ELECTRONIC CAM CONTROLS

Conventional cam controls

Multifunctional devices

- Expandable devices for DINrail mounting

High-speed devices

Cam controls integrated in encoder housing

Cam controls with Fieldbusand PROFIBUS interface

Operating and display terminals

- Comfortable PC-programming

Absolute rotary encoders
\sim Pre-assembled cables

Dynamic switching accelera-
tors

Contents

Foreword....
up to 16 outputs
LOCON 16 and LOCON 17 4
Technical data LOCON 16 and LOCON 17.6
Multifunctional devices 24-64 outputs
LOCON 24 and 48. 8
Technical data LOCON 24 and LOCON 48... 10
Expandable devices for DINrail mounting
LOCON 200.. 12
LOCON 100.. 13
LOCON 90.. 14
Model Overview LOCON 90 / 100 / 200. 15
Technical data LOCON 100 16
Technical data LOCON 200 and LOCON 90. 18
Cam control integrated in the encoder's housing20
Technical data ROTARNOCK 100 22
Operating and display terminals TERM 6 and TERM 24 24
Comfortable PC-programming
WINLOC 32^{\circledR}. 26
Absolute rotary encoders
Rotary encoder. 28
Pre-assembled cables
Structure of order codes for cables36
Standard cables. 37
Dynamic switching accelerator
SPEEDY... 38
Accessories

Glossary 42

Foreword

" Development and production of electronic cam controls since 1982.

- Since 1990 the brand names LOCON and ROTARNOCK stand for reliable and fast electronic cam controls.
- LOCON - The classical concept of separate control and separate actual value acquisition.
- ROTARNOCK - The intelligent solution: cam control and actual value acquisition combined in one housing
- There is no standing still and we are continuously working on the further development of our products and the expansion of our product range. Thus the LOCON and ROTARNOCK series were adapted to the current market needs with new models. We were inspired especially through the implementation of the Fieldbus connection assocoiated with modern control and configuration concepts.

LOCON 16 and LOCON 17

Multifunctional and compact
The compact solution in DIN-format $72 \mathrm{~mm} \times 96 \mathrm{~mm}$ (width x depth) at an overall depth of 70 mm only. With its integrated operating keyboard the unit is installed into the front plate; the version without keyboard is mounted on a DIN-rail. The "4-key user interface" has proven its worth many thousand times and it can be operated easily after a short training period. The basic version features 16 outputs, 16 programs, blockwise idle time compensation

Structure of the order code

LOCON 16 -0360	-L -X011
Basic device example for the version with control panel: LOCON 16-0360-L-X011	Special function (X-options)
Encoder type + encoder resolution $0=$ absolute encoder, S = SSI-encoder Z = incremental encoder; the number indicates the encoder's resolution	Housing versions and hard- and software-options in alphabetical order

Note:
For the incremental encoder version (Z) the encoder resolution only has to be indicated in connection with the option speed indication

Basic device

Option	Meaning	Excludes or only possible with the option	L16	L17
0360	Version for absolute encoder parallel 360 inf./rev.	All other resolutions	-	-
01000	Version for absolute encoder parallel 1000 inf./rev.	All other resolutions	-	-
04096	Version for absolute encoder parallel 4096 inf./rev.	All other resolutions	-	\bullet
On	Version for absolute encoder parallel (n=encoder's resolution)	All other resolutions	-	\bullet
S1024	Version for SSI-absolute encoder 1024 inf //rev.	All other resolutions	-	\bullet
S4096	Version for SSI-absolute encoder 4096 inf ./rev.	All other resolutions	-	-
MT	Version for SSI-absolute encoder 24 bit	All other resolutions	-	-
Zn	Version for incremental encoder (n=indicate encoder's resolution at speed indication): counting range in increments	All other resolutions	1024	4096
PM	Version available without integrated control panel		2	2

Code	Meaning	Excludes or only possible with the option	L16	L17
Cn	Automatic clear position ($\mathrm{n}=$ enter the required value)	Only for devices with Z	-	-
D	Position / speed indication Switchover takes place depending on the speed indication		-	-
H	Faster processor for lower cycle times		-	-
1	Bitwise idle time compensation	Not with L, LT	-	-
L	Blockwise idle time compensation	Not with L, LT	-	x
LT	Blockwise idle time compensation with separate turn on/ turn-off time	Not with I, L	-	-
P	Screw-plug-connector for an encoder connection instead of a connection via a 25 -pole D-SUB		-	-
P108	Switching capacity 1A on 8 outputs		-	-
P116	Switching capacity 1A on 16 outputs		-	-
R	Run control function on output 16		-	-
T	Timer/program switch		x	x
U	Direction cams depending on the sense of rotation		-	-
vo	Rotation speed/position change-over definable by the customer	Not with Vn, requires D	-	-
Vn	Locked outputs (outputs can only be changed by entering a password); n=number of locked outputs; max. 15 possible	Requires option A; not with option Vo	-	-
Y	Partial idle time compensation	Available with I or L	-	x
232	Interface RS232	Not with option 485		
485	Interface RS485-DICNET ${ }^{\circledR}$ (network of up to 16 DA cam controls)	Not with option 232		${ }^{1}$
X004	Four output-enable inputs	Not with P	-	-
X011	Speed indication scaled to customer's value	Requires option D, O, S	-	-
X016	Brake cam with quadratic idle time compensation		-	-
X?	Customized version	On request	-	-
Z	Encoder type incremental 24 V signal voltage		x	x

[^0](1) = RS $232 / 485$ switchable on board $\quad(2=$ Device is alternatively available with or without integrated control panel

Technical data LOCON 16 and LOCON 17

	Characteristics	LOCON 16	LOCON 16PM	LOCON 17	LOCON 17PM
Available eversions	$\begin{array}{\|l\|} \hline \text { - with integrated keypad } \\ \text { - without integrated keypad } \\ \hline \end{array}$	-	-	-	-
Installation	- front panel installation - OINrail	-	-	-	-
Ouputs		16	16	16	16
Storable outputs		16	16	16	16
Data records (incl. output names) (number of switch-on-/switch-off points)		1936	1936	1936	1936
Actual value acquisition	- incremental encoder - counting range incremental - absolute encoder parallel Gray excess absolute encoder parallel Gray code to bit-number absolute encoder SSI Gray code counting/direction inputs for incremental encoder timer function (value is generated internally)	$\begin{gathered} 1024 \\ 360,1000 \\ 360,1024 \\ 1-65535 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 1024 \\ 360,0,1000 \\ 360,1024 \\ 1-65535 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 4096 \\ 360,720,1000,3600 \\ 360,12124,4096 \\ 360, \\ 1-65535 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 4096 \\ 360,720,1000,3600 \\ 9.12 \\ 360,1024,4096 \\ 1-65535 \mathrm{~ms} \end{gathered}$
Idle time compensation (dynamic cam)	- blockwise - bitwise separate I/O entering the idle time in steps -partial idle time compensation	1ms - 999ms	1ms - 999ms		
Cycle time in some configurations the idle time might be higher, in case of using the high-speed-version it might also be lower	without idle time compensation (ITC) with blockwise ITC with bitwise ITC with blockwise //0 ITC high-speed-version for a lower cycle time	500us	$\begin{gathered} 500 \mathrm{us} \\ 500 \mathrm{us} \end{gathered}$	150 Hs 200 s 200us $550 \mu s$ 550 H - ab $60 \mu \mathrm{~s}$	150 1 s 200us $200 \mu \mathrm{~s}$ 550 us 550 us - ab $60 \mu \mathrm{~s}$
Software characteristics: zero point offset cams are interchangeable linewise angle/time cams direction cams lockable outputs	- within the complete range	:	:	:	$:$
Run-control-function		$\boldsymbol{*}^{2}$	${ }^{2}$	${ }^{2}$	${ }^{2}$
Speed indicator		*"	*)	*)	*"
Inputs	- for encoder signal - for porogam selection - for program change - for program release	$\begin{aligned} & 10 \\ & 4 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 10 \\ & 4 \\ & 1 \\ & 1 \end{aligned}$	12 4 1 1	$\begin{aligned} & 12 \\ & 4 \\ & 1 \\ & 1 \end{aligned}$
Logic functions	- logic inputs - extensive logic functions - shiftregister	:	:	enable-function (X04)	enable-function (x04)
Programming		:	:	$!$	$:$
Data backup	- EEPROM (min. 100 years) via transfer program on PC	:	-	:	:
Display seven-segment indication	- for position - for speed	$\begin{aligned} & 6 \text { digits } \\ & \quad . ") \\ & \hline \end{aligned}$:	$\begin{aligned} & 6 \text { digits } \\ & \vdots \\ & \hline \text { ") } \end{aligned}$:

	Characteristics	LOCON 16	LOCON 16PM	LOCON 17	LOCON 17PM
Status display for	- outputs programming status - external program selection - SSI-Control - error-display - run-Control				i
Interface	- RE232	- switchable	- switchable	- switchable	- switchable - switchable
Voltage supply 24VDC $+1-20 \%$		-	-	-	-
Max. power consumption (without load)		200 mA	200 mA	200 mA	200 mA
Output driver max. load	-300 mA each output, max. 1 A for 8 outputs at a time at $25^{\circ} \mathrm{C}$ ambient temperature 700 mA each output, temporarily also 1 A each ouput outputs positive switched, short-circuitproof	- 8/16 outputs	- 8/16 outputs	- 8/16 outputs	- $8 / 16$ outputs
Analog outputs	- current output - voltage output	-	-	-	
Dimensions basic device in mm	$\begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline \text { widith } \\ \text { - depptht } \\ \hline \end{array}$	$\begin{aligned} & 72 \\ & 96 \\ & 70 \end{aligned}$	$\begin{aligned} & 65,5 \\ & 89.5 \\ & 74 \end{aligned}$	$\begin{aligned} & 72 \\ & 96 \\ & 70 \end{aligned}$	$\begin{aligned} & 65,5 \\ & \hline 9.5 \\ & 74 \end{aligned}$
Front panel cutout		90×66		90×66	
Protection class		1P54	1120	1P54	1120
Weight in grams		580	580	580	580

- = Standard
optionally for an additional charge
I) $=$ Optionally at no additional charge
= Automatic switchover between position and speed (speed-dependent)
$=$ Run-control function is asssigned to output 16

LOCON 24 and 48

The Multifunctionals
Compact series with DIN size of $144 \times 144 \mathrm{~mm}$. With an overall depth of 44 mm only, these models feature 24,32 or 48 outputs. 64 programs can be selected either via the integrated control panel or that can be selected externally, a memory of 1000 data records as well as an extensive range of functions round off the features.
 The version with integrated control panel for front panel installation
(either IP54 or IP65) offers the operating convenience you are looking for: Seven-segment display for position and speed, 2 -line LCD with a multi-lingual, user-configurable menu, and both, a decimal keypad and a function keypad.

