

OPTIDRIVE[™] (É³

AC Variable Speed Drive 0.37kW – 37kW / 0.5HP – 50HP 110 – 480 Volt 1 & 3 Phase

Advanced Technical Manual

Revision History

sue	Note	Section	Date
)1	Pre-Release		05/01/16
)2	Added changes for V3.02 Firmware	N/A	04/02/16
	P-30 new functions	2.3.2	
	P00-47 New functions	2.5	
	Revised I/O table P-15 selection	2.6	
	Added parameter changes for 1 Phase Output Drive	2.4	
	Added Voltage levels for 110V drives	9.10.5	
	Revised Fire Mode Operation Description	2.8.1	
	Added CAN & Modbus info for new P-30	4.7.8	
3	Updated P-11 Max setting to "Drive Dependent"	2.3.1	01/03/16
	Updated P-18 Maximum Setting = 9	2.3.2	
	Updated P-25 Added setting 11	2.3.2	
	Updated P-30 Correcting error to Index 3	2.3.2	
	Updated P-51 adding setting 5	2.3.3	
	Updated P-52 description to add note regarding setting 5 for P-51	2.3.3	
	Updated I/O function tables to improve clarity	2.6.3	
4	Changes to include V3.03 Firmware		06/07/16
	Additional settings added to P-43	2.3.2	, -, -, -0
	Added field Gateway usage info	5	
	Added operating display info	2.8.3	
	Added introduction section	1	
	Added note regarding changing parameters when enabled	2.2	
5	Changes to include V3.05 Firmware	2.2	01/09/17
5	Corrected motor control mode selection parameter range	4.6.2	01/03/17
	Added additional P-01 upper limit info	2.3.1	
	Corrected range of P-05, P-10, increased range P-09	4.6.2	
	Revised order for switching frequency derating info	0	
	Added additional info for V3.05 firmware functions	2.2.4	
	 Additional parameter function in P-05 and P-06, additional info for P-13 D 36 today 2 representations 	2.3.1	
	- P-36 Index 3 new options	2.3.2	
	- P-60 function updated	2.3.3	
	- Added P-15 option 18	2.6.4	
	- Added P-15 option 18	2.6.5	
	- Added P-15 option 18	2.6.6	
	- Added P-15 option 18	2.6.7	
	Added information on 4kW reduced overload below 5Hz	9.10.5	
	Additional description of Effective Switching frequency changes	2.8.3	
	Corrected P-40 listing	2.3.2	18/10/17
6	Added changes for V3.06 firmware		21/05/18
	Corrected range of P-12	2.3.1	
	P-16, P-17, P-18, P-25, P-31, P-32, P-33, P-34, P-36, P-39, P-43 description updated	2.3.2	
	Changed range of P-48	2.3.3	
	Corrected scaling for CAN object 200Eh	4.5.4	3/10/18
	Added firmware changes for V3.07		17/7/19
	 P-60 Index 1 default setting changed 	2.3.3	
	- Add Modbus register 46	4.7.12	
	- Add 400V 1.2A drive rating		
	- Added IP66 Switch function options		
	 Added info for faults which require a time delay to reset 		
	Added Frame Size 5 Info		
	- Switching frequency info	3.1	
	- Boost setting range	3.2	
	Added changes for V3.08 firmware	1.1	13/8/19
	Added speed step info	2.8.4	, =, =
	Revised switching frequency derating information (new simplified format)	7.2	
	Added Heartbeat Consumer to CAN Object Table	4.5.4	

		on History	3
1	Abo	out this Advanced Technical Manual5	
	1.1	Compatibility	5
	1.2	Intended Audience	5
2	Opt	tidrive E3 Parameter Set Overview6	
	2.1	About this section	6
	2.2	Parameter Structure Overview and Access	
	2.3	Parameter Descriptions	7
	2.4	Alternative Parameter Functions for Single Phase Output Drives	
	2.5	Parameter Group 0 – Monitoring Parameters (Read Only)	
	2.6	Control Terminal Connections	18
	2.7	Motor Control Methods	23
	2.8	Software Functions	
	2.9	LED Display	32
3	Driv	ve Model Specific Parameter Variations	
	3.1	Available Effective Switching Frequency Options	33
	3.2	V/F Mode Voltage Boost Setting Options	
4	Fiel	dbus Interface Support	
	4.1	Fieldbus Support Overview	35
	4.2	Modbus RTU	
	4.3	Profibus DP	
	4.4	DeviceNet	35
	4.5	CAN	35
	4.6	Parameter Access Overview	
	4.7	Additional Information	
	4.8	Modbus RTU Indirect Parameter Access	43
5	Fiel	dbus Gateways	
	5.1	Gateway Concept	
	5.2	Gateway Included Components	
	5.3	Gateway Installation	
	5.4	Subnetwork Connection	45
	5.5	Commissioning Drive Parameter Settings	
	5.6	Gateway Memory Mapping	47
	5.7	Controlling the Optidrive(s)	
	5.8	Profibus DP Gateway Features – OD-PROFB-IN	
	5.9	DeviceNet Gateway Features – OD-DEVNT-IN	50
	5.10	Diagnostics and Troubleshooting	51
6	Dia	gnostic and Fault Messages	
	6.1	Fault Messages	52
	6.2	Resetting a Fault	52
7	Rat	ed Temperatures and De-rating curves	
	7.1	Thermal Management	53
	7.2	De-rating for Effective Switching Frequency and Ambient Temperature	53
8	Imn	nunity Tests	
	8.1	Electrostatic Discharge (ESD)	55
	8.2	Electrical Fast Transient Burst (EFT/B)	
	8.3	Surge	
	8.4	Dielectric strength (Flash)	
9	Ger	neral Technical and Performance Data	
	9.1	Electrical Data	
	9.2	Input Output Current Ratings	
	9.3	Standby Power Consumption	
	9.4	DC Bus Discharge Time	
	9.5	Earth Leakage Current (Touch Current)	
	9.6	Digital & Analog I/O	
	9.7	Environmental Data	
	9.8	Response Times	
	9.9	Motor Control Performance	
	9.10	Output Current Limit	
	9.11	Under / Over Voltage Trip Levels	

1 About this Advanced Technical Manual

1.1 Compatibility

This Document is for use with version 3.08 Firmware.

Invertek Drives Ltd adopts a policy of continuous improvement and whilst every effort has been made to provide accurate and up to date information, the information contained in this User Guide should be used for guidance purposes only and does not form the part of any contract.

The information in this user guide relates to the functionality of the firmware version as stated above. Prior versions of firmware may not fully support all functions as described. If necessary, firmware updates may be carried out using Optitools Studio PC software.

1.2 Intended Audience

This Advanced Technical Manual is intended to be used in conjunction with the standard User Guide included with the product and is intended to provide additional information for more advanced product applications and usage. The reader should be familiar with the contents of the standard product User Guide, and, should observe all safety warnings and installation guidelines contained therein.

2 Optidrive E3 Parameter Set Overview

2.1 About this section

This document provides a list of the available parameters, and a description of their respective functions, for the Optidrive E3.

2.2 Parameter Structure Overview and Access

The parameter set is arranged in Groups according to the following structure: -

Parameter Group	Range	Access Level	Access Type
P00	P00-01 to P00-20	Extended	Read Only
	P00-21 to P00-50	Advanced	Read Only
Basic Parameters	P-01 to P-14	Basic	Read / Write
Extended Parameters	P-15 to P-50	Extended	Read / Write
Advanced Parameters	P-51 to P-60	Advanced	Read / Write

Access to all parameter groups is controlled by setting P-14 as follows

P-14 = P-37 (Factory setting: 101) Allows Extended Parameter Access

P-14 = P-37 + 100 (Factory Setting: 201) Allows Advanced Parameter Access

In order to prevent possible damage to the drive and connected machinery, certain parameters are locked during operation of the drive to prevent change. In the case that the drive is enabled, and the user tries to change the parameter, an "L" is shown on the left of the display.

2.3 **Parameter Descriptions**

2.3.1 **Basic Parameters**

2.3.1	Basic Pa	rameters							
Par.	Descriptio					imum	Maximum	Default	Units
P-01		n Frequency / Speed Limit				-02	500.0	50.0 (60.0)	Hz / RPM
	The maxir - 500. - P-09 - If P-	a output frequency or motor s num possible value is limited 0Hz maximum limit 1 x 5 10 >0, (500 x 120) / Motor Po 7 / 16	by the lower of the followir		value e	entered	/ displayed is	in RPM	
		0>0, slip compensation is aut	omatically enabled, and P-0)1 is correcte	ed to t	he svncl	nronous speed	d of the motor.	
P-02		Frequency / Speed Limit			1	0.0	P-01	0.0	Hz / RPM
-		speed limit – Hz or RPM. If P	-10 >0, the value entered / (displayed is i			-		,
P-03		ion Ramp Time	, , ,	, ,	1	0.00	600.0	5.0	S
	Accelerati	on ramp time from zero Hz /	RPM to base frequency (P-0	09) in second	ds.		•		
P-04	Decelerat	ion Ramp Time			0	0.00	600.0	5.0	S
	Decelerat	ion ramp time from base frec	uency (P-09) to standstill in	seconds. W	/hen se	et to 0.0	0, the value of	f P-24 is used.	
P-05	Stopping					0	3	0	-
	Setting	Description	Behaviour on Disable (Sto	op)		Behavi	our on Mains	Loss	
	0	Ramp to Stop with Mains Loss Ride Through.	Ramp to stop, rate contro	lled by P-04.			ie running by recover energ	reducing the s gy.	peed of the
	1	Coast to Stop	Coast (freewheel) to stop						
	2 Ramp to Stop Ramp to stop, rate controlled by P-04.					Ramp t	o stop using tl	he P-24 decel r	amp
	3 AC Flux Braking As setting 2, but AC flux braking is applied, increasing the level of av braking torque.					Ramp to stop using the P-24 decel ramp As setting 2, but AC flux braking is also applied increasing the level of available braking torque			
	4 Mains Loss function No Action disabled					No Acti	on		
P-06		<mark>otimisation</mark> Disables the Energy Optimisa				0	1	0	-
	•	Energy Optimiser: Reduces th to vibration or instability in th Motor Energ	ne motor under light load co	-	utput		cies by reducin		sses. This
	0	Disab				DIN	Disabled		
	1	Enab					Disabled		
	3	Disab					Enabled		
	4	Enab	led				Enabled		
P-07		ted Voltage / Back EMF at ra				0	250 / 500	230 / 400	V
		tion Motors, this parameter s							
		anent Magnet or Brushless DO	C Motors, it should be set to	the Back EN	MF at r				_
P-08		ted Current					e Rating Deper		A
		neter should be set to the rat is current rating of the drive.	eu (nameplate) current of t	ne motor. I	nis pai	ameter	cannot be adj	justed greater	ulan the
		motor nameplate value is er	tered, thermal overload pro	otection is e	nablec	l. as des	cribed in secti	on 9.10.4	
P-09		ted Frequency	er, menar eventoud pro			10	500	50 (60)	Hz
		neter should be set to the rat	ed (nameplate) frequency o	of the motor					
P-10	Motor Ra		, , , , , , , , , , , , , , , , , , , ,			0	30000	0	RPM
	When set disabled. Entering t motor spe All speed	neter can optionally be set to to the default value of zero, a he value from the motor nam eed in RPM. related parameters, such as N 09 value is changed, P-10 valu	all speed related parameter neplate enables the slip com Minimum and Maximum Spe	s are display	/ed in l unctio	n, and ti	he Optidrive d	lisplay will now	
				6					

Par.	Descript	ion					Minimum	Maximum	Default	Units	
P-11	Low Free	quency Torque	e Boost Current				0.0	Drive Dependent	3.0	%	
	Low Fred	uency Torque	Boost is used to	increa	se the applied motor volt	tage and	hence currer		ut frequencie	s. This can	
					sing the boost level will i						
					the motor may then be						
			may be safely us				0,				
		-	• •		e setting can usually be fo	ound by	operating the	e motor unde	r very low or n	o load	
					g P-11 until the motor cu						
		nge shown bel		-	-						
	Frame Si	ze 1: 60 – 80%	of motor rated	current							
	Frame Si	ze 2: 50 – 60%	of motor rated	current							
	Frame Si	ze 3: 40 – 50%	of motor rated	current							
	Frame Si	ze 4: 35 – 45%	of motor rated	current	urrent						
	This para	meter is also	effective when ι	ising alt	ernative motor types, P-	51 = 2, 3	or 4.				
	In this ca	se, the boost	current level is d	efined	as 4*P-11*P-08.						
P-12	Primary	Command So	urce	-			0	9	0	-	
	Setting	Function		Descr	iption						
	0	Terminal C	ontrol	The d	rive responds directly to a	signals a	pplied to the	control term	inals.		
	1	Uni-directional Keypad		The drive can be controlled in the forward direction only using an external or remote							
		Control		Кеура							
	2	Bi-direction	nal Keypad		rive can be controlled in t						
		Control		remote Keypad. Pressing the keypad START button toggles between forward and reverse.							
	3	Modbus Ne	etwork Control	Contr	ol via Modbus RTU (RS48	85) using	the internal λ	Accel / Decel	ramps		
	4	Modbus Ne	etwork Control	Control via Modbus RTU (RS485) interface with Accel / Decel ramps updated via Modbus							
	5	PI Control		User I	PI control with external fe	eedback	signal				
	6	PI Analog S	ummation	PI control with external feedback signal and summation with analog input 1							
		Control									
	7	CAN Contro	bl	Control via CAN (RS485) using the internal Accel / Decel ramps							
	8	CAN Contro	bl	Control via CAN (RS485) interface with Accel / Decel ramps updated via CAN							
	9	Slave Mode		Control via a connected Invertek drive in Master Mode. Slave drive address must be > 1.							
	NOTE W	hen P-12 = 1, 2	2, 3, 4, 7, 8 or 9,	an enal	ole signal must still be pro	ovided at	the control	terminals, di	gital input 1		
		g Mode Select					0	2	0	-	
	Provides a	a quick set up	to configure key	parame	eters according to the int	ended a	oplication of	the drive. Pa	rameters are p	reset	
	-	to the table.									
			ended for genera								
			d for centrifuga	• •	applications.						
			for Fan applicati								
	Setting	Application	Current Limit	(P-54)	Torque Characteristic	Spin	Start (P-33)	Thern	nal Overload Li (P-60 Inde:		
	0	General	150%		Constant		0: Off		0: Trip		
	1	Pump	110%		Variable		0: Off	1:	Current Limit F	Reduction	
	2	Fan	110%		Variable		2: On	1:	Current Limit F	Reduction	
P-14	Extende	d Menu Acces	s code				0	65535	0	-	
	Enables a	access to Exte	nded and Advan	ced Par	ameter Groups. This para	ameter n	nust be set to	the value pr	ogrammed in I	P-37 (defau	
									-0		

