The expansion module contains its own processor. Therefore, the switching accuracy (cycle time) is independent of the LOCON 200(-PB) basic module or in other words: the configuration-dependent cycle time remains the same independent of the configuration level. In the $\mathrm{I} / 08$, the idle time can be configured in a module-related way. Besides, the device supports logic functions. That way logic connections can be realized in a module-related manner.


LOCON 200-I08 Expansion module
Overall width: 12.2 mm

## LOCON 100

## Powerful and expandable

LOCON 100 consists of a basic unit with a total of $161 / 0$ s. They can be configured depending on the respective application. If, for instance, only a 9 -bit encoder is required, then the other encoder connections must not remain useless but can be put to practical use for other applications.

The system can be expanded by one module to a total of $48 \mathrm{I} / 0 \mathrm{~s}$ which are configured in the same way. So you can assemble your cam control individually and you are totally free regarding outputs, inputs, logic connection and utilization of functions such as external program selection, encoder type and resolution etc.

LOCON 100 as well features connection facilities for all modern actual-value acquisition systems. Alternatively the device can also be operated as program control unit
 (timer function). The time basis is generated internally and can be adjusted in the range from 1 to 65535 ms . The software gives you the freedom to choose from various types of idle time compensation (dynamic cam). No matter whether angle-/angle-cams or angle-/time-cams are used - everything can be configured and combined.

The modern control-concept is convincing and offers something for all tastes: Modern PC GUI, that can be connected to any Fieldbus or the easy-tohandle terminal GUI. The device with integrated ProfibusDP is optionally available.


LOCON 100
Overall width: 48.8 mm

## Expansion module A32

With this module the basic device LOCON $100(-\mathrm{PB})$ is expanded by 32 to a total of $48 \mathrm{I} / \mathrm{Os}$.
The expansion module does not contain an own processor. Therefore, the switching accuracy (cycle time) depends on the LOCON $100(-\mathrm{PB})$, its configuration and programmed data records.


LOCON 100-A32 Expansion module Overall width: 48.8 mm

## LOCON 90

## Powerful and reasonably priced

LOCON 90 is a less expensive version of the bigger brothers LOCON 200 and LOCON 100. Equipped with $16 \mathrm{I} / \mathrm{Os}$ - of which a maximum of 8 can be configured as outputs - this unit is predestined for simple applications. Absolute encoders can be connected via SSI up to a resolution of 13 bit. In case some of the $\mathrm{I} / 0 \mathrm{~s}$ are configured as inputs, then a logic connection can be made through it or they are used as external program selection.

LOCON 90 as well features connection facilities for all modern actual-value acquisition systems. Alternatively the device can also be operated as program control unit (timer function). The time basis is generated internally and can be adjusted in the range from 1 to 65535 ms . The software gives you the freedom to choose from various types of idle time compensation (dynamic cam). No matter whether angle-/angle-cams or angle-/timecams are used - everything can be configured and combined.


LOCON 90 is operated via the PC-software WINLOC $32{ }^{\circledR}$.


| Description | Explanation | Order number |
| :--- | :--- | :---: |
| LOCON 90 |  | V3542 |
| LOCON 100 | Basic module | V3374 |
| LOCON 100-MB | Basic module with Modbus RTU-interface | V3589 |
| LOCON 100-PB | Basic module with Profibus-interface | V3397 |
| LOCON 100-A32 | Expansion module with 32 I/Os for LOCON 100/100-PB | V3425 |
| LOCON 200 | Basic module | V3485 |
| LOCON 200-PB | Basic module with Profibus-interface | V3487 |
| LOCON 200-Out I/08 | Expansion module with 8 I/Os for LOCON 200/200-PB | V3486 |
| Logic | Logic function for LOCON 90 / LOCON 100 / LOCON 200 | V3426 |


| Description | Explanation | Order number |
| :--- | :--- | :---: |
|  | Assembled configuration and programming cable-232 <br> Length: 2.0m, Side A: 9pin. D-SUB socket with metali- |  |
| Programming cable |  |  |
| for LOCON 90/100/200 | zed hood, side B: 8 pin. Terminal strip with universal <br> power supply 12W, 24V, 0.5 A <br> Note: The USB-RS232 converter, 20 cm, Article-No.: <br> V3656) must be ordered seperately if required. | V3964 |

## Technical data

|  | Characteristics | LOCON 90 | LOCON 100 | LOCON 100－MB | LOCON 100－PB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Available versions | without integrated keypad | $\bullet$ | $\bullet$ | $\bullet$ | － |
| Installation | Din－rail mounting | $\bullet$ | $\bullet$ | $\bullet$ | － |
| Outputs |  | 8 | $\begin{gathered} 16 \mathrm{I} / \mathrm{Os} \\ 48 \text { (with LOCON 100-A32) } \end{gathered}$ | 16 I／Os（32 SW outputs） 48 （mit LOCON 100－A32） | 16 I／Os（32 SW outputs） 48 mit Ll00－A32 |
| Storable programs |  | 64 | 64 | 64 | 64 |
| Data records（incl．ouput names） （number of switch－on／switch－off points） |  | 1000 | 1000 | 1000 | 1000 |
| Actual value acquisition | －incremental encoder－counting range incremental －absolute encoder Gray excess －absolute encoder parallel Gray code to bit number －absolute encoder SSI Gray code －count／direction inputs for incremental encoders －timer function（value is generated internally） | $\begin{gathered} 8192 \text { / } 16 \text { million } \\ - \\ - \\ 2 \ldots . .13,24 \text { (MT) } \\ \times \\ 1-65535 \end{gathered}$ | 8192 ／ 16 million $360,720,1000,3600,7200$ $2 \ldots .13$ $2 \ldots . .13,24,25$ $区$ $1-65535$ | 8192 ／ 16 million $360,720,1000,3600,7200$ $2 \ldots .13$ $2 \ldots . .13,24,25$ $\times$ $1-65535$ | $8192 / 16$ million $360,720,1000,3600,7200$ $2 \ldots .13$ $2 \ldots . .13,24,25$ $\boxed{1}$ $1-65535$ |
| Idle time compensation （dynamic cam） | －blockwise <br> －bitwise <br> －separate I／0 <br> －entering the idle time in steps |  |  |  | 区 <br> 区 <br> 区．2ms－ 999 ms |
| Cycle time <br> In some configurations the cycle time might be higher，in case of using the high－speed version it might also be lower！ | －without idle time compensation（ITC） <br> －with blockwise ITC <br> －with bitwise ITC <br> －with I／O ITC <br> －high speed version for lower cycle time | dynamic from $100 \mu$ s on dynamic from $130 \mu$ s on dynamic from $165 \mu$ s on dynamic from 190 s on | dynamic from $100 \mu$ s on dynamic from $130 \mu$ s on dynamic from $165 \mu$ s on dynamic from $190 \mu \mathrm{~s}$ on | dynamic from $140 \mu$ s on dynamic from $170 \mu$ s on dynamic from $205 \mu$ s on dynamic from $230 \mu$ s on | dynamic from $250 \mu \mathrm{~s}$ dynamic from $280 \mu \mathrm{~s}$ dynamic from $315 \mu \mathrm{~s}$ dynamic from $340 \mu \mathrm{~s}$ |
| Software characteristics： <br> zero point offset <br> cams ar interchangeable linewise <br> angle／time cams <br> direction cams <br> scalable encoder value | －within the complete range | 区 <br> 区 <br> 区 |
| Run－control－function |  | 区 | 区 | 区 | 区 |
| Speed indicator |  | － | － | － | $\bullet$ |
| Inputs | －for encoder signal <br> －for program selection <br> －for program change <br> －for program release | 区 $1 . .6$ <br> 区 1 <br> 区 1 | 区 $2 . . .13$ <br> 区 $1 . . .6$ <br> 区 1 <br> 区 | 区 $2 . . .13$ <br> 毛 $1 . . .6$ <br> 区 1 <br> 区 1 | 区 2．．．13 <br> 区 $1 . .6$ <br> 区 1 <br> 区 1 |
| Logic functions | －logic inputs <br> －extensive logic functions <br> －shift register | $\begin{gathered} \square \\ \bullet \\ \bullet \end{gathered}$ | －16 | $\stackrel{\text { ■ }}{\bullet}$ | －16 |
| Programming | －teach－in－programming <br> －via Deutschmann terminal <br> －via PC（WINLOC $32^{\text {® }}$－software） <br> －via cam control profile <br> －others |  |  |  | PLC at connection |
| Data backup | －EEPROM（min． 100 years） <br> －via transfer program on PC |  |  |  | $\bullet$ |
| Status display for | －outputs <br> －programming status <br> －external program selection <br> －SSI－control <br> －error－display <br> －run－control（if configured） <br> －Fieldbus status |  |  |  |  |
| Interface | －RS232 <br> －RS485－DICNET ${ }^{\text {® }}$ <br> －integrated Profibus－interface <br> －integrated CANopen－interface <br> －integrated NTERBUS－interface |  | －switchable <br> －switchable <br> via Gateway <br> via Gateway <br> via Gateway | （RS232／Modbus） <br> （RS232／Modbus） <br> － <br> － |  |
| Voltage supply 24VDC $+/-20 \%$ |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Max．power consumption（without load） |  | 200 mA | 200 mA | 200 mA | 200 mA |
| Output driver max．load | 300 mA each output，max． 1 A for 8 outputs each － 700 mA each output，temporarily also IA each output －plus switching outputs，short circuit－proof | $\stackrel{-}{-}$ | $\stackrel{-}{-}$ | $\bigcirc$ | $\bigcirc$ |
| Analog outputs | －current output <br> －voltage output | $\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$ | - | - | - |
| Dimensions basic device in mm | －width <br> －height <br> －depth | $\begin{aligned} & 48.8 \\ & 71.5 \\ & 120 \end{aligned}$ | $\begin{aligned} & 48.8 \\ & 71.5 \\ & 120 \end{aligned}$ | $\begin{aligned} & 48.8 \\ & 71.5 \\ & 120 \end{aligned}$ | $\begin{aligned} & 48.8 \\ & 71.5 \\ & 120 \end{aligned}$ |
| Protection class |  | IP20 | IP20 | IP20 | IP20 |
| Weight in grams |  | 220 | 220 | 220 | 230 |