Structure of the order code

Basic device

Option	Meaning	Excludes or only possib- le with the option	L24	L48
PM	Version for mounting plate without keypad		©	©
0360	Version for absolute encoder parallel 360 inf./rev.	All other resolutions	-	-
01000	Version for absolute encoder parallel 1000 inf./rev.	All other resolutions	©	-
On	Version for absolute encoder parallel (n=encoder's resolution)	All other resolutions	-	-
S4096	Version for SSl-absolute encoder 4096 inf./ rev.	All other resolutions	-	-
S8192	Version for SSl-absolute encoder 8192 inf./ rev.	All other resolutions	-	-
MT	Version for SSI-absolute encoder 24 Bit (16 mio.)	All other resolutions	-	-
Zn	Version for incremental encoder 24V signal voltage (noindicates encoder's resolution at speed indication): counting range in increments		16384	8192

Hard- and software-options

Code	Meaning	Excludes or only possible with the option	L24	L48
A32	Extension to 32 outputs		-	-
D	Binary coded speed indication on the 8 upper outputs		-	-
G	Encoder monitoring (for postively counting adjusted devices only)		-	-
H08	Highly dynamic idle time compensation on the first 8 outputs, all other outputs can be compensated bit by bit	Not with L, LT	-	-
I	Bitwise idle time compensation	Not with L, LT	\bullet	\bullet
IP65	Front plate; version IP65		-	-
L	Blockwise idle time compensation	Not with I, LT	x	x
LT	Blockwise idle time compensation with separate turn on and turn off time	Not with I, L	-	-
N	Extension to 1500 data records		-	-
U	Direction cams		-	-
T	Timer/programmable switch		x	x
Vn	Locked outputs		-	-
W16/W32	Angle/time cams on the first 16/32 outputs possible (restriction: encoder resolution max. 13 Bit)		-	-
X ?	Customized version	On request	-	-

- = Standard

- $=$ Optionally for an additional charge
$=$ Optionally at no addititional charge
$=$ RS232/485 switchable on board
$=$ RS232 2485 switchable on board
$=$ The unit is alternatively available with or without integrated control panel

Technical data LOCON 24 and LOCON 48

	Characteristics	LOCON 24	LOCON 24PM	LOCON 48	LOCON 48PM
Available ersions	- with integrated keypad - without integrated keypad	\bullet	-	-	-
Instalataion	- front panel installation mounting plate DINrail	- without front	- without front	- without front	- without front
Output		$\begin{aligned} & 24 \\ & =32 \end{aligned}$	$\begin{aligned} & 24 \\ & =32 \end{aligned}$	48	48
Storable programs		64	64	64	64
Data records (incl. output) (number of switch-on/switch-off points)		$\begin{aligned} & 1000 \\ & =1500 \end{aligned}$			
Actual value acquisition	- incremental encoder - counting range incremental absolute encoder Gray excess -absolute encoder parallel Gray code to bit number absolute encoder SSI Gray code (at option MT) count/direction inputs for incremental encoders - timer function (value is generated internally)				$\begin{gathered} 8192 \\ 360,720,100,3600, \\ 22000 \\ 2.1 .13 \\ 2 . .13,1(24) \\ 1-65535 \mathrm{~ms} \\ 1-2 \end{gathered}$
Idle time compensation (dynamic cam)	- blockwise - bitwise - separate I/O - entering the idle time in steps - partial idle time compensation - highly dynamic ITC for number of outputs			$\begin{gathered} \text { x } \\ \text { 1ms }-999 \mathrm{~ms} \\ -8 \end{gathered}$	
Cycle time In some configurations the cycle time may be higher, in case of using the high-speed version it may also be lower.	- without idle time compensation (ITC) with blockwise ITC with bitwise ITC - with blockwise I/O ITC	$\begin{aligned} & 75 \mathrm{us} \\ & 150 \mathrm{~s} \\ & 300 \mathrm{~s} \\ & 205 \mathrm{l} \end{aligned}$	$\begin{aligned} & 75 \mathrm{us} \\ & 150 \mathrm{~s} \\ & 300 \mu \mathrm{~s} \\ & 250 \mathrm{H} \end{aligned}$		
Software characteristics zero point offset cams are interchangeable linewise angle/time cams direction cams scalable encoder value	- within the complete range		$\underset{\text { i6/3 outputs }}{\vdots}$		
Run-control-function		-(relay)	-(relay)	- (relay	-(relay)
Speed indicator		-	-	-	-
Input	for encoder signal for program selection for program change for program release	$\begin{aligned} & 13 \\ & 6 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 13 \\ & 6 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 13 \\ & 6 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 13 \\ & 6 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Programming	$\begin{aligned} & \text { - teach-in programming } \\ & \text { - via integrated keypad } \\ & \text { - via Deutschmann terminal } \\ & \text { - via PC (WINLOC } 32^{\oplus-} \text {-software) } \\ & \text { - via cam control profile } \end{aligned}$:	\bigcirc	:	-
Data backup	- EEPROM (min. 100 years) via transfer program on PC	:	:	:	:
Display seven-segment indication	- for position - for speed	$10 \text { digits }$:	$10 \text { digits }$:

	Characteristics	LOCON 24	LOCON 24PM	LOCON 48	LOCON 48PM
Status display for	outputs - programming status external program selection - SSI-control - error-display - run-control	$!$	$!$:	
Interface	$\begin{array}{\|l\|l\|} \hline- \text { RS232 } \\ \text { - RS485-DICNETT } \end{array}$	- switchable	- switchable - switchable	- switchable	- switchable - switchable
Voltage supple 24VDC +-20\%		-	-	-	-
Max. power consumption (without load)		200 mA	200 mA	200 mA	200 mA
Output driver max. load	300 mA per output, max. 1 A for 8 outputs at a time at $25^{\circ} \mathrm{C}$ ambient temperature 700 mA per output, temporarily also 1A per output - outputs positive switching, short-circuitroof	- $8 / 16$ outputs	- 8/16 outputs	- $8 / 16$ outputs	- 8/16 outputs
Dimensions basic device in mm	$\begin{array}{\|c\|c} \hline \text { - with } \\ \text {-height } \\ \text { - deppth } \end{array}$	$\begin{aligned} & 144 \\ & 144 \\ & 44 \end{aligned}$	$\begin{aligned} & 144 \\ & 144 \\ & 44 \end{aligned}$	$\begin{aligned} & 144 \\ & 144 \\ & 44 \end{aligned}$	$\begin{aligned} & 144 \\ & \begin{array}{l} 144 \\ 44 \end{array} \end{aligned}$
Front panel cutout		138×138	-	138×138	
Protection class			\| 120 "		\|P20 ${ }^{\text {] }}$
Weight in grams		1000	1000	1000	1000

- $=$ Standard \quad = Optionally for an additional charge
$x=0$ optionally for no additional charge
区 $=$ Freely contigurable

1) $=$ Without housing
2) = Standard version for front panel installation
= Version for front panel installation IP64

HMI Parts Center

LOCON 200

Fast and modular

LOCON 200 consists of a basic unit with the tasks of the central actual-value acquisi tion, communication with the periphery, voltage supply and some further administration topics.
The complete performance capacity is achieved by using the expansion module with $8 \mathrm{I} / 0$ s each. Through the consistent arrangement as I/Os the basic module as well as the expansion unit achieve highest possible flexibility and best possible utilization of the hardware
If, for instance only 8 externally selectable programs are required, the otherwise usu ally reserved pins are not useless but they can be used elsewhere.

The system is limited to one basic unit and max. $16 \mathrm{I} / 0$-modules. Through the use of a separate processor for each module the cycle time in the overall system remains constant and depends upon configuration, encoder type, resolution as well as used software-performance characteristics. All modern actual value acquisition systems from incremental to multiturn encoder are supported. Alternatively the device can also be operated as program control unit (timer function). The time basis is generated internally and can be adjusted in the range from 1 to 65535 ms .

The connection to Fieldbus systems is as a matter of course as is the intuitive configuration via a PC-program. The alternative operation through an external terminal or the complete integration in the Fieldbuses come naturally with us. A version with integrated PROFIBUS DP is optionally available

LOCON 200
Overall width 48.8 mm

LOCON 200-//08 Expansion module Overall width 12.2 mm

Expansion module I/08
With this module LOCON 200 is expanded by $8 / / 0$ s up to the maximum configuration level of $144 / / 0 \mathrm{~s}$ step by step. From a configuration level of more than 8 pieces LOCON 200, one NT module for LOCON 200-Out //08 must be used

The expansion module contains its own processor. Therefore, the switching accuracy (cycle time) is independent of the LOCON 200(-PB) basic module or in other words: the configuration-dependent cycle time remains the same independent of the configuration level

In the $/ / 08$, the idle time can be configured in a module-related way. Besides, the device supports logic functions. That way logic connections can be realized in a module-related manner

LOCON 100

Powerful and expandable
LOCON 100 consists of a basic unit with a total of $16 \mathrm{l} / \mathrm{s}$. They can be configured de pending on the respective application. If, for instance, only a 9 -bit encoder is required, then the other encoder connections must not remain useless but can be put to practical use for other applications.