2.3.2	Extended parameters

Part. Description Minimum Minimum Description 15 Definition of the cliptal inputs depending on the control mode setting in P-12. Setting and Control of the cliptal inputs depending on the control mode setting in P-12. 9:10 Description Setting for IP20 and IP	2.3.2 Par.		d parameters		Minimum	Maximum	Default	Unite			
Defines the function of the digital inputs depending on the control mode setting in P-12. See Below See Below See Below P-10 Analog Input 1 Signal Format See Below See Below - Setting Incide Input 1 Signal Format See Below See Below - Setting Incide Input 1 Signal Format See Below See Below - Setting Incide Input 1 Signal Format Spin Formation See Below See Below - Setting Incide Input 1 Signal Format Spin Formation See Below - - Setting Incide Input 1 Signal Format Spin Formation See Below - - Setting Incide Setting Formation See Below - - - - - -				ct			+ +	Units -			
P:10 Analog purp 1 Signal Torum See Below See Below 9:10 Punction Description See Below See Below <t< th=""><th>1-15</th><th></th><th></th><th></th><th>-</th><th>10</th><th>0</th><th></th></t<>	1-15				-	10	0				
P-16 Analog topul 1 Signal Format See Below See Below - Betting Function Description Description Description Description U.D.* 00 Oto 100VC Description Default setting for IP20.8 (P68 Non-Swritched drives. The drive will present form P-20 (Minimum Frequency / Speed) to P-31 (Maximum Frequency / Speed) in C-31 (Maximum applied signal voltage must not exceed 10VCC. Default setting for the applied signal voltage must not exceed 10VCC. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-30. Default setting for the drive will operate from P-01 (Keyres Robition, Maximum Frequency / Speed) to P-31 (Forward Robiton, Maximum Frequency / Speed) according to the applied signal level. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-30. The drive will operate from P-01 (Keyres Robiton, Maximum Frequency / Speed) to P-31 (Maximum Frequency / Speed) according to the applied signal level. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-30. The drive will operate from P-30 (Keyres Robiton, Maximum Frequency / Speed) to P-31 (Maximum Frequency / Speed) in P00-30. The drive will operate from P-32 (Minimum Frequency / Speed) to P-31 (Maximum Frequency / Speed) in P00-30. The drive will operate from P-32 (Minimum Frequency / Speed) to P-3					ig iii 12.						
Setting Particle Description U D- U 10 30VC Default setting for IP20 & Irefs Non-Switched drives. The drive will operate from P20 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) isocriftic to the applied at the terminal input must uni-polar. Maximum applied signal voltage: must not exceed 10VCC. Note: P-33 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in 00-0.0. Motor rotation remains in the same director regardless of the result after scaling an offset are applied. The drive will operate from -P01 (Reverse Rotation, Maximum Frequency / Speed) to P.01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal use. Note: P-33 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in 00-0.0. The drive will operate from -P01 (Reverse Rotation, Maximum Frequency / Speed) to P.01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal use. Note: P-33 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in 00-0. The drive will operate the motor in the reverse direction of rotation if the analog reference after scaling and drifts are optical signal current must uni-polar. Maximum applied is 50.0% The resulting value will be displayed (are the value of the signal. The resulting value will be displayed in 00-0. Motor rotation remains in the same directon regardless of the result after scaling an offset are applied to the result after scaling and offset are applied to the signal. The resulting value will be displayed in 00-0. Motor rotation remains in the same directon regardless of the result after scaling an offset are applied to result after scaling and offset are applied to the signal. The resulting value will be displayed in 00-0. Motor rotation remains in the same direction regaroless of the result after scal	P-16				See	Below	See Below	-			
II B - ID Dro 1000C Default setting for IPD0.8 (b66 Non-Switched drives. The drive will operate from P-02 (Minimum Frequency / Speed) to P-03 (Maximum Frequency / Speed) according to the applied signal level voltage. II B - ID Dro 1000C Note P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Ib D - ID Di to 1000C The drive will operate from P-01 (Keyers Rotation, Maximum Frequency / Speed) to P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal level. Ib D - ID Di to 1000C. The drive will operate from P-01 (Keyers Rotation, Maximum Frequency / Speed) to P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal level. Ib D - ID Di to 200C. The drive will operate from P-02 (Keyers Rotation, Maximum Frequency / Speed) to P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal level. If D - 20 Di to 200A The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) in P00-01. If D - 20 Di to 200A The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) in P00-01. If D - 20 Di to 200A The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) in P00-02. If D - 20 Di to 200A The drive will operate from P-02 (Minimum Frequency / Speed) to P-00 (Maximum Frequency / Speed) in P00-02.	. 10		1		500	50.00	See Below				
Uni-direction The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) is cording to the applied signal Voltage must uni-polar. Minimum applied signal Voltage must not exceed 10V0C. Note: P-39 Analog (Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00.01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from -P-01 (Reverse Rotation, Maximum Frequency / Speed) to P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal level. Note: P-39 Analog (Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00.01. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) to P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal (Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00.01. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Nation: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00.01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in P00.01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in P00.01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in P00.01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in P00.01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-02 (Minimum Frequency / Speed) to P-03 (Maximum Frequency / Speed) iscaling leve					es						
according to the applied signal level voltage. Signal format applied a the terminal input must uni-point. Maximum applied signal voltage must not exceed 10VDC. Note: -393 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. The drive will operate from -P01 (Reverse Rotion, Namium Frequency / Speed) to P01 (Forward Rotaton, Namium Frequency / Speed) according to the applied signal level. Note: -393 Analog input Offset are applied may not exceed the range 100 to 2005. The drive will operate from -P01 (Reverse Rotion, Namium Frequency / Speed) to P01 (Forward Rotaton, Namium Frequency / Speed) according to the applied signal level. Note: -393 Analog input Offset are applied may not exceed the range -100 to 100%. R 0-20 O to 20mA The drive will operate from P02 (Minium Frequency / Speed) to P-01 (Maximum Frequency / Speed) to P-01. Maximum applied aging Currert must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Mator cotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-02 (Minium Frequency / Speed) to P-01 (Maximum Frequency / Speed) to P-01		0.0.0		-		to P-01 (Maxi	imum Frequenc	cy / Speed)			
Signal format applied at the terminal input must un-polar. Maximum applied signal voltage must not exceed 20V0C. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. D 0: 01 00 100 D. He drive will operate from -P-01 (Reverse Rotation, Maximum Frequency / Speed) to P-01 (Inorward Rotation, Maximum Frequency / Speed) according to the applied signal level. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO0-01. The drive will operate from -P-01 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must un-polar. Maximum applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied Note: P-30 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling on offset are applied in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling on offset are applied in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling on offset are applied. The resultant value after scaling and offset are applied to the signal. The resulting value will be displayed in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling on offset are applied. The revellation value after scaling and offset are applied to the signal. The res					,,,			-,, -,,			
b 0-10 Note: P39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. b 0-10 0 to 10VDC The drive will operate from -P-01 (Reverse Rotation, Maximum Frequency / Speed) to P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal level. b 0-10 0 to 10VDC The drive will operate the motor in the reverse direction of rotation if the analog reference after scaling and offset are applied to the signal. The resulting value will be displayed in p00-01. The drive will operate the motor in the reverse direction of rotation if the analog reference after scaling and offset are applied to the signal. The resulting value will be displayed in p00-01. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the appled signal level current. Speal format applied at the terminal input must uni-polar. Maximum applied signal current must to the sceed 20nA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation mains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in the terminal input must uni-polar. Maximum applied signal Current uses to e					ıni-polar.						
b 0-10. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.00 100%. The drive will operate from -0.01 (Reverse Rotation, Maximum Frequency / Speed) to P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal level. Natic: P.39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in 600 0. P 0-20 0 to 2000. The drive will operate the motor in the reverse direction of rotation if the analog reference after scaling and offset are applied is -0.0%. The resultant value after scaling and offset are applied may not exceed the range -300 to 200%. The free value operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must un-polar. Maximum applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-33 are applied to the signal. The resulting value will be displayed in P00-01. E 1+20 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must un-ipolar. Maximum applied signal current must not exceed 20mA. Signal level = -4mA is treated as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in P00-01. Motor rotation remains in the same direction regardless of the result arescaling an offset are applied in P00-01. Motor rotat				Maximum applied signal voltage must not exceed	10VDC.						
Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. b 0-10 D to 10 VDC The drive will operate from -P-01 (Reverse Rotation, Maximum Frequency / Speed) lo P-01 (Forward Rotation, Maximum Frequency / Speed) according to the applied signal (Ver. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. The drive will operate the motor in the reverse direction of rotation if the analog reference after scaling and offset are applied is 40.0%. The revulant value after scaling and offset are applied may not exceed the range -100 to 100%. P 0-20 O to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current. Signal format applied signal current must not exceed 20mA. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied to the signal. The resulting value will be displayed in P0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal format applied signal curren				Note: P-39 Analog Input Offset and P-35 are appli	ed to the sign	al. The resultir	ng value will be	displayed			
The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. b 0 - 10 Do to 2000C b directional Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level. R 0-20 0 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied a the terminal input must uni-polar. Maximum applied signal level current. Signal format applied and P-32 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Note: P-38 Analog input Offset and P-33 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resulting value will be displayed in P00-01. The drive will operate from P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at a spee. Motor rotation remains in the same direction regardless of the result applied signal level current. Sig											
b 0 0 0 0 10 0 10 0 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
bi-directional Rotation, Maximum Prequency / Speed) according to the applied signal level. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. The drive will operate the motor in the reverse direction of rotation if the analog reference after scaling and offset are applied is 0.0%. The resultant value after scaling and offset are applied may not exceed the range -100 to 100%. The drive will operate from P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied a the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the result after scaling an offset are applied. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied a the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Maximum applied signal format frequency / Speed) to P-01 (Maximum Frequency / Speed) to 200.01 (Maximum Frequency / Speed) according to the applied signal format applied a the terminal input must uni-polar. Signal format applied a the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applind at the term											
r 4:0204 r 4:0204 <td></td> <td>ь о- Ю</td> <td></td> <td></td> <td></td> <td></td> <td>• •</td> <td>(Forward</td>		ь о- Ю					• •	(Forward			
r 4-20 the drive will operate the motor in the reverse direction of rotation if the analog reference after scaling and offset are applied is <0.0%. The resultant value after scaling and offset are applied may not exceed the range -100 to 100%. R D-20 0 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied to P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied to P00-01. Motor rotation remains in the same direction regardless of the result after scaling and offset are applied in P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in p00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in P00-01. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar.			bi-directional			-		altern Levine al			
r 4-20 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Speed) to P-02 (Minimum Speed) to P-02 (Minimum Speed) to P-02 (Minimum Speed) to P-02 (M					ed to the sign	al. The resulting	ig value will be	aispiayed			
and offset are applied is -0.0% The resultant value after scaling and offset are applied may not exceed the range -100 to 100%. R D-2D 0 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied to P-01 (Maximum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must on exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must on exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current					raction of rate	tion if the ana	log roforonco -	oftor scaling			
Important value after scaling and offset are applied may not exceed the range -100 to 100%. # 0 -20 0 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must on exceed 20mA. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied may not exceed the range 0.0 to 100%. E 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must one acceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applied at a stro. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Maximum applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current. Signal format applied at the terminal input							ling reference a	arter scaling			
R 0 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied may not exceed the range 0.0 to 100%. E 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current to the sceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied signal level current. Signal format applied signal level current. Signal format applied signal level current. Signal level =<4mb is the termini					plied may not	exceed the ra	inge -100 to 10	0%.			
r 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Applied Signal Level and P-35 are applied to the signal. The resulting value will be displayed in P00-01. k H + -20 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level Current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal pour Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied to the signal evel falls below 3mA The drive will trip and show the fault code +20F if the signal evel falls below 3mA The drive will trip and signal level current. Signal format applied signal level current. Signal format applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must nui-polar. Maximum applied signal level current. Signal format applied at the terminal in		A U-5U	0 to 20mA								
signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. E 4-20 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applied signal current must not exceed 20mA. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resulting value will be displayed in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling of 10 to 100%. The drive will operate from P-02 (Minimum frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied sig					,, -,,			-,,,			
k P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. E H-20 4 to 20mA The drive will operate from P-02 (Minimum Frequency/Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal format applied signal current must not exceed 20mA. Signal level =<4m is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4r-20F if the signal level falls below 3mA r 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal format applied signal current must not exceed 20mA. Signal format applied signal current must not exceed 20mA. Signal format applied signal current must not exceed 20mA. Signal in PO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied nay not exceed the range 0.0 to 100%. The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal level =44m is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be di					ıni-polar.						
k in POO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. k 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied at the terminal input must uni-polar. Nation will be displayed in P-05 are applied to the signal. The resulting value will be displayed in POO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =-4mA is the aterded as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in POO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal forwat applied signal level current. Signal forwat applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied sign											
Hotor rotation remains in the same direction regardless of the result after scaling and offset are applied may not exceed the range 0.0 to 100%. E 4-20 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level ->47mA is treated as zero. Note: -53 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code + -20F if the signal level faults below 3mA r + -20 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal level ->44 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) to P-01. Maximum applied signal current must not exceed 20mA. Signal level ->44mA is treated as zero. Signal level ->44mA is treated as zero. Note: ->39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO-01. Maximum applied signal current must not exceed 20mA. Signal level =>44mA is treated as zero. Note: ->39 Analog input O					ed to the sign	al. The resultir	ng value will be	displayed			
The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. E '+-20 4 to 20MA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied signal level terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in a protect will trip and show the fault code +-2DF if the signal level falls below 3mA											
E 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level = Signal level = Signal govername Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in PO-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal evel current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level = Signal level current. Signal level = Signal level current. Signal level = Signal level current. Signal level = Signal current must not exceed 20mA. Signal level = Signal dictor remains in the same direction regardless of the result after scaling an offset are applied in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in PO0-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied in PO0-01. <											
k according to the applied signal level current. Signal format applied at the terminal input must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA r 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will un at Preset Speed 1 (P-20) if the signal level falls below 3mA Ł 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after			4								
in PO-01. Signal evel =<4mA is treated as zero.		E 4-20	mum Frequenc	cy / Speed)							
k Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero.					uni nolar						
Signal level = Signal level is treated as zero. Note: P-39 Analog input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code V+20F if the signal level falls below 3mA r Y+20 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal level = Signal level = Signal level = Signal level = Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applied signal level = L 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal format applied at the terminal input must uni-polar. Maximum applied signal current t											
Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will preate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero.					2011A.						
in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4+20F if the signal level falls below 3mA r 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied signal level current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA				-	ed to the sign	al. The resultir	ng value will be	displayed			
r 4 to 20mA The ersultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20 if it the signal level falls below 3mA r 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA t 20 to 4mA The drive will grant from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at grant current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Moximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA					0		0	. ,			
r 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero.											
r 4 to 20mA The drive will operate from P-02 (Minimum Frequency / Speed) to P-01 (Maximum Frequency / Speed) according to the applied signal level current. Signal format applied signal level current. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level current. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA				The resultant value after scaling and offset are ap	plied may not	exceed the ra	nge 0.0 to 100	%.			
k according to the applied signal level current. Signal format applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA E 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA											
Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero.		r 4-20	4 to 20mA		ency / Speed)	to P-01 (Maxi	imum Frequenc	cy / Speed)			
k Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA E 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied signal level current. Signal format applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA											
E 20 to 4mA Signal level =<4mA is treated as zero.											
Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA E 20-4 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal level according to the signal level according in P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA					zuma.						
in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA E 20-4 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-2DF if the signal level falls below 3mA				0	ed to the sign	al. The resultir	ng value will be	displayed			
Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA E 20-4 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied at the terminal input must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA					eu to the sign		ig value will be	uispiuyeu			
L The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will run at Preset Speed 1 (P-20) if the signal level falls below 3mA L Z0 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA					ardless of the	result after sc	aling an offset	are applied.			
E 20-4 20 to 4mA The drive will operate from P-01 (Maximum Frequency / Speed) to P-02 (Minimum Frequency / Speed) according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA				-			-	••			
according to the applied signal level current. Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA				The drive will run at Preset Speed 1 (P-20) if the si	ignal level fall:	s below 3mA					
Signal format applied at the terminal input must uni-polar. Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA		F 50-A	20 to 4mA	The drive will operate from P-01 (Maximum Frequ	iency / Speed) to P-02 (Mini	imum Frequenc	cy / Speed)			
Maximum applied signal current must not exceed 20mA. Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA				S 11 S							
Signal level =<4mA is treated as zero. Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA											
Note: P-39 Analog Input Offset and P-35 are applied to the signal. The resulting value will be displayed in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA					20mA.						
in P00-01. Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA				-		- I. T he successful to		altern lass and			
Motor rotation remains in the same direction regardless of the result after scaling an offset are applied. The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20F if the signal level falls below 3mA					eu to the sign	ai. The resultir	ig value will be	uisplayed			
The resultant value after scaling and offset are applied may not exceed the range 0.0 to 100%. The drive will trip and show the fault code 4-20 <i>F</i> if the signal level falls below 3mA					ardless of the	result after so	aling an offset	are annlied			
The drive will trip and show the fault code 4-20F if the signal level falls below 3mA				-			-				
							-				
						2	·····				
VICPAS											
VICPAS											
VICPAS											
VICPAS											
VICPAS											
				VICPAS							

2
(D)
<u> </u>
U
D
Š
<u> </u>
(1)
(D)
<u> </u>
- -
σ
<u> </u>
σ
Δ.
\mathbf{m}
Ð

Q
$\overline{}$
\mathbf{O}

Par.	Description	าท			Minimum	Maximum	Default	Units		
	r 20-4	20 to 4mA	The drive will	operate from P-01 (Maximum Freq						
		20 10 11111		he applied signal level current.	activy / opeca	,	inani requen	cy / opeca,		
			-	applied at the terminal input must	uni-nolar					
				blied signal current must not exceed						
				4mA is treated as zero.	2011A.					
			-	alog Input Offset and P-35 are appli	ied to the sign	al The resultin	og value will be	haved as		
			in P00-01.	and input onset and 1 35 are appr	icu to the sign	an. The resultin		, displayed		
				n remains in the same direction reg	ardlass of the	rocult ofter co	oling on offsot	are applied		
				value after scaling and offset are ap						
				run at Preset Speed 1 (P-20) if the	• •		inge 0.0 to 100	70.		
	U 10-0	10 to 0V		operate at Maximum Frequency / S	-		after scaling	and officat		
		101000	are applied is		peeu ii tile all	alog reference	aller scalling a	ind onset		
		Built in Pot		-<0.0% ched Drives Only. Default setting fo	r IDEE Switcho	d drives. The h	wilt in not is u	sod to		
	I n-Pot	Built III POL			i iPoo Switche	u unives. The L	Juint-in pot is u	seu to		
				gnal to analog input 1.	the signal The	roculting volu	مبيناا لمع طنعما	avad in DOO		
			01.	nput Offset and P-35 are applied to	the signal. The	resulting valu	e will be displa	ayed in POU-		
			-	n remains in the same direction rea	ardlass of the	recult ofter cor	ling on officit	are enalied		
				n remains in the same direction reg						
D 47		. Effective Control		value after scaling and offset are ap	1					
P-17		n Effective Switch		ware af the drive. The estual evite	4	32	8	kHz		
				uency of the drive. The actual switc						
				sink temperature. Refer to section 2 Jency will be displayed in paramete		c Switching Fre	equency Redu			
D 10				tency will be displayed in parameter		0	1			
P-18		elay Function Sel		utput The relay has two extent to		9 Lindicatos tha	1	-		
		-		output. The relay has two output ter	minals, Logic	L indicates the	relay is active	, and		
		terminals 10 and	111 Will be conn			(a):				
	Setting	Function	(December of)	Contacts Closed Under the Follow	ving Condition	i(s):				
	0	Drive Enabled	Running)	The motor is enabled						
	1	Drive Healthy	(0 1)	Power is applied to the drive and no fault exists						
	2	At Target Frequency (Speed)		The output frequency matches th	e setpoint free	luency				
	3	Drive Tripped		The drive is in a fault condition						
	4	Output Freque		The output frequency exceeds the						
	5	Output Current		The motor current exceeds the ac						
	6	Output Freque		The output frequency is below the						
	7	Output Current		The motor current is below the ac	,					
	8	Analog Input 2		The signal applied to analog input		adjustable lin	nit set in P-19			
	9	Drive Ready to	Run	The drive is ready to run, no trip p						
P-19		eshold Level			0.0	200.0	100.0	%		
	-			tion with settings 4 to 7 of P-18						
P-20		equency / Speed			P-02	P-01	5.0	Hz / RPM		
P-21		equency / Speed			P-02	P-01	25.0	Hz / RPM		
P-22		equency / Speed			P-02	P-01	40.0	Hz / RPM		
P-23		equency / Speed			P-02	P-01	P-09	Hz / RPM		
				ed by digital inputs depending on th		-15				
				P-10 > 0, the values are entered as						
				all values to factory default setting		600.0	0.00			
P-24		leration Ramp Ti			0.00	600.0	0.00	S		
				eration ramp down time to be prog						
				P-15) or selected automatically in t	ne case of a m	ains power los	s if P - 05 = 2 o	í 3.		
	when set	to 0.00, the drive		op.						
	1									