－Standard
－Optionally for an additional charge
X Optionally at no additional charge
区 Freely configurable

## Technical data

|  | Characteristics | LOCON 200 | LOCON 200－PB | LOCON 100－A32 | LOCON 200－1／08 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Available versions | without integrated keypad | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Installation | Din－rail mounting | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Outputs |  | $\begin{gathered} 16 \mathrm{I} / 0 \mathrm{~s} \\ 144(+16 \times 1 / 08) \end{gathered}$ | $\begin{gathered} 16 \mathrm{I} / 0 \mathrm{os} \\ 80(+8 \times 1 / 08) \end{gathered}$ | $32$ | $8 \mathrm{I} / 0 \mathrm{~s}$ |
| Storable programs |  | 256 | 64 | 64 |  |
| Data records（incl．ouput names） （number of switch－on／switch－off points） |  | $1000+32$ per module | 1000 | data stored in L 100 （－PB／－MB） | 232 |
| Actual value acquisition | －incremental encoder－counting range incremental <br> －absolute encoder Gray excess <br> －absolute encoder parallel Gray code to bit number <br> －absolute encoder SSI Gray code <br> －count／direction inputs for incremental encoders <br> －timer function（value is generated internally） | $8192 / 16$ million $360,720,1000,3600,7200$ $2 \ldots .13$ $2 \ldots . .13,24,25$ $\times$ $1-65535$ | $8192 / 16$ million $360,720,1000,3600,7200$ $2 \ldots .13$ $2 \ldots . .13,24,25$ $\times$ $1-65535$ | $\begin{aligned} & \text { dependent } L 100(-P B /-M B) \\ & \text { dependent } L 100(-P B /-M B) \\ & \text { dependent } L 100(-P B /-M B) \\ & \text { dependent } L 100(-P B /-M B) \\ & \text { dependent } L 100(-P B /-M B) \\ & \text { dependent } L 100(-P B /-M B) \end{aligned}$ | dependent L200（－PB） dependent L200（－PB） dependent L200（－PB） dependent L200（－PB） dependent L200（－PB） dependent L200（－PB） |
| Idle time compensation （dynamic cam） | －blockwise <br> －bitwise <br> －separate I／O <br> －entering the idle time in steps |  |  | $\begin{aligned} & \text { dependent } L 100(-\mathrm{PB} /-\mathrm{MB}) \\ & \text { dependent } \mathrm{LI} 100(-\mathrm{PB} /-\mathrm{MB}) \\ & \text { dependent } \mathrm{LI} 00(-\mathrm{PB} /-\mathrm{MB}) \\ & \text { via basis } \mathrm{LI} 00 \end{aligned}$ | 区 <br> 区 <br> 区．2ms－ 999 ms |
| Cycle time <br> In some configurations the cycle time might be higher， in case of using the high－speed version it might also be lower！ | －without idle time compensation（ITC） <br> －with blockwise ITC <br> －with bitwise ITC <br> －with I／O ITC <br> －high speed version for lower cycle time | dynamic from $500 \mu \mathrm{~s}$ <br> 区 | dynamic from $500 \mu \mathrm{~s}$ | $\begin{gathered} \mathrm{L} 100+50 \mu \mathrm{~s} \\ \mathrm{~L} 100+50 \mu \mathrm{~s} \\ \mathrm{~L} 100+50 \mu \mathrm{~s} \\ \mathrm{~L} 100+50 \mu \mathrm{~s} \\ \quad- \end{gathered}$ | dynamic from $55 \mu \mathrm{~s}$ dynamic from $65 \mu \mathrm{~s}$ dynamic from $85 \mu \mathrm{~s}$ dynamic from $115 \mu \mathrm{~s}$ |
| Software characteristics： <br> zero point offset cams ar interchangeable linewise angle／time cams direction cams scalable encoder value | －within the complete range | $\begin{aligned} & \bullet \\ & \bullet \\ & \boxed{\bullet} \\ & \boxed{~} \end{aligned}$ | 区 <br> 区 <br> 区 | via basis L100 <br> via basis L100 <br> via basis L100 <br> via basis L100 <br> via basis L100 | via basis L200 <br> via basis L200 <br> 区 <br> 区 <br> via basis L200 |
| Run－control－function |  | 区 | 区 | － | － |
| Speed indicator |  | $\bullet$ | $\bullet$ | via basis L100 | via basis L200 |
| Inputs | －for encoder signal <br> －for program selection <br> －for program change <br> －for program release | 区 $2 . . .13$ <br> 囷 $1 . . .8$ <br> 区 1 <br> 区 1 | 区 $2 . . .13$ <br> 区 $1 . . .8$ <br> 区 1 <br> 区 1 | 区 $1 . .6$ <br> 区 1 <br> 区 | $\begin{aligned} & - \\ & - \\ & - \end{aligned}$ |
| Logic functions | －logic inputs <br> －extensive logic functions <br> －shift register | $\begin{gathered} \square \\ \bullet \\ \bullet \end{gathered}$ | －16 | － | － 8 |
| Programming | －teach－in－programming <br> －via Deutschmann terminal <br> －via PC（WINLOC $32^{\text {® }}$－software） <br> －via cam control profile <br> －others |  | PLC at connection | see L100 (-PB) | see L200 (-PB) |
| Data backup | －EEPROM（min． 100 years） <br> －via transfer program on PC |  |  | $\begin{aligned} & \text { see L100 (-PB) } \\ & \text { see L100 (-PB) } \end{aligned}$ |  |
| Status display for | －outputs <br> －programming status <br> －external program selection <br> －SSI－control <br> －error－display <br> －run－control（if configured） <br> －Fieldbus status |  |  |  |  |
| Interface | －RS232 <br> －RS485－DICNET ${ }^{\text {® }}$ <br> －integrated Profibus－interface <br> －integrated CANopen－interface <br> －integrated NTERBUS－interface | －switchable <br> －switchbale <br> via Gateway <br> via Gateway <br> via Gateway |  | $\begin{aligned} & \text { see LI00 (-PB/-MB) } \\ & \text { see L100 (-PB } /-M B) \end{aligned}$ | $\begin{aligned} & \text { see } L 200(-P B) \\ & \text { see } L 200(-P B) \\ & \text { see } L 200(-P B) \\ & \text { see } L 200(-P B) \\ & \text { see } L 200(-P B) \end{aligned}$ |
| Voltage supply 24VDC＋／－20\％ |  | $\bullet$ | $\bullet$ | － | － |
| Max．power consumption（without load） |  | 200 mA | 200 mA | 200 mA | 200 mA |
| Output driver max．load | － 300 mA each output，max．1A for 8 outputs each <br> － 700 mA each output，temporarily also 1 A each output <br> －plus switching outputs，short circuit－proof | － | $\stackrel{-}{-}$ | － | $\bigcirc$ |
| Analog outputs | －current output <br> －voltage output | - | - | - | - |
| Dimensions basic device in mm | －width <br> －height <br> －depth | $\begin{aligned} & 48.8 \\ & 71.5 \\ & 120 \end{aligned}$ | $\begin{aligned} & 48.8 \\ & 71.5 \\ & 120 \end{aligned}$ | $\begin{aligned} & 48.8 \\ & 71.5 \\ & 120 \end{aligned}$ | $\begin{aligned} & 12.2 \\ & 71.5 \\ & 120 \end{aligned}$ |
| Protection class |  | IP20 | IP20 | IP20 | IP20 |
| Weight in grams |  | 220 | 230 | 200 | 70 |

－Standard
－Optionally for an additional charge
$X$ Optionally at no additional charge
区 Freely configurable

## The ROTARNOCK family

With the ROTARNOCK-series Deutschmann Automation took a new innovative path. The entire cam control was integrated in the housing of the absolute encoder. This saves work and money. The wiring of the encoder can be dispensed with entirely. The outputs of the cam control are applied directly to the device via its connector. The devices ROTARNOCK 80 and 100 are optionally available with integrated Profibus-interface. The device versions with Profibus can be connected to SIEMENS SIMATIC S7 and other PLCs and Soft-PLCs very easily. The data exchange between the PLC and the cam control is carried out via a data component. The data component for S 7 can be generated by the user himself by means of the data component
 generator that is available free of charge. A data component in the version required in each case is generated by the data component generator, so that no unnecessary storage space is occupied in the PLC. The handling components needed for an S7-Profibus-connection are also made available by Deutschmann free of charge. With it no programming effort is involved for the user and he does not have to carry out changes in the PLC-program. For the initial programming the comfortable PC-software WINLOC $32^{\circledR}$ can be used and the already fixed data component including cams, idle times etc. can be generated automatically.