The system can be expanded by one module to a total of $48 \mathrm{I} / \mathrm{O}$ which are config ured in the same way. So you can assemble your cam control individually and you are totally free regarding outputs, inputs and utilization of functions such as external program selection, encoder type and resolution etc.

LOCON 100 as well features connection facilities for all modern actual-value acquisition systems. Alternatively the device can also be operated as program control unit (timer function). The time basis is generated internally and can be adjusted in the range from 1 to 65535 ms . The software gives you the freedom to choose from various types of idle time compensation (dynamic cam). No matter whether angle-/angle-cams or angle-/time-cams are used - everything can be configured and combined
The modern control-concept is convincing and offers something for all tastes: Modern PC GUI, that can be connected to any Fieldbus or the easy-tohandle terminal GUI. The device with integrated PROFIBUS DP is optionally available.

Expansion module A32

With this module the basic device LOCON $100(-\mathrm{PB}) /(-\mathrm{MB})$ is expanded by 32 to a total of $48 \mathrm{l} / 0$ s. The expansion module does not contain an own processor. Therefore, the switching accuracy (cycle time) depends on the LOCON 100 (-PB)/(-MB), its configuration and programmed data records.

Model Overview LOCON 90 / 100 / 200

LOCON 90
Powerful and reasonably priced
LOCON 90 is a less expensive version of LOCON 200 and LOCON 100. Equipped with $16 / / 0$ s - of which a maximum of 8 can be configured as outputs - this unit is predestined for simple applications.
Absolute encoders can be connected via SSI up to a resolution of 13 bit. In case some of the I/Os are configured as inputs, these can e.g. be used as external program selection.

LOCON 90 as well features connection facilities for all modern actual-value acquisition systems. Alternatively the device can also be operated as program control unit (timer function). The time basis is generated internally and can be adjusted in the range from 1 to 65535 ms .
The software gives you the freedom to choose from various types of idle time compensation (dynamic cam). No matter whether angle-/angle-cams or angle-/timecams are used - everything can be configured and combined. LOCON 90 is operated via the PC-software WINLOC 32^{\circledR}

LOCON 90
Overall width 48.8 mm

Description	Explanation	Order number
LOCON 90		V3542
LOCON 100	Basis module	V3374
LOCON 100-MB	Basis module with Modbus RTU-interface	V3589
LOCON 100-PB	Basis module with PROFIBUS-interface	V3397
LOCON 100-A32	Expansion module with 32 I/Os for LOCON 100/100-PB	V3425
LOCON 200	Basis module	V3485
LOCON 200-PB	Basis module with PROFIBUS-interface	V3487
LOCON 200-Out I/08	Expansion module with 8 I/Os for LOCON 200/200-PB	V3486
Logic	Logic function for LOCON 100-PB, LOCON 200, LOCON 200-PB	V3426

Description	Explanation	Order number
Programming cable for	Assembled configuration and programming cable-232	
LOCON 90/100/200	Length: 2.0 m , Side A: 9pin. D-SUB socket with metalized hood, side B: 8 pin. Terminal strip with universal power supply 12W, 24V, 0.5A Note: The USB-RS232 converter, 20 cm , Article-No.: V3654) must be ordered seperately if required.	

Technical data LOCON 100

	Characteristics	LOCON 100	LOCON 100-mB	LOCON 100-PB	LOCON 100-A32
Available eersions	without integrated keypad	-	-	-	-
Instalation	DINrail mounting	-	-	-	-
Outputs		$\begin{gathered} 16 / / 0 \mathrm{~s} \\ 48 \text { (with Locon } \\ 100-\text {-a32 }) \end{gathered}$	$\begin{aligned} & 16 \mathrm{~V} / \mathrm{s}(32 \text { SW outputs) } \\ & 48 \text { (with LOCON } 100- \\ & \text { A32) } \end{aligned}$	16 I/Os (32 SW outputs) 48 (with LOCON 100A32)	32
Storale programs		64	64	64	-
Data records (incl.output names) (number of switch-on/switch off points)		1000	1000	1000	Data stored in L100 $(-$ PB/ $/-M B)$ (-PB/-MB)
Actual value acquisition	- incremental encoder - counting range incremental absolute encoder Gray excess absolute encoder parallel Gray code to bit number - absolute encoder SSI Gray code - count/direction inputs for incremental encoders - timer function (value is generated internally)	$\begin{gathered} \hline 8192 / 16 \mathrm{Mio} . \\ 360,720,1000, \\ 3600,7200 \\ 2 \ldots . .13 \\ 2 \ldots . .13,24,25 \\ \boxtimes \\ 1-65535 \mathrm{~ms} \end{gathered}$			dependent L100 (-PB/-MB) dependent L100 (-PB/-MB) dependent L 100 (-PB/-MB) dependent L100 (-PB/-MB) dependent L100 (-PB/-MB) dependent L100 (-PB/-MB)
Idle time compensation (dynamic cam)	blockwise - bitwise separate I/O - entering the idle time in steps	$\begin{gathered} \stackrel{\boxtimes}{\bullet} \\ 0,2 \mathrm{~ms}-999 \mathrm{~ms} \\ \bullet \end{gathered}$			dependent L100 (-(-PB/-MB) dependent L100 (--PB-MBB) dependent $L 100$ (-PB/-MB) via baisc L100
Cycle time In some configurations the cycle time might be higher, in case of using the high-speed version it might also be lower	without idle time compensation (ITC) with blockwise ITC with bitwise ITC with I/O ITC high speed version for lower cycle tim	$\begin{aligned} & \text { dyn. ab 100us } \\ & \text { dyn. ab } 300 \mathrm{~s} \\ & \text { dynn ab } 165 \mathrm{~s} \\ & \text { dyn. ab 190 } \end{aligned}$ ayi. av.	$\begin{aligned} & \text { dyn. ab 140 } 1 \text { ss } \\ & \text { dyy. ab 170нs } \\ & \text { dyn. ab 205us } \\ & \text { dyn. ab 230us } \end{aligned}$	$\begin{aligned} & \text { dyn. ab 250нs } \\ & \text { dyn. ab 208us } \\ & \text { dyn. ab 315us } \\ & \text { dyn. ab } 340 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & L 100+50 \mu \\ & L 100+50 \mu \\ & L 100+50 \mu \\ & L 000+50 \mu \end{aligned}$
Software characteristics: zero point offset cams ar interchangeable linewise angle/time cams direction cams scalable encoder value	- within the complete range				via basis 1000 via hasis 1100 . via basis L100 via basis L100
Run-control-function		®	区	®	
Speed indicator		-	-	-	via basis L100
Inputs	for encoder signal for program selection for program change - for program release				\vdots
Logic functions	- logic inputs - extensive logic functions - shift register	-	$:$	$\stackrel{\boxtimes}{!}$:
Programming	teach-in-programming via Deutschmann terminal - via PC (WINLOC 32@-software) others	:			s. L100 (-PB/-MB)
Data backup	EEPROM (min. 100 years) via transfer program on PC	:	:	:	s. LL00 (-PBB-MB) s. $1100(-\mathrm{PB} /-\mathrm{MB})$
Status display for	- outputs programming status - external program selection - SSI-control error-display - run-control (if configured) - Fieldbus status	:	:		

Technical data LOCON 200 and LOCON 90

	Characteristics	LOCON 200	LOCON 200－PB	LOCON 200－1／08	LOCON 90
Available ersions	without integrated keypad	－	－	－	－
Installation	DINrail mounting	－	－	－	－
Outputs		$\begin{gathered} 1610 \mathrm{~s} \\ 144(+16 \times 108) \end{gathered}$	$\begin{gathered} 16 / 0 \mathrm{~s} \\ 80(+8 \times 1 / 08) \end{gathered}$	$81 / 0 \mathrm{~s}$	8
Storable programs		256	64		64
Data records（incl．ouput names） （number of switch－on／switch－off points）		$\begin{aligned} & 1000+232 \text { per } \\ & \text { module } \end{aligned}$	1000	232	1000
Actual value acquisition	－incremental encoder－counting range incremental absolute encoder Gray excess absolute encoder parallel Gray code to bit number absolute encoder SSI Gray code count／direction inputs for incremental encoders timer function（value is generated internally）	$\begin{gathered} 8192 / 16 \text { Mio. } \\ 360,720,1000, \\ 3600,7200 \\ 2 . .13 \\ 2 . .13,24,25 \\ \boxtimes \\ 1-65535 \mathrm{~ms} \end{gathered}$	$\begin{gathered} 8192 / 16 \mathrm{Mio} . \\ 360,720,1000, \\ 3600,7200 \\ 2 . .13 \\ 2 \ldots . .13,24,25 \\ \times \\ 1-65535 \mathrm{~ms} \end{gathered}$	dependent L200（－PB） dependent L200（－PB） dependent L200（－PB） dependent L200（－PB） dependent L200（－PB） dependent L200（－PB）	$8192 / 16 \mathrm{MiO}$ $360,720,1000,3600$, 7200 2.1 .13 $2 . .13,24,25$ $\boxed{2}$, $1-65535 \mathrm{~ms}$
Idle time compensation （dynamic cam）	－blockwise －bitwise separate I／O entering the idle time in steps	$\begin{gathered} \stackrel{\otimes}{\bullet} \\ 0,2 \mathrm{~ms}-999 m s \end{gathered}$	$\begin{gathered} \stackrel{\text { ® }}{\bullet} \\ 0,2 \mathrm{~ms}-999 \mathrm{~m} \end{gathered}$	$\begin{gathered} \stackrel{\boxtimes}{\bullet} \\ 0,2 \mathrm{~mm}-999 m s \end{gathered}$	
Cycle time In some configurations the cycle time might be higher， in case of using the high－speed version it might also be lower．	without idle time compensation（ITC） with blockwise ITC with bitwise ITC with I／O ITC high speed version for lower cycle time	dyn．from $500 \mu \mathrm{~s}$ dyn．from $500 \mu \mathrm{~s}$ dyn．from $500 \mu \mathrm{~s}$ dyn．from $500 \mu \mathrm{~s}$ 区	dyn．from $500 \mu \mathrm{~s}$ dyn．from $500 \mu \mathrm{~s}$ dyn．from $500 \mu \mathrm{~s}$ dyn．from 500μ区	dyn．from 55 dyy．from 85 H dyn．from ${ }_{\boxtimes}^{115 \mu \mathrm{~s}}$	dyn．from 100us dyn．from $130 \mu \mathrm{~s}$ dyn．from 190us
Software characteristics： zero point offset cams ar interchangeable linewise angle／time cams direction cams scalable encoder value	－within the complete range			via basis L200 via basis L200 \mathbb{X} via basis L200 via basis L2	
Run－control－function		『	区	－	区
speed indicator		－	－	via basis L200	－
Inputs	for encoder signal for program selection for program change for program release			\vdots	
Logic functions	－logic inputs extensive logic functions shift register	$\stackrel{16}{ }$	$\because 16$	－${ }^{8}$	
Programming	teach－in－programming via Deutschmann termin via PC（WINLOC 32^{\circledR}－software） －others	：			$:$
Data backup	EEPROM（min． 100 years） via transfer program on PC	：	：	－	：
Status display	outputs programming status external program selection －SSI－control －error－display run－control（if configured） －Fieldbus status	\square \vdots		：	：