Par. P-25	Descriptio	on			Minimum	Maximum	Default	Units			
F-23		utput Function Sele	ect		0	11	8	-			
	Digital Ou	tput Mode. Logic	1 = +24V DC								
	Setting	Function		Output = 24VDC under the	following cond	lition(s):					
	0	Drive Enabled (R	unning)	The Optidrive is enabled (Ru	inning). The ou	tput remains	on even if out	put			
				frequency = 0.0Hz or the drive	frequency = 0.0Hz or the drive is in standby mode.						
	1	Drive Healthy		No Fault condition exists on	the drive.						
	2	At Target Freque	ncy (Speed)	Output frequency matches t	he setpoint fre	equency.					
	3	Drive Tripped		The drive is in a trip conditio	on.						
	4	Output Frequence	y >= Limit	The output frequency excee	ds the adjusta	ble limit set in	P-19.				
	5	Output Current >	-= Limit	The motor current exceeds t							
	6	Output Frequence	y < Limit	The output frequency is belo	ow the adjusta	ble limit set in	P-19.				
	7	Output Current <	: Limit	The motor current is below	the adjustable	limit set in P-2	19.				
	Analog O	utput Mode									
	Setting	Description		Range							
	8	Output Frequence	y (Motor Speed)	0 to P-01, resolution 0.1Hz							
	9	Output (Motor) (Current	0 to 200.0% of P-08, update	d every 256ms						
	10	Output Power		0 – 200.0% of drive rated po	wer						
	11	Load Current (To	rque)	0 – 200.0% of P-08, updated	l every 64ms						
P-26	Skip frequ	uency hysteresis ba	and	· ·	0.0	P-01	0.0	Hz / RPM			
P-27	Skip Freq	uency Centre Point	t		0.0	P-01	0.0	Hz / RPM			
				e Optidrive operating at a certa	ain output freq	uency, for exa	mple at a free	juency			
				achines or applications. Parame							
	frequency	/ band and is used i	n conjunction with	P-26. The Optidrive output free	quency will rar	np through th	e defined ban	d at the			
				not hold any output frequency							
	applied to	the drive is within	the band, the Opti	drive output frequency will ren	nain at the upp	per or lower lin	mit of the ban	d.			
P-28	V/F Chara	acteristic Adjustme	nt Voltage		0	250 / 500	0	V			
P-29	V/F Chara	cteristic Adjustme	nt Frequency		0.0	P-09	0.0	Hz			
		neter in conjunctio	oltage set in P-	29 is applied t	o the motor. (Care must be					
		-		notor when using this feature.	-						
P-30	Start Mod	de, Automatic Rest	art, Fire Mode Con	figuration							
	Index 1: S	tart Mode & Auto	matic Restart								
	Selects w	hether the drive sh	ould start automati	ically if the enable input is pres	ent and latche	d during powe	er on. Also cor	figures the			
		c Restart function.		,		01		0			
	Setting	Start Function	Auto Restarts D	Description							
	Ed9E-r	Edge Run	0 F	ollowing Power on or reset, the	e drive will not	start if Digital	Input 1 rema	ins closed.			
		0		he Input must be closed <u>after</u> a							
	AULo-D	Auto		ollowing a Power on or Reset, t				nput 1 is			
	_		L L	losed.			0				
	AULo- I	Auto			g a trip. the dr	ive will make u	_	ots to restart			
	AULo-1 AULo-2		1 A	s AUE D. In addition, followin			up to 5 attem				
	AULo-2	Auto	1 A 2 a	s קטבים. In addition, followin t 20 second intervals. The num	bers of restart	attempts are	up to 5 attemp counted, and	if the drive			
	AULo-2 AULo-3	Auto Auto	1 A 2 a 3 fa	s RUE□- D. In addition, followin t 20 second intervals. The num ails to start on the final attempt	bers of restart t, the drive wil	attempts are I trip with a fa	up to 5 attemp counted, and ult, and will re	if the drive equire the			
	AULo-2 AULo-3 AULo-4	Auto Auto Auto	1 A 2 a 3 fa 4 u	is RUED-D. In addition, followin t 20 second intervals. The num ails to start on the final attemp iser to manually reset the fault.	bers of restart t, the drive wil	attempts are I trip with a fa	up to 5 attemp counted, and ult, and will re	if the drive equire the			
	AUE0-2 AUE0-3 AUE0-4 AUE0-5	Auto Auto Auto Auto	1 A 2 a 3 fa 4 u 5 c	s RUE□- D. In addition, followin t 20 second intervals. The num ails to start on the final attempt	bers of restart t, the drive wil The drive mus	attempts are I trip with a fa st be powered	up to 5 attemp counted, and ult, and will re down to rese	if the drive equire the t the			
	AULo-2 AULo-3 AULo-4 AULo-5 Index 2: F	Auto Auto Auto Auto ire Mode Input Log	1 A 2 a 3 fa 4 u 5 c	In addition, followin t 20 second intervals. The num ails to start on the final attempi ser to manually reset the fault. ounter.	bers of restart t, the drive wil The drive mus	attempts are I trip with a fa st be powered 1	up to 5 attem counted, and ult, and will re down to rese	if the drive equire the			
	RULo-2 RULo-3 RULo-4 RULo-5 Index 2: F Defines th	Auto Auto Auto Auto Fire Mode Input Log The operating logic v	1A2a3fa4u5cgicvhen a setting of P-	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N	bers of restart t, the drive wil The drive mus	attempts are I trip with a fa st be powered 1	up to 5 attem counted, and ult, and will re down to rese	if the drive equire the t the			
	RULo-2 RULo-3 RULo-4 RULo-5 Index 2: F Defines th Setting	Auto Auto Auto Auto Fire Mode Input Log the operating logic v Input Type	1 A 2 a 3 fa 4 u 5 c gic Fire Mode	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire M Active When	bers of restart t, the drive wil The drive mus	attempts are I trip with a fa st be powered 1	up to 5 attem counted, and ult, and will re down to rese	if the drive equire the t the			
	AULo-2 RULo-3 RULo-4 RULo-5 Index 2: F Defines th Setting 0	Auto Auto Auto Auto Fire Mode Input Log the operating logic v Input Type Normally Closed	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is option	In addition, followin t 20 second intervals. The num ails to start on the final attemp iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en	bers of restart t, the drive wil The drive mus	attempts are I trip with a fa st be powered 1	up to 5 attem counted, and ult, and will re down to rese	if the drive equire the t the			
	AULo-2 AULo-3 AULo-4 AULo-5 Index 2: F Defines th Setting 0 1	Auto Auto Auto Fire Mode Input Log the operating logic w Input Type Normally Closed Normally Open (i	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo	In addition, followin t 20 second intervals. The num ails to start on the final attemp iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en	bers of restart t, the drive wil . The drive mus 0 Mode, e.g. sett	attempts are I trip with a fa st be powered 1 ings 15, 16 &	up to 5 attemp counted, and ult, and will re down to rese 0 17.	if the drive equire the t the			
	AULo-2 AULo-3 AULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F	Auto Auto Auto ire Mode Input Log e operating logic v Input Type Normally Closed Normally Open (I ire Mode Input Type	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clope	Is AUED-D. In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed	bers of restart t, the drive wil The drive mus 0 Mode, e.g. sett	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1	up to 5 attem counted, and ult, and will re down to rese	if the drive equire the t the			
	AULo-2 AULo-3 AULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th	Auto Auto Auto ire Mode Input Log e operating logic v Input Type Normally Closed Normally Open (I ire Mode Input Typ e input type when	1 A 2 a 3 fr 4 u 5 c gic remove Vhen a setting of P- Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode	bers of restart t, the drive wil The drive mus 0 Mode, e.g. sett	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1	up to 5 attemp counted, and ult, and will re down to rese 0 17.	if the drive equire the t the			
	AULo-2 AULo-3 AULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting	Auto Auto Auto Auto iire Mode Input Log the operating logic v Input Type Normally Closed Normally Open (I iire Mode Input Typ the input type when Input Type	1 A 2 a 3 fr 4 u 5 c gic c Vhen a setting of P- Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is Description	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n	bers of restart t, the drive wil The drive mus 0 Mode, e.g. sett 0 e, e.g. settings	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17.	up to 5 attemp counted, and ult, and will re down to rese 0 17.	if the drive equire the t the -			
	AULo-2 AULo-3 AULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th	Auto Auto Auto ire Mode Input Log e operating logic v Input Type Normally Closed Normally Open (I ire Mode Input Typ e input type when	1 A 2 a 3 fi 4 u 5 c gic c Vhen a setting of P- Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is Description t The drive v	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as	bers of restart t, the drive wil The drive mus 0 Mode, e.g. sett 0 e, e.g. settings s long the fire	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig	up to 5 attemp counted, and ult, and will re down to rese 0 17. 0 gnal remains (if the drive equire the t the -			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fi 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is Description The drive v Open or No Open or No	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig fing on Index 2	up to 5 attem counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting).	if the drive equire the t the 			
	AULo-2 AULo-3 AULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting	Auto Auto Auto Auto iire Mode Input Log the operating logic v Input Type Normally Closed Normally Open (I iire Mode Input Typ the input type when Input Type	1 A 2 a 3 fi 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe Description t The drive v Open or No Fire Mode	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempt iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			
	AULo-2 AULo-3 RULo-4 AULo-5 Index 2: F Defines th Setting 0 1 Index 3: F Defines th Setting 0	Auto Auto Auto Auto ire Mode Input Log ne operating logic v Input Type Normally Closed Normally Open (i ire Mode Input Typ ne input type when Input Type Maintained Inpur	1 A 2 a 3 fr 4 u 5 c gic Fire Mode (NC) Input is op NO) Input is clo pe a setting of P-15 is t The drive v Open or No t Fire Mode operation i	In addition, followin t 20 second intervals. The num ails to start on the final attempi iser to manually reset the fault. ounter. 15 is used which includes Fire N Active When en sed used which includes Fire Mode n vill remain in Fire Mode, only as prmally Closed operation is sup is activated by a momentary sig s supported depending on Inde	bers of restart t, the drive wil The drive muse 0 Mode, e.g. sett e, e.g. settings s long the fire ported depend gnal on the inp	attempts are I trip with a fa st be powered 1 ings 15, 16 & 1 15, 16 & 17. mode input sig ding on Index 2 ut. Normally (up to 5 attem, counted, and ult, and will re down to rese 0 17. 0 gnal remains (2 setting). Dpen or Norm	if the drive equire the t the 			

P-31	Descripti	on			Minimum	Maximum	Default	Units			
		itart Mode Select			0	3	1	-			
	This para	meter is active only when op	erating in Ke	ypad Control Mode (P-12 =	1 or 2), Modb	us Mode (P-12	= 3 or 4) or C/	AN Mode (
	12 = 7 or	8). When settings 0 or 1 are	used, the Ke	ypad Start and Stop keys are	active, and co	ontrol termina	ls 1 and 2 mus	t be linked			
	together	Settings 2 and 3 allow the di	ive to be sta	rted from the control termin	nals directly, a	nd the keypad	Start and Sto	p keys are			
	ignored.	-									
	Setting	Start At	Enable Fron	From							
	0	Minimum Speed (P-02)		pad (Digital Input 1 must be closed)							
	1	Previous Speed		ital Input 1 must be closed)							
		· · · · · · · · · · · · · · · · · · ·	11 1 2								
	2	Minimum Speed	Digital Input								
	3	Previous Speed	Digital Input								
	4	Present Speed		ital Input 1 must be closed)							
	5	Preset Speed 4 (P-23)	Keypad (Dig	ital Input 1 must be closed)							
	6	Present Speed	Digital Input	:1							
	7	Preset Speed 4 (P-23)	Digital Input	t 1							
-32	DC Injection Braking Configuration										
			method for	braking the motor shaft A	C current is in	niected into th	e motor to ge	norato			
	DC Injection braking provides a simple method for braking the motor shaft. A DC current is injected into the motor to generate braking torque.										
		•									
		ion braking must <u>not</u> be used									
		ble for use in applications wh		-		ie is required,	or application	s where it			
		that the motor shaft comes t	o a complet	e stop on disable or before s	-						
	Index 1:				0.0	25.0	0.0	S			
	Index 2:	DC Injection Mode			0	2	0	-			
	Index 1:	Defines the time for which a	DC current is	injected into the motor. DC	Injection curr	ent level mav	be adjusted in	P-59.			
		Configures the DC Injection F		· ·	-	,					
	Setting	Function	Descript								
	0	DC Injection on Stop		ne drive is disabled, DC is inj							
				e output frequency is at or l		el set in P-58. N	lo current is ir	jected			
			during d	leceleration due to a change	of setpoint.						
			The curr	rent is injected for the time s	set in Index 1.	This can be us	eful to ensure	the motor			
			has read	hed a complete stop before	the drive disa	bles, or to pro	vide additiona	I braking			
				during stopping.							
	1	DC Injection on Start		ected into the motor at the	current lovel s	et in P-59 for t	the time set in	Index 1			
	-	De injection on start									
				ately after the drive is enable							
				stage remains active during t	this phase. Thi	s can be used	to ensure the	motor is a			
				ll prior to starting.							
	2	DC Injection on Start & Stop	DC injec	tion applied as both settings	s 0 and 1 abov	e.					
-33	Spin Star	t			0	2	0	-			
	Spin star	t should be used in applicatio	ns such as fa	ins or flywheels where the lo	oad has high ir	nertia and may	be rotating p	rior to			
	enabling	Spin start should be used in applications such as fans or flywheels where the load has high inertia and may be rotating prior to enabling the drive. The Spin Start function attempts to determine if the motor is rotating and synchronises the output frequency to									
	-	the motor speed. The Spin Start function can determine the direction of motor rotation and it if necessary, reverse the direction									
	providing that sufficient braking torque is possible. Spin Start cannot detect the motor speed if it is changing rapidly, or it exceeds the maximum frequency / speed limit set in P-01.										
		t cannot detect the motor so				-					
	Spin Star		eed if it is ch	anging rapidly, or it exceeds	the maximum	n frequency / s	peed limit set				
	Spin Star If the mo	tor is at standstill when the d	eed if it is ch rive is enabl	anging rapidly, or it exceeds ed, there may be a short del	the maximum	n frequency / s	peed limit set				
	Spin Star If the mo Setting	tor is at standstill when the d Function	eed if it is ch	anging rapidly, or it exceeds ed, there may be a short del	the maximum	n frequency / s	peed limit set				
	Spin Star If the mo	tor is at standstill when the d	eed if it is ch rive is enabl Descriptic	anging rapidly, or it exceeds ed, there may be a short del on	the maximum ay before the	n frequency / s motor starts t	peed limit set o rotate.	in P-01.			
	Spin Star If the mo Setting	tor is at standstill when the d Function	eed if it is ch rive is enabl Descriptic When ena	anging rapidly, or it exceeds ed, there may be a short del on bled, on start up the drive w	the maximum ay before the vill attempt to	n frequency / s motor starts t determine if t	peed limit set o rotate. he motor is al	in P-01.			
	Spin Star If the mo Setting 0	tor is at standstill when the c Function Disabled	eed if it is ch rive is enabl Descriptic When ena	anging rapidly, or it exceeds ed, there may be a short del on	the maximum ay before the vill attempt to	n frequency / s motor starts t determine if t	peed limit set o rotate. he motor is al	in P-01.			
	Spin Star If the mo Setting 0	tor is at standstill when the c Function Disabled	eed if it is ch rive is enabl Descriptic When ena rotating a	anging rapidly, or it exceeds ed, there may be a short del on bled, on start up the drive w	the maximum ay before the vill attempt to notor from its	n frequency / s motor starts t determine if t s current speec	peed limit set o rotate. he motor is al	in P-01.			
	Spin Star If the mo Setting 0	tor is at standstill when the d Function Disabled Enabled	eed if it is ch rive is enabl Descriptic When ena rotating a observed	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r when starting motors which	the maximum ay before the vill attempt to notor from its are not turnir	n frequency / s motor starts t determine if t s current speec ng.	peed limit set o rotate. he motor is al l. A short dela	in P-01.			
	Spin Star If the mo Setting 0 1	tor is at standstill when the c Function Disabled Enabled Enabled on Trip, Brown	eed if it is ch rive is enabl Descriptic When ena rotating a observed	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r	the maximum ay before the vill attempt to notor from its are not turnir	n frequency / s motor starts t determine if t s current speec ng.	peed limit set o rotate. he motor is al l. A short dela	in P-01.			
34	Spin Star If the mo Setting 0 1 2	tor is at standstill when the c Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop	eed if it is ch rive is enabl Descriptic When ena rotating a observed	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r when starting motors which	the maximum ay before the vill attempt to notor from its are not turnin ne events liste	n frequency / s motor starts t determine if t s current speec ng. d, otherwise it	peed limit set o rotate. he motor is al d. A short dela : is disabled.	in P-01.			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch	tor is at standstill when the c Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1)	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r when starting motors which is only activated following th	the maximum ay before the vill attempt to notor from its are not turnin ne events liste	n frequency / s motor starts t determine if t current speec ng. d, otherwise it 2	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0	in P-01. ready y may be			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz	tor is at standstill when the c Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have an	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co	the maximum ay before the vill attempt to motor from its are not turnin he events liste 0 onnection of a	determine if t determine if t current speed ng. d, otherwise it 2 n external resi	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0 stor to dissipa	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera	tor is at standstill when the of Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have an ted braking energy. This para	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co	the maximum ay before the vill attempt to motor from its are not turnin he events liste 0 onnection of a	determine if t determine if t current speed ng. d, otherwise it 2 n external resi	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0 stor to dissipa	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera	tor is at standstill when the c Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have an	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co	the maximum ay before the vill attempt to motor from its are not turnin he events liste 0 onnection of a	determine if t determine if t current speed ng. d, otherwise it 2 n external resi	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0 stor to dissipa	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera	tor is at standstill when the of Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have an ted braking energy. This para	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on ibled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co	the maximum ay before the vill attempt to motor from its are not turnin he events liste 0 onnection of a	determine if t determine if t current speed ng. d, otherwise it 2 n external resi	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0 stor to dissipa	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent c	tor is at standstill when the of Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor.	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition	the maximum ay before the vill attempt to motor from its are not turnin he events liste 0 onnection of a	determine if t determine if t current speed ng. d, otherwise it 2 n external resi	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0 stor to dissipa	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent c Setting 0	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have ar ted braking energy. This para overloading the resistor. Function Disabled	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description	the maximum ay before the vill attempt to notor from its are not turnir ne events liste 0 0 onnection of a nally configure	a frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0 stor to dissipa e protection us	in P-01. ready y may be - te the sed to			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent C Setting	tor is at standstill when the of Function Disabled Enabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake	the maximum ay before the vill attempt to notor from its are not turnir ne events liste 0 0 onnection of a nally configure	a frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software	peed limit set o rotate. he motor is al d. A short dela : is disabled. 0 stor to dissipa e protection us	in P-01. ready y may be - te the sed to			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent o Setting 0 1	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have an ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Prof	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start meter enabl	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor	the maximum ay before the vill attempt to notor from its are not turnir ne events liste 0 onnection of a nally configure chopper with	a frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software software prot	peed limit set o rotate. he motor is al d. A short delar is disabled. 0 stor to dissipa e protection us ection for a 20	in P-01. ready y may be <u>-</u> te the sed to 00W			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent c Setting 0	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have ar ted braking energy. This para overloading the resistor. Function Disabled	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start meter enabl	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following th ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake	the maximum ay before the vill attempt to motor from its are not turnin the events liste 0 connection of a nally configure chopper with	a frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software software prot out software p	peed limit set o rotate. he motor is al d. A short delar is disabled. 0 stor to dissipa e protection us ection for a 20	in P-01. ready y may be <u>-</u> te the sed to 00W			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent o Setting 0 1	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profestion Enabled Without Software	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start ninternal bra meter enabl	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following th ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device	the maximum ay before the vill attempt to notor from its are not turnin be events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software software prot out software p	peed limit set o rotate. he motor is al d. A short delar is disabled. 0 stor to dissipa e protection us ection for a 20 protection. An	in P-01. ready y may be te the sed to DOW external			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent o Setting 0 1	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have an ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Prof	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start ninternal bra meter enabl	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following th ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake	the maximum ay before the vill attempt to notor from its are not turnin be events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software software prot out software p	peed limit set o rotate. he motor is al d. A short delar is disabled. 0 stor to dissipa e protection us ection for a 20 protection. An	in P-01. ready y may be te the sed to DOW external			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent o Setting 0 1 2	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profestion Enabled Without Software	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start ninternal bra meter enabl	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device As setting 1, however the	the maximum ay before the vill attempt to motor from its are not turnin ne events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software software prot out software p ed r is only enable	peed limit set o rotate. he motor is al d. A short delar is disabled. 0 istor to dissipa e protection us ection for a 20 protection. An ed during a ch	in P-01. ready y may be te the sed to 00W external ange of the			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent C Setting 0 1 2 3	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profile Enabled Without Software Profile Enabled With So	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start Spin start ninternal bra meter enabl cection	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device As setting 1, however the frequency setpoint, and is	the maximum ay before the vill attempt to motor from its are not turnin ne events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a frequency / s motor starts t determine if t s current speec ng. d, otherwise it 2 n external resi es the software software prot out software p ed r is only enable ng constant spi	peed limit set o rotate. he motor is al d. A short delar is disabled. 0 istor to dissipa e protection us ection for a 20 protection. An ed during a ch eed operation	in P-01. ready y may be te the sed to 00W external ange of the			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent o Setting 0 1 2	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profestion Enabled Without Software	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start Spin start ninternal bra meter enabl cection	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device As setting 1, however the frequency setpoint, and is As setting 2, however the	the maximum ay before the vill attempt to notor from its are not turnin he events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a frequency / s motor starts t determine if t s current speec ag. d, otherwise if 2 n external resi es the software software prot out software p ed r is only enable ag constant spi r is only enable	peed limit set o rotate. he motor is al d. A short dela is disabled. 0 istor to dissipa e protection us ection for a 20 protection. An ed during a ch eed operation ed during a ch	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent C Setting 0 1 2 3	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profile Enabled Without Software Profile Enabled With So	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start Spin start ninternal bra meter enabl section	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device As setting 1, however the frequency setpoint, and is	the maximum ay before the vill attempt to notor from its are not turnin he events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a frequency / s motor starts t determine if t s current speec ag. d, otherwise if 2 n external resi es the software software prot out software p ed r is only enable ag constant spi r is only enable	peed limit set o rotate. he motor is al d. A short dela is disabled. 0 istor to dissipa e protection us ection for a 20 protection. An ed during a ch eed operation ed during a ch	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent C Setting 0 1 2 3	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profile Enabled Without Software Profile Enabled With So	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start Spin start ninternal bra meter enabl section	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device As setting 1, however the frequency setpoint, and is As setting 2, however the	the maximum ay before the vill attempt to notor from its are not turnin he events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a frequency / s motor starts t determine if t s current speec ag. d, otherwise if 2 n external resi es the software software prot out software p ed r is only enable ag constant spi r is only enable	peed limit set o rotate. he motor is al d. A short dela is disabled. 0 istor to dissipa e protection us ection for a 20 protection. An ed during a ch eed operation ed during a ch	in P-01. ready y may be 			
-34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent C Setting 0 1 2 3	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profile Enabled Without Software Profile Enabled With So	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start Spin start ninternal bra meter enabl section	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device As setting 1, however the frequency setpoint, and is As setting 2, however the	the maximum ay before the vill attempt to notor from its are not turnin he events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a frequency / s motor starts t determine if t s current speec ag. d, otherwise if 2 n external resi es the software software prot out software p ed r is only enable ag constant spi r is only enable	peed limit set o rotate. he motor is al d. A short dela is disabled. 0 istor to dissipa e protection us ection for a 20 protection. An ed during a ch eed operation ed during a ch	in P-01. ready y may be 			
34	Spin Star If the mo Setting 0 1 2 Brake Ch Frame Siz regenera prevent C Setting 0 1 2 3	tor is at standstill when the of Function Disabled Enabled on Trip, Brown Out or Coast Stop opper Enable (Not Size 1) ze 2 and above drives have and ted braking energy. This para overloading the resistor. Function Disabled Enabled with Software Profile Enabled Without Software Profile Enabled With So	eed if it is ch rive is enabl Descriptic When ena rotating a observed Spin start Spin start ninternal bra meter enabl section	anging rapidly, or it exceeds ed, there may be a short del on abled, on start up the drive w nd will begin to control the r when starting motors which is only activated following the ake chopper, which allows co es the function, and addition Description Enables the internal brake continuous rated resistor Enables the internal brake thermal protection device As setting 1, however the frequency setpoint, and is As setting 2, however the	the maximum ay before the vill attempt to notor from its are not turnin he events liste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	a frequency / s motor starts t determine if t s current speec ag. d, otherwise if 2 n external resi es the software software prot out software p ed r is only enable ag constant spi r is only enable	peed limit set o rotate. he motor is al d. A short dela is disabled. 0 istor to dissipa e protection us ection for a 20 protection. An ed during a ch eed operation ed during a ch	in P-01. ready y may be te the sed to 00W external ange of t			