## ROTARNOCK 80

## Low-cost - but only when it comes to the price

Our standard model for normal applications. A resolution of 360 information items per revolution, 8 switching outputs and bitwise idle time compensation allow this unit to be used for many applications. "Standard" does not mean second best though: ROTARNOCK 80 also has a modern operator-control concept: as an alternative you can opt for a convenient PC GUI or a fully integrated ProfibusDP or you decide on one of the powerful Deutschmann terminals.

| Version | Overall length <br> in mm (dimension $\mathbf{x})$ |
| :--- | :---: |
| ROTARNOCK 80, 100 <br> standard D-Sub version | 69 |
| ROTARNOCK 80, 100 with option IF | 69 |
| ROTARNOCK 80, 100 Profibus <br> with D-SUB-plug | 81 |
| ROTARNOCK 80, 100 Profibus, IP65 and <br> ROTARNOCK 100 Fieldbus version, IP65 | 98 |

## ROTARNOCK 100

## Complete equipment for all applications

In this high-end model the advantages of the most recent Deutschmann software package have been implemented. This provides you with free software configuration. The switching outputs have a load rating of 700 mA and cut additional costs in the switch cabinet. After all the ROTARNOCK-series is already economical by nature:
The wiring effort is reduced since no additional rotary encoder needs to be wired up. The ROTARNOCK 100 Profibus-version unfolds its cost advantages more that ever. Of course the ROTARNOCK-versions are equipped for various industrial requirements. The versions you can choose from are IP54 version with D-SUB connector or IP65 version with round connector.


ROTARNOCK RS232 or RS485, version IP54


ROTARNOCK RS232 or RS485, version IP65

## ROTARNOCK 100 with integrated Fieldbus

ROTARNOCK 100 is available with all Fieldbuses and Industrial Ethernet-Buses from December 2010, such as:

## Starterkit ROTARNOCK

This starterkit contains all required cables and power supplies for the quick laboratory setup．
Packages with other ROTARNOCK－versions are available on request．

Article description
Starterkit for ROTARNOCK 80 with RS232－interface
Starterkit for ROTARNOCK 80 with Profibus－interface
Starterkit for ROTARNOCK 100 with RS232－interface
Starterkit for ROTARNOCK 100 with Profibus－interface
Starterkit for ROTARNOCK 100 with RS485－DICNET－${ }^{\text {－interface }}$

Order number
P1086
P1087
P1084
P1066
P1068

## Basic device

| Code | Meaning | Explanation |
| :--- | :--- | :--- |
| TN65－0360－80 | ROTARNOCK 80，360 inf．／rev．， 8 switching outputs |  |
| TN65－4096－100 | ROTARNOCK 100， 4096 inf．／rev．， 16 switching outputs | Resolution freely configurable |

## Hard－and software－versions

| Code | Meaning | Excludes option or only possible with option | R80 | R100 |
| :---: | :---: | :---: | :---: | :---: |
| D | Position－／speed indicator switchover；switchover depending on the speed |  | － | － |
| G | Encoder monitoring |  | － | 区 |
| I | Bitwise idle time compensation | Not with L，LI，IT | $\bigcirc$ | $\bullet$ |
| IF | 28－pole round plug for protection class IP65 | Not with PB and IP | $\square$ | $\square$ |
| IP | Version IP65 for versions with integrated Profibus | Not with devices without Profibus or with IF | $\square$ | $\square$ |
|  | Version IP65 for versions with integrated Fieldbus | Not with devices without Fieldbus or with IF | － | $\square$ |
| IT | Separate switch－on／switch－off idle time compensation bitwise | Not with I，L，LT | － | 区 |
| L | Blockwise idle time compensation | Not with I，LT，IT | － | 区 |
| LT | Separate switch－on／switch－off idle time compensation blockwise | Not with I，L，IT | － | 区 |
| R | RUN－CONTROL－function on output 16；for the Fieldbus－version with IP65 only to output 12 |  | － | 区 |
| U | Output change depending on the direction of rotation |  | － | 区 |
| 232 | Interface RS232 | Not with option 485，PB | $\bullet$ | X |
| 485 | Interface RS485 DICNET®（cross－linking of up to 16 DA cam controls） | Not with option 232，PB | － | $X$ |
| PB | Integrated Profibus－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | $\square$ | $\square$ |
| CO | Integrated CANopen－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |
| DN | Integrated DeviceNet－interface（additional RS232－interface | Not with option 485 or other Fieldbus | － | $\square$ |
| EC | Integrated EtherCAT－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |
| El | Integrated Ethernet／IP－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |
| FE | Integrated Ethernet 10／100 MBit－interface（Modbus TCP or Ethernet TCP／IP） （additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |
| IB | Integrated Interbus－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |
| MPI | Integrated MPI－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |
| PL | Integrated Powerlink－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |
| PN | Integrated Profinet－interface（additional RS232－interface） | Not with option 485 or other Fieldbus | － | $\square$ |

R80＝ROTARNOCK $80 \quad$ R100＝ROTARNOCK 100 －Standard－Optionally for an additional charge X Optionally at no additional charge $\quad$ Freely configurable


## Structure of the order code



Technical data

|  | Characteristics | ROTARNOCK 80 | ROTARNOCK 80 PB | ROTARNOCK 100 | ROTARNOCK 100 PB | ROTARNOCK 100 FB＊ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mechanical data | －shaft load <br> －shaft diameter <br> －shaft length <br> －shock resistance <br> －vibration resistance <br> －rotor＇s moment of inertia <br> －durability | axial 40 N, radial 110 N 10 mm 20 mm $=200 \mathrm{~m} / \mathrm{s}^{2}$ $(12 \mathrm{~ms})$ $=100 \mathrm{~m} / \mathrm{s}^{2}$ $(10 \mathrm{~Hz} \ldots 1000 \mathrm{~Hz})$ $\sim 30 \mathrm{gcm}^{2}$ $>105 \mathrm{~h}$ at $1000 \mathrm{~min}^{-1}$ | axial 40 N, radial 110 N 10 mm 20 mm $=200 \mathrm{~m} / \mathrm{s}^{2}$ $(12 \mathrm{~ms})$ $=100 \mathrm{~m} / \mathrm{s}^{2}$ $(10 \mathrm{~Hz} \ldots 1000 \mathrm{~Hz})$ $\sim 30 \mathrm{gcm}^{2}$ $>105 \mathrm{~h}$ at $1000 \mathrm{~min}^{-1}$ | axial 40 N, radial 110 N 10 mm 20 mm $=200 \mathrm{~m} / \mathrm{s}^{2}$ $(12 \mathrm{~ms})$ $=100 \mathrm{~m} / \mathrm{s}^{2}$ $(10 \mathrm{~Hz} \ldots .1000 \mathrm{~Hz})$ $\sim 30 \mathrm{gcm}$ $>105 \mathrm{~h}$ at $1000 \mathrm{~min}^{-1}$ | axial 40 N, radial 110 N 10 mm 20 mm $=200 \mathrm{~m} / \mathrm{s}^{2}$ $(12 \mathrm{~ms})$ $=100 \mathrm{~m} / \mathrm{s}^{2}$ $(10 \mathrm{~Hz} \ldots 1000 \mathrm{~Hz})$ $\sim 30 \mathrm{gcm}^{2}$ $>105 \mathrm{~h}$ at $1000 \mathrm{~min}^{-1}$ | axial 40 N, radial 110 N 10 mm 20 mm $=200 \mathrm{~m} / \mathrm{s}^{2}$ $(12 \mathrm{~ms})$ $=100 \mathrm{~m} / \mathrm{s}^{2}$ $(10 \mathrm{~Hz} \ldots 1000 \mathrm{~Hz})$ $\sim 30 \mathrm{gcm}^{2}$ $>105 \mathrm{~h}$ at $1000 \mathrm{~min}^{-1}$ |
| Outputs |  | 8 | 8 | 16 | $16+32$ software outputs or 12－48 at IP65 | $12+32$ software outputs |
| Storable programs |  | 16 | 16 | 64 | 64 | 64 |
| Data records <br> （number of switch－on／switch－off points） |  | 1936 | 1936 | 1000 | 1000 | 1000 |
| Actual value acquisition | －absolute encoder parallel Gray excess <br> －absolute encoder parallel Gray code up to number of bits | $360$ | $360$ | $\begin{gathered} 360,1000,3600 \\ 9 \ldots . .12 \end{gathered}$ | $\begin{gathered} 360,1000,3600 \\ 9 \ldots . .12 \end{gathered}$ | $\begin{gathered} 360,1000,3600 \\ 9 \ldots . .12 \end{gathered}$ |
| Idle time compensation （dynamic cam） | －blockwise <br> －bitwise <br> －separate I／0 <br> －entering the idle time in steps | $\begin{gathered} - \\ - \\ - \\ \hline \end{gathered}$ | $\begin{gathered} - \\ - \\ - \\ \hline \end{gathered}$ |  | $\begin{gathered} \stackrel{\text { 区 }}{\bullet} \\ \text { ■ ms - } 999 \mathrm{~ms} \end{gathered}$ |  |
| Cycle time <br> In some configurations the cycle time may be higher． | －without idle time compensation（ITC） <br> －with blockwise ITC <br> －with bitwise ITC <br> －with I／O ITC | $\begin{gathered} - \\ - \\ 500 \mu \mathrm{~s} \\ - \end{gathered}$ |  | approx． $110 \mu \mathrm{~s}$ <br> approx． $145 \mu \mathrm{~s}$ <br> approx． $225 \mu \mathrm{~s}$ <br> approx． $270 \mu \mathrm{~s}$ | approx． $260 \mu \mathrm{~s}$ <br> approx． $295 \mu \mathrm{~s}$ <br> approx． $425 \mu \mathrm{~s}$ <br> approx． $430 \mu \mathrm{~s}$ | approx． $260 \mu \mathrm{~s}$ <br> approx． $295 \mu \mathrm{~s}$ <br> approx． $425 \mu \mathrm{~s}$ <br> approx． $430 \mu \mathrm{~s}$ |
| Software characteristics： zero offset cams movable track by track angle／time cams direction cams | －within the complete range | － | $\stackrel{\bullet}{\bullet}$ |  |  |  |
| Run－control function |  | － | － | 区 | 区 | 区 |
| Speed indicator |  | $\bullet$ | － | $\bullet$ | － | $\bullet$ |
| Inputs | －for program selection －for program change | $\begin{aligned} & 4 \\ & 1 \end{aligned}$ | via Fieldbus only via Fieldbus only | $\begin{aligned} & 4 \\ & 1 \end{aligned}$ | via Fieldbus only via Fieldbus only | via Fieldbus only via Fieldbus only |
| Logic functions | －logic inputs <br> －extensive logic functions <br> －shift register | － | － | $\square$ | 16 via Fieldbus | 16 via Fieldbus |
| Programming | －teach－in programming <br> －via integrated keypad <br> －via Deutschmann terminal <br> －via PC（WINLOC $32^{\circledR}$－software） <br> －via cam control profile <br> －integrated Fieldbus and any desired visualization system |  |  | via Fieldbus only | via Fieldbus only <br> － <br> － <br> － <br> Profibus | via Fieldbus only － － － <br> Fieldbus |
| Data protection | －EEPROM（min． 100 years） <br> －via trabsfer program on PC |  | － | $\bullet$ | － | － |
| LED for | －error－display <br> －zero indication <br> －Fieldbus status | $\stackrel{-}{-}$ | $\bullet$ | $\stackrel{-}{-}$ | $\bullet$ | $\bullet$ |
| Interface | $\begin{aligned} & \text { - RS232 } \\ & \text { - RS485-DICNET® } \end{aligned}$ | － | － | $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$ | － | － |
| Supply voltage 24VDC＋／－20\％ |  | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| Max．current consumption（without load） |  | 150 mA | 200 mA | 150 mA | 200 mA | 200 mA |
| Output driver max．load | － 300 mA per output，max．IA for 8 outputs at a time <br> － 700 mA per output，temporarily also IA per output －outputs positive－swiching，short－circuit－proof | － | － | － | － | － |
| Dimensions Basic device in mm | －diameter <br> －length | 65 see drawing | 65 see drawing | 65 <br> see drawing | 65 <br> see drawing | 65 see drawing |
| Protection class |  | $\begin{aligned} & \text { IP54 } \\ & \text { ■ IP65 } \end{aligned}$ | $\begin{aligned} & \text { IP54 } \\ & \mathbf{\square} \text { IP65 } \end{aligned}$ | $\begin{aligned} & \text { IP54 } \\ & \square \\ & \text { IP65 } \end{aligned}$ | $\begin{aligned} & \text { IP54 } \\ & ■ \text { IP65 } \end{aligned}$ | IP65 |
| Weight in grams |  | 400 | 400 | 400 | 400 | 480 |