	Characteristics	LOCON 200	LOCON 200－PB	LOCON 200－1／08	LOCON 90
Interface	－RS232 －RS485－DICNET® －integrated PROFIBUS interface	－switchable －switchable		s．L200（－PB） s．L－ $1200(-P B)$ s． s．L200（－PB）	
Votage supply $24 V \mathrm{DCC}+1-20 \%$		－	－	via basis L200	－
Max．power consumption（without load）		200 mA	200 mA	200 mA	200 mA
Output driver max．load	-300 mA each output，max． 1 A for 8 outputs each 700 mA each output，temporarily also 1 A each output －plus switching outputs，short tircuit－proo	－	－	－	－
Analog outputs	－current output voltage output			－	－
Dimensions basic device in mm	$\begin{array}{\|l\|l} \hline \text { - width } \\ \text { - heifht } \\ \text { - depth } \end{array}$	$\begin{aligned} & \begin{array}{l} 48,8 \\ 71,5 \\ 120 \end{array} \end{aligned}$	$\begin{aligned} & 48,8 \\ & \begin{array}{l} 41,5 \\ 120 \end{array} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 48,8 \\ 71,5 \\ 120 \end{array} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 12,2 \\ 71,5 \\ 120 \end{array} \end{aligned}$
Protection class		1 P20	1120	1120	$1{ }^{120}$
Weight in grams		220	230	200	70

－$=$ Standard
－
Optionally for an additional charge
x Optinally at no additional charge
区 $=$ Freely configurable your ticket to all buses

ROTARNOCK series

With the ROTARNOCK－series Deutschmann Automation took a new innovative path． The entire cam control was integrated in the housing of the absolute encoder This saves work and money．The wiring of the encoder can be dispensed with entirely． The outputs of the cam control are applied directly to the device via its connector．

The ROTARNOCK 100 is optionally available with integrated PROFIBUS－or
PROFINET interface．The device versions with PROFIBUS or PROFINET can be connected to SIEMENS SIMATIC S7 and other PLCs and Soft－PLCs very easily．The data exchange between the PLC and the cam control is carried out via a data compo－ nent．The data component for $\mathrm{S7}$ can be generated by the user himseff by means of the data component generator that is available free of charge．A data component in the version required in each case is generated by the data component genera－ tor，so that no unnecessary storage space is occupied in the PLC．

The device description files（GSD or GSDML）required for a PROFIBUS or PROFINET connection are also provided free of charge．With it no programming effort is involved for the user and he does not have to carry out changes in the PLC－program For the initial programming the comfortable PC－software WINLOC $32^{\text {® }}$ can be used and the already fixed data component including cams，idle times etc．can be generated automatically．

Version	Overall length in mm （dimension x）
ROTARNOCK 100 standard D－Sub version	69
ROTARNOCK 100 with Option IF	69
ROTARNOCK 100 PROFIBUS with D－Sub connector	81
ROTARNOCK 100 PROFIBUS in IP65 and ROTARNOCK 100 Fieldbus version in IP65 ROTARNOCK 100 PROFINET	98

ROTARNOCK 100

Complete equipment for all applications

In this high－end model the advantages of the most recent Deutschmann software package have been implemented．This pro vides you with free software configuration．The switching outputs have a load rating of 700 mA and cut additional costs in the switch cabinet．After all the ROTARNOCK－series is already economical by nature：
The wiring effort is reduced since no additional rotary encoder needs to be wired up．The ROTARNOCK 100 PROFIBUS－version unfolds its cost advantages more than ever．Of course the

ROTARNOCK－versions are equipped for various industrial require－ ments．The versions you can choose from are IP54 version with D－SUB connector or IP65 version with round connector．

ROTARNOCK 100 with integrated Fieldbus
The ROTARNOCK 100 is also available with Fieldbuses and Indus－ trial Ethernet buses．Such as：

CANopen	Devicei ${ }^{\text {l }}$ et	EtherCAT＊${ }_{\text {a }}{ }^{\text {a }}$	Etherivet／IP
ethernet TCPIP	\＄Modbus	MPI	gqPGI

－ 20 －

ROTARNOCK Starterkit This starter kit contains all required cables and power supplies for the quick laboratory setup． Packages with other ROTARNOCK versions are available on request．

Basis device

Article description	Order－－No．
Starterkit for ROTARNOCK 100 with RS232－interface	P1084
Starterkit firir ROTARNOCK 100 mit PROFIBUS－Schnitstelle	P1066
Starerekit tirir RoTARNOCK 100 mit RS485－IICNET S Schnithtelle	P1068

TN65－4096－100	ROTARNOCK 100， 4096 inf．／rev．， 16 switching outputs	Resolution freely configurable

Hard－and Software options

Code	Meaning	Excludes option or only possible with option	R100
D	Position－speed indicator switchover；switchover depending on the speed		－
G	Encoder monitoring		区
I	Bitwise idle time compensation	Not with L，LT，IT	－
IF	28－pole round connector for protection class IP65	Not with PB and IP	－
IP	Version IP65 for versions with integrated PROFIBUS	Not with devices without PROFIBUS or with IF	－
	Version IP65 for versions with integrated Fieldbus	Not with devices without Fieldbus or with IF	－
IT	Separate switch－on／switch－off idle time compensation bitwise	Not with I，L，LT	区
L	Blockwise idle time compensation	Not with I，LT，IT	区
LT	Separate switch－on／switch－off idle time compensation blockwise	Not with I，L，IT	区
R	RUN－CONTROL－function on output 16；for the Fieldbus－version with IP65 only to output 12		区
U	Output change depending on the direction of rotation		区
232	Interface RS232	Not with option 485	x
485	Interface RS485 DICNET®（cross－linking of up to 16 DA cam controls）	Not with option 232 or other Fieldbus	x
PB	Integrated Profibus－interface（additional RS232－interface）	Not with option 485 or other Fieldbus	－
CO	Integrated CANopen－interface（additional RS232－interface）	Not with option 485 or other Fieldbus	－
DN	Integrated DeviceNet－interface（additional RS232－interface	Not with option 485 or other Fieldbus	－
EC	Integrated EtherCAT－interface（additional RS232－interface）	Not with option 485 or other Fieldbus	－
EI	Integrated Ethernet／IP－interface（additional RS232－interface）	Not with option 485 or other Fieldbus	－
FE	Integrated Ethernet 10／100 MBit－interface（Modbus TCP or Ethernet TCP／IP） （additional RS232－interface）	Not with option 485 or other Fieldbus	－
MPI	Integrated MPI－interface（additional RS232－interface）	Not with option 485 or other Fieldbus	－
PN	Integrated Profinet－interface（additional RS232－interface）	Not with option 485 or other Fieldbus	－

R100＝ROtaRNOCK
－Stanar
－＝Optionally for an additional charge
$x=$ Optionally at no additional charge

LOGIC \quad The Logic－license code can be ordered by indicating the serial number
für ROTARNOCK 100 erhältlich
Art．－No．V3426