P-35	Description	on					Minimum	Maximum	Default	Units
		put 1 Scaling /					0.0	2000.0	100.0	%
	Analog In	put 1 Scaling. T	he analo	g input	signal level is multiplied by	this factor	, e.g. if P-16 is	set for a 0 – 1	LOV signal, and	d the scali
	factor is s	et to 200.0%, a	5 volt in	put will	result in the drive running a	at maximu	m frequency /	speed (P-01)		
					Slave Mode (P-12 = 9), the o	perating s	peed of the di	rive will be the	e Master speed	d multiplie
	by this fa	ctor, limited by	the mini	mum ai	nd maximum speeds.					
-36		mmunications C						See E	Below	
	Index 1:	Address					0	63	1	-
	Index 2: I	Baud Rate					9.6	1000	115.2	kbps
		Communication	loss pro	tection			0	3000	300	ms
			-		ed to configure the Modbus	RTI and (-			
		Drive Address: F		-	-			innanications		inclus ar
			-		ects the baud rate and netw	ork type f	or the internal	PS/95 comm	unication port	
					8.4, 57.6, 115.2 kbps are ava			K3465 COMIN	unication port	
					0 kbps are available.	mable.				
					time for which the drive wi	lloporato		ving a valid co	mmand talagr	am to
					drive has been enabled. Set					
	-					-		-	-	
					nes the time limit in milliseco					
			uttix mea	ns that	the drive will coast stop (ou	itput imme		<i>.</i>	· ·	
-37		de Definition					0	9999	101	-
	Defines t	ne access code v	which mu	ust be e	ntered in P-14 to access par	ameters a	bove P-14			-
-38	Paramete	er Access Lock					0	1	0	-
	Setting		Descript							
	0	Unlocked	All paran	neters o	can be accessed and change	d				
	1							-38.		
-39	Analog Input 1 Offset						-500.0	500.0	0.0	%
	Sets an offset, as a percentage of the full-scale range of the input, which is appl						lied to the ana	alog input sign	al. This param	leter
	operates in conjunction with P-35, and the resultant value after scaling and offs									
	·	The resultant value is defined as a percentage, according to the following: -							.,	
		(Applied Signal								
-40		Display Scaling F					0.000	16.000	0.000	_
	Index 2: Display Scaling Source						0.000	3	0.000	
				ntidrive	to display an alternative of	itout upit (0	-	8	Motor
	Allows the user to program the Optidrive to display an alternative output unit							ther output in	equency (nz),	WOLDI
	Speed (RPM) or the signal level of PI feedback when operating in PI Mode.									
	Index 1: Used to set the scaling multiplier. The chosen source value is multiplie							Dr.		
			ing sourc	e as toi		Index 2: Defines the scaling source as follows: -				
		etting Function Description								
					-		16 5 4 6			
	0	Motor Speed			Scaling is applied to the ou				RPM if P-10 > 0).
	0	Motor Speed Motor Current			Scaling is applied to the ou Scaling is applied to the m	otor curre	nt value (Amp	s)		
	0 1 2	Motor Speed		evel	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog	otor curre g input 2 s	nt value (Amp ignal level, int	s) ernally repres	ented as 0 – 1	00.0%
	0 1 2 3	Motor Speed Motor Current Analog Input 2 PI Feedback	2 Signal L	evel	Scaling is applied to the ou Scaling is applied to the m	otor curre g input 2 s	nt value (Amp ignal level, int	s) ernally repres	ented as 0 – 1	00.0%
2-41	0 1 2 3 PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona	2 Signal L al Gain		Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to the PI	otor curre g input 2 s feedback	nt value (Amp ignal level, int selected by P- 0.0	s) ernally repres 46, internally 30.0	ented as 0 – 1 represented a 1.0	00.0% s 0 – 100.4
2-41	0 1 2 3 PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona	2 Signal L al Gain		Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog	otor curre g input 2 s feedback	nt value (Amp ignal level, int selected by P- 0.0	s) ernally repres 46, internally 30.0	ented as 0 – 1 represented a 1.0	00.0% s 0 – 100.4
-41	0 1 2 3 PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona	2 Signal L al Gain al Gain. H	igher va	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to the PI	otor curre g input 2 s feedback	nt value (Amp ignal level, int selected by P- 0.0	s) ernally repres 46, internally 30.0	ented as 0 – 1 represented a 1.0	00.0% s 0 – 100.
	0 1 2 3 PI Contro in the fee	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona	2 Signal L al Gain al Gain. H po high a	igher va	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan	otor curre g input 2 s feedback	nt value (Amp ignal level, int selected by P- 0.0	s) ernally repres 46, internally 30.0	ented as 0 – 1 represented a 1.0	00.0% s 0 – 100.4
	0 1 2 3 PI Contro in the fee PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona Iler Proportiona dback signal. To Iler Integral Tim	2 Signal L al Gain al Gain. H bo high a ne	igher value c	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan an cause instability	otor curre g input 2 s feedback nge in the o	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0	s) ernally repres 46, internally 30.0 requency in re 30.0	ented as 0 – 1 represented a 1.0 sponse to sma 1.0	00.0% s 0 – 100. - all changes s
2-42	0 1 2 3 PI Contro in the fee PI Contro PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim	Signal L al Gain al Gain. H bo high a ne Larger	igher value c	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan	otor curre g input 2 s feedback nge in the o	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems whe	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respon	00.0% s 0 – 100. - all changes s
2-42	0 1 2 3 PI Contro PI Contro PI Contro PI Contro PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating N	Signal L al Gain al Gain. H bo high a ne Larger	igher va value c r values	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan an cause instability provide a more damped res	otor curre g input 2 s feedback nge in the o	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0	s) ernally repres 46, internally 30.0 requency in re 30.0	ented as 0 – 1 represented a 1.0 sponse to sma 1.0	00.0% s 0 – 100.0 ll changes
-42	0 1 2 3 PI Contro In the fee PI Contro PI Contro PI Contro Setting	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating M Function	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode	igher value o value o values Descr i	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption	otor curre g input 2 s feedback nge in the o	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0	00.0% s 0 – 100. - all changes s nds slowly -
2-42	0 1 2 3 PI Contro PI Contro PI Contro PI Contro PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating N	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode	igher value c value c values values Descri Use th	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W	00.0% s 0 – 100. - all changes s s s s
2-42	0 1 2 3 PI Contro In the fee PI Contro PI Contro Setting 0	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion	igher value c value c values values Descri Use th drive i	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption is mode if when the feedbar restarts following standby, t	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot itroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zero	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respon 0 Id increase. W	00.0% is 0 – 100. all changes dil changes s nds slowly - r
2-42	0 1 2 3 PI Contro In the fee PI Contro PI Contro PI Contro Setting	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating M Function	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion	igher value o value o values Descr i Use th drive i Use th	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption his mode if when the feedbar restarts following standby, the feedbar	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID con ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot troller will res rops, the mot	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respon 0 Id increase. W 0. Id decrease. V	00.0% is 0 – 100. all changes dil changes s nds slowly - r
2-42	0 1 2 3 PI Contro PI Contro PI Contro PI Contro Setting 0 1	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation	igher value o value o values values Use th drive i Use th drive i	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res provide a more damped res provi	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ttroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zero or speed shou start from zero	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. V 0.	00.0% is 0 – 100. all changes nds slowly - rhen the Vhen the
-41 -42 -43	0 1 2 3 PI Contro In the fee PI Contro PI Contro Setting 0	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation	igher value o value o values Descri Use th drive i Use th drive i Use th	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption his mode if when the feedba restarts following standby, t is mode if when the feedba restarts following standby, t is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot itroller will res rops, the mot itroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from zerc or speed shou	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. V 0. Id increase. W	00.0% is 0 – 100. all changes nds slowly - rhen the Vhen the
2-42	0 1 2 9I Contro PI Contro in the fee PI Contro PI Contro PI Contro PI Contro Setting 0 1 2	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Direct Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation	igher value o value o values values Use th drive th drive th Use th drive th	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption is mode if when the feedba restarts following standby, t is mode if when the feedba restarts following standby, t is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from zerc or speed shou start from max	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respon 0 ld increase. W 0. ld decrease. V 0. ld increase. W 0.	00.0% s 0 – 100. ll changes s nds slowly - /hen the Vhen the /hen the
-42	0 1 2 3 PI Contro PI Contro PI Contro PI Contro Setting 0 1	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation	igher value o value o values values Use th drive i Use th drive i Use th drive i Use th	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped rest ption is mode if when the feedba restarts following standby, t is mode if when the feedba restarts following standby, t is mode if when the feedba restarts following standby, t is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from max or speed shou start from max or speed shou	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respon 0 ld increase. W b. ld decrease. V b. ld increase. W cimum. ild decrease. W	00.0% s 0 – 100. - all changes s nds slowly - /hen the Vhen the /hen the
-42 -43	0 1 2 PI Contro PI Contro in the fee PI Contro PI Contro PI Contro PI Contro Setting 0 1 2 3	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Direct Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion	igher value o value o values values Use th drive n Use th drive n Use th drive n	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption is mode if when the feedba restarts following standby, t is mode if when the feedba restarts following standby, t is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot atroller will res rops, the mot atroller will res rops, the mot atroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from may or speed shou start from may	ented as 0 – 1/ represented a 1.0 sponse to sma 1.0 process respon 0 Id increase. W b. Id decrease. W c. Id increase. W kimum. Id decrease. W kimum.	00.0% s 0 – 100. ll changes s nds slowly - /hen the Vhen the /hen the
-42 -43	0 1 2 PI Contro PI Contro in the fee PI Contro PI Contro PI Contro PI Contro PI Contro A Contro PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating N Function Direct Operat Direct Operat Inverse Operat Inverse Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion ation	igher values values values Descri Use th drive i Use th drive i Use th drive i Use th drive i Use th drive i	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res iption his mode if when the feedba restarts following standby, the is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from max or speed shou start from max or speed shou	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respon 0 ld increase. W b. ld decrease. V b. ld increase. W cimum. ild decrease. W	00.0% s 0 – 100. - all changes s nds slowly - /hen the Vhen the /hen the
-42 -43	0 1 2 PI Contro PI Contro in the fee PI Contro PI Contro PI Contro PI Contro PI Contro A Contro PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Direct Operat	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion ation	igher values values values Descri Use th drive i Use th drive i Use th drive i Use th drive i Use th drive i	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res iption his mode if when the feedba restarts following standby, the is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot atroller will res rops, the mot atroller will res rops, the mot atroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from may or speed shou start from may	ented as 0 – 1/ represented a 1.0 sponse to sma 1.0 process respon 0 Id increase. W b. Id decrease. W c. Id increase. W kimum. Id decrease. W kimum.	00.0% s 0 – 100. ll changes s nds slowly - /hen the Vhen the /hen the
-42 -43	0 1 2 PI Contro PI Contro in the fee PI Contro PI Contro PI Contro PI Contro PI Contro A Contro PI Contro	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Direct Operat Inverse Operat Inverse Operat se source for the Function	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion tion ation E PID Ref	igher values value c values values values Use th drive n Use th drive n Use th drive n erence	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res iption his mode if when the feedba restarts following standby, the is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot atroller will res rops, the mot atroller will res rops, the mot atroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from may or speed shou start from may	ented as 0 – 1/ represented a 1.0 sponse to sma 1.0 process respon 0 Id increase. W b. Id decrease. W c. Id increase. W kimum. Id decrease. W kimum.	00.0% s 0 – 100. ll changes s nds slowly - /hen the Vhen the /hen the
-42 -43	0 1 2 3 PI Contro PI Contro PI Contro PI Contro PI Contro Setting 0 1 2 3 PI Refere Selects th	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating P Function Direct Operat Direct Operat Inverse Operat Inverse Operat se source for the	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion tion ation E PID Ref	igher values val	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped rest is mode if when the feedba restarts following standby, the is mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot atroller will res rops, the mot atroller will res rops, the mot atroller will res	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from may or speed shou start from may	ented as 0 – 1/ represented a 1.0 sponse to sma 1.0 process respon 0 Id increase. W b. Id decrease. W c. Id increase. W kimum. Id decrease. W kimum.	00.0% s 0 – 100. ll changes s nds slowly - /hen the Vhen the /hen the
-42	0 1 2 3 PI Contro PI Contro PI Contro PI Contro Setting 0 1 2 3 PI Refere Selects th Setting	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Inverse Operat Inverse Operat Inverse Operat se source for the Function Digital Preset S	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation ation ation e PID Refe	igher values value c values va	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption his mode if when the feedba restarts following standby, t his mode if when the feedba	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from may or speed shou start from may 1	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. W 0. Id increase. W ximum. Id decrease. V ximum. 0	00.0% s 0 – 100.1 ll changes snds slowly /hen the Vhen the /hen the
-42 -43	0 1 2 3 PI Contro PI Contro PI Contro PI Contro PI Contro Setting 0 1 2 3 PI Refere Selects th Setting 0 1	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Inverse Operat Inverse Operat Inverse Operat Se source for the Function Digital Preset S Analog Input 1	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation ation ation e PID Refe	igher values value c values va	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption his mode if when the feedba restarts following standby, the is mode if when the feedba restarts following standby, the his mode if when the feedba restarts following standby, the section of the standby, the standby, the section of the standby, the standby, the section of the standby, the stan	otor curre g input 2 s feedback nge in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from may or speed shou start from may 1	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. W 0. Id increase. W kimum. Id decrease. V kimum. 0	00.0% s 0 – 100.1 - all changes s nds slowly - /hen the Vhen the Vhen the Vhen the -
2-42	0 1 2 3 PI Contro PI Contro PI Contro PI Contro PI Contro Setting 0 1 2 3 PI Refere Selects th Setting 0 1 PI Digital	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Inverse Operat Direct Operat Inverse Operat Conce (Setpoint) Se e source for the Function Digital Preset S Analog Input 1 Setpoint	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion ation ation Esetpoint Setpoint	igher values value value value value value value value value value value value values	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res iption is mode if when the feedba restarts following standby, t is source if when the feedba	otor curre g input 2 s feedback age in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res 0 0	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from max or speed shou start from max or speed shou start from max or speed shou start from max for the setpoi 100.0	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0.	00.0% is 0 – 100.1 - all changes s nds slowly - /hen the Vhen the Vhen the Vhen the - - %
2-42 2-43	0 1 2 3 PI Contro PI Digital When P-4	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Inverse Operat Direct Operat Inverse Operat Conce (Setpoint) Se e source for the Function Digital Preset S Analog Input 1 Setpoint	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion ation ation Esetpoint Setpoint	igher values value value value value value value value value value value value values	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res ption his mode if when the feedba restarts following standby, t his mode if when the feedba	otor curre g input 2 s feedback age in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res 0 0	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from max or speed shou start from max or speed shou start from max or speed shou start from max for the setpoi 100.0	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0.	00.0% s 0 – 100.1 - all changes s nds slowly - /hen the Vhen the Vhen the Vhen the - - %
-42 -43 -44	0 1 2 3 PI Contro PI Contro PI Contro PI Contro PI Contro Setting 0 1 2 3 PI Refere Selects th Setting 0 1 PI Digital	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Inverse Operat Direct Operat Inverse Operat Conce (Setpoint) Se e source for the Function Digital Preset S Analog Input 1 Setpoint	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion ation ation Esetpoint Setpoint	igher values value value value value value value value value value value value values	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res iption is mode if when the feedba restarts following standby, t is source if when the feedba	otor curre g input 2 s feedback age in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res 0 0	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from max or speed shou start from max or speed shou start from max or speed shou start from max for the setpoi 100.0	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0.	00.0% is 0 – 100.1 - all changes s nds slowly - /hen the Vhen the Vhen the Vhen the - - %
-42 -43 -44	0 1 2 3 PI Contro PI Digital When P-4	Motor Speed Motor Current Analog Input 2 PI Feedback Iler Proportiona dback signal. To Iler Integral Tim Iler Integral Tim Iler Operating I Function Direct Operat Inverse Operat Direct Operat Inverse Operat Conce (Setpoint) Se e source for the Function Digital Preset S Analog Input 1 Setpoint	2 Signal L al Gain al Gain. H bo high a ne he. Larger Mode tion ation tion ation ation Esetpoint Setpoint	igher values value value value value value value value value value value value values	Scaling is applied to the ou Scaling is applied to the m Scaling is applied to analog Scaling is applied to analog Scaling is applied to the PI alues provide a greater chan can cause instability provide a more damped res iption is mode if when the feedba restarts following standby, t is source if when the feedba	otor curre g input 2 s feedback age in the o sponse for ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d he PID cor ck signal d	nt value (Amp ignal level, int selected by P- 0.0 drive output fr 0.0 systems when 0 rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res rops, the mot ntroller will res 0 0	s) ernally repres 46, internally 30.0 requency in re 30.0 re the overall 3 or speed shou start from zerc or speed shou start from max or speed shou start from max or speed shou start from max or speed shou start from max for the setpoi 100.0	ented as 0 – 1 represented a 1.0 sponse to sma 1.0 process respor 0 Id increase. W 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id decrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0. Id ncrease. V 0.	00.0% Is 0 – 100 Is 0

Par.	Descripti	on		Minimum	Maximum	Default	Units				
P-46	PI Feedba	ack Source Select		0	5	0	-				
	Selects th	e source of the feedback signation	al to be used by the PI controller.								
	Setting	Function	Description								
	0	Analog Input 2	(Terminal 4) Signal level readable in P00-02.								
	1	Analog Input 1	(Terminal 6) Signal level readable in P00-01								
	2	Motor Current	Scaled as % of P-08								
	3	DC Bus Voltage	Scaled 0 – 1000 Volts = 0 – 100%								
	4	Analog 1 – Analog 2	The value of Analog Input 2 is subtra	acted from An	alog 1 to give a	a differential s	ignal. The				
			value is limited to 0.								
	5	Largest (Analog 1, Analog 2)	The larger of the two analog input v	alues is alway	s used for PI fe	edback.					
P-47		put 2 Signal Format		-	-	-	U0-10				
	Setting	Signal Type	Additional Information								
	U 0- 10										
F	A 0-50										
	Ł 4-20 4 to 20mA		The drive will trip and show the fault code 4-20F if the signal level falls below 3mA								
	r 4-20		The drive will ramp to stop if the signal level falls below 3mA								
	F 50-A	20 to 4mA	The drive will trip and show the fault code 4-20F if the signal level falls below 3mA								
	r 20-4	20 to 4mA	The drive will ramp to stop if the signal level falls below 3mA								
	Ptc-th	Motor Thermistor (PTC)	Valid with any setting of P-15 that has	Input 3 as E-T	rip.						
P-48	Standby	Mode Timer		0.0	60.0	0.0	S				
	When sta	ndby mode is enabled by setti	ng P-48 > 0.0, the drive will enter stand	by following a	period of ope	erating at mini	mum speed				
	(P-02) for	the time set in P-48. When in	Standby Mode, the drive display shows	s 5Ŀ¬dbᲧ , and	the output to	the motor is c	lisabled.				
P-49	PI Contro	l Wake Up Error Level		0.0	100.0	0.0	%				
	When the	e drive is operating in PI Contro	ol Mode (P-12 = 5 or 6), and Standby M	ode is enabled	(P-48 > 0.0), I	P-49 can be us	ed to define				
	the PI Err	or Level (E.g. difference betwe	en the setpoint and feedback) required	d before the d	rive restarts af	ter entering St	andby				
	Mode. This allows the drive to ignore small feedback errors and remain in Standby mode until the feedback drops sufficient						ently.				
P-50	User Out	put Relay Hysteresis		0.0	10.0	5.0	%				
	Sets the h	nysteresis level for P-19 to pre-	vent the output relay chattering when o	close to the th	reshold.						