－Standard
－Optionally for an additional charge
区 Freely configurable
PB Profibus
X Optionally at no additional charge
＊FB Available with integrated Fieldbus

## TERM 6

## The small ones

The "four-key operation" which has proven its worth over the years in countless applications can be operated easily after a short familiarization period only. A clear structure and practical symbols on the seven-segment display, in conjunction with the function LEDs, made this interface very popular. The integrated and switchable interfaces RS232- and RS485-
 DICNE ${ }^{\circledR}$ allow the communication with any Deutschmann cam control. In addition to the version for front-panel installation, a version for DIN-rail mounting and a portable version for the service technician is also available.


## TERM 24

## The compact ones

This multi-lingual menu driven user-interface in connection with the decimal keypad and the function keys offers a high level of convenience. Encoder position and speed are displayed simultaneously on the seven-segment display. Depending on the kind of application, you can choose between the housing versions IP54 and IP65. This terminal can be used with any Deutschmann cam control thanks to the RS232- or RS485-DICNET ${ }^{\circledR}$-interface.



TERM 24, front panel IP54



TERM 24, front panel IP65

## Compatibility of Deutschmann cam controls

## with terminals and the WINLOC ${ }^{\circledR} 32$-software

The integrated front panel of a LOCON 24, 48 or 64 can also be used as terminal, provided that several devices are connected with one another. With it the compatibility as for TERM 24 applies.

| Device type | TERM 6 | TERM 24 | WINLOC ${ }^{\circledR}$ 32 PC-tool |
| :--- | :---: | :---: | :---: |
| LOCON 7 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 9 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 9-MT | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 16 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 17 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 24 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 48 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 64 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 90 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 100 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 100-MB | - | - | $\bullet$ |
| LOCON 100-PB | - | - | $\bullet$ |
| LOCON 200 | $\bullet$ | $\bullet$ | $\bullet$ |
| LOCON 200-PB | - | $\bullet$ | $\bullet$ |
| ROTARNOCK 80 | $\bullet$ | $\bullet$ | $\bullet$ |
| ROTARNOCK 80-PB | - | $\bullet$ | $\bullet$ |
| ROTARNOCK 100 | - | $\bullet$ | $\bullet$ |
| ROTARNOCK 100-PB | $\bullet$ | $\bullet$ | $\bullet$ |
| ROTARNOCK 100 with integrated Fieldbus* | - | $\bullet$ | $\bullet$ |

possible
*


| Device type | TERM 6 | TERM 24-IP54 | TERM 24-IP65 |
| :---: | :---: | :---: | :---: |
| Features | display and control unit | display and control unit | display and control unit |
| Display | 8-digit 7 -segment display for position/speed output indication for 16 outputs | 10-digit 7 -segment display for position/speed output indication for 48 outputs | 10 -digit 7 -segment display for position/speed output indication for 48 outputs |
| Interface | RS232 (V.24) and RS485-DICNET ${ }^{\circledR}$, max. any 3 terminals in one bus, interface switchable | RS232 (V.24) or RS485-DICNET®, max. any 3 terminals in one bus interface not switchable | RS232 (V.24) or RS485-DICNE ${ }^{\circledR}$, max. any 3 terminals in one bus interface not switchable |
| LCD-display | - | 2-line LCD-display with LED-backlight 16 characters/line operator guidance in ten languages | 2-line LCD-display with LED-backlight 16 characters/line operator guidance in ten languages |
| Connections | screw-type connector | screw-type connector | screw-type connector |
| Function LEDs | 6 status LEDs |  | - |
| Installation | front panel installation DIN-rail mounting portable version | front panel installation | front panel installation |
| Protection class | IP54 | IP54 | IP65 |
| Dimensions (W x H x D) | $\begin{aligned} & 72 \times 96 \times 18 \mathrm{~mm} \\ & 72 \times 96 \times 25 \text { (DIN-rail version) } \end{aligned}$ | $144 \times 144 \times 15 \mathrm{~mm}$ | $168 \times 168 \times 15 \mathrm{~mm}$ |
| Weight | approx. 200 g | approx. 450 g | approx. 450 g |
| Panel cut-out | $66 \times 90 \mathrm{~mm}$ | $138+1 \times 138+1 \mathrm{~mm}$ | $138+1 \times 138+1 \mathrm{~mm}$ |

## WINLOC 32 ${ }^{\circledR}$

## Programming Deutschmann cam controls using Windows

WINLOC $32^{\circledR}$ offers an easy to use graphical user interface for programming Deutschmann cam controls under Microsoft Windows 3.1x, 95, 98, Windows NT and Windows 2000/XP.

The user may print all device data as complete documentation. The compilation of the data is made by the user. The printout is prepared as a scaleable preview, which can be observed before it is printed on paper.
With the basic version WINLOC $32{ }^{\circledR}$ already offers all necessary abilities for programming devices as well as for transferring data from Deutschmann cam controls to the PC.

By simply entering a license number the basic version is upgrated to a comfort version with an interface that is easier to use and an extended printout capability. WINLOC $32^{\circledR}$ is available as German or English language version.

## Basic or comfort version?

The software WINLOC $32^{\circledR}$, that has been developed for the programming of all Deutschmann cam controls is available in two versions. The basic version can be ordered directly from us or it is also available for download free of charge from our website at www.deutschmann.de. It offers all functions that are required to program Deutschmann cam controls. The comfort version of WINLOC $32^{\circledR}$ is also available. By entering a license number that can be ordered from Deutschmann you can use additional convenient tools in the software, that simplify the operation of the program.
The following tools can be used:
The toolbar: It contains buttons that simplify the handling of the program.
Extented print options: Deviating from the standard presetting this tool allows an individual setting so that the printout complies with your requests.

Selecting devices at upload/download: The availability of Pull-Down Menus simplifies the selection of devices, that exist in the net.
Data migration function: If you want to transfer data from one cam control to another, this is automatically carried out by this function.
Online-presentation: This function is very important for devices that are supplied without a terminal. The settings of your cam control, such as position, speed, outputs are being visualized.


Teach-In: This function simplifies the initialization of your device, since the electronic zero-point can be set by simply pressing the Teach-In button. With it a manual setting is dropped.
Comparison function: The comparison of 2 cam controls is possible by opening two windows with the respective settings of your cam controls.
If you want to use the convenient tools of the comfort version order your license number at Deutschmann Automation directly at
http://ww.deutschmann.de or by phone: + 49 (0) 6434-9433-0.

| Function | Basic version | Comfort version |
| :---: | :---: | :---: |
| Programming general, cams, logic, names, idle times, analog values | - | - |
| Graphical display of the programming | $\bigcirc$ | $\bigcirc$ |
| Diagnostic option of the communication channels (DICNET ${ }^{\circledR}$ ) | $\bigcirc$ | $\bigcirc$ |
| Complete support of all configuration parameters | - | $\bigcirc$ |
| Context-sensitive help German/English | $\bigcirc$ | $\bigcirc$ |
| DA cam control error list | $\bigcirc$ | $\bigcirc$ |
| Color adjustments | $\bigcirc$ | $\bigcirc$ |
| Different communication interfaces for all Deutschmann cam controls with RS232 or DICNET ${ }^{\circledR}$ connection | $\bigcirc$ | $\bigcirc$ |
| Simplified operation of the program | - | $\bigcirc$ |
| Terminal window | $\bigcirc$ | $\bigcirc$ |
| Toolbars | - | $\bigcirc$ |
| Context-sensitive mouse menu | - | - |
| Extended print adjustment | - | - |
| Comfortable selection of the devices during upload/download | - | - |
| Flexible print with extended adjustment possibilities | - | $\bigcirc$ |
| Data transfer function | - | $\bigcirc$ |
| Online display position, speed outputs | - | $\bigcirc$ |
| "Teach-in" zero offset | - | - |
| Comparison function - two cam controls can be compared in two windows | - | - |
| Generating a data component | - | $\bigcirc$ |

## DB generator

## PC-software data component generator

In a simple manner the program makes it possible to generate an AWL source file. Due to the clear arrangement of the component options they can be entered fast and easily. By means of these settings the program generates the AWL source file. Based on a configuration file the program receives information on parameters and the size of this component. While the program starts this file is read. It is also possible to read this file again later.