Structure of the order code

Technical data ROTARNOCK 100

	Characteristics	Rotarnock 100	Rotarnock 100 Pb	ROTARNOCK 100 PN		
Mechanical data	－shaft load －shaft diameter －shaft length －shock resistance －vibration resistancet －rotor＇s moment of inertia －durability					
Outputs		16	$\begin{aligned} & 16+32 \text { software outputs or } \\ & 12-48 \text { at } 1 \text { P65 } \end{aligned}$	$12+32$ software outputs		
Storable programs		64	64	64		
Data records number of switch－on／ switch－off points）		1000	1000	1000		
Actual value acquisition	Absolutwertgeber gek．Gray－Code －Absolutwertgeber Parallel Gray－Code bis Bitzahl	$\underset{\substack{360, .12}}{\text { 9000，} 3600}$	$\begin{aligned} & 360,1000,3600 \\ & 9 . . .12 \end{aligned}$	$360,1000,3600$ $9 \ldots 12$		
Idle time compensation （dynamic cam）	－blockwise bitwise －separate I／O －entering the idle time in steps		$\begin{gathered} \stackrel{\text { 区 }}{\stackrel{\bullet}{\mathrm{x}}} \\ \text { 1ms- }-999 \mathrm{~ms} \end{gathered}$			
Cycle time In some configurations the cycle time may be higher．	－without idle time compensation（ITC） －with blockwise ITC with bitwise ITC with I／O ITC	ca． 110 us ca 145 s ca． 145 H ca． 270 Hs ．	ca．260us ca． $295 \mu \mathrm{~s}$ ca． $430 \mu \mathrm{~s}$ ．	－		
Software characteristics： zero offset cams movable track by track angle／time cams direction cams	－within the complete range	$\begin{aligned} & \quad: \\ & \stackrel{\otimes}{\otimes} \\ & \hline \end{aligned}$				
Run－control－funktion		区	区	凶		
Speed indicator		－	－	－		
Inputs	－for program selection －for program change	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	via Fieldbus only via Fieldbus only	via Fieldbus only via Fieldbus only		
Logic function	logic inputs extensive logic functions shift register	：	16 via Fieldbus ：	16 via Fieldbus ：		
Programming	－teach－in programming －via integrated keypad via Deutschmann terminal via PC（WINLOC 32^{\circledR}－software） via cam control profile integrated Fieldbus and any desired visualization system	via Fieldbus only	via Fieldbus only PROFIBUS	via Fieldbus only PROFINET		
Data protection	－EEPROM（min． 100 years） －via transfer program on PC	：				
LED for	－error－display －zero indication Fieldbus statu	：	：	：		
Supply voltage 24VDC＋－20\％		－	－	－		
Max．current consumption（without load）		150 mA	200 mA	200 mA		
Output driver max．load	-300 mA je Ausgang，max． 1 A für je 8 Ausgänge -700 mA je Ausgang，kurzzeitig auch 1A je Ausgang Ausgänge plusschaltend，kurzschlussfest	：	：	：		
Dimensions Basic device in mm	－Durchmesser －Länge	$\begin{gathered} 65 \\ \text { siehe Zeichnung } \end{gathered}$	$\begin{gathered} 65 \\ \text { siehe Zeichnung } \end{gathered}$	$\begin{gathered} 65 \\ \text { siehe Zeichnung } \end{gathered}$		
Protection class		$\begin{aligned} & \text { •P54 } \\ & \\| P 55 \end{aligned}$	$\begin{aligned} & \text { P1P54 } \\ & \\| P 565 \end{aligned}$	1P65		
Weight in grams		400	400	480		

Rotarnock 100 FB＊
$12+32$ sotware outputs
64
1000
$\underset{\substack{360,12 \\ 9000,3600}}{ }$
$:$
区
－
via Fieldbus only via Fieldbus only
via Fieldbus only Feldbus
：
－
200 mA
$\begin{gathered} 65 \\ \text { see drawing } \end{gathered}$
1 P65
480

$\begin{array}{lll}\bullet=\text { Standard } & \quad=\text { Optionally for an additional charge } & x=\text { Optionally at no a aditionally charge }\end{array} \quad$ 区＝Freely configurable
$P B=$ PROFBUS $\quad P N=$ PROFNET $\quad * F B=$ Available with integrated Fieldbus
CANopen Devicei＇et Ethercat．${ }^{*}$ Etheri＇et／IP ethernet tcpip Moalbus

TERM 6 and TERM 24
TERM 6 - The small ones
The "four-key operation" which has proven its worth over the years in countless applications can be operated easily after a short familiarizationperiod only. A clear structure and practical symbols on the seven-segmen display, in conjunction with the function LEDs, made this interface very popular. The integrated and switchable interfaces RS232- and RS485DICNET ${ }^{\circledR}$ allow the communication with any Deutschmann cam control. in addition to the version for front-panel installation, a version for DIN rai mounting and a portable version for the service technician is also available.

Term 6 for front panel installation

Term 6 H for DIN rail mounting

TERM 24 - The compact ones
This multi-lingual menu driven user-interface in connection with the decimal keypad and the function keys offers a high level of convenience Encoder position and speed are displayed simultaneously on the sevensegment display. Depending on the kind of application, you can choose between the housing versions IP54 and IP65. This terminal can be used with any Deutschmann cam control thanks to the RS232- or RS485 DICNET®-interface

Term24, front panel IP54

Term 24, front panel IP65

Term 6 T hand-held terminal

Compatibility of Deutschmann cam controls with terminals and the WINLOC ${ }^{\circledR}$ 32-software The integrated front panel of a LOCON 24,48 or 64 can also be used as terminal, provided that several devices are connected with one another. With it the compatibility as for TERM 24 applies

Device type	TERM 6	TERM 24	WINLOC ${ }^{\text {® }} 32$ PC-tool
LOCON 16	-	-	-
LOCON 17	\bullet	-	\bullet
LOCON 24	-	-	\bullet
LOCON 48	-	-	-
LOCON 90	-	-	-
LOCON 100	-	-	-
LOCON 100-MB	-	-	-
LOCON 100-PB	-	-	-
LOCON 200	-	-	-
LOCON 200-PB	-	-	-
ROTARNOCK 100	-	-	-
ROTARNOCK 100-PB	-	-	-
ROTARNOCK 100 with integrated Fieldbus*	-	-	-
ROTARNOCK 100-PN	-	-	-

\bullet - möglich

Device type	TERM 6	TERM 24-IP54	TERM 24-IP65
Features	display and control unit	display and control unit	display and control unit
Display	8 -digit 7-segment display for position/speed, output indication for 16 outputs	10-digit 7 -segment display for position/ speed, output indication for 48 outputs	10-digit 7 -segment display for position/ speed, output indication for 48 outputs
Interface	RS232 (V.24) and RS485-DICNET ${ }^{\circledR}$, max. any 3 terminals in one bus, interface switchable	RS232 (V.24) or RS485-DICNET ${ }^{\oplus}$, max. any 3 terminals in one bus, interface not switchable	RS232 (V.24) or RS485-DICNET ${ }^{\oplus}$, max. any 3 terminals in one bus, interface not switchable
LCD-display		2-line LCD-display with LED-backlight, 16 characters/line, operator guidance in ten languages	2-line LCD-display with LED-backlight, 16 characters/line operator guidance in ten languages
Connections	screw-plug-connector	screw-plug-connector	screw-plug-connector
Function LEDs	6 status LEDs	-	-
Installation	front panel installation, DIN rail mounting, portable version	front panel installation	front panel installation
Protection class	IP54	IP54	IP65
Dimensions ($\mathrm{W} \times \mathrm{HXD}$)	$\begin{gathered} 72 \times 96 \times 18 \mathrm{~mm}, \\ 7 \times 96 \times 25 \text { (DIN rail version) } \end{gathered}$	$144 \times 144 \times 15 \mathrm{~mm}$	$168 \times 168 \times 15 \mathrm{~mm}$
Weight	approx. 200 g	approx. 450 g	approx. 450 g
Panel cut-out	$66 \times 90 \mathrm{~mm}$	$138+1 \times 138+1$ mm	$138+1 \times 138+1 \mathrm{~mm}$

HMI Parts Center

WINLOC 32^{\circledR}

Programming Deutschmann cam controls using Windows

WINLOC 32^{\circledR} offers an easy to use graphical user interface for programming Deutschmann cam controls under Microsoft Windows 7
The user may print all device data as complete documentation. The compilation of the data is made by the user. The printout is prepared as a scaleable preview, which can be observed before it is printed on paper.

With the basic version WINLOC 32^{\circledR} already offers all necessary abilities for programming devices as well as for transferring data from Deutschmann cam controls to the PC

By simply entering a license number the basic version is upgrated to a comfort version with an interface that is easier to use and an extended printout capability. WINLOC 32^{\circledR} is available as German or English language version

Basic or comfort version?

The software WINLOC 32^{\circledR}, that has been developed for the programming of all Deutschmann cam controls is available in two versions. The basic version can be ordered directly from us or it is also available for download free of charge from our website at www. deutschmann.de. It offers all functions that are required to program Deutschmann cam controls
There is also a comfort version of WINLOC 32^{\circledR} available. By entering a license number that can be ordered from Deutschmann you can use additional convenient tools in the software, that simplify the operation of the program.

The following tools can be used:

The toolbar: It contains buttons that simplify the handling of the program.
Extented print options: Deviating from the standard presetting this tool allows an individual setting so that the printout complies with your requests.

Selecting devices at upload/download: The availability of Pull-Down Menus simplifies the selection of devices, that exist in the network.

Data migration function: If you want to transfer data from one cam control to another, this is automatically carried out by this function.

Online-presentation: This function is very important for devices that are supplied without a terminal. The settings of your cam control, such as position, speed, outputs are being visualized.

Teach-In: This function simplifies the initialization of your device, since the electronic zero-point can be set by simply pressing the Teach-In button. With it a manual setting is dropped

Comparison function: The comparison of 2 cam controls is possible by opening two windows with the respective settings of your cam controls.

If you want to use the convenient tools of the comfort version order your license number at Deutschmann Automation directly a www. deutschmann.de or by phone: +49 (0) 6434-9433-0.

Function	Basic version	Comfort version
Programming general, cams, logic, names, idle times, analog values	-	-
Graphical display of the programming	-	-
Diagnostic option of the communication channels (IICNET*)	-	-
Complete support of all configuration parameters	-	-
Context-sensitive help German/English	-	-
DA cam control error list	-	-
Color adjustments	-	-
Different communication interfaces for all Deutschmann cam controls with RS232 or DICNET ${ }^{\text {c connection }}$	-	\bullet
Simplified operation of the program	-	\bullet
Terminal window	-	-
Toolbars	-	-
Context-sensitive mouse menu	-	-
Extended print adjustment	-	-
Comfortable selection of the devices during upload/download	-	-
Flexible print with extended adjustment possibilities	-	-
Data transfer function	-	-
Online display position, speed outputs	-	-
"Teach-ln" zero offset	-	-
Comparison function - two cam controls can be compared in two windows	-	-
Generating a data component	-	-

DB generator
PC-software data component generator
In a simple manner the program makes it possible to generate an AWL source file. Due to the clear arrangement of the component op tions they can be entered fast and easily. By means of these settings the program benerates the AWL source file Based on a configuration file the program receives information on parameters and the size of is copport While the program starts this file is read possible to read this file again later.