Par.	Descripti	on		Minimum	Maximum	Default	Units			
P-51	Motor Co	ontrol Mode		0	5	0	-			
	Selects th	ne motor typ	e and control method used by the drive. For control of IE	4 motors, the	correct motor	type setting r	nust be			
	used, and	d the instruct	tions followed in section 2.7 Motor Control Methods on p	bage 23						
	Setting	Control M	ethod							
	0	Vector spe	ed control mode for Induction Motors							
	1	V/f mode f	or Induction Motors							
	2	2 PM vector speed control for Permanent Magnet Motors								
	3	BLDC vector speed control for Brushless DC Motors								
	4	SR vector s	peed control for Synchronous Reluctance Motors							
	5	LSPM vecto	or speed control for Line Start Permanent Magnet Moto	rs						
P-52	Motor Pa	arameter Au	totune	0	1	0	-			
	This para	meter can b	e used to optimise the performance when P-51 = 0. Auto	tune is not rec	uired if P-51 =	1. For setting	s 2 – 5 of P			
	51, autot	une <u>MUST</u> b	e carried out <u>AFTER</u> all other required motor settings are	entered.						
	Setting	Function	Description							
	0	Disabled								
	1	Enabled	When enabled, the drive immediately measures require	ed data from t	he motor for o	optimal operat	ion. Ensure			
	_		all motor related parameters are correctly set first befo			prindi operat				
P-53	Vector N	lode Gain	<i></i>	0.1	200.0	50.0	%			
	Single Parameter for Vector speed loop tuning. Affects P & I terms simultaneou			uslv. Not activ						
P-54		n Current Li		0.1	175.0	150.0	%			
	Defines the max current limit in vector control modes						,-			
P-55	Motor St	ator Resista	nce	0.0	655.35	-	Ω			
	Motor st	ator resistan	ce in Ohms. Determined by Autotune, adjustment is not	normally requ	ired.					
P-56	Motor St	ator d-axis I	nductance (Lsd)	0	6553.5	-	mH			
	-		une, adjustment is not normally required.							
P-57			nductance (Lsq)	0	6553.5	-	mH			
			une, adjustment is not normally required.							
P-58		ion Speed		0.0	P-01	0.0	Hz / RPN			
			ch DC injection current is applied during braking to Stop,	allowing DC to	-					
		ed if desired.		unowing be to	be injected b		creaties			
P-59	· ·	ion Current		0.0	100.0	20.0	%			
	-		jection braking current applied according to the conditio			2010	,,,			
P-60										
P-00	-	verload Mar		-	-	-	-			
			erload Retention	0	1	1	1			
	0: Disabled									
			abled, the drive calculated motor overload protection inf	ormation is re	tained after th	e mains powe	er is remove			
	from the					0				
			erload Limit Reaction	0	1	0	1			
	-		verload accumulator reaches the limit, the drive will trip of		-		•			
	1: Current Limit Reduction. When the overload accumulator reaches 90% of, the output current limit is internally reduced to 100% of P-08 in order to avoid an It.trp. The current limit will return to the setting in P-54 when the overload accumulator reaches 10%									

2. Optidrive E3 Parameter Set Overview

2.4 Alternative Parameter Functions for Single Phase Output Drives

Single phase output drives feature several changes in order to provide optimal operation with single phase motors. These changes are based around two key principles: -

- The Starting method for single phase motors requires the motor to be started at full speed in order to provide optimal starting torque. The starting boost parameters allow adjustment of this function to provide optimal motor starting.
- It is not possible to have reverse operation with a single-phase motor, thereby all reverse functions are disabled in the drive firmware.

	Description	on		Minimum	Maximum	Default	Units			
P-05	Stopping	Mode / Mains Loss Response		0	2	0	-			
	Selects th	e stopping mode of the drive, and the	e behaviour in response to a los	s of mains pov	ver supply duri	ing operation				
	Setting	On Disable	On Mains Loss							
	0	Ramp to Stop (P-04)	Ride Through (Reco	over energy from load to maintain operation)						
	1	Coast	Coast							
	2	Ramp to Stop (P-04)	P-24), Coast if	P-24 = 0						
	AC Flux b	raking is not possible with single phas								
P-06	Reserved			-	-	-	-			
	Energy optimiser feature is not suitable for Single Phase motors									
P-11		st Voltage meter sets the initial voltage applied t		0.0	100.0	3.0	%			
P-13	starting.		-	-	-	-				
P-13			-	-	-	-				
		••	n single phase output drives.			•				
P-15	Digital In	put Function Select		0	17	0	-			
P-15	Digital In This para	put Function Select meter has the same function as three	phase output drives, however,	-		-	- Ill reverse			
P-15	Digital In This para functions	put Function Select meter has the same function as three are disabled, and the inputs assigned	phase output drives, however,	note that for s	single phase ou	utput drives, a				
P-20	Digital In This para functions Preset Fre	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1	phase output drives, however,	note that for s	single phase ou P-01	utput drives, a	Hz / RPM			
P-20 P-21	Digital In This para functions Preset Fro Preset Fro	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2	phase output drives, however,	note that for s	single phase ou P-01 P-01	5.0 25.0	Hz / RPM Hz / RPM			
P-20 P-21 P-22	Digital In This para functions Preset Fro Preset Fro Preset Fro	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3	phase output drives, however,	0.0 0.0 0.0 0.0	P-01 P-01 P-01 P-01	5.0 25.0 40.0	Hz / RPM Hz / RPM Hz / RPM			
P-20 P-21	Digital In This para functions Preset Fro Preset Fro Preset Fro Preset Fro	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3 equency / Speed 4	phase output drives, however, have no function.	0.0 0.0 0.0 0.0 0.0 0.0	P-01 P-01 P-01 P-01 P-01	5.0 5.0 25.0 40.0 P-09	Hz / RPM Hz / RPM Hz / RPM			
P-20 P-21 P-22	Digital In This paral functions Preset Fro Preset Fro Preset Fro These par	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3 equency / Speed 4 rameters have alternative default sett	phase output drives, however, have no function.	note that for s	P-01 P-01 P-01 P-01 P-01 uni-directiona	5.0 5.0 25.0 40.0 P-09 I only.	- III reverse Hz / RPM Hz / RPM Hz / RPM Hz / RPM			
P-20 P-21 P-22 P-23	Digital In This paral functions Preset Fro Preset Fro Preset Fro These par Starting E	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3 equency / Speed 4 rameters have alternative default sett Boost Frequency	phase output drives, however, have no function. ings compared to three phase	0.0 0.0 0.0 0.0 0.0 0.0	P-01 P-01 P-01 P-01 P-01	5.0 5.0 25.0 40.0 P-09	Hz / RPM Hz / RPM Hz / RPM Hz / RPM			
P-20 P-21 P-22 P-23	Digital In This paral functions Preset Fri Preset Fri Preset Fri Preset Fri These par Starting E Sets the f	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3 equency / Speed 4 rameters have alternative default sett	phase output drives, however, have no function. ings compared to three phase	note that for s	P-01 P-01 P-01 P-01 P-01 uni-directiona	5.0 5.0 25.0 40.0 P-09 I only.	Hz / RPM Hz / RPM Hz / RPM Hz / RPM			
P-20 P-21 P-22 P-23 P-32	Digital In This para functions Preset Fr Preset Fr Preset Fr Preset Fr These par Starting E Sets the f Boost Per	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3 equency / Speed 4 rameters have alternative default sett Boost Frequency requency used during the starting boo	phase output drives, however, have no function. ings compared to three phase ost phase of operation.	note that for s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	P-01 P-01 P-01 P-01 uni-directional P-09 150	5.0 25.0 40.0 P-09 only. P-09 5.0	Hz / RPM Hz / RPM Hz / RPM Hz / RPM Hz			
P-20 P-21 P-22 P-23 P-32	Digital In This para functions Preset Fr Preset Fr Preset Fr Preset Fr These par Starting E Sets the f Boost Per Time for V	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3 equency / Speed 4 rameters have alternative default sett Boost Frequency requency used during the starting boo riod Duration	phase output drives, however, have no function. ings compared to three phase ost phase of operation.	note that for s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	P-01 P-01 P-01 P-01 uni-directional P-09 150	5.0 25.0 40.0 P-09 only. P-09 5.0	Hz / RPM Hz / RPM Hz / RPM Hz / RPM Hz			
P-20 P-21 P-22 P-23 P-32	Digital In This para functions Preset Fr Preset Fr Preset Fr Preset Fr These par Starting E Sets the f Boost Per Time for V	put Function Select meter has the same function as three are disabled, and the inputs assigned equency / Speed 1 equency / Speed 2 equency / Speed 3 equency / Speed 4 rameters have alternative default sett Boost Frequency requency used during the starting boo riod Duration which the start-up boost period is app linearly from P-11 to P-07. Setting P-	phase output drives, however, have no function. ings compared to three phase ost phase of operation.	note that for s 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	P-01 P-01 P-01 P-01 uni-directional P-09 150	5.0 25.0 40.0 P-09 only. P-09 5.0	Hz / RPM Hz / RPM Hz / RPM Hz / RPM Hz			

2.5 Parameter Group 0 – Monitoring Parameters (Read Only)

- I							
Par.	Description	Explanation					
P00-01	1 st Analog input value (%)	100% = max input voltage					
P00-02	2 nd Analog input value (%)	100% = max input voltage					
P00-03	Speed reference input (Hz / RPM)	Displayed in Hz if P-10 = 0, otherwise RPM					
P00-04	Digital input status	Drive digital input status					
P00-05	User PI output (%)	Displays value of the User PI output					
P00-06	DC bus ripple (V)	Measured DC bus ripple					
P00-07	Applied motor voltage (V)	Value of RMS voltage applied to motor					
P00-08	DC bus voltage (V)	Internal DC bus voltage					
P00-09	Heatsink temperature (°C)	Temperature of heatsink in °C					
P00-10	Run time since date of manuf. (Hours)	Not affected by resetting factory default parameters					
P00-11	Run time since last trip (1) (Hours)	Run-time clock stopped by drive disable (or trip), reset on next enable only if a trip					
		occurred. Reset also on next enable after a drive power down.					
P00-12	Run time since last trip (2) (Hours)	Run-time clock stopped by drive disable (or trip), reset on next enable only if a trip					
		occurred (under-volts not considered a trip) – not reset by power down / power up					
		cycling unless a trip occurred prior to power down					
	Trip Log	Displays most recent 4 trips with time stamp					
	Run time since last disable (Hours)	Run-time clock stopped on drive disable, value reset on next enable					
	DC bus voltage log (V)	8 most recent values prior to trip, 256ms sample time					
P00-16	Heatsink temperature log (V)	8 most recent values prior to trip, 30s sample time					
P00-17	Motor current log (A)	8 most recent values prior to trip, 256ms sample time					
P00-18	DC bus ripple log (V)	8 most recent values prior to trip, 22ms sample time					
P00-19	Internal drive temperature log (°C)	8 most recent values prior to trip, 30 s sample time					
P00-20	Internal drive temperature (°C)	Actual internal ambient temperature in °C					
P00-21	CAN process data input	Incoming process data (RX PDO1) for CAN: PI1, PI2, PI3, PI4					
P00-22	CAN process data output	outgoing process data (TX PDO1) for CAN: PO1, PO2, PO3, PO4					
P00-23	Accumulated time with heatsink > 85°C	Total accumulated hours and minutes of operation above heatsink temp of 85°C					
	(Hours)						
P00-24	Accumulated time with drive internal temp >	Total accumulated hours and minutes of operation with drive internal ambient above					
	80°C (Hours)	80C					
P00-25	Estimated rotor speed (Hz)	In vector control modes, estimated rotor speed in Hz					
P00-26	kWh meter / MWh meter	Total number of kWh / MWh consumed by the drive.					
P00-27	Total run time of drive fans (Hours)	Time displayed in hh:mm:ss. First value displays time in hrs, press up to display					
		mm:ss.					
P00-28	Software version and checksum	Version number and checksum. "1" on LH side indicates I/O processor, "2" indicates					
		power stage					
P00-29	Drive type identifier	Drive rating, drive type and software version codes					
P00-30	Drive serial number	Unique drive serial number					
P00-31	Motor current ld / lq	Displays the magnetising current (Id) and torque current (Iq). Press UP to show Iq					
P00-32	Actual PWM switching frequency (kHz)	Actual switching frequency used by drive. If "rEd" is displayed, the switching frequency has been automatically reduced.					
P00-33	Critical fault counter – O-I	These parameters log the number of times specific faults or errors occur and are					
P00-34	Critical fault counter – O-Volts	useful for diagnostic purposes.					
P00-35	Critical fault counter – U-Volts						
P00-36	Critical fault counter – O-temp (h/sink)						
P00-37	Critical fault counter – b O-I (chopper)						
P00-38	Critical fault counter – O-hEAt (control)						
P00-39	Modbus comms error counter						
P00-40	CAN comms error counter						
P00-41	I/O processor comms errors						
P00-42	Power stage uC comms errors						
P00-43	Drive power up time (lifetime) (Hours)	Total lifetime of drive with power applied					
P00-44	Phase U current offset & ref	Internal value					
P00-45	Phase V current offset & ref	Internal value					
P00-46	Phase W current offset & ref	Internal value					
P00-47	Index 1: Fire mode total active time	Total activation time of Fire Mode					
	Index 2: Fire Mode Activation Count	Displays the number of times Fire Mode has been activated					
P00-48	Scope channel 1 & 2	Displays signals for first scope channels 1 & 2					
P00-49	Scope channel 3 & 4	Displays signals for first scope channels 3 & 4					
P00-50	Bootloader and motor control	Internal value					

2.6 Control Terminal Connections

For standard applications and operation, the basic control of the drive and functions of all drive input terminals can be configured using just two parameters, P-12 and P-15. P-12 is used to define the source of all control commands and the primary speed reference source. P-15 then allows fast selection of Analog and Digital Input functions based on a selection table.

2.6.1 P-12 Function

P-12 is used to select the main control source of the drive and the main speed reference according to the following table

P-12	Function	Control Source	Main Speed Reference	Notes
0	Terminal Control	Terminals	Analog Input 1	All control signals are applied to the control terminals.
				Functions are determined by P-15 Macro setting.
1	Keypad Control	Keypad / Terminals	Motorised Pot / Keypad	When keypad mode is selected, the default operation of
2	Keypad Control	Keypad / Terminals	Motorised Pot / Keypad	the drive requires the keypad Start & Stop buttons are
				used to control the drive. This can be changed using P-
				31 to allow the drive to be started from Digital Input 1
				directly.
3	Modbus RTU	Modbus RTU	Modbus RTU	Control of the drive operation is through the Modbus
				RTU Interface.
				Acceleration and Deceleration Rates are controlled by P-
				03 and P-04 respectively.
				Digital Input 1 must be closed to allow operation.
4	Modbus RTU	Modbus RTU	Modbus RTU	Control of the drive operation is through the Modbus
				RTU Interface.
				Acceleration and Deceleration Rates are also controlled
				by Modbus, P-03 and P-04 are disabled.
				Digital Input 1 must be closed to allow operation.
5	PI Control	Terminals	PI Output	Enable / Disable control of the drive is through the drive
				control terminal strip.
				Output frequency is set by the output of the PI
				Controller
6	PI Control with	Terminals	PI Output Added to Al1	Enable / Disable control of the drive is through the drive
	Analog Summation			control terminal strip.
				Output frequency is set by the output of the PI
				Controller, added to the value of analog input 1.
7	CAN	CAN	CAN	Control of the drive operation is through the CAN
				Interface.
				Acceleration and Deceleration Rates are controlled by P-
				03 and P-04 respectively.
				Digital Input 1 must be closed to allow operation.
8	CAN	CAN	CAN	Control of the drive operation is through the CAN
				Interface.
				Acceleration and Deceleration Rates are also controlled
				by Modbus, P-03 and P-04 are disabled.
				Digital Input 1 must be closed to allow operation.
9	Slave Mode	Master Drive	From Master	

2.6.2 Overview

Optidrive E3 uses a Macro approach to simplify the configuration of the Analog and Digital Inputs. There are two key parameters which determine the input functions and drive behaviour: -

- P-12 Selects the main drive control source and determines how the output frequency of the drive is primarily controlled.
- P-15 Assigns the Macro function to the analog and digital inputs.
- Additional parameters can then be used to further adapt the settings, e.g.
- P-16 Used to select the format of the analog signal to be connected to analog input 1, e.g. 0 10 Volt, 4 20mA
- P-30 Determines whether the drive should automatically start following a power on if the Enable Input is present
- P-31 When Keypad Mode is selected, determines at what output frequency / speed the drive should start following the enable command, and also whether the keypad start key must be pressed or if the Enable input alone should start the drive.
- P-47 Used to select the format of the analog signal to be connected to analog input 2, e.g. 0 10 Volt, 4 20mA

The diagrams below provide an overview of the functions of each terminal macro function, and a simplified connection diagram for each.

Explanation							
Latched Input, Open the contact to STOP the drive							
Latched input, Close the contact to Stort, the drive will operate as long as the input is maintained							
Latched Input, selects the direction of motor rotation FORWARD							
Latched Input, selects the direction of motor rotation REVERSE							
Latched Input, Close to Run in the FORWARD direction, Open to STOP							
Latched Input, Close to Run in the REVERSE direction, Open to STOP							
Hardware Enable Input.							
In Keypad Mode, P-31 determines whether the drive immediately starts, or the keypad start key must be pressed.							
In other modes, this input must be present before the start command is applied via the fieldbus interface.							
Normally Open, Rising Edge, Close momentarily to START the drive (NC STOP Input must be maintained)							
Simultaneously applying both inputs momentarily will START the drive (NC STOP Input must be maintained) Normally Closed, Falling Edge, Open momentarily to STOP the drive							
Normally Open, Rising Edge, Close momentarily to START the drive in the forward direction (NC STOP Input must be maintained)							
Normally Open, Rising Edge, Close momentarily to START the drive in the reverse direction (NC STOP Input must be							
maintained)							
When both inputs are momentarily active simultaneously, the drive stops using Fast Stop Ramp Time P-24							
Normally Closed, Falling Edge, Open momentarily to FAST STOP the drive using Fast Stop Ramp Time P-24							
Normally Closed, External Trip input. When the input opens momentarily, the drive trips showing E-Lr P or PLc-Lh							
depending on P-47 setting							
Activates Fire Mode, see section 2.8.1 Fire Mode							
Analog Input 1, signal format selected using P-16							
Analog Input 2, signal format selected using P-47							
Analog Input 1 provides the speed reference							
Analog Input 2 provides the speed reference							
Speed reference from the selected preset speed							
Preset speeds P-20 – P-23 are used for the speed reference, selected according to other digital input status							
PI Control Speed Reference							
Analog Input used to provide a Feedback signal to the internal PI controller							
Keypad Speed Reference selected							
Normally Open, Close the input to Increase the motor speed							
Normally Open, Close input to Decrease motor speed							
Selected speed reference from Fieldbus (Modbus RTU / CAN / Master depending on P-12 setting)							
Selected speed reference from Fieldbus (Modbus RTU / CAN / Master depending on P-12 setting) Input is Normally Open, Close momentarily to activate the function							
Input is Normally Open, Close momentarily to activate the function							