Generating the $S 7^{\circledR}$ program code - fast and easy
After the program is started, you can navigate through the setting options by means of the survey on the left side. On the individual parameter cards you can set the parameter values, such as number of cams to be used as well as the cam type.

Generating the component through WINLOC $32{ }^{\circledR}$ elegantly
If the data component generator is started from the WINLOC $32^{\circledR}$-software, then the data, created in WINLOC $32^{\circledR}$ (cams, programs, idle times, etc.) will automatically be assigned to the data component. By means of the corresponding settings in the DB generator's window it is also possible to create "reserves" for programs, cams, idle times etc. that are to be recorded later.


## Absolute encoders, singleturn

## SA58/TA58 utilising integrative technology



Essential advantages:

- Shock resistance $>2500 \mathrm{~m} / \mathrm{s}^{2}, 6 \mathrm{~ms}$ according to DIN IEC 68-2-27
- 2 years warranty
- Better EMC-behaviour compared to conventional encoders


## General order code for encoders

## Order reference:

Series
S = Synchro flange
$\mathrm{T}=$ Clamping flange

## Resolution

0360, 1000, 1024, 4096, 8192

Code type
G = Gray
X A 5 8-X X X X - G X X - X - X

## Connection

ID $=16$-pole round plug axial (parallel)
$I D R=16$-pole round plug radial (parallel)
$\mathrm{IE}=12$-pole round plug axial (SSI)
IER = 12-pole round plug radial (SSI)

Shaft
$E=$ Shaft 10 mm with T -flange (clamping flange)
C = Shaft 6 mm with S-flange (synchro flange)

## Interface and supply voltage

Y = Push-pull 10-30 V (absolute parallel)
$S=S S I 10-30 \mathrm{~V}$

For the detailed order codes please take a look at the corresponding encoders.

## Absolute encoders, singleturn

 Shaft version SSI

- Up to a resolution of 13 bit, singleturn in integrative technology*
- SSI-interface
- Housing 058 mm
- Shaft 06 mm or 10 mm
- Max. IP66
- Electronic temperature and ageing compensation
- Short-circuit proof outputs
*Integration of all components because of an innovative assembly priciple and the use of an opto-asic on one printed circuit board only, at a resolution of up to 13 bit.


## Mechanical characteristics

| Housing diameter | 58 mm |
| :--- | :--- |
| Shaft diameter | $\mathrm{S}: 6 \mathrm{~mm} / \mathrm{C}: 10 \mathrm{~mm}$ |
| Flange types (housing fastening) | Clamping flange / synchro flange |
| Protection class shaft input verified according to EN60529 | IP66 |
| Protection class housing verified according to EN60529 | IP65 |
| Shaft load axial | S: $20 \mathrm{~N}, \mathrm{C}: 40 \mathrm{~N}$ |
| Shaft load radial | S: $80 \mathrm{~N}, \mathrm{C}: 110 \mathrm{~N}$ |
| Max. number of revolutions (temporarily) | $12000 \mathrm{rev} . / \mathrm{min}$. |
| Max. number of revolutions (permanent operation) | $3000 \mathrm{rev} . / \mathrm{min}$. |
| Starting torque | 5 Ncm |
| Moment of inertia | $30 \mathrm{kgm}{ }^{2}$ |
| Vibration resistance (DIN EN 60068-2-6) | $10 \mathrm{~m} / \mathrm{s}^{2}(10 \ldots . .100 \mathrm{~Hz})$ |
| Shock resistance (DIN EN 60068-2-27) | $100 \mathrm{~m} / \mathrm{s}^{2}(6 \mathrm{~ms})$ |
| Continuous shock resistance (DIN EN 60028-2-29) | $10 \mathrm{~m} / \mathrm{s}^{2}(16 \mathrm{~ms})$ |
| Operating temperature | $-40 . . .+85^{\circ} \mathrm{C}$ |
| Storage temperature | $-40 . . .+85^{\circ} \mathrm{C}$ |
| Weight | 200 g |

## Electrical characteristics

| Supply voltage | $10-30 \mathrm{VDC}$ |
| :--- | :--- |
| Power consumption max. | 100 mA (without load) |
| Power consumption typ. | 70 mA (without load) |
| Pulse frequency | $100 . .2000 \mathrm{kHz}$ |
| Step frequency | 200 kHz |
| Resolution | See table on the next page |
| Output code | See table on the next page |
| Linearity | $+/-0.5$ LSB |
| Outputs | RS422 SSI |
| Output current max. | $20 \mathrm{~mA} /$ each channel |
| Output current typ. | - |
| Short-circuit proof output? | Yes |
| Output level high | -0.9 VxUb |
| Output level low | 0.5 V |
| Electrical lifetime | 100000 h |
| Turn-on time | l s |

## Sense of rotation

- Rising code values in case of a clockwise turn of the shaft (cw), falling values in case of a counter-clockwise turn (ccw) with a view to the shaft.

| Order number | Article designation | Resolution | Output code | Shaft | Flange |
| :--- | :--- | :--- | :--- | :--- | :--- |
| V2606 | TA58-4096-GSE-IE | 4096 | Gray | Clamping flange |  |
| V2608 | SA58-4096-GSC-IER | 4096 | Gray | Sy |  |
| V2609 | TA58-1024-GSE-IE | 1024 | Gray | 年 |  |
| V2610 | TA58-4096-GSE-IER | 4096 | Gray | Clamping flange |  |
| V2611 | TA58-8192-GSE-IE | 8192 | Gray | Clamping flange |  |

## Order code



Code type
G = Gray

Interface and supply voltage
S = SSI 10-30 V

## View of the mating face pin contact:

## SSI - 12-pole connector



The pin assignment for the parallel version can be found on page 28.

## Pin assignment SSI with 12-pole connector

| Pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | PH ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | OV | +UB | +T | -T | +D | -D | --- | complement | --- | --- | --- | --- | shield |
| Color | blue | red | yellow | green | white | brown |  | n. c. |  |  |  |  |  |

1) $\mathrm{PH}=$ Shield is applied to the connector's housing

Outputs that are not used have to be isolated before startup.

The assignment of the colors is exlclusively valid for cables produced by Deutschmann Automation.
The following pre-assembled cables are available:

| Order number | Article designation | Explanation |
| :--- | :--- | :--- |
| V2810-xx | K-ES-08-R12B-xx-00-12 | for encoders serial up to 13 bit, bus cable $4 \times 2 \times 0.25,12$-pole round plug, socket, length $\times \mathrm{m}$, other side open, to pin assignment plan 12 |
| V2382-xx | K-ES-08-RI2B-xx-AE-12 | for encoders serial up to 13 bit, bus cable $4 \times 2 \times 0.25,12$-pole round plug, socket, length $\times \mathrm{m}$, other side wire end sleeves to pin assignment plan 12 |

$\mathrm{xx}=$ cable length in meters

## Drawings

## Shaft version type XA58-xxxx-GSX-X-X

## Clamping flange



| Clamping flange | Laxial/radial |
| :--- | :--- |
| Version C10 | 53 |

## Synchro flange



| Synchro flange | d $/ \mathrm{mm}$ | I $/ \mathrm{mm}$ | L axial/radial |
| :--- | :--- | :--- | :--- |
| Version S06 | $\mathbf{6}_{16}$ | 10 | 53 |

## Absolute encoders, singleturn

 Shaft version parallel

- Up to a resolution of 13 bit in integrative technology*
- Paralle interface
- Housing 058 mm
- Shaft 06 mm or 10 mm
- Max. IP67
- Electronic temperature and ageing compensation
- Short-circuit proof outputs
*Integration of all components because of an innovative assembly priciple and the use of an opto-asic on one printed circuit board only, at a resolution of up to 13 bit.