Generating the ST^{\circledR} program code - fast and easy
After the program is started, you can navigate through the setting options by means of the survey on the left side. On the individual parameter cards you can set the parameter values, such as number of cams to be used as well as the cam type.
Generating the component through WINLOC 32^{\circledR} elegantly
If the data component generator is started from the WINLOC 32^{\circledR}-software, then the data, created in WINLOC 32^{\circledR} (cams, programs, idle times, etc.) will automatically be assigned to the data component. By means of the corresponding settings in the DB gen erator's window it is also possible to create "reserves" for programs, cams, idle times etc. that are to be recorded later

your ticket to all buses

Rotary encoder
Absolute encoders, singleturn - SA58/TA58 utilising integrative technology

Essential advantages:

- Schock resistance >2500 m/s², 6 ms nach DIN IEC 68-2-27
- 2 years warranty
- Better EMC-behaviour compared to conventional encoders

General order code for encoders

Order reference:

- Up to a resolution of 13 bit, singleturn in intergrative technology* - Shaft Ø 6 mm or 10 mm
- SSI-interface
- Gehäuse Ø 58 mm
- Max. IP66
- Electronic temperature- and ageing compensation
- Short-circuit proof outputs
*Integration of all components because of an innovative assembly priciple and the use of an opto-asic on one printed circuit board only, at a resolution of up to 13 bit.

Mechanical characteristics	
Housing diameter	58 mm
Shaft diameter	$\mathrm{S}: 6 \mathrm{~mm} / \mathrm{C}: 10 \mathrm{~mm}$
Flange types (housing fastening)	Clamping flange $/$ synchrof flange
Protection class shaft input verified according to EN60529	IP66
Protection class housing verified according to EN60529	IP65
Shaft load axial	$\mathrm{S}: 20 \mathrm{~N}, \mathrm{C}: 40 \mathrm{~N}$
Shaft load radial	$\mathrm{S}: 80 \mathrm{~N}, \mathrm{C}: 110 \mathrm{~N}$
Max. number of revolutions (temporarily)	12000 rev. $/ \mathrm{min}$.
Max. number of revolutions (permanent operation)	3000 rev./min.
Starting torque	5 Ncm
Moment of inertia	$30 \mathrm{kgm}{ }^{2}$
Vibration resistance (DIN EN $60068-2-6)$	$10 \mathrm{~m} / \mathrm{s}^{2}(10 . .100 \mathrm{~Hz})$
Shock resistance (DIN EN $60068-2-27)$	$100 \mathrm{~m} / \mathrm{s}^{2}(6 \mathrm{~ms})$
Continuous shock resistance (DIN $\mathrm{EN} 60028-2-29)$	$10 \mathrm{~m} / \mathrm{s}^{2}(16 \mathrm{~ms})$
Operating temperature	$-40 \ldots+85^{\circ} \mathrm{C}$
Storage temperature	$-40 \ldots+85^{\circ} \mathrm{C}$
Weight	200 g

Electrical characteristics	
Supply voltage	$10-30 \mathrm{VDC}$
Power consumption max.	100 mA (without load)
Pulse frequency.	70 mA (without load)
Step frequency	$100 . .2000 \mathrm{kHz}$
Step frequency	200 kHz
Resolution	See table on the next page
Output code	See table on the next page
Linearity	$+/-0,5 \mathrm{LSB}$
Outputs	RS422 SSI
Output current max.	$20 \mathrm{~mA} /$ each channel
Output current typ.	-
Short-circuit proof output?	Yes
Output level high	$-0,9 \mathrm{VxUb}$
Output level low	$0,5 \mathrm{~V}$
Electrical lifetime	100000 h
Turn-on time	1 s

(̄) Deutschmann

Sense of rotation

Rising code values in case of a clockwise turn of the shaft (cw), falling values in case of a counter-clockwise turn (ccw) with a view to the shaft.

Oder number	Article designation	Resolution	Output code	Shaft	Flange
V2606	TA58-4096-GSE-IE	4096	Gray	10 mm	Clamping flange
V2608	SA58-4096-GSC-IER	4096	Gray	6 mm	Synchro flange
V2609	TA58-1024-GSE-IE	1024	Gray	10 mm	Clamping flange
V2610	TA58-4096-GSE-IER	4096	Gray	10 mm	Clamping flange
V2611	TA58-8192-GSE-IE	8192	Gray	10 mm	Clamping flange

Order code

$\mathrm{S}=\mathrm{SSI} 10$ - 30 V

View of the mating face pin contact: SSI - 12-pole connector

Pin assignment SSI with 12-pole connector

Pin	1	2	3	4	5	6	7	8	9	10	11	12	PH

Outputs that are not used have to be isolated before startup.

The assignment of the colors is exlclusively valid for cables produced by Deutschmann Automation The following pre-assembled cables are available:

Order number	Article designation	Explanation
V2810-xx	K-ES-08-R12B-xx-00-12	for encoders serial up to 13 bit, bus cable $4 \times 2 \times 0.25,12$-pole round plug, socket, length $\times \mathrm{m}$, other side V2382-xx
K-ES-08-R12B- to pin assignment plan 12		

[^1]Absolute encoders, singleturn - Shaft version parallel

- Up to a resolution of 13 bit in integrative technology* Parallel interface
- Housing $\emptyset 58 \mathrm{~mm}$ - Shaft $\emptyset 6 \mathrm{~mm}$ or 10 mm Max. IP67
Electronic temperature and ageing compensation
Short-circuit proof outputs
*Integration of all components because of an innovative assembly priciple and the use of an opto-asic on one printed circuit board only, at a resolution of up to 13 bit

Mechanical characteristics		
	Resolution: all except for 1000	Resolution: 1000
Housing diameter	58 mm	58 mm
Shatt diameter	S06: $6 \mathrm{~mm} / \mathrm{Cl0:} 10 \mathrm{~mm}$	10 mm
Flange types (housing fastening)	Clamping flange / Synchrof flange	Clamping flange
Protection class shaft input verified according to EN60529	IP67	IP66
Protection class housing verified according to EN60529	1P67	IP65
Shaft load axial	40 N	40 N
Shaft load radial	60 N	110 N
Max. number of revolutions (temporarily)	12000 rev./min.	12000 rev./min.
Max. number of revolutions (permanent operation)	10000 rev./min.	3000 rev./min.
Starting torque	$0,01 \mathrm{Ncm}$	5 Ncm
Moment of inerita	$3,8 \times 10^{-6} \mathrm{kgm}^{2}$	$30 \mathrm{kgm}{ }^{2}$
Vibration resistance (DIN EN 60068-2-6)	$100 \mathrm{~m} / \mathrm{s}^{2}(10 . .2000 \mathrm{~Hz})$	$10 \mathrm{~m} / \mathrm{s}^{2}(10 . .100 \mathrm{~Hz})$
Shock resistance (DIN EN 60068-2-27)	$1000 \mathrm{~m} / \mathrm{s}^{2}(6 \mathrm{~ms})$	$100 \mathrm{~m} / \mathrm{s}^{2}(6 \mathrm{~ms})$
Continuous shock resistance (DIN EN 60028-2-29)	$1000 \mathrm{~m} / \mathrm{s}^{2}$ (16ms)	$10 \mathrm{~m} / \mathrm{s}^{2}(16 \mathrm{~ms})$
Operating temperature	$-40 \ldots+100^{\circ} \mathrm{C}$	$-40 \ldots+85^{\circ} \mathrm{C}$
Storage temperature	$-40 \ldots+100^{\circ} \mathrm{C}$	$-40 . .+85^{\circ} \mathrm{C}$
Weight	350 g	200 g

Electrical characteristics		
	Resolution: all except for 1000	Resolution: 1000
Supply voltage	10-30 VDC	10-30 VDC
Current consumption max.	200 mA	100 mA (ohne Last)
Current consumption typ.	130 mA	70 mA (ohne Last)
Pulse frequency	500 kHz	$100 . .2000 \mathrm{kHz}$
Step frequency	1000 kHz	200 kHz
Resolution	See table on the next page	1000
Output code	Gray, Gray Excess (see table on the next page)	Gray Excess
Linearity	+/-0,5 LSB	+/-0,5 LSB
Outputs	Push Pull	Push Pull
Output current max.	$30 \mathrm{~mA} /$ each channel	$20 \mathrm{~mA} /$ each channel
Output current typ.	$10 \mathrm{~mA} /$ each channel	
Short-circuit proof output?	Yes	Yes
Output level high	$\geq \mathrm{Ub}-2,2 \mathrm{~V}(30 \mathrm{~mA})$	-0,9 VxUb
Output level low	$\leq 1,6 \mathrm{~V}$ (30 mA)	0,5V
Electrical lifetime	100000 h	100000 h
Turn-on time	0,1 s	1 s

	Sense of rotation - Rising code values in case of a clockwise turn of the shaft (cw), falling values in case of a counter-clockwise turn (ccw) with a view to the shaft.				
Order number	Article designation	Resolution	Output code	Shaft	Flange
V2400	TA58-0360-GYE-ID	360 steps	Gray Excess	10 mm	Clamping flange
V2401	TA58-1000-GYE-ID	1000 steps	Gray Excess	10 mm	Clamping flange
V2402	TA58-1024-GYE-ID	1024 steps or 10 Bit	Gray	10 mm	Clamping flange
V2403	TA58-4096-GYE-ID	4096 steps or 12 Bit	Gray	10 mm	Clamping flange
V2405	TA58-0360-GYE-IDR	360 steps	Gray Excess	10 mm	Clamping flange
V2406	TA58-1000-GYE-IDR	1000 steps	Gray Excess	10 mm	Clamping flange
V2408	TA58-4096-GYE-IDR	4096 steps or 12 Bit	Gray	10 mm	Clamping flange
V2410	SA58-0360-GYC-ID	360 steps	Gray Excess	6 mm	Clamping flange
V2415	SA58-0360-GYC-IDR	360 steps	Gray Excess	6 mm	Clamping flange
V2418	SA58-4096-GYC-IDR	4096 steps or 12 Bit	Gray	6 mm	Clamping flange