2.6.3 Macro Function Guide

\sim
(1)
(1)
<u> </u>
(1)
•
- C / L
-
U U
(T)
σ
60
m
ir e 1
0

_ >

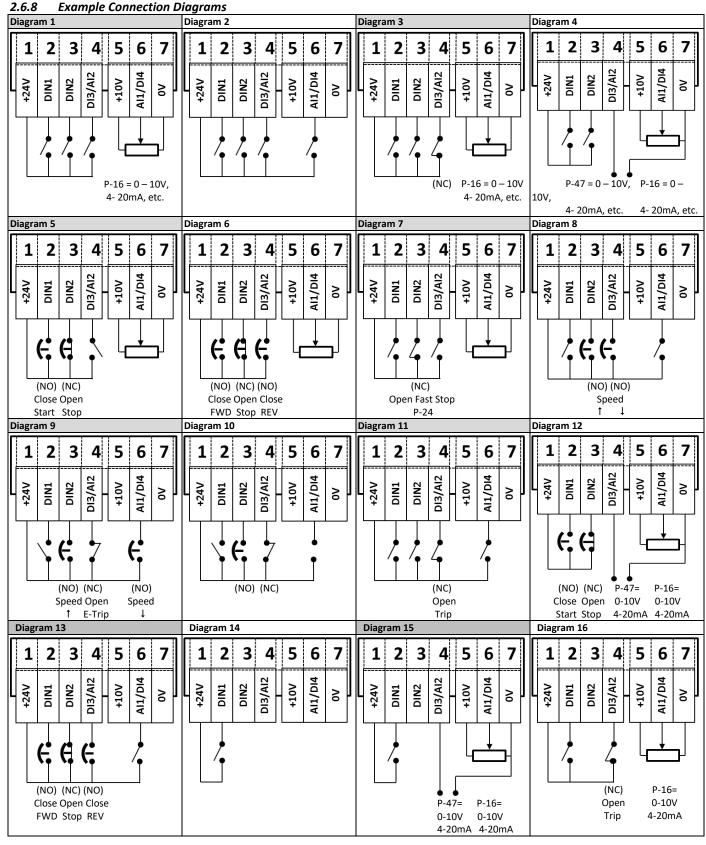
2.6.4	Macro	Functions – Ter	rminal Mode (P-12 :	= 0)					
P-15		DI1	DI2		DI3 /	AI2	DI4 /	Al1	Diagram
	0	1	0	1	0	1	0	1	
0	STOP	RUN	FWD Ù	REV び	AI1 REF	P-20 REF	Analog Ir	nput Al1	1
1	STOP	RUN	AI1 REF	PR-REF	P-20	P-21	Analog Ir	nput Al1	1
2	STOP	RUN	DI2	DI3	PI	2	P-20 - P-23	P-01	2
			0	0	P-2	20			
			1	0	P-21				
			0	1	P-2	22			
			1	1	P-2	23			
3	STOP	RUN	AI1 REF	P-20 REF	E-TRIP ↓	(NC)	Analog Ir	nput Al1	3
4	STOP	RUN	AI1 REF	AI2 REF	Analog Ir	nput Al2	Analog Ir	nput Al1	4
5	STOP	RUN FWD ひ	STOP	RUN REV び	AI1 REF	P-20 REF	Analog Ir	nput Al1	1
		۸	-FAST STOP (P-24)	^			_		
6	STOP	RUN	FWD Ù	REV び	E-TRIP ↓	(NC)	Analog Ir	nput Al1	3
7	STOP	RUN FWD ひ	STOP	RUN REV び	E-TRIP↓ (NC)		Analog Ir	nput Al1	3
		^	FAST STOP (P-24)	^					
8	STOP	RUN	FWD ひ	REV	DI3	DI4	PI	R	2
					0	0	P-2	20	
				-	1	0	P-2	21	
					0	1	P-22 P-23		
				-	1	1			
9	STOP	RUNĴFWD ひ	STOP	RUNĴREVŮ	DI3	DI4	PI	R	2
		۸	FAST STOP (P-24)	^	0	0	P-2	20	
				Ī	1	0	P-2	21	
				Ī	0	1	P-2	22	
				-	1	1	P-2	23	
10	(NO)	START Ĵ	STOP ↓	(NC)	AI1 REF	P-20 REF	Analog Ir	nput Al1	5
11	(NO)	STARTĴFWD ひ	STOP ↓	(NC)	(NO)	STARTĴREVŮ	Analog Ir	nput Al1	6
		۸	FAST ST	ГОР (Р-24)		^			
12	STOP	RUN	FAST STOP구 (P-24)	(NC)	AI1 REF	P-20 REF	Analog Ir	nput Al1	7
13	(NO)	STARTĴFWD ひ	STOP ↓	(NC)	(NO)	STARTĴREVŮ	KPD REF	P-20 REF	13
		^	FAST STO	P (P-24)		^			
14	STOP	RUN	DI2		E-TRIP ↓	(NC)	DI2 DI4	PR	11
							0 0	P-20	
							1 0	P-21	
							0 1	P-22	
							1 1	P-23	
15	STOP	RUN	P-23 REF	Al1	Fire N	1ode	Analog Ir	nput Al1	1
16	STOP	RUN	P-23 REF	P-21 REF	Fire N	1ode	FWD ひ	REV び	2
17	STOP	RUN	DI2		Fire N	lode	DI2 DI4	PR	2
							0 0	P-20	
							1 0	P-21	
							0 1	P-22	
							1 1	P-23	
18	STOP	RUN	FWD ひ	REV Ů	Fire N	1ode	Analog Ir	nput Al1	1

2.6.5 Macro Functions - Keypad Mode (P-12 = 1 or 2)

2.0.5	waci	o Functions - I	кеурий ійібие (Р-1	2 – 1 01 2)					
P-15		DI1	DI2		D	13 / AI2	DI4 /	/ AI1	Diagram
	0	1	0	1	0	1	0	1	
0	STOP	ENABLE	-	INC SPD ↑	-	DEC SPD ↓	FWD ひ	REV び	8
				۸	START	Λ			
1	STOP	ENABLE			PI REI	F			
2	STOP	ENABLE	-	INC SPD ↑	-	DEC SPD ↓	KPD REF	P-20 REF	8
				۸	START	∧			
3	STOP	ENABLE	-	INC SPD ↑	E-TRIP ↓	(NC)	-	DEC SPD ↓	9
				^		START		^	
4	STOP	ENABLE	-	INC SPD ↑	KPD REF	AI1 REF	Analog I	nput Al1	10
5	STOP	ENABLE	FWD ひ	REV び	KPD REF	AI1 REF	Analog I	nput Al1	1
6	STOP	ENABLE	FWD ひ	REV び	E-TRIP ↓	(NC)	KPD REF	P-20 REF	11
7	STOP	RUN FWD ひ	STOP	RUN REV び	E-TRIP ↓	(NC)	KPD REF	P-20 REF	11
		۸	-FAST STOP (P-24)	^					
8	STOP	RUN FWD ひ	STOP	RUN REV び	KPD REF	AI1 REF	Analog I	nput Al1	1
14	STOP	RUN	-	SPD STEP↑	E-TRIP ↓	(NC)	-	SPD STEP↓	9
15	STOP	RUN	PR REF	KPD REF	Fir	e Mode	P-23	P-21	2
16	STOP	RUN	P-23 REF	KPD REF	Fir	e Mode	FWD ひ	REV Ů	2
17	STOP	RUN	KPD REF	P-23 REF	Fir	e Mode	FWD ひ	REV 🖑	2
18	STOP	RUN	AI1 REF	KPD REF	Fir	e Mode	Analog I	nput Al1	1
				9,10,	,11,12, 13 = 0				

2.6.6 Macro Functions - Fieldbus Control Mode (P-12 = 3, 4, 7, 8 or 9)

P-15		DI1	DI2	-	DI3 /	AI2	DI4 /	Al1	Diagram		
	0	1	0	1	0	1	0	1			
0	STOP	ENABLE	FB REF (Fieldbu	s Speed Referenc	e, Modbus RTU /	CAN / Master-S	lave defined b	ave defined by P-12)			
1	STOP	ENABLE			PI REF				15		
3	STOP	ENABLE	FB REF	P-20 REF	E-TRIP ↓	(NC)	Analog Ir	put Al1	3		
5	STOP	ENABLE	FB REF	PR REF	P-20	P-21	Analog Ir	put Al1	1		
	^START (P-12 = 3 or 4 Only)^										
6	STOP	ENABLE	FB REF	AI1 REF	E-TRIP↓ (NC)		Analog Input AI1		3		
		^STAR	T (P-12 = 3 or 4 Only)-	^							
7	STOP	ENABLE	FB REF	KPD REF	E-TRIP ↓	(NC)	Analog Input AI1		3		
		^STAR	T (P-12 = 3 or 4 Only)-	^							
14	STOP	ENABLE	-	-	E-TRIP ↓	(NC)	Analog Ir	put Al1	16		
15	STOP	ENABLE	PR REF	FB REF	Fire M	ode	P-23	P-21	2		
16	STOP	ENABLE	P-23 REF	FB REF	Fire M	ode	Analog Input AI1		1		
17	STOP	ENABLE	FB REF	P-23 REF	Fire M	ode	Analog Input AI1		1		
18	STOP	ENABLE	AI1 REF	FB REF	Fire M	ode	Analog Input Al1 1				
				2,4,8,9,10,1	1,12,13 = 0						


 2.6.7
 Macro Functions - User PI Control Mode (P-12 = 5 or 6)

 P-15
 DI1
 DI2

P-15		DI1	DI2	· · · · · ·	DI3 /	AI2	DI4 / A	1	Diagram
	0	1	0	1	0	1	0	1	
0	STOP	ENABLE	PI REF	P-20 REF	Analog In	put Al2	Analog Input Al1		4
1	STOP	ENABLE	PI REF	AI1 REF	Analog Input	AI2 (PI FB)	Analog Inpu	ut Al1	4
3, 7	STOP	ENABLE	PI REF	P-20	E-TRIP ↓	(NC)	Analog Input A	I1 (PI FB)	3
4	(NO)	START Ĵ	(NC)	STOP ↓	Analog Input AI2 (PI FB)		Analog Inpu	ut Al1	12
5	(NO)	START Ĵ	(NC)	STOP ↓	PI REF	P-20 REF	Analog Input AI1 (PI FB)		5
6	(NO)	START Ĵ	(NC)	STOP ↓	E-TRIP ↓	(NC)	Analog Input A	I1 (PI FB)	
8	STOP	RUN	FWD ひ	REV Ů	Analog Input	AI2 (PI FB)	Analog Input AI1		4
14	STOP	RUN	-	-	E-TRIP ↓	(NC)	Analog Input A	I1 (PI FB)	16
15	STOP	RUN	P-23 REF	PI REF	Fire M	ode	Analog Input A	I1 (PI FB)	1
16	STOP	RUN	P-23 REF	P-21 REF	Fire M	ode	Analog Input A	I1 (PI FB)	1
17	STOP	RUN	P-21 REF	P-23 REF	Fire Mode Analog Input Al1		I1 (PI FB)	1	
18	STOP	RUN	AI1 REF	PI REF	Fire M	ode	Analog Input A	11 (PI FB)	1
				2,9,10,11	,12,13 = 0				

22 / 60

2.7 Motor Control Methods

Optidrive E3 may be used with the following motor types:

- Asynchronous Induction Motors (IM)
- Synchronous Permanent Magnet AC Motors (PM)
- Brushless DC Motors (BLDC)
- Synchronous Reluctance Motors (SynRM)
- Line Start Permanent Magnet Motors (LSPM)

Each motor type requires the correct operating mode to be selected and the correct commissioning procedure to be followed as described in the following sections.

2.7.1 IM Motors

Optidrive E3 factory default parameters are intended for use with IM motors where the power rating of the motor is approximately the same or slightly less than the indicated power rating of the drive. In this case, it should be possible to operate the motor without any parameter adjustment at all for initial testing.

For optimum performance, the drive parameters should be adjusted to match the motor ratings. This will also ensure correct protection of the motor from damage due to overload.

The basic parameters that should be adjusted are:

- P-07: Motor Rated Voltage (V)
- P-08: Motor Rated Current (A)
- P-09: Motor Rated Frequency (Hz)

In addition, it is also possible to set

• P-10: Motor Rated Speed (RPM)

When this parameter is adjusted, slip compensation is activated. Slip compensation attempts to compensate the motor speed relative to the load applied, such that when operating at a constant speed with different loads, the motor shaft speed should remain approximately the same.

To further improve the performance of the motor, the following additional steps can be followed:

- Carry out an Autotune
 - This requires Advanced Parameter Access, P-14 = P-37 + 100 (Default: 201)
 - After the correct nameplate information is entered from the motor, the drive can additionally measure some electrical characteristics of the motor to further optimise the motor control to suit connected motor.
 - This is achieved by setting P-52 = 1
 - The autotune will begin <u>IMMEDIATELY</u> following the setting of this parameter!
 - The drive output will be enabled, and the motor shaft may move. It is important to ensure this is safe before carrying out the autotune.
 - For IM motors, the autotune takes only a few seconds, and measures only the motor stator resistance. Parameter P-55 will be updated with the new value.
- Adjust the Low Frequency Torque Boost
 - o IM motors require some additional voltage at low frequency to improve the low speed operation and torque.
 - By adjusting P-11, it is possible to optimise the low speed operation.
 - o If P-11 is increased too far, excessive motor heating or over current trips may result.

2.7.2 PM Motors

2.7.2.1 Suitable Motor Types

Optidrive E3 provides open loop control of permanent magnet AC motors, intended to allow the use of high efficiency motors in simple applications. Both interior and exterior magnets type motors are supported.

Operation is tested with motors under the following conditions

- The motor Back EMF is >=1 V / Hz
- Maximum motor frequency 360Hz
 Operation down to 10% of rated speed
- RMS Back EMF must not exceed the AC supply voltage during motor operation

It is possible to operate at lower speeds, or with motors with a lower Back EMF / Frequency ratio, however performance may be reduced.

2.7.2.2 Commissioning Procedure

0

When operating with permanent magnet motors, the commissioning steps are as follows:

- Enter the motor Back EMF at Rated Frequency / Speed in parameter P-07
 - This parameter must not be set to the rated motor voltage, but the actual Back EMF imposed by the motor magnets at the drive output terminals.
 - It is sometimes necessary to derive this information from a voltage constant and the rated operating speed, e.g.
 - If a motor has rated speed 2500RPM, back EMF constant 80V / 1000 RPM, P-07 = (2500 * 80) / 1000 = 200V
 Alternatively, obtain the value from the motor supplier, or by direct measurement using an oscilloscope
- Enter the Motor Rated Current in P-08
 - It is possible that excessive current levels may permanently damage the motor, therefore this parameter must be set correctly to ensure this cannot occur.
 - Additionally, this current level is used by the autotune to determine the correct inductance values
- Enter the motor rated frequency in P-09
- Optionally enter the motor rated speed in P-10
- Enabled Advanced Parameter Access by setting P-14 = P-37 + 100 (Default: 201)
- Select PM motor control in by setting P-51 = 2
- Carry out an Autotune
 - $\circ~$ For PM motor operation, an Autotune $\underline{\text{MUST}}$ be carried out
 - This is achieved by setting P-52 = 1
 - \circ ~ The autotune will begin $\underline{\rm IMMEDIATELY}$ following the setting of this parameter!
 - The drive output will be enabled, and the motor shaft may move. It is important to ensure this is safe before carrying out the autotune.
 - For PM motors, the autotune measures the motor stator resistance and both Q and D axis inductance values. Parameters P-55, P-56 and P-57 will be updated following the measurements.
- It should now be possible to operate the motor.
 - Low speed and starting of the motor may be further optimised by adjusting P-11
 - In PM motor control mode, P-11 adjust the additional current injected into the motor at low frequency to help maintain the rotor alignment and ensure reliable starting.

2.7.3 BLDC Motors

Optidrive E3 provides open loop control of BLDC motors, intended to allow the use of high efficiency motors in simple applications. Operation is tested with motors under the following conditions

- The motor Back EMF is >=1 V / Hz
- Maximum motor frequency 360Hz
- Operation down to 10% of rated speed
- RMS Back EMF must not exceed the AC supply voltage during motor operation
- It is possible to operate at lower speeds, or with motors with a lower Back EMF / Frequency ratio, however performance may be reduced.

2.7.3.1 Commissioning Procedure

When operating with permanent magnet motors, the commissioning steps are as follows:

- Enter the motor Back EMF at Rated Frequency / Speed in parameter P-07
 - This parameter must not be set to the rated motor voltage, but the actual Back EMF imposed by the motor magnets at the drive output terminals.
 - It is sometimes necessary to derive this information from a voltage constant and the rated operating speed, e.g.
 - If a motor has rated speed 2500RPM, back EMF constant 80V / 1000 RPM, P-07 = (2500 * 80) / 1000 = 200V
 - o Alternatively, obtain the value from the motor supplier, or by direct measurement using an oscilloscope
- Enter the Motor Rated Current in P-08
 - It is possible that excessive current levels may permanently damage the motor, therefore this parameter must be set correctly to ensure this cannot occur.
 - Additionally, this current level is used by the autotune to determine the correct inductance values
 - Enter the motor rated frequency in P-09
- Optionally enter the motor rated speed in P-10
- Enabled Advanced Parameter Access by setting P-14 = P-37 + 100 (Default: 201)
- Select BLDC motor control in by setting P-51 = 3
- Carry out an Autotune
 - $\circ~$ For BLDC motor operation, an Autotune $\underline{\text{MUST}}$ be carried out
 - This is achieved by setting P-52 = 1
 - The autotune will begin IMMEDIATELY following the setting of this parameter!
 - The drive output will be enabled, and the motor shaft may move. It is important to ensure this is safe before carrying out the autotune.
 - For PM motors, the autotune measures the motor stator resistance and both Q and D axis inductance values. Parameters P-55, P-56 and P-57 will be updated following the measurements.
- It should now be possible to operate the motor.
 - Low speed and starting of the motor may be further optimised by adjusting P-11
 - In BLDC motor control mode, P-11 adjust the additional current injected into the motor at low frequency to help maintain the rotor alignment and ensure reliable starting.

2.7.4 SynRM Motors

2.7.4.1 Suitable Motor Types

Optidrive E3 provides open loop control of Synchronous Reluctance AC motors, intended to allow the use of high efficiency motors in simple applications.

Operation is tested with motors under the following conditions

- Rated voltage 200 400VAC
- 4, 6 and 8 poles
- Maximum motor frequency 100Hz
- Operation down to 10% of rated speed

2.7.4.2 Commissioning Procedure

When operating with synchronous reluctance motors, the commissioning steps are as follows:

- Enter the motor rated voltage in parameter P-07
- Enter the Motor Rated Current in P-08
 - It is possible that excessive current levels may permanently damage the motor, therefore this parameter must be set correctly to ensure this cannot occur.
 - o Additionally, this current level is used by the autotune to determine the correct inductance values
- Enter the motor rated frequency in P-09
- Optionally enter the motor rated speed in P-10
- Enabled Advanced Parameter Access by setting P-14 = P-37 + 100 (Default: 201)
- Select SynRM motor control in by setting P-51 = 4
- Carry out an Autotune
 - For SynRM motor operation, an Autotune <u>MUST</u> be carried out
 - This is achieved by setting P-52 = 1
 - The autotune will begin IMMEDIATELY following the setting of this parameter!
 - The drive output will be enabled, and the motor shaft may move. It is important to ensure this is safe before carrying out the autotune.
 - For SynRM motors, the autotune measures the motor stator resistance and both Q and D axis inductance values. Parameters P-55, P-56 and P-57 will be updated following the measurements.
- It should now be possible to operate the motor.
- Low speed and starting of the motor may be further optimised by adjusting P-11
 - In SynRM motor control mode, P-11 adjust the additional current injected into the motor at low frequency to help maintain the rotor alignment and ensure reliable starting.

2.7.5 LSPM Motors

2.7.5.1 Suitable Motor Types

Optidrive E3 provides open loop control of Line Start Permanent Magnet AC motors, intended to allow the use of high efficiency motors in simple applications. Both interior and exterior magnets type motors are supported. Operation is tested with motors under the following conditions

- The motor Back EMF is >=1 V / Hz
 - Maximum motor frequency 100Hz
 - Operation down to 10% of rated speed
- RMS Back EMF must not exceed the AC supply voltage during motor operation

It is possible to operate at lower speeds, or with motors with a lower Back EMF / Frequency ratio, however performance may be reduced.

2.7.5.2 Commissioning Procedure

0

When operating with LSPM motors, the commissioning steps are as follows:

- Enter the motor Back EMF at Rated Frequency / Speed in parameter P-07.
 - \circ ~ It is preferable to use Back EMF rather than rated voltage as this will improve performance
 - It is sometimes necessary to derive this information from a voltage constant and the rated operating speed, e.g.
 - If a motor has rated speed 2500RPM, back EMF constant 80V / 1000 RPM, P-07 = (2500 * 80) / 1000 = 200V
 Alternatively, obtain the value from the motor supplier, or by direct measurement using an oscilloscope
- Enter the Motor Rated Current in P-08
 - It is possible that excessive current levels may permanently damage the motor, therefore this parameter must be set correctly to ensure this cannot occur.
 - Additionally, this current level is used by the autotune to determine the correct inductance values
- Enter the motor rated frequency in P-09
- Optionally enter the motor rated speed in P-10
- Enabled Advanced Parameter Access by setting P-14 = P-37 + 100 (Default: 201)
- Select LSPM motor control in by setting P-51 = 5
- Carry out an Autotune
 - For LSPM motor operation, an Autotune <u>MUST</u> be carried out
 - This is achieved by setting P-52 = 1
 - o The autotune will begin <u>IMMEDIATELY</u> following the setting of this parameter!
 - The drive output will be enabled, and the motor shaft may move. It is important to ensure this is safe before carrying out the autotune.
 - For LSPM motors, the autotune measures the motor stator resistance and both Q and D axis inductance values. Parameters
 P-55, P-56 and P-57 will be updated following the measurements.
- It should now be possible to operate the motor.
- Low speed and starting of the motor may be further optimised by adjusting P-11
 - In LSPM motor control mode, P-11 adjust the additional current injected into the motor at low frequency to help maintain the rotor alignment and ensure reliable starting.

2.8 Software Functions

2.8.1 Fire Mode

The Fire Mode function is designed to ensure continuous operation of the drive in emergency conditions until the drive is no longer capable of sustaining operation. The Fire Mode input may be a normally open (Close to Activate Fire Mode) or Normally Closed (Open to Activate Fire Mode) according to the setting of P-30 Index 2. In addition, the input may be momentary or maintained type, selected by P-30 Index 3. This input may be linked to a fire control system to allow maintained operation in emergency conditions, e.g. to clear smoke or maintain air quality within that building.