## Mechanical characteristics

|  | Resolution: all except for 1000 | Resolution: 1000 |
| :---: | :---: | :---: |
| Housing diameter | 58 mm | 58 mm |
| Shaft diameter | SO6: 6 mm / C10: 10 mm | 10 mm |
| Flange types (housing fastening) | Claming flange / synchro flange | Clamping flange |
| Protection class shaft input verified according to EN60529 | IP67 | IP66 |
| Protection class housing verified according to EN60529 | IP67 | IP65 |
| Shaft load axial | 40 N | 40 N |
| Shaft load radial | 60 N | 110 N |
| Max. number of revolutions (temporarily) | 12000 rev./min. | 12000 rev //min. |
| Max. number of revolutions (permanent operation) | 10000 rev./min. | 3000 rev //min. |
| Starting torque | 0.01 Ncm | 5 Ncm |
| Moment of inertia | $3.8 \times 10^{-6} \mathrm{kgm}^{2}$ | $30 \mathrm{kgm}^{2}$ |
| Vibration resistance (DIN EN 60068-2-6) | $100 \mathrm{~m} / \mathrm{s}^{2}(10 . . .2000 \mathrm{~Hz})$ | $10 \mathrm{~m} / \mathrm{s}^{2}(10 . . .100 \mathrm{~Hz})$ |
| Shock resistance (DIN EN 60068-2-27) | $1000 \mathrm{~m} / \mathrm{s}^{2}(6 \mathrm{~ms})$ | $100 \mathrm{~m} / \mathrm{s}^{2}(6 \mathrm{~ms})$ |
| Continuous shock resistance (DIN EN 60028-2-29) | $1000 \mathrm{~m} / \mathrm{s}^{2}(16 \mathrm{~ms})$ | $10 \mathrm{~m} / \mathrm{s}^{2}(16 \mathrm{~ms})$ |
| Operating temperature | $-40 . . .+100^{\circ} \mathrm{C}$ | $-40 \ldots+85^{\circ} \mathrm{C}$ |
| Storage temperature | $-40 . . .+100^{\circ} \mathrm{C}$ | $-40 . . .+85^{\circ} \mathrm{C}$ |
| Weight | 350 g | 200 g |

## Electrical characteristics

|  | Resolution: all except for 1000 | Resolution: 1000 |
| :---: | :---: | :---: |
| Supply voltage | 10-30 VDC | 10-30 VDC |
| Current consumption max. | 200 mA | 100 mA (with load) |
| Current consumption typ. | 130 mA | 70 mA (without load) |
| Pulse frequency | 500 kHz | $100 . . .2000 \mathrm{kHz}$ |
| Step frequency | 1000 kHz | 200 kHz |
| Resolution | See table on the next page | 1000 |
| Output code | Gray, Gray excess (see table on the next page) | Gray excess |
| Linearity | +/-0.5 LSB | +/-0.5 LSB |
| Outputs | Push-pull | Push-pull |
| Output current max. | 30 mA / each channel | 20 mA / each channel |
| Output current typ. | 10 mA / each channel | - |
| Short-circuit proof output? | Yes | Yes |
| Output level high | $\geq \mathrm{Ub}-2.2 \mathrm{~V}(30 \mathrm{~mA})$ | -0.9 VxUb |
| Output level low | $\leq 1.6 \mathrm{~V}(30 \mathrm{~mA})$ | 0.5 V |
| Electrical lifetime | 100000 h | 100000 h |
| Turn-on time | 0.15 | 1 s |

## Sense of rotation

- Rising code values in case of a clockwise turn of the shaft (cw), falling values in case of a counter-clockwise turn (ccw) with a view to the shaft.

| Order number | Article designation | Resolution | Output code | Shaft | Flange |
| :---: | :---: | :---: | :---: | :---: | :---: |
| V2400 | TA58-0360-GYE-ID | 360 steps | Gray excess | 10 mm | Clamping flange |
| V2401 | TA58-1000-GYE-ID | 1000 steps | Gray excess | 10 mm | Clamping flange |
| V2402 | TA58-1024-GYE-ID | 1024 steps or 10 bit | Gray | 10 mm | Clamping flange |
| V2403 | TA58-4096-GYE-ID | 4096 steps or 12 bit | Gray | 10 mm | Clamping flange |
| V2405 | TA58-0360-GYE-IDR | 360 steps | Gray excess | 10 mm | Clamping flange |
| V2406 | TA58-1000-GYE-IDR | 1000 steps | Gray excess | 10 mm | Clamping flange |
| V2408 | TA58-4096-GYE-IDR | 4096 steps or 12 bit | Gray | 10 mm | Clamping flange |
| V2410 | SA58-0360-GYC-ID | 360 steps | Gray excess | 6 mm | Synchro flange |
| V2415 | SA58-0360-GYC-IDR | 360 steps | Gray excess | 6 mm | Synchro flange |
| V2418 | SA58-4096-GYC-IDR | 4096 steps or 12 bit | Gray | 6 mm | Synchro flange |

Order code

Series
$S=$ Synchro flange
$\mathrm{T}=$ Clamping flange
$X A-8-X X X X-G Y X-X-X$

Resolution
0360, 1000, 1024, 4096, 8192

Code type
G = Gray (\& Gray excess)

Shaft
$E=$ Shaft 10 mm with $T$-flange (clamping flange)
$\mathrm{C}=$ Shaft 6 mm with S-flange (synchro flange)

## Interface and supply voltage

$\gamma=$ Push-pull $10-30 \mathrm{~V}$ (absolute parallel)

## View of the mating face pin contact:

## 16-pole connector



The pin assignment for the SSI version can be found on page 25.

## Pin assignment with 16-pole connector

| Pin | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | PH ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal | $2^{0}=1$ | $21=2$ | $2^{2}=4$ | $2^{3}=8$ | $2^{4}=16$ | $2^{5}=32$ | $2^{6}=64$ | $2^{7}=128$ | $2^{8}=256$ | $2^{9}=512$ | $2^{10}=1024$ | $2^{11}=2048$ | --- | complement | +UB | 0 Volt |  |
| Color | white | brown | green | yellow | gray | pink | purple | gray/pink | white/green | brown/green | white/yellow | yellow/brown | n. c. | n. c. | red | blue+black |  |

## 1) $\mathrm{PH}=$ Connector housing

Unused outputs have to be isolated prior to commissioning.

The color assignment is exclusively valid for cables produced by Deutschmann Automation.
The following pre-assembled cables are available:

| Order number | Article designation | Explanation |
| :--- | :--- | :--- |
| V2105-xx | K-EP-01-R16B-xx-00 | For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm}^{2}, 16$-pole round plug socket, length $\times \mathrm{m}$, other end open |
| V2106-xx | K-EP-01-R16B-xx-AE | For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm}^{2}, 16$-pole round plug socket, length $x \mathrm{~m}$, other end wire end sleeves |
| V2108-xx | K-EP-03-R16BZ-xx-00 | For encoders parallel up to 12 bit, cable type $16 \times 0.34 \mathrm{~mm}^{2}, 16$-pole round plug socket with traction relief, length $\times \mathrm{m}$, other end open |
| V3503-xx | K-EP-01-R16BW-xx-00 | For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm}^{2}, 16$-pole round plug socket angled, length xm , other end open |

[^0]
## Drawings

## Shaft version type XA58-xxxx-GYE-X-X (except for resolution of 1000)

Clamping flange / M23-plug / axial/radial


Synchro flange / M23-plug / axial/radial


Shaft version type TA58-1000-GYE-X


| Clamping flange | $\mathbf{L}$ axial/radial |
| :--- | :--- |
| Version C10 | 53 |

## Structure of order codes for cables

## K -EP -01 -R16B -10 $\quad$-AE -00

Number of the pin assignment plan (to be supplemented by DA)

End B
00 open

AE wire end sleeves
D25S 25pol. D-Sub pin
D9S 9pole D-Sub pin
D9B 9pole D-Sub socket
SSTn screw-type connector n-poles (enter value)

Cable length in $m$

## End A

D25B 25-pole D-Sub-socket
D9B 9-pole D-Sub-socket
D9S 9-pole D-Sub-pin
R12B round plug 12-pole socket
R16B round plug 16-pole socket
R16BZ rund plug 16-pole socket with traction relief
R17B round plug 17-pole socket
R28B round plug 28-pole socket
R28BA round plug 28-pole socket with acivated bus termination SSTn screw-type connector n-poles (enter value)

## Cable type

$01 \quad 16$-pole $\times 0.14 \mathrm{~mm}^{2}$
$03 \quad 16$-pole $\times 0.34 \mathrm{~mm}^{2}$
04 bus cable $2 \times 2 \times 0.22 \mathrm{~mm}^{2}$
05 serial cable $3 \times 0.14 \mathrm{~mm}^{2}$ (for RS232)
$07 \quad 2 \times 20$-pole $\times 0.14 \mathrm{~mm}^{2}$ (for ROTARNOCK)
08 bus cable $4 \times 2 \times 0.25 \mathrm{~mm}^{2}$ for SSI-encoders each m

EP encoder parallel
ES encoder serial SSI
N2 cam control with RS232-interface
N4 cam control with RS485-interface
NR cam control ROTARNOCK (at a 40-pole cable)

Identification for an assembled cable

## Cam Controls I Fieldbus Gateways I Industrial Ethernet Products

## Standard cables

Encoder cables XA58-xxxx-GSE-xx (absolute encoder SSI)

| Article number | Article designation | Explanation |
| :--- | :--- | :--- |
| V2382-xx | K-ES-08-R12B-xx-AE-12 | For encoders serial up to 13 bit, bus cable $4 \times 2 \times 0.25 \mathrm{~mm}^{2}$, 12 -pole round plug socket, length $x \mathrm{~m}$, other end wire end sleeves, to pin assignment plan 12 |
| V2810-xx | K-ES-08-R12B-xx-00-12 | For encoders serial up to 13 bit, bus cable $4 \times 2 \times 0.25 \mathrm{~mm}^{2}$, 12 -pole round plug socket, length $\times \mathrm{m}$, other end open, to pin assignment plan l 2 |

Encoder cables XA58-xxxx-GYE-xx (absolute encoder parallel)

| Article number | Article designation | Explanation |
| :--- | :--- | :--- |
| V2105-xx | K-EP-01-R16B-xx-00 | For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm}^{2}$, 16 -pole round plug socket, length $\times \mathrm{m}$, other end open |
| V2106-xx | K-EP-01-R16B-xx-AE | For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm}^{2}$, 16 -pole round plug socket, length $\times \mathrm{m}$, other end wire end sleeves |
| V2107-xx | K-EP-01-R16B-xx-D25S | For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm}^{2}$, 16 -pole round plug socket, length $\times \mathrm{m}$, other end 25-pole D-SUB-pin with metalized hood <br> Note: The version V2107-0,2 serves as adapter cable, in case a TA65 is replaced by a TA58. <br> V2108-xx K-EP-03-R16BZ-xx-00 |
| For encoders parallel up to 12 bit, cable type $16 \times 0.34 \mathrm{~mm}^{2,16-p o l e ~ r o u n d ~ p l u g ~ s o c k e t ~ w i t h ~ t r a c t i o n ~ r e l i e f, ~ l e n g t h ~} \times \mathrm{m}$, other end open |  |  |