Order code

Pin assignment with 16-pole connector

Pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	PH'
Signal	$\begin{aligned} & 2^{0} \\ & =1 \end{aligned}$	$\begin{aligned} & 2^{1} \\ & \overline{\overline{2}} \\ & \hline \end{aligned}$	$\begin{aligned} & 2^{2} \\ & \overline{4} \end{aligned}$	$\begin{aligned} & 2^{3} \\ & \overline{\overline{8}} \end{aligned}$	$\begin{gathered} 2^{4} \\ =\overline{16} \end{gathered}$	$\begin{aligned} & 2^{5} \\ & \overline{32} \end{aligned}$	$\begin{aligned} & 2^{6} \\ & \overline{64} \end{aligned}$	$\begin{gathered} 2^{7} \\ 12 \overline{\overline{1}} \end{gathered}$	$\begin{gathered} 2^{8} \\ 256 \end{gathered}$	$\begin{aligned} & 2^{9} \\ & 5 \overline{\overline{1}} \end{aligned}$	$\begin{gathered} 2^{10} \\ 1024 \end{gathered}$	$\begin{gathered} 2^{11} \\ 20 \overline{\overline{1}} \end{gathered}$	---	complement	+UB	OVolt	
Farbe	white	brown	green	yellow	gray	pink	purple	gran!	$\begin{aligned} & \text { white/ } \\ & \text { green } \end{aligned}$	$\begin{gathered} \text { brown/ } \\ \text { green } \end{gathered}$	white/ yellow	yellow/	n.c.	n.c.	red	$\begin{aligned} & \text { bue } \\ & \text { black } \end{aligned}$	

${ }^{11} \mathrm{PH}=$ Connector housing
Unused outputs have to be isolated prior to commissioning.

The color assignment is exclusively valid for cables produced by Deutschmann Automation
The following pre－assembled cables are available：

Order number	Article designation	Explanation
V2105－xx	K－EP－01－R16B－xx－00	The color assignment is exclusively valid for cables produced by Deutschmann Automation．The following pre－assembled cables are available：
V2106－xx	K－EP－01－R16B－xx－AE	For encoders parallel up to 12 bit，cable type $16 \times 0.14 \mathrm{~mm} 2,16$－pole round plug socket，length x m，other end wire end sleeves
V2108－xx	K－EP－03－R16BZ－xx－00	For encoders parallel up to 12 bit，cable type $16 \times 0.34 \mathrm{~mm} 2,16$－pole round plug socket with traction relief，length $\times \mathrm{m}$ ，other end open
V3503－xx	K－EP－01－R16BW－xx－00	For encoders parallel up to 12 bit，cable type $16 \times 0.14 \mathrm{mm2}$ ，16－pole round plug socket angled， length $\times \mathrm{m}$ ，other end open

$\mathrm{xx}=$ cable length in meters

Drawings
Shaft version type XA58－xxxx－GYE－X－X（except for resolution of 1000）

Syrchroflansch／N23－Stecker／oxiol／rodial

Shaft version type TA58－1000－GYE－X

HMI Parts Center

Structure of order codes for cables
-EP $-01-$ R16B $\quad-10 \quad-A E$
-00
Number of the pin assignment plan (to be supplemented by DA)

Cable length in m

in m

Standard cables
Encoder cables XA58-xxxx-GSE-xx (absolute encoder SSI)

Article number	Article designation	Explanation
V2382-xx	K-ES-08-R12B-xx-AE-12	For encoders serial up to 13 bit, bus cable $4 \times 2 \times 0.25 \mathrm{~mm} 2,12$-pole round plug socket, length x m, other end wire end sleeves, to pin assignment plan 12
V2810-xx	K-ES-08-R12B-xx-00-12	For encoders serial up to 13 bit, bus cable $4 \times 2 \times 0.25 \mathrm{~mm} 2,12$-pole round plug socket, length x m, other end open, to pin assignment plan 12

Encoder cables XA58-xxxx-GYE-xx (absolute encoder parallel)

Article number	Article designation	Explanation
V2105-xx	K-EP-01-R16B-xx-00	For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm} 2,16$-pole round plug socket, length x m , other end open
V2106-xx	K-EP-01-R16B-xx-AE	For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm} 2,16$-pole round plug socket, length x m , other end wire end sleeves
V2107-xx	K-EP-01-R16B-xx-D25S	For encoders parallel up to 12 bit, cable type $16 \times 0.14 \mathrm{~mm} 2,16$-pole round plug socket, length x m , other end 25 -pole D-SUB-pin with metalized hood Note: The version V2107-0, 2 serves as adapter cable, in case a TA65 is replaced by a TA58.
V2108-xx	K-EP-03-R16BZ-xx-00	For encoders parallel up to 12 bit, cable type $16 \times 0.34 \mathrm{~mm} 2,16$-pole round plug socket with traction relief, length x m, other end open

ROTARNOCK-Kabel (TN65-xxxx...)

Article number	Article designation	Explanation
V2123-xx	K-NR-07-D25B-xx-00	For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm} 2$, 25-pole D-SUB socket with metalized hood, length $\mathrm{x} m$, other end open
V2342-xx	K-NR-07-D25B-xx-AE	For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm} 2$, 25-pole D-SUB socket with metalized hood, length x m , other end wire end sleeves
V2131-xx	K-NR-07-D25B-xx-D25S	For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm} 2,25$-pole D-SUB socket with metalized hood, length x m, other end 25 -pole D-SUB pin with metalized hood
V2222-xx	K-NR-07-R28-xx-00	For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm} 2,28$-pole round plug socket, length x m , other end open
V2183-xx	K-NR-07-R28-xx-AE	For ROTARNOCK, cable type $20 \times 2 \times 0.14 \mathrm{~mm} 2$, 28 -pole round plug socket, legth x m, other end wire end sleeves

Programming cables

Article number	Article designation	Explanation
V3467	Programming cable for ROTARNOCK - 232/PB	2.0 m including 24V power supply, end A: 9-pole D-SUB socket with metalized hood, end B: 25pole D-SUB socket with metalized hood + 2-pole screw-plug-connector
V3480	Programming cable for ROTARNOCK (DICNET®)	2.0 m including $24 V$ power supply, end A: 25-pole D-SUB socket with metaized hood, end B: 25pole D-SUB socket with metalized hood + 2-pole screw-plug-connector + DICNET ${ }^{\oplus}$ adapter
V3483	Programming cable for ROTARNOCK (DICNET®) IP65	2.0 m including 24 V power supply, end A: 25 -pole D-SUB socket, end B: 28 -pole round plug + 2-pole screw-plug-connector + DICNET® adapter
V3655	Programmierkabel für ROTARNOCK - PB IP65	2.0 m including 24 V power supply, end $A: 9$-pole D-SUB socket with metalized hood, end B: 16pole round plug socket + 2-pole screw-plug-connector
V3712	Programmierkabel für ROTARNOCK (232) IP65	2.0 m including 24 V power supply, end A : 9 -pole D-SUB socket with metalized hood, end B: 28pole round plug socket + 2-pole screw-plug-connector

Dynamic switching accelerator SPEEDY

Switching on and off magnetic controlled connect elements lead to delays that consist of two components:

Delay time for setting up and removing the magnetic field

- Delay time for overcoming mechanical inertia

To reduce this delay time SPEEDY makes it possible to achieve an overexcitation of the magnetic field by an overvoltage pulse of 100 V , adjustable from 1 ms to 10 ms and with it to overcome the mechanical inertia much faster. When switching off, the delay time for the removal of the magnetic field is also reduced considerably due to a negative free-wheeling voltage.

The status of the inputs and outputs as well as of the supply voltages are displayed via integrated LEDS. SPEEDY has different switching modes available that can be adjusted from the outside. Following please find a more detailed description:

The switching modes of SPEEDY

The switching modes described below are selected through a rotary code switch. The following assignment applies here:

Please note, that every change of the inputs is directly evaluated in the first 8 switch positions. This mode makes sense if the inputs are connected with the outputs of a control and a distortion-free reaction from SPEEDY is required

In case the interference suppression is on, the input signals are being filtered, that results in a delay (runtime input -> output) of approx. 1 ms

This operating mode makes sense if the inputs are being switched by a relay or if very strong failures are on the input lines.

Rotary switch indication	Switching mode	Input interference suppression
0	1	Off
1	2	off
2	3	Off
3	4	Off
4	$5(1 \mathrm{~ms})$	off
5	$5(2 \mathrm{~ms})$	off
6	$5(5 \mathrm{~ms})$	Off
7	$5(10 \mathrm{~ms})$	off
8	1	Active
9	2	Active
A	3	Active
B	4	Active
C	$5(1 \mathrm{~ms})$	Active
D	$5(2 \mathrm{~ms})$	Active
E	$5(5 \mathrm{~ms})$	Active
F	$5(10 \mathrm{~ms})$	Active

Switching mode 1
In switching mode 1 the input 1 is wired to the output 1 and the input 2 is wired to the output 2. The duration of the overexcitation pulse is set at the inputs 3 and 4.

Input 3	Input 4	Pulse
0 VDC	OVDC	1 ms
+24 VDC	OVDC	2 ms
OVDC	+24 VDC	5 ms
+24 VDC	+24 VDC	10 ms

Switching mode 2
In switching mode 2 the input 1 is wired to the output 1 and the input 2 is wire to the output 2 . Input 3 is an enabling input. The inputs 1 and 2 are ineffective without a signal at input 3 . The duration of the overexcitation pulse is set at input 4.

Input 1	Input 2	Input 3	Output 1	Output 2
OVDC	OVDC	OVDC	OVDC	OVDC
+24VDC	OVDC	OVDC	OVDC	OVDC
OVDC	+24 VDC	OVDC	OVDC	OVDC
+24VDC	+24 VDC	OVDC	OVDC	OVDC
OVDC	OVDC	+24 VDC	OVDC	OVDC
+24 VDC	OVDC	+24 VDC	+24 VDC	OVDC
0	+24 VDC	+24 VDC	0 VDC	+24 VDC
+24VDC	+24 VDC	+24 VDC	+24 VDC	+24 VDC

Switching mode 3
The switching mode 3 was especially developed for double magnet coils (-driving elements). Output 2 is wired if the input 1 does not have a signal. In case input 1 receives a signal, then output 2 is switched off first, followed by a pause**. Then the output 1 is switched on. If the signal is removed from input it happens the other way round. The output 1 is switched off first, followed by a pause**. Only then the output 2 is switched on again. Input 2 determines the duration of the pause ${ }^{\star \star}$. The duration of the overexcitation pulse is set at the inputs 3 and 4.