The fire mode function is enabled when P-15 = 15, 16 or 17, with Digital Input 3 assigned to activate fire mode.

Fire Mode disables the following protection features in the drive: -

- O-t Heat-sink Over-Temperature
- U-t Drive Under Temperature
- Th-FLt Faulty Thermistor on Heat-sink
- E-trip External Trip
- 4-20 F 4-20mA fault
- Ph-Ib Phase Imbalance
- P-Loss Input Phase Loss Trip
- SC-trp Communications Loss Trip
- It-trp Accumulated overload Trip
- Out-F Drive output fault, Output stage trip

The following faults will result in a drive trip, auto reset and restart: -

- O-Volt Over Voltage on DC Bus
- U-Volt Under Voltage on DC Bus
- h O-I Fast Over-current Trip
- O-I Instantaneous over current on drive output

2.8.2 OEM / User Default Parameters

Optidrive E3 includes an embedded function to allow the user to create their own "default" parameters. This means that if a factory reset is carried out, the drive will return to these parameters, as opposed to the Invertek Drive factory default parameters.

This feature is accessed using Optitools Studio PC software only, which may be freely downloaded from the Invertek Drives website.

2.8.2.1 Creating the default parameter set

In order to create the User Default settings, the following process should be used.

OptiTools Studio					<u>—</u>		×	In Optitools Studio, ensure
ile Tools Parameters Ser	vice He	lp			Drive Fi	rmware: V	3.02	communication is established
		b 19 19 8 4 4 4						with the connected drive.
Drives in Network	P-00	Basic Extended						
FS 1 E3	ID	Description	Value	Range	Default	Visible		
230V 1~ 0.37kW	P-01	Maximum Frequency / Speed Limit	50.0 Hz	0.0 250.0 Hz	50.0 Hz			
01 OPTIDRIVE E3	P-02	Minimum Frequency / Speed Limit	0.0 Hz	0.0 50.0 Hz	0.0 Hz			
	P-03	Acceleration Ramp Time	5.0 s	0.00 600 s	5.0 s	1		
	P-04	Deceleration Ramp Time	5.0 s	0.00 600 s	5.0 s	√		
	P-05	Stop Mode Select	0: Ramp to Stop (Mains Loss Ride 💌		0: Ramp to Stop (Ma			
	P-06	Energy Optimiser	0: Disable		0: Disable			
	P-07	Motor Rated Voltage	230 V	0, 20 250 V	230 V			
	P-08	Motor Rated Current	2.3 A	0.5 2.3 A	2.3 A			
	P-09	Motor Rated Frequency	50 Hz	25 500 Hz	50 Hz			
	P-10	Motor Rated Speed	0 rpm	0, 100 3000 rp	0 rpm			
	P-11	Torque Boost	3.0 %	0.0 25.0 %	3.0 %			
	P-12	Primary Command Source	0: Terminal Mode		0: Terminal Mode	4		
	P-13	Industrial / Fan-Pump Control Mode	0: Industrial Mode		0: Industrial Mode			
	P-14	Extended Menu Access Code	101	0 65535	0	1		
Offline Mode								
Rescan Drive Network								
Real-Time Edit Mode								
etwork Scan Limit: 2 🔻								
)						-	
Ready	J						•	

OptiTools Studio						_		×	Make any changes to the
e Tools Parameters Se			A A E	-		Drive F	irmware:	V3.02	parameter set as required.
P & M 1		b 19 19 🖶 ·	49 49 49	+ <u>0</u> _					Changes from Invertek factor
Drives in Network	P-00	Basic Extended		- 12					default settings are highlight
	ID	Description		Value	Range	Default	Visible		in blue.
FS 1 E3 230V 1~ 0.37kW	P-01	Maximum Frequency / Spec	ed Limit	50.0 Hz	0.0 250.0 Hz	50.0 Hz	V		
01 OPTIDRIVE E3	P-02	Minimum Frequency / Spee		0.0 Hz	0.0 50.0 Hz	0.0 Hz			
	P-03	Acceleration Ramp Time		30 s	0.00 600 s	5.0 s			
	P-04	Deceleration Ramp Time		30 s	0.00 600 s	5.0 s	V		
	P-05	Stop Mode Select		0: Ramp to Stop (Mains Loss Ride		0: Ramp to Stop (Ma			
	P-06	Energy Optimiser			-	0: Disable			
	P-07	Motor Rated Voltage		230 V	0, 20 250 V	230 V			
	P-08	Motor Rated Current		1.8	0.5 2.3 A	2.3 A	v		
	P-09	Motor Rated Frequency		50 Hz	25 500 Hz	50 Hz			
	P-10	Motor Rated Speed		0 rpm	0, 100 3000 rp	0 rpm			
	P-11	Torque Boost		3.0 %	0.0 25.0 %	3.0 %			
	P-12	Primary Command Source		0: Terminal Mode	-	0: Terminal Mode			
	P-13	Industrial / Fan-Pump Cont				0: Industrial Mode			
	P-14	Extended Menu Access Coo	de	101	0 65535	0			
Offline Mode Rescan Drive Network									
Rescan Drive Network Real-Time Edit Mode									
	1								
etwork Scan Limit: 2 🔻									
ady OptiTools Studio	rvice Help					— Drive F	irmware: \	× /3.02	In the File menu, select "Save Current Parameters as
ody OptiTools Studio	rvice Help		48 - 18 4 8	-0		— Drive F		×	
optiTools Studio Tools Parameters Se Load Parameter Set	rvice Help		49 4 9	÷8.	_	— Drive F		×	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set Save Parameter Set As			+9 +9 <u>+1</u> -	÷8]_			irmware: \	×	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set Save Parameter Set As Load Project Parameter S	et			Nalue	Range	— Drive F Default	irmware: \ Visible	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set Save Parameter Set As Load Project Parameter S Save Project Parameter S	et) < Spec	ed Limit	50.0 Hz	0.0 250.0 Hz	Default 50.0 Hz	irmware: \ Visible V	×	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set Save Parameter Set As Load Project Parameter S	et) < Spec		50.0 Hz 0.0 Hz	0.0 250.0 Hz 0.0 50.0 Hz	Default 50.0 Hz 0.0 Hz	Visible	× /3.02	"Save Current Parameters as
dy OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter S Save Project Parameter S	et) < Spec	ed Limit	50.0 Hz 0.0 Hz 30 s	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s	Default 50.0 Hz 0.0 Hz 5.0 s	Visible Visible	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set Save Parameter Set As Load Project Parameter So Recent Parameter Sets	et et) < Spec Pipee 2	ed Limit	50.0 Hz 0.0 Hz	0.0 250.0 Hz 0.0 50.0 Hz	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s	Visible V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Se Save Parameter Set As Recent Parameter Sets Restore Factory Defaults	et et as User Defa) < Spec Pee aults In Drive	ed Limit	50.0 Hz 0.0 Hz 30 s	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s	Default 50.0 Hz 0.0 Hz 5.0 s	Visible V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Se Save Project Parameter Se Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameters	et et as User Defa) < Spec Pee aults In Drive	ed Limit	50.0 Hz 0.0 Hz 30 s 30 s 0: Ramp to Stop (Mains Loss Ride	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s	Visible Visible V V V V	× /3.02	"Save Current Parameters as
dy OptiTools Studio Tools Parameters See Load Parameter Set Save Parameter Set As Load Project Parameter S Save Project Parameter S Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parame Copy Parameter Set	et et as User Defa) < Spec Pee aults In Drive	ed Limit	50.0 Hz 0.0 Hz 30 s 30 s 0: Ramp to Stop (Mains Loss Ride (0: Disable 230 V	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s	Default 50.0 Hz 5.0 s 5.0 s 5.0 s 0: Ramp to Stop (Ma	Visible V V V V V V V V V V	× /3.02	"Save Current Parameters as
dy OptiTools Studio Tools Parameters See Load Parameter Set Save Parameter Set Save Parameter Set Save Parameter Set As Load Project Parameter S Save Project Parameter Set Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print	et et as User Defa) < Spec Pee aults In Drive	ed Limit	50.0 Hz 0.0 Hz 30 s 30 s 0: Ramp to Stop (Mains Loss Ride (0: Disable	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Ma 0: Disable	Visible V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters See Load Parameter Set Save Parameter Set As Load Project Parameter S Save Project Parameter S Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set	et et as User Def) < Spec Pee aults In Drive	ed Limit	50.0 Hz 0.0 Hz 30 s 30 s 0: Ramp to Stop (Mains Loss Ride (0: Disable 230 V	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s	Default 50.0 Hz 5.0 s 5.0 s 5.0 s 0: Ramp to Stop (Ma 0: Disable 230 V	Visible V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
dy OptiTools Studio Tools Parameters See Load Parameter Set Save Parameter Set Save Parameter Set Save Parameter Set As Load Project Parameter S Save Project Parameter Set Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print	et et as User Def) < Spec Pee aults In Drive	ed Limit	50.0 Hz 0.0 Hz 30 s 30 s 0: Ramp to Stop (Mains Loss Ride [0: Disable [230 V 1.4 50 Hz 0 rpm	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 9 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm	Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
dy OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Set Save Project Parameter Set Restore Factory Defaults Save Current Parameters Clear User Default Parameters Copy Parameter Set Print Export Parameter Set	et at as User Defi eters In Driv 5) < Spec Pee aults In Drive	ed Limit	50.0 Hz 0.0 Hz 30 s 30 s 0: Ramp to Stop (Mains Loss Ride [0: Disable [230 V 1.4 50 Hz 0 rpm 3.0 %	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Maron 100) 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 %	Visible Visible V V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Se Save Project Parameter Se Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set Export Parameter Change	et as User Defi eters In Driv 5) < Spec Pee aults In Drive	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride [] 0.7 Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm	Visible Visible V V V V V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
dy OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter So Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set Export Parameter Change	et at as User Defi eters In Driv 5	aults In Drive e	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride [] 0.7 Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Maron 100) 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 %	Visible Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Se Save Project Parameter Se Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set Export Parameter Change	et as User Defi eters In Driv 5	aults In Drive e e Primary Command Source	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride [] 0.7 Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 % 0: Terminal Mode	Visible Visible V V V V V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Se Save Project Parameter Se Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set Export Parameter Change	et as User Def eters In Driv 5 P-12 P-13	aults In Drive e e Primary Command Source Industrial / Fan-Pump Cont	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride) 0: Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode 2: Fan Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 % 0: Terminal Mode	Visible Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Se Save Project Parameter So Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set Export Parameter Change	et as User Def eters In Driv 5 P-12 P-13	aults In Drive e e Primary Command Source Industrial / Fan-Pump Cont	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride) 0: Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode 2: Fan Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 % 0: Terminal Mode	Visible Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set Save Parameter Set As Load Project Parameter Set Recent Parameter Set Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set Export Parameter Change Exit	et as User Def eters In Driv 5 P-12 P-13	aults In Drive e e Primary Command Source Industrial / Fan-Pump Cont	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride) 0: Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode 2: Fan Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 % 0: Terminal Mode	Visible Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Se Save Project Parameter So Recent Parameter Sets Restore Factory Defaults Save Current Parameters Clear User Default Parameter Copy Parameter Set Print Export Parameter Set Export Parameter Change	et as User Def eters In Driv 5 P-12 P-13	aults In Drive e e Primary Command Source Industrial / Fan-Pump Cont	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride) 0: Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode 2: Fan Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 % 0: Terminal Mode	Visible Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Set Recent Parameter Set Restore Factory Defaults Save Current Parameters Clear User Default Parameters Clear User Default Parameters Clear User Default Parameters Exit Export Parameter Set Export Parameter Change Exit	et as User Def eters In Driv 5 P-12 P-13	aults In Drive e e Primary Command Source Industrial / Fan-Pump Cont	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride) 0: Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode 2: Fan Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 % 0: Terminal Mode	Visible Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as
OptiTools Studio Tools Parameters Se Load Parameter Set Save Parameter Set As Load Project Parameter Set Recent Parameter Set Restore Factory Defaults Save Current Parameters Clear User Default Parameters Exist Offline Mode Rescan Drive Network	et as User Def eters In Driv 5 P-12 P-13	aults In Drive e e Primary Command Source Industrial / Fan-Pump Cont	ed Limit ed Limit	50.0 Hz 0.0 Hz 30 s 0.7 Ramp to Stop (Mains Loss Ride) 0: Disable 230 V 1.4 50 Hz 0 rpm 3.0 % 0: Terminal Mode 2: Fan Mode	0.0 250.0 Hz 0.0 50.0 Hz 0.00 600 s 0.00 600 s 7 7 0, 20 250 V 0.5 2.3 A 25 500 Hz 0, 100 3000 rp 0.0 25.0 %	Default 50.0 Hz 0.0 Hz 5.0 s 5.0 s 0: Ramp to Stop (Mail 0: Disable 230 V 2.3 A 50 Hz 0 Orpm 3.0 % 0: Terminal Mode	Visible Visible V V V V V V V V V V V V V	× /3.02	"Save Current Parameters as

DptiTools Studio							<u></u>		×	The confirmation message will
File Tools Parameters Servi	ice Help	, ,					Drive Fi	rmware: V3	3.02	appear.
	80	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Drives in Network	P-00	Basic Extended								
FS 1 E3	ID	Description		Value	Range		Default	Visible		
230V 1~ 0.37kW	P-01	Maximum Frequency / Sp	eed Limit	50.0 Hz	0.0 250.0	Hz !	50.0 Hz	V	-	
N:01 OPTIDRIVE E3	P-02	Minimum Frequency / Sp	eed Limit	0.0 Hz	0.0 50.0 H	Hz (0.0 Hz			
	P-03	Acceleration Ramp Time		30 s	0.00 600	s !	5.0 s			
	P-04	Deceleration Ramp Time		30 s	0.00 600	s !	5.0 s	V		
	P-05	Stop Mode Select		0: Ramp to Stop (Mains Loss Ride 💌		(0: Ramp to Stop (Ma			
	P-06	Energy Optimiser		0: Disable		(0: Disable			
	P-07	Motor Rated Voltage			× 0 250	ov a	230 V			
	P-08	Motor Rated Current			2.3 A	1	2.3 A			
	P-09	Motor Rated Frequency	User parameter	set saved in drive sucessfully	500 H:	lz !	50 Hz			
	P-10	Motor Rated Speed			00 30	000 rp (0 rpm			
	P-11	Torque Boost			25.0 9	% 3	3.0 %			
	P-12	Primary Command Sour		OK		(0: Terminal Mode			
	P-13	Industrial / Fan-Pump Cu	nior mode	c. run moac	,	(0: Industrial Mode			
	P-14	Extended Menu Access Co	ode	101	<mark>0 65</mark> 535	(D			
Offline Mode										
Rescan Drive Network										
Real-Time Edit Mode										
Network Scan Limit: 2 💌									-	
Ready										

2.8.2.2 Clearing User Default Parameters

2. Optidrive E3 Parameter Set Overview

In order to clear the User Default parameters, the following method is used.

	OptiTools Studio						_		×	From the File menu, select
File	Tools Parameters Servi	ice Help	2	_			Drive F	irmware: V	3.02	"Clear User Default Parameters
	Load Parameter Set Save Parameter Set Save Parameter Set As									in Drive"
	Load Project Parameter Set.				Value	Range	Default	Visible		
	Save Project Parameter Set			Speed Limit	50.0 Hz	0.0 250.0 Hz	50.0 Hz	V		
	Recent Parameter Sets		Þ	peed Limit	0.0 Hz	0.0 50.0 Hz	0.0 Hz	√		
	Restore Factory Defaults			2	30 s	0.00 600 s	5.0 s	√		
	Save Current Parameters as	User Defi	aults In Drive	e	30 s	0.00 600 s	5.0 s	\checkmark		
R.	Clear User Default Paramete	ers In Driv	re		0: Ramp to Stop (Mains Loss Ride	-	0: Ramp to Stop (Ma	V		
Ъ	Copy Parameter Set				0: Disable	•	0: Disable	1		
a	Print				230 V	0, 20 250 V	230 V	v		
	Export Parameter Set				1.8	0.5 2.3 A	2.3 A	v		
	Export Parameter Changes				50 Hz	25 500 Hz	50 Hz	v		
				-	0 rpm	0, 100 3000 rp		✓		
	Exit				3.0 %	0.0 25.0 %	3.0 %	v		
		P-12	Primary Command Sou			-	0: Terminal Mode	v		
		P-13	Industrial / Fan-Pump			-	0: Industrial Mode	V		
		P-14	Extended Menu Acces	s Code	101	0 65535	0	1		
	Offline Mode									
	Rescan Drive Network Real-Time Edit Mode									
	work Scan Limit: 2 💌								-	
Read	dy									

	P-00	Basic Extended						
ves in Network		Description	Value		Range	Default	Visible	7
0V 1~ 0.37kW P	01	Maximum Frequency / Speed Limit	50.0 Hz		0.0 250.0 Hz	50.0 Hz	 Image: A start of the start of	
TIDRIVE E3	02	Minimum Frequency / Speed Limit	0.0 H <mark>z</mark>		0.0 50.0 Hz	0.0 Hz		
p.	03	Acceleration Ramp Time	30 s		0.00 600 s	5.0 s	v	
p.	04	Deceleration Ramp Time	30 s		0.00 600 s	5.0 s	v	
p.	05	Stop Mode Select	0: Ramp to Stop (Mains Lo	oss Ride 💌		0: Ramp to Stop (Ma		
p.	06	Energy Optimiser	0: Disable	-		0: Disable		
p.	07	Motor Rated Volt	×		0, 20 250 V	230 V		
p.	08	Motor Rated Cur			0.5 2.3 A	2.3 A	1	
p.	-09	Motor Rated Free User parameter set c	leared in drive sucessfully		25 500 Hz	50 Hz		
p.	10	Motor Rated Spe			0, 100 3000 rp	0 rpm		
p.	11	Torque Boost	ОК		0.0 25.0 %	3.0 %		
p.	12	Primary Comman <mark>a source</mark>	or remning mode	-		0: Terminal Mode	1	
p.	13	Industrial / Fan-Pump Control Mode	2: Fan Mode	-		0: Industrial Mode	1	
p.	14	Extended Menu Access Code	101		0 65535	0		
Offline Mode								
an Drive Network								

The confirmation message will appear to show the user defaults are now cleared and resetting the drive will return it to Invertek Drives Factory default settings.

Optidrive E3 Parameter Set Overview

2.8.3 Automatic Switching Frequency Reduction

2.8.3.1 Heatsink Temperature Based Effective Switching Frequency Reduction

When the drive heatsink temperature exceeds preset threshold values, the output Effective Switching Frequency is automatically reduced below the value selected in P-17 to reduce the risk of over temperature trip. The threshold levels are shown in section 7.1 Thermal Management on page 53.

2.8.3.2 Output Frequency based Effective Switching Frequency Reduction

At low output frequency, Effective Switching Frequency is automatically reduced. Hysteresis is applied to prevent continuous switching. The operation is according to the following table:

P-17	32kHz	24kHz	16kHz	12kHz	8kHz	4kHz
Effective Switching Frequency increases when Output Frequency exceeds	9.0Hz	7.0Hz	5.0Hz	3.0Hz	N/A	N/A
Effective Switching Frequency reduces when Output Frequency reduces below	7.0Hz	5.0Hz	3.0Hz	1.0Hz	N/A	N/A

2.8.3.3 Output Current Based Effective Switching Frequency Reduction

Effective Switching Frequency is automatically reduced based on motor load current as follows:

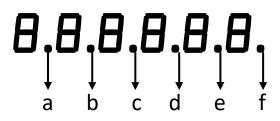
- All ODE-3-240095-3F4# models:
 - If P-17 = 12kHz, 16kHz, 24kHz, Effective switching frequency is reduced to 8kHz when motor current exceeds 10.45A (110% of the drive rated current). Switching frequency will return to the value set in P-17 when motor current reduces below 7.6A (80% of drive rated current)
 - If P-17 = 32kHz, Effective switching frequency is reduced to 8kHz when motor current exceeds 10.45A (110% of drive rated current). Switching frequency changes to 24kHz when motor current reduces below 7.6A (80% of drive rated current). Switching frequency will return to the value set in P-17 when motor current reduces below 6.7A (70% of drive rated current)
- All other models:
 - Effective switching frequency is reduced to 8kHz when motor current exceeds 140% of the drive rated current. Switching frequency will return to the value set in P-17 when motor current reduces below 110% of drive rated current.