ROTARNOCK-cables (TN65-xxxx...)

| Article number | Article designation | Explanation |
| :---: | :---: | :---: |
| V2123-xx | K-NR-07-D25B-xx-00 | For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm}^{2}$, 25-pole D-SUB socket with metalized hood, length $\times \mathrm{m}$, other end open |
| V2342-xx | K-NR-07-D25B-xx-AE | For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm}^{2}$, 25 -pole D-SUB socket with metalized hood, length $\times \mathrm{m}$, other end wire end sleeves |
| V2123-xx | K-NR-07-D25B-xx-D25S | For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm}^{2}$, 25 -pole D-SUB socket with metalized hood, length $\times$ m, other end 25 -pole D-SUB pin with metalized hood |
| V2222-xx | K-NR-07-R28B-xx-00 | For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm}^{2}$, 28-pole round plug socket, length $\times \mathrm{m}$, other end open |
| V2183-xx | K-NR-07-R28B-xx-AE | For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm}^{2}$, 28 -pole round plug socket, legth $\times \mathrm{m}$, other end wire end sleeves |

ROTARNOCK-programming cables (TN65-xxxx...)

| Article number | Article designation | Explanation |
| :---: | :---: | :---: |
| V3467 | Programming cable for ROTARNOCK - 232/PB | 2.0 m including 24 V power supply, end A: 9-pole D-SUB socket with metalized hood, end B: 25 -pole D-SUB socket with metalized hood + 2-pole screw-type connector |
| V3480 | Programming cable for ROTARNOCK (DICNET ${ }^{\text {® }}$ ) | 2.0 m including 24 V power supply, end A: 25 -pole D-SUB socket with metalized hood, end B: 25-pole D-SUB socket with metalized hood + 2-pole screw-type connector + DICNET ${ }^{\circledR}$ adapter |
| V3483 | Programming cable for ROTARNOCK (DICNET®) IP65 | 2.0 m including $24 V$ power supply, end A: 25-pole D-SUB socket, end B: 28-pole round plug + 2-pole screw-type connector + DICNE ${ }^{\text {® }}$ adapter |
| V3655 | Programming cable for ROTARNOCK - PB IP65 | 2.0 m including 24 V power supply, end A: 9-pole D-SUB socket with metalized hood, end B: 16-pole round plug socket +2 -pole screw-type connector |

## Dynamic switching accelerator SPEEDY

Switching on and off magnetic controlled connect elements lead to delays that consist of two components:

- Delay time for setting up and removing the magnetic field
- Delay time for overcoming mechanical inertia

To reduce this delay time SPEEDY makes it possible to achieve an overexcitation of the magnetic field by an overvoltage pulse of 100 V , adjustable from 1 ms to 10 ms and with it to overcome the mechanical inertia much faster. When switching off, the delay time for the removal of the magnetic field is also reduced considerably due to a negative free-wheeling voltage.

The status of the inputs and outputs as well as of the supply voltages are displayed via integrated LEDs. SPEEDY has different switching modes available that can be adjusted from the out-
 side. Following please find a more detailed description:

## The switching modes of SPEEDY

## Setting the switching modes

The switching modes described below are selected through a rotary code switch. The following assignment applies here:
Please note, that every change of the inputs is directly evaluated in the first 8 switch positions. This mode makes sense if the inputs are connected with the outputs of a control and a distortion-free reaction from SPEEDY is required.

In case the interference suppression is on, the input signals are being filtered, that results in a delay (runtime input -> output) of approx. 1 ms .

This operating mode makes sense if the inputs are being switched by a relay or if very strong failures are on the input lines.

| Rotary switch indication | Switching mode | Input interference suppression |
| :---: | :---: | :---: |
| 0 | l | Off |
| 1 | 2 | Off |
| 2 | 3 | Off |
| 3 | 4 | Off |
| 4 | $5(1 \mathrm{~ms})$ | 0 ff |
| 5 | $5(2 \mathrm{~ms})$ | Off |
| 6 | $5(5 \mathrm{~ms})$ | Off |
| 7 | $5(10 \mathrm{~ms})$ | Off |
| 8 | 1 | Active |
| 9 | 2 | Active |
| A | 3 | Active |
| B | 4 | Active |
| C | $5(1 \mathrm{~ms})$ | Active |
| D | $5(2 \mathrm{~ms})$ | Active |
| E | $5(5 \mathrm{~ms})$ | Active |
| F | $5(10 \mathrm{~ms})$ | Active |

## Switching mode 1

In switching mode 1 the input 1 is wired to the output 1 and the input 2 is wired to the output 2 . The duration of the overexcitation pulse is set at the inputs 3 and 4.

| Input 3 | Input 4 | Pulse |
| :---: | :---: | :---: |
| O VDC | 0 VDC | 1 ms |
| +24 VDC | 0 VDC | 2 ms |
| 0 VDC | +24 VDC | 5 ms |
| +24 VDC | +24 VDC | 10 ms |



Switching mode 2
In switching mode 2 the input 1 is wired to the output 1 and the input 2 is wired to the output 2 . Input 3 is an enabling input. The inputs 1 and 2 are ineffective without a signal at input 3 . The duration of the overexcitation pulse is set at input 4.

| Input 1 | Input 2 | Input 3 | Output 1 | Output 2 |
| :---: | :---: | :---: | :---: | :---: |
| 0 VDC | O VDC | O VDC | 0 VDC | O VDC |
| +24 VDC | 0 VDC | O VDC | 0 VDC | 0 VDC |
| 0 VDC | +24 VDC | 0 VDC | 0 VDC | 0 VDC |
| +24 VDC | +24 VDC | 0 VDC | 0 VDC | 0 VDC |
| 0 VDC | 0 VDC | +24 VDC | 0 VDC | 0 VDC |
| +24 VDC | 0 VDC | +24 VDC | +24 VDC | 0 VDC |
| 0 VDC | +24 VDC | +24 VDC | 0 VDC | +24 VDC |
| +24 VDC |

## Switching mode 3

The switching mode 3 was especially developed for double magnet coils (-driving elements). Output 2 is wired if the input 1 does not have a signal. In case input 1 receives a signal, then output 2 is switched off first, followed by a pause**. Then the output 1 is switched on. If the signal is removed from input 1 it happens the other way round. The output 1 is switched off first, followed by a pause**. Only then the output 2 is switched on again. Input 2 determines the duration of the pause**. The duration of the overexcitation pulse is set at the inputs 3 and 4.

| Input 1 | Output 1 | Output 2 |
| :---: | :---: | :---: |
| O VDC | 0 VDC | +24 VDC |
| +24 VDC | +24 VDC | 0 VDC |


| Input 2 | Pause** $^{*}$ |
| :---: | :---: |
| O VDC | Pulse x 2 |
| +24 VDC | Pulse x 1 |


| Input 3 | Input 4 | Pulse |
| :---: | :---: | :---: |
| 0 VDC | 0 VDC | 1 ms |
| +24 VDC | 0 VDC | 2 ms |
| 0 VDC | +24 VDC | 5 ms |
| +24 VDC | +24 VDC | 10 ms |

**Pause: Period between switching off the magnet coil 1 and switching on the magnet coil 2 or the other way round. It results from the overexcitation time (pulse) multiplied by 2 or 1 .

## Switching mode 4

The switching mode 4 includes an RS-flip-flop logic (-RESET/SET logic). If input 2 (-RESET) is supplied with 24 V after switch-on, then output 2 is wired. If input 1 (SET) is also supplied with 24 V , then output 1 is wired and output 2 is is switched off. If the signal at input 1 (SET) disappears, then this state at the outputs remains stable. Provided that the signal at the input 2 (-RESET) is taken away now ( 0 VDC), then the output 1 is switched off and the output 2 is switched on. This switching state also remains stable if the input 2 receives a signal (+24 VDC) again. The input 2 (-RESET) has a higher priority compared to input 1 (SET); which means: if input 1 has a signal ( +24 VDC ) and input 2 does not have a signal ( 0 VDC ), then output 2 is wired and output 1 is switched off. The duration of the overexcitation pulse is set at the inputs 3 and 4 (clamps 3 and 4 ).


| Input 1 | Input 2 | Output 1 | Output 2 |
| :---: | :---: | :---: | :---: |
| 0 VDC | 0 VDC | 0 VDC | +24 VDC |
| +24 VDC | 0 VDC | 0 VDC | +24 VDC |
| 0 VDC | +24 VDC | Unchanged | Unchanged |
| +24 VDC | +24 VDC | +24 VDC | 0 VDC |


| Input 3 | Input 4 | Pulse |
| :---: | :---: | :---: |
| 0 VDC | 0 VDC | 1 ms |
| +24 VDC | 0 VDC | 2 ms |
| 0 VDC | +24 VDC | 5 ms |
| +24 VDC | +24 VDC | 10 ms |