Input 1	Output 1	Output 2
O VDC	O VDC	+24 VDC
+24 VDC	+24 VDC	0 VDC

Input 3	Input 4	Pulse
0 VDC	OVDC	1 ms
+24 VDC	0 VDC	2 ms
0 VDC	+24 VDC	5 ms
+24 VDC	+24 VDC	10 ms

**Pause: Period between switching ing on the magnet coil 2 or the other way round. It results from the overexcitation time (puls) multiplied by 2 or 1 .

Switching mode 4
The switching mode 4 includes an RS-flip-flop logic (-RESET/SET logic). If input 2 (-RESET) is supplied with 24 V after switch-on, then output 2 is wired. If input 1 (SET) is also supplied with 24 V , then output 1 is wired and output 2 is is switched off. If the signal at input 1 (SET) disappears, then this state at the outputs remains stable. Provided that the signal at the input 2 (-RESET) is taken away now (0 VDC), then the output 1 is switched off and the output 2 is switched on. This switching state also remains stable if the input 2 receives a signal (+24 VDC) again. The input 2 (-RESET) has a higher priority compared to input 1 (SET); which means: if input 1 has a signal (+24 VDC) and input 2 does not have a signal (0 VDC), then output 2 is wired and output 1 is switched off. The duration of the overexcitation pulse is set at the inputs 3 and 4 (clamps 3 and 4).

Input 1	Input 2	Output 1	Output 2	Eingang 3	Eingang 4	Impuls
OVDC	OVDC	OVDC	+24 VDC	OVDC	OVDC	1 ms
+24VDC	OVDC	OVDC	+24 VDC	+24 VDC	OVDC	2 ms
OVDC	+24 VDC	unchanged	unchanged	OVDC	+24 VDC	5 ms
+24 VDC	+24 VDC	+24 VDC	OVDC	+24 VDC	+24 VDC	10 ms

Switching mode 5
The switching mode 5 also includes an RS-flip-flop, that is set via the inputs 1 and 2 and that is reset via the inputs 3 and 4 (compare description in switching mode 4).The pulse length is set through the rotary code switch. The following assignment applies for it:

Rotary switch display	Pulse
4 oder C	1 ms
5 oder D	2 ms
6 oder E	5 ms
7 oder F	10 ms

Input 1	Input 2	Input 3	Input 4	Output 1	Output 2
OVDC	OVDC	OVDC	OVDC	unchanged	unchanged
+24VDC	OVDC	OVDC	OVDC	unchanged	unchanged
OVDC	+24VDC	OVDC	OVDC	unchanged	unchanged
+24VDC	+24VDC	OVDC	OVDC	+24 VDC	OVDC
OVDC	OVDC	+24VDC	OVDC	OVDC	+24 VDC
+24 VDC	OVDC	+24 VDC	OVDC	OVDC	+24 VDC
OVDC	+24VDC	+24VDC	OVDC	OVDC	+24 VDC
+24VDC	+24VDC	+24VDC	OVDC	OVDC	+24 VDC
OVDC	OVDC	OVDC	+24 VDC	unchanged	unchanged
+24 VDC	OVDC	OVDC	+24 VDC	unchanged	unchanged
OVDC	+24VDC	OVDC	+24 VDC	unchanged	unchanged
+24VDC	+24VDC	OVDC	+24 VDC	+24 VDC	+24 VDC
OVDC	OVDC	+24VDC	+24 VDC	unchanged	unchanged
+24VDC	OVDC	+24 VDC	+24 VDC	unchanged	unchanged
OVDC	+24VDC	+24VDC	+24 VDC	unchanged	unchanged
+24 VDC	+24VDC	+24 VDC	+24 VDC	+24 VDC	OVDC

	Technical data	
	SPEEDY 1 A	

Order number	Article designation	
V3104	DSB SPEEDY-50V-1A	with 1 A switching capacity
V1526	DSB SPEEDY-100V-1A	
V3105	DSB SPEEDV-50V-4A	with 4A switching capacity
V2313	DSB SPEEDY-100V-4A	

Accessories

Glossary

Dynamic cam / idle time compensation

The idle time compensation is the time that passes from setting a cam control output until the actual reaction of the con nected device (e. g. opening a valve). Normally this idle time is constant. For a dynamic compensation of this idle time a cam control has to shift a programmed cam depending on the actual encoder speed, that means a valve that is supposed to be opened on position 100, for example must be opened at $1 \mathrm{~m} / \mathrm{s}$ on position 95 , at $2 \mathrm{~m} / \mathrm{s}$ it must already be opened on position 90.

This function is called dynamic cam shifting or idle time compensation (ITC). Idle times can be programmed blockwise, which means a set idle time always applies to a block of 8 outputs or bitwise. For an idle time compensation with separate turn-on/ turn-off time it is possible to select different turnon and turn-off delay times

DICNET ${ }^{\circledR}$

DICNET ${ }^{\circledR}$ (Deutschmann-Industry-Controller-Net) is a multi-master Fieldbus. At the physical layer according to the ISO-OS shift model it corresponds to the DIN 19254, part 1. That means a connection between all participants in the net is established with an RS485-two-wire line.
The physical arrangement is thus a bus system, at which the participants can be switched on and off as desired. At the maximum expansion stage 16 cam controls, 16 display units, 3 operation terminals and 1 PC can be connected at the same time. From the logical point of view it is a token ring, that means that always only the participant who has the access authorization (token) is allowed to send to the bus. In case he does not have any data for another participants, then he passes on the token to that neighbour, who was determined during a configuration phase.

Through this principle a deterministic bus cycle time is achieved, which means the time (worst-case) until a data packet can be sent is exactly calculable. In case a participant is turned on or off an automatic reconfiguration is made. The transmission baud rate is 312.5 kbaud at a length of 11 bit/byte. A maximum of 127 participants can be operated on one bus, whereas data packets with a maximum of 14 byte per cycle are being transmitted. An automatic check of the received information takes place as well as an error report in case of a twofold transmission error. The maximum expansion of the net must not exceed 500 m .

Temperature ranges and humidity

All Deutschmann cam controls are specified for a storage temperature of $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. The operating temperature without forced convection ranges from $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$, with forced convection from $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. The maximum relative humidity can be 80%, non-condensing, in a non-corrosive atmosphere

Shock and vibration

All our devices are tested for the following values:
Shock 15G/11 milliseconds I vibration $0.15 \mathrm{~mm} / 10 . .50 \mathrm{~Hz}, \mathrm{G} / 50 . .150$ Hertz

Fieldbus connection

Basically all Deutschmann devices can be connected via a Gateway to the Fieldbuses common on the world market. Some types can also be supplied with integrated Fieldbus-interface

Angle-/time-cams

In most applications the switch-on and switch-off points (cam) are set position-dependent. For certain applications, however it is necessary that the switch-on point is set position-dependent and the switch-off point time-dependent. For devices with this function the time base may vary in the range from 1 millisecond to 32500 milliseconds.

Direction cam

The switch-on and switch-off points (cam) are normally switched regardless of the rotational direction. Through the function direction cam it is possible to define whether the a cam is to be activated in clockwise rotation or anti-clockwise rotation only or as it is the normal case in both directions.

Logic functions / shift register

Applications in which the cam control takes over PLC-tasks. Up to 16 inputs/outputs, markers and a shiftregister can be logi cally linked. With it simple PLC-task are passed on to the cam control. Advantage: faster cycle times, PLC does not have to carry out any peripheral work. The shift register can for instance be used for an easy sorting of good and bad end products (e. g. at bottling).

Encoder monitoring

Functions for the complete monitoring of encoder and cable. Every time the encoder is read in it is compared to the one before. In case of a deviation of $+/-3$ inc. an error message is shown. Additionally at the absolute encoders with a resolution of 360 or 1000 inf ./rev. (Gray excess) an error message is shown at the undefined codes

Lockable outputs

The function serves to lock machine-relevant outputs and only permit the change of product-relevant outputs.

The company

Deutschmann Automation, a german company based in Bad Camberg is working in the automation technology since 1976 and became known with cam controls in the 1980s.

In 1989 Deutschmann Automation started operating in the fi eldbus technology. The development of one's first own bus system DICNET was an essential step. Since 1996 different fieldbus and Industrial Ethernet products are offered under the brand name UNIGATE ${ }^{\circledR}$.

Thanks to a competent quality management and continuous enhancement Deutschmann became one of the leading suppliers in the automation industry. The entire development and manufacturing takes place in Germany.

We offer workshops for our All-In-One Bus nodes of the UNIGATE ${ }^{\circledR}$ IC series and the Software tool Protocol Developer. In these workshops you will learn everything you need to know about our products and how you can easily realize your projects with Deutschmann.

For all products the necessary documents and tools can be found, free of cost, on www.deutschmann.com. Furthermore on the Deutschmann Technology Wiki, wiki.deutschmann.de, technological information is easily accessible for our customers and users, cross-linking application know-how and ensuring that the information is up to date.
Our experts in development, sales and support have the right solution for your demands.

표
Deutschmann
your ticket to all buses

UNIGATE EL

- Fast Ethernet to all Fieldbuses

UNIGATE ${ }^{\oplus}$ CM

- CANopen to all Fieldbuses and Ethernet

Deutschmann Automation GmbH \& Co. KG Carl-Zeiss-Straße 8

[^0]: - Standard
 - = Optionally for an additional charge
 $\mathrm{x}=$ Optionally at no additional charge

[^1]: $x=$ cable length in meters