## Cam Controls I Fieldbus Gateways I Industrial Ethernet Products

Switching mode 5
The switching mode 5 also includes an RS-flip-flop, that is set via the inputs 1 and 2 and that is reset via the inputs 3 and 4 (compare description in switching mode 4).
The pulse length is set through the rotary code switch. The following assignment applies for it:

| Rotary switch display | Pulse |
| :---: | :---: |
| 4 or l | 1 ms |
| 5 or D | 2 ms |
| 6 or E | 5 ms |
| 7 or F | 10 ms |



| Input 1 | Input 2 | Input 3 | Input 4 | Output 1 | Output 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 VDC | O VDC | O VDC | O VDC | Unchanged | Unchanged |
| +24 VDC | 0 VDC | 0 VDC | 0 VDC | Unchanged | Unchanged |
| 0 VDC | +24 VDC | 0 VDC | 0 VDC | Unchanged | Unchanged |
| +24 VDC | +24 VDC | 0 VDC | 0 VDC | +24 VDC | 0 VDC |
| 0 VDC | 0 VDC | +24 VDC | 0 VDC | 0 VDC | +24 VDC |
| +24 VDC | 0 VDC | +24 VDC | 0 VDC | O VDC | +24 VDC |
| +24 VDC | +24 VDC | +24 VDC | 0 VDC | 0 VDC | +24 VDC |
| +24 VDC | +24 VDC | +24 VDC | 0 VDC | 0 VDC | +24 VDC |
| 0 VDC | 0 VDC | 0 VDC | +24 VDC | Unchanged | Unchanged |
| +24 VDC | 0 VDC | O VDC | +24 VDC | Unchanged | Unchanged |
| 0 VDC | +24 VDC | O VDC | +24 VDC | Unchanged | Unchanged |
| +24 VDC | +24 VDC | 0 VDC | +24 VDC | +24 VDC | +24 VDC |
| 0 VDC | 0 VDC | +24 VDC | +24 VDC | Unchanged | Unchanged |
| +24 VDC | 0 VDC | +24 VDC | +24 VDC | Unchanged | Unchanged |
| 0 VDC | +24 VDC | +24 VDC | +24 VDC | Unchanged | Unchanged |
| +24 VDC | 0 VDC |

## Technical data

|  | SPEEDY 1A | SPEEDY 4A |
| :---: | :---: | :---: |
| Supply voltage | 10... 30 VDC, max. I W (no load) | 10... 30 VDC, max. I W (no load) |
| Current consumption | Max. 40 mA (idle state) <br> Max. 3 A (in the moment of switching) | Max. 40 mA (idle state) <br> Max. 3A (in the moment of switching) |
| Inputs | $\begin{aligned} & 4 \\ & \mathrm{Ri}>3.9 \mathrm{~K}^{*} \\ & \mathrm{UL}=0 \mathrm{~V}-3 \mathrm{~V}, \mathrm{UH}=12 \mathrm{~V}-30 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 4 \\ & \mathrm{Ri}>3.9 \mathrm{~K}^{*} \\ & \mathrm{UL}=0 \mathrm{~V}-3 \mathrm{~V}, \mathrm{UH}=12 \mathrm{~V}-30 \mathrm{~V} \end{aligned}$ |
| Outputs | $\begin{aligned} & 2 \\ & \mathrm{I}_{\text {out }}<1 \mathrm{~A} \text { continuous load } \\ & \mathrm{U}_{\text {out }} \text {-stat }>\text { supply voltage }-\mathrm{IV} \\ & \mathrm{U}_{\text {out }} \text {-pulse }=88 \mathrm{~V} . .100 \mathrm{~V} \text { or } 44 \mathrm{~V} . .50 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 2 \\ & \mathrm{I}_{\text {out }}<4 \mathrm{~A} \text { continuous load } / 5 \mathrm{~A} \text { short-time (max. Imin.) } \\ & \mathrm{U}_{\text {out }} \text {-stat }>\text { supply voltage }-1 \mathrm{~V} \\ & \mathrm{U}_{\text {out }}-\text {-pulse }=88 \mathrm{~V} . .100 \mathrm{~V} \text { oder } 44 \mathrm{~V} . .50 \mathrm{~V} \end{aligned}$ |
| Programs | 5 adjustable via rotary switch More customized programs on request | 5 adjustable via rotary switch More customized programs on request |
| Pulse length | Adjustable 1-10ms | Adjustable 1-10ms |
| Switching delay | $<300 \mu \mathrm{~s}$ (without input interference suppression) | $<300 \mu s$ (without input interference suppression) |
| Recovery time | Max. 150ms at 1A-load and 10ms-pulse | Max. 150ms at 1A-load and 10ms-pulse |
| Housing | Plastic for EN-rail mounting (stackable) W x H x D: $25 \times 79 \times 90.5 \mathrm{~mm}$ | Plastic for EN-rail mounting (stackable) W x H x D: $25 \times 79 \times 90.5 \mathrm{~mm}$ |
| Conductor connection | Via plug-in terminal block up to 2.5 mm | Via plug-in terminal block up to 2.5 mm |
| Display | LED-status display of the inputs, outputs and supply voltage | LED-status display of the inputs, outputs and supply voltage |


| Order number | Article designation |  |
| :--- | :--- | :--- |
| V3104 | DSB SPEEDY-50V-IA | With IA switching capacity |
| V1526 | DSB SPEEDY-100V-1A |  |
| V3105 | DSB SPEEDY-50V-4A | With 4A switching capacity |
| V2313 | DSB SPEEDY-100V-4A |  |

## Accessories



## Glossary

## Dynamic cam / idle time compensation

The idle time compensation is the time that passes from setting a cam control output until the actual reaction of the connected device (e.g. opening a valve). Normally this idle time is constant. For a dynamic compensation of this idle time a cam control has to shift a programmed cam depending on the actual encoder speed, that means a valve that is supposed to be opened on position 100 , for example must be opened at $1 \mathrm{~m} / \mathrm{s}$ on position 95 , at $2 \mathrm{~m} / \mathrm{s}$ it must already be opened on position 90.

This function is called dynamic cam shifting or idle time compensation (ITC). Idle times can be programmed blockwise, which means a set idle time always applies to a block of 8 outputs or bitwise. For an idle time compensation with separate turn-on/turn-off time it is possible to select different turnon and turn-off delay times.

## DICNET ${ }^{\circledR}$

DICNE ${ }^{\circledR}$ (Deutschmann-Industry-Controller-Net) is a multi-master Fieldbus. At the physical layer according to the ISO-OSI shift model it corresponds to the DIN 19254, part l. That means a connection between all participants in the net is established with an RS485-two-wire line.

The physical arrangement is thus a bus system, at which the participants can be switched on and off as desired. At the maximum expansion stage 16 cam controls, 16 display units, 3 operation terminals and 1 PC can be connected at the same time. From the logic al poit of view it is a token ring, that means that always only the participant who has the access authorization (token) is allowed to send to the bus. In case he does not have any data for another participants, then he passes on the token to that neighbour, who was determined during a configuration phase.

Through this principle a deterministc bus cycle time is achieved, which means the time (worst-case) until a data packet can be sent is exactly calculable. In case a participant is turned on or off an automatic reconfiguration is made. The transmission baud rate is 312.5 kbaud at a length of 11 bit/byte. A maximum of 127 participants can be operated on one bus, whereas data packets with a maximum of 14 byte per cycle are being transmitted. An automatic check of the received information takes place as well as an error report in case of a twofold transmission error. The maximum expansion of the net must not exceed 500 m .

## Temperature ranges and humidity

All Deutschmann cam controls are specified for a storage temperature of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The operating temperature without forced convection ranges from $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$, with forced convection from $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The maximum relative humidity can be $80 \%$, non-condensing, in a non-corrosive atmosphere.

## Shock and vibration

All our devices are tested for the following values:
Shock 15G/11 milliseconds I vibration $0.15 \mathrm{~mm} / 10.50 \mathrm{~Hz}, \mathrm{G} / 50 . .150 \mathrm{Hertz}$

## Fieldbus connection

Basically all Deutschmann devices can be connected via a Gateway to the Fieldbuses common on the world market. Some types can also be supplied with integrated Fieldbus-interface.

modbus tcp MPI R R9an

## Angle-/time-cams

In most applications the switch-on and switch-off points (cam) are set position-dependent. For certain applications, however, it is necessary that the switch-on point is set position-dependent and the switch-off point time-dependent. For devices with this function the time base may vary in the range from 1 millisecond to 32500 milliseconds.

## Direction cam

The switch-on and switch-off points (cam) are normally switched regardless of the rotational direction. Through the function direction cam it is possible to define whether the a cam is to be activated in clockwise rotation or anti-clockwise rotation only or as it is the normal case in both directions.

## Logic functions / shift register

Applications in which the cam control takes over PLC-tasks. Up to 16 inputs/outputs, markers and a shiftregister can be logically linked. With it simple PLC-task are passed on to the cam control. Advantage: faster cycle times, PLC does not have to carry out any peripheral work. The shift register can for instance be used for an easy sorting of good and bad end products (e. g. at bottling).

## Encoder monitoring

Functions for the complete monitoring of encoder and cable. Every time the encoder is read in it is compared to the one before. In case of a deviation of $+/-3$ inc. an error message is shown. Additionally at the absolute encoders with a resolution of 360 or 1000 inf ./rev. (Gray excess) an error message is shown at the undefined codes.

## Lockable outputs

The function serves to lock machine-relevant outputs and only permit the change of product-relevant outputs.

HMI Parts Center

# More information or the mentioned tools can be found on our website at www.deutschmann.com 



Efficiency, economy and maximum reliability make our products indispensible worldwide.
Our full service package offers you everything:

- From advice before buying to user support.
- From Hotline support via phone, Internet and e-mail to on-site service.
- From the technical product training to the extensive manual.

Benefit from the dynamism, efficiency and creativity of a company operating worldwide because major advantages speak for themselves!

- Longevity of innovation: Your product choice will also endure for a long time.
- Innovative strength: All your applications‘ requirements will be included in innovations and new product concepts right from the start.
- Export safety: Worlwide acceptance due to a a strong name - very important in the highly competitive market of machines and equipment.


[^0]:    $\mathrm{xx}=$ cable length in meters