2.8.4 Output Frequency Change by Fixed Step

From firmware version 3.08 a new feature is introduced which allows the output frequency and hence motor speed to be changed by a fixed step each time an increase or decrease request is received at the digital inputs.

This speed control method is active only under the following conditions:

- P-12 = 1 or 2 (Motorised Pot Speed Reference)
- P-15 = 14


With the parameter settings, digital inputs 2 and 4 operate as follows:

- Digital Input 2: Speed Step Up
 - Each time a rising edge pulse is received at the digital input, the output frequency or motor speed is increased by the amount set in P-20 Preset Speed 1
 - Digital Input 4: Speed Step Down
 - Each time a rising edge pulse is received at the digital input, the output frequency or motor speed is decreased by the amount set in P-20 Preset Speed 1
 - A single speed step is applied for each rising edge at the digital input
 - Minimum on time for the pulse recommended as 20ms
 - If pulses are applied simultaneously to both inputs, the speed step is not applied
 - Using the keypad or remote keypad Up and Down buttons has no effect
 - All other operation is as per Keypad Mode.

2.9 LED Display

Optidrive E3 has a built in 6 Digit 7 Segment LED Display. In order to display certain warnings, the following methods are used: -

2.9.1 LED Display Layout

2.9.2 LED Display Meanings

LED Segments	Behaviour	Meaning
a, b, c, d, e, f	Flashing all together	Overload, motor output current exceeds P-08
a and f	Flashing alternately	Mains Loss (Incoming AC power has been removed)
а	Flashing	Fire Mode Active

3 Drive Model Specific Parameter Variations

3.1 Available Effective Switching Frequency Options

110 Volt	110 Volt, 1 Phase Models (Voltage Doubler)							
Frame	kW	HP	Default	Minimum	Maximum			
1	0.37	0.5	8 kHz	4 kHz	32 kHz			
1	0.75	1	8 kHz	4 kHz	32 kHz			
2	1.1	1.5	8 kHz	4 kHz	32 kHz			
230 Volt	, 1 Phase N							
Frame	kW	HP	Default	Minimum	Maximum			
1	0.37	0.5	8 kHz	4 kHz	32 kHz			
1	0.75	1	8 kHz	4 kHz	32 kHz			
1	1.5	2	8 kHz	4 kHz	32 kHz			
2	1.5	2	8 kHz	4 kHz	32 kHz			
2	2.2	3	8 kHz	4 kHz	32 kHz			
3	4	5	8 kHz	4 kHz	24 kHz			
230 Volt	, 3 Phase N	/lodels						
Frame	kW	HP	Default	Minimum	Maximum			
1	0.37	0.5	8 kHz	4 kHz	32kHz			
1	0.75	1	8 kHz	4 kHz	32 kHz			
1	1.5	2	8 kHz	4 kHz	32 kHz			
2	1.5	2	8 kHz	4 kHz	32 kHz			
2	2.2	3	8 kHz	4 kHz	32 kHz			
3	3	4	8 kHz	4 kHz	24 kHz			
3	4	5	8 kHz	4 kHz	24 kHz			
4	5.5	7.5	8 kHz	4 kHz	24 kHz			
4	7.5	10	8 kHz	4 kHz	24 kHz			
4	11	15	8 kHz	4 kHz	24 kHz			
5	15	20	4 kHz	4 kHz	24 kHz			
5	18.5	25	4 kHz	4 kHz	24 kHz			
400 Volt	, 3 Phase N	/lodels			•			
Frame	kW	HP	Default	Minimum	Maximum			
1	0.37	0.5	8 kHz	4 kHz	32 kHz			
1	0.75	1	8 kHz	4 kHz	32 kHz			
1	1.5	2	8 kHz	4 kHz	32 kHz			
2	1.5	2	8 kHz	4 kHz	32 kHz			
2	2.2	3	8 kHz	4 kHz	32 kHz			
2	4	5	8 kHz	4 kHz	32 kHz			
3	5.5	7.5	8 kHz	4 kHz	24 kHz			
3	7.5	10	8 kHz	4 kHz	24 kHz			
3	11	15	8 kHz	4 kHz	24 kHz			
4	15	20	8 kHz	4 kHz	24 kHz			
4	18.5	25	8 kHz	4 kHz	24 kHz			
4	22	30	8 kHz	4 kHz	24 kHz			
5	30	40	4 kHz	4 kHz	24 kHz			
5	37	50	4 kHz	4 kHz	24 kHz			

3.2 V/F Mode Voltage Boost Setting Options

110 Volt, 1 Phase Input Models (Voltage Doubler)							
Frame	kW	HP	Default	Maximum			
1	0.37	0.5	3.0%	25.0%			
1	0.37	1	3.0%	25.0%			
2	1.1	1.5	2.5%	20.0%			
	1 Phase Ir			20.076			
Frame	kW	HP	Default	Maximum			
1	0.37	0.5	3.0%	25.0%			
1	0.37	1	3.0%	25.0%			
1	1.5	2	3.0%	25.0%			
2	1.5	2	2.5%				
2	2.2	2	2.5%	20.0%			
	4	5		20.0%			
3		-	2.0%	15.0%			
	3 Phase In						
Frame	kW	HP	Default	Maximum			
1	0.37	0.5	3.0%	25.0%			
1	0.75	1	3.0%	25.0%			
1	1.5	2	3.0%	25.0%			
2	1.5	2	2.5%	20.0%			
2	2.2	3	2.5%	20.0%			
3	3	4	2.0%	15.0%			
3	4	5	2.0%	15.0%			
4	5.5	7.5	1.5%	10.0%			
4	7.5	10	1.5%	10.0%			
4	11	15	1.5%	10.0%			
5	15	20	1.0%	10.0%			
5	18.5	25					
400 Volt	3 Phase In	put Mod					
Frame	kW	HP	Default	Maximum			
1	0.37	0.5	3.0%	25.0%			
1	0.75	1	3.0%	25.0%			
1	1.5	2	3.0%	25.0%			
2	1.5	2	2.5%	20.0%			
2	2.2	3	2.5%	20.0%			
2	4	5	2.5%	20.0%			
3	5.5	7.5	2.0%	15.0%			
3	7.5	10	2.0%	15.0%			
3	11	15	2.0%	15.0%			
4	15	20	1.5%	10.0%			
4	18.5	25	1.5%	10.0%			
4	22	30	1.5%	10.0%			
5	30	40	1.0%	10.0%			
5	37	50	1.0%	10.0%			

4 Fieldbus Interface Support

4.1 Fieldbus Support Overview

Optidrive E3 provides support for the following fieldbus networks and functions

Fieldbus	Interface	Drive Control	Drive Parameter Access		
Modbus RTU	On-board RJ45	Yes	Access to all Writable Parameters		
CAN bus	On-board RJ45	Yes	Access to all Writable Parameters		

4.2 Modbus RTU

Optidrive E3 supports Modbus RTU communication, using the 03 Read Holding Registers and 06 Write Single Holding Register commands. Many Master devices treat the first Register address as Register 0; therefore it may be necessary to convert the register numbers listed below by subtracting 1 to obtain the correct Register address. The telegram structure is as follows: -

Command 03 – Read Holding Registers						
Master Telegram	Le	Length		Slave Response	Le	ngth
Slave Address	1	Byte		Slave Address	1	Byte
Function Code (03)	1	Byte		Starting Address	1	Byte
1 st Register Address	2	Bytes		1 st Register Value	2	Bytes
No. Of Registers	2	Bytes		2 nd Register Value	2	Bytes
CRC Checksum	2	Bytes		Etc		
]	CRC Checksum	2	Bytes

Command 06 – Write Single Holding Register						
Master Telegram	Length			Slave Response	Le	ngth
Slave Address	1	Byte		Slave Address	1	Byte
Function Code (06)	1	Byte		Function Code (06)	1	Byte
Register Address	2	Bytes		Register Address	2	Bytes
Value	2	Bytes		Register Value	2	Bytes
CRC Checksum	2	Bytes		CRC Checksum	2	Bytes

The table shows the Modbus RTU register number corresponding to each parameter value. All values are holding registers.

All User Adjustable parameters are accessible by Modbus, except those that would directly affect the Modbus communications, e.g.

- P-36 Index 1 Drive Fieldbus Address
- P-36 Index 2 Baud Rate
- P-36 Index 3 Comms Loss Timeout

All parameter values can be read from the drive and written to, depending on the operating mode of the drive – some parameters cannot be changed whilst the drive is enabled for example.

4.3 Profibus DP

Profibus DP communication is supported through an external gateway. Operation is explained further in section 5 Fieldbus Gateways on page 44.

4.4 DeviceNet

DeviceNet communication is supported through an external gateway. Operation is explained further in section 5 Fieldbus Gateways on page 44.

4.5 CAN

The CAN communication profile in the Optidrive E3 is implemented according to the specification DS301 version 4.02 of CAN in automation (www.can-cia.de). Specific device profiles such as DS402 are not supported.

The CAN communication function is enabled by default after power up. However, in order to use any control functions through CAN, this requires P-12 = 7 or 8.

The CAN communication baud rate can be set by using parameter P-36. Available baud rates are: 125kbps, 250kbps, 500kbps, 1Mbps. (with default settings as 500kbps).

The Node ID is set up through drive address parameter P-36 as well with the default value of 1.

The tables below show the Index and Sub Index required to address each parameter. All User Adjustable parameters are accessible by CAN, except those that would directly affect the communications.

All parameter values can be read from the drive and written to, depending on the operating mode of the drive – some parameters may be changed whilst the drive is enabled for example.

Optidrive E3 provides the following default COB-ID and functions:

Туре	COB-ID	Function
NMT	000h	Network management
Sync	080h	Synchronous message
		COB-ID can be configured to other value.
Emergency	080h + Node address	Emergency message
PDO1 (TX)	180h + Node address	Process data object.
PDO1 (RX)	200h + Node address	PDO1 is pre-mapped and enabled by default.
PDO2 (TX)	280h + Node address	COB-ID can be configured to other value.
PDO2 (RX)	300h + Node address	PDO2 is pre-mapped and disabled by default.
		Transmission mode, COB-ID and mapping can be configured.
SDO (TX)	580h + Node address	SDO channel can be used for drive parameter access.
SDO (RX)	600h + Node address	
Error Control	700h + Node address	Guarding and Heartbeat function are supported.
		COB-ID can be configured to other value.

4.5.1.1 Note

- The Optidrive E3 SDO channel only supports expedited transmission.
- The Optidrive E3 can only support up to 2 Process Data Objects (PDO). All PDOs are pre-mapped; however, PDO2 is disabled by default. The table below gives the default PDO mappi VICPAS

• Customer configuration (mapping) will <u>NOT</u> be saved during power down. This means that the CAN configuration will restore to its default condition each time the drive is powered up.

4.5.2 PDO Default Mapping

	Objects No.	Mapped Object	Length	Mapped Function	Transmission Type	
	1	2000h	Unsigned 16	Control command register*		
RX	2	2001h	Integer 16 Speed reference		254	
PDO1	3	2003h	Unsigned 16	User ramp reference	Valid immediately	
	4	0006h	Unsigned 16	Dummy	1	
	1	200Ah	Unsigned 16	Drive status register	254 Send after receiving RX PDO 1	
ТΧ	2	200Bh	Integer 16	Motor speed Hz		
PDO1	3	200Dh	Unsigned 16	Motor current		
	4	2010h	Integer 16	Drive temperature	TA PDU I	
	1	0006h	Unsigned 16	Dummy		
RX	2	0006h	Unsigned 16	Dummy	254	
PDO2	3	0006h	Unsigned 16	Dummy	254	
	4	0006h	0006h Unsigned 16 Dummy]	
	1	2011h	Unsigned 16	DC bus voltage		
ΤХ	2	2012h	Unsigned 16	Digital input status	254	
PDO2	3	2013h	Integer 16	Analog input 1 (%)	254	
	4	2014h	Integer 16	Analog input 2 (%)		

* Drive control can only be achieved when P-12=7 or 8 provided that P-31 = 0, 1, 4 or 5.

4.5.3 PDO transmission type

Various transmission modes can be selected for each PDO. For RX PDO, the following modes are supported: -

Transmission Type Mode		Description			
0-240	Synchronous	The received data will be transferred to the drive active control			
		register when the next sync message is received.			
254, 255	Asynchronous	The received data will be transferred to the drive active contro register immediately without delay.			

For TX PDO, the following modes are supported: -

Transmission Type Mode		Description		
0 Acyclic synchronous		TX PDO will only be sent out if the PDO data has changed and		
		PDO will be transmitted on reception of SYNC object		
1-240	Cyclic synchronous	TX PDO will be transmitted synchronously and cyclically. The		
		transmission type indicates the number of SYNC object that are		
254	Asynchronous	TX PDO will only be transferred once corresponding RX PDO has		
		been received.		
255	Asynchronous	TX PDO will only be transferred anytime if PDO data value has		
		changed.		

4.5.4 CAN Specific Object Table	?
---------------------------------	---

v Specific				_		
Index	Sub Index	Function	Access	Туре	PDO Map	Default Value
1000h	0	Device Type	RO	U32	N	0
1001h	001h 0 Error Register		RO	U8	N	0
1002h	0	0 Manufacturer Status Register		U16	N	0
1005h	5h 0 COB-ID Sync		RW	U32	N	00000080h
1008h	0	Manufacturer Device Name	RO	String	Ν	ODE3
1009h	0	Manufacturer Hardware Version	RO	String	N	x.xx
100Ah	0	Manufacturer Software Version	RO	String	N	x.xx
100Ch	0	Guard Time (1ms)	RW	U16	N	0
100Dh	0	Lifetime Factor	RW	U8	N	0
1014h	0	COB-ID EMCY	RW	U32	N	00000080h+Node ID
1015h	0	Inhibit Time Emergency (100µs)	RW	U16	N	0
1016h	0	Consumer Heartbeat Time No. of entries	RO	U8	N	1
	1	Consumer Heartbeat Master Node & Time	RW	U32	N	0
1017h	0	Producer Heartbeat Time (1ms)	RW	U16	N	0
1018h	0	Identity Object No. Of entries	RO	U8	N	4
	1	Vendor ID	RO	U32	N	0x0000031A
	2	Product Code	RO	U32	N	Drive Dependent
	3	Revision Number	RO	U32	N	x.xx
	4	Serial Number	RO	U32	N	Drive Dependent
1200h	0	SDO Parameter No. Of entries	RO	U8	N	2
	1	COB-ID Client -> Server (RX)	RO	U32	N	
	2	COB-ID Server -> Client (TX)	RO	U32	N	00000580h+Node ID
1400h	0	RX PDO1 comms param. no. of entries	RO	U8	N	2
110011	1	RX PDO1 COB-ID	RW	U32	N	40000200h+Node ID
	2	RX PDO transmission type	RW	U32	N	254
1401h	0	RX PDO2 comms param. no. of entries	RO	U8	N	2
140111	1	RX PDO2 COB-ID	RW	U32	N	C0000300h+Node ID
	2	RX PDO2 transmission type	RW	U8	N	0
1600h	0	RX PDO1 1 mapping / no. of entries	RW	U8	N	4
100011	1	RX PDO1 1st mapped object	RW	U32	N	20000010h
	2	RX PDO1 2nd mapped object	RW	U32	N	20010010h
	3	RX PDO1 3rd mapped object	RW	U32	N	20010010h
	4	RX PDO1 4th mapped object	RW	U32	N	00060010h
1601h	0	RX PDO2 1 mapping / no. of entries	RW	U8	N	4
100111	1	RX PDO2 1st mapped object	RW	U32	N	4 00060010h
			RW		N	
	2	RX PDO2 2nd mapped object		U32		00060010h
	4	RX PDO2 3rd mapped object	RW	U32	N N	00060010h
10006		RX PDO2 4th mapped object	RW	U32		00060010h
1800h	0	TX PDO1 comms parameter number of entries	RO	U8	N	3
	1	TX PDO1 COB-ID	RW	U32	N	40000180h+Node ID
	2	TX PDO1 transmission type	RW	U8	N	254
10011	3	TX PDO1 Inhibit time (100µs)	RW	U16	N	0
1801h	0	TX PDO2 comms param no. of entries	RO	U8	N	3
	1	TX PDO2 COB-ID	RW	U32	N	C0000280h+Node ID
	2	TX PDO2 transmission type	RW	U8	N	0
	3	TX PDO2 Inhibit time (100μs)	RW	U16	N	0
1A00h	0	TX PDO1 mapping / no. of entries	RW	U8	N	4
	1	TX PDO1 1st mapped object	RW	U32	N	200A0010h
	2	TX PDO1 2nd mapped object	RW	U32	N	200B0010h
	3	TX PDO1 3rd mapped object	RW	U32	N	200D0010h
	4	TX PDO1 4th mapped object	RW	U32	N	20100010h
1A01h	0	TX PDO2 mapping / no. of entries	RW	U8	N	4
	1	TX PDO2 1st mapped object	RW	U32	N	20110010h
	2	TX PDO2 2nd mapped object	RW	U32	N	20120010h
	3	TX PDO2 3rd mapped object	RW	U32	N	20130010h
	4	TX PDO2 4th mapped object	RW	U32	N	20140010h

4.6 **Parameter Access Overview**

The accessible parameter numbers and respective scaling are listed in the following tables. The method to access the parameters depends on the fieldbus type in use as described in the following section.

The R/W column indicates whether the values are Writeable as well as readable (R/W) or Read Only (R)

The data types for the parameter are defined as follows: -

WORD Hexadecimal Word Unsigned 16 Bit Value U16

S16

Signed 16 Bit Value

Modbus RTU Register / CAN Index Data - Control & Monitoring 4.6.1

Mitu Open Index Map Number Open System Base System Index Type Long Description 1 2000h 0 Y - Control Word World - R/W See Below 2 2001h 0 Y - Reserved - - R/W Relow Relow 3 2001h 0 Y - Reserved - - - R/W Relow Relow 4 2003h 0 Y - High Resolution Frequency Stepinit 516 0 5000 R 136, c.g. 10 - 10 0 A 2 2000h 0 Y - Motor Tarque 516 0 5000 R 136, c.g. 10 - 10 0 A 10 2010h 0 Y Motor Tarque 516 0 5300 R 206, c.g. 10 - 10 0 A 11 2010h 0 Y Motor Tarque 116 - - R <th>Modbus</th> <th>CAN</th> <th>Sub</th> <th>PDO</th> <th>Parameter</th> <th></th> <th>Lower Byte</th> <th>Format</th> <th>Min</th> <th>Max</th> <th>Туре</th> <th>Scaling</th>	Modbus	CAN	Sub	PDO	Parameter		Lower Byte	Format	Min	Max	Туре	Scaling
Register Index Internal Work Work See Below 2 2001h 0 Y - Control Work Work See Below 3 2003h 0 Y - Reserved - - R.W No. See Below 4 2003h 0 Y - Nothebus reserved - - R.W No. See Below 5 204h 0 Y - High Resolution Frequency Stationt 166 30000 30000 No. See Below 2 0 Y - High Resolution Frequency Stationt 1016 - - R No. No. 2 0.0 Y - Motor Current 116 0 - - R No. No. 2 0.1 - - R Motor Current 116 - - R See Below 11 201.h 0 Y Motor Current </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>opper byte</td> <td>Lower byte</td> <td>Torritae</td> <td>IVIIII</td> <td>IVIUX</td> <td>Type</td> <td>Jeaning</td>						opper byte	Lower byte	Torritae	IVIIII	IVIUX	Type	Jeaning
1 2000h 0 Y - Central Word WORD - - RAW Number of the second 2 2002h 0 Y - Reserved - - R/W Not_nection 4 2003h 0 Y - Media strap control time UIG 0 0000 R/W 2dp.g. 500 = 5.00, 5 2004h 0 Y - High Resolution Frequency Stepoint S16 0 0000 R See Below 7 2008h 0 Y - Motor Torque S16 0 5000 R 1dp.g.g. 100 = 1.00/H 10 00 Y - Motor Torque S16 0 5533 R 2dp.g. 20 = 1.00/H 11 2017h 0 Y P.00-20 Retire S16 0 S553 R 2dp.g.g. 300 = 3.00 12 - - P.00-20 Retire S000 Rotor oratrol processor software version U			muex	wiap	Number							
2 2001h 0 Y - Regured Sector - - - N/W Noticitan 4 2003h 0 Y - Modus rang control time - - N/W Noticitan 5 2004h 0 Y - High Resolution frequency steptiont 51.6 -3000 8000 R See Below 7 2008h 0 Y - Entro code Drive status WDRD - - R See Below 8 2008h 0 Y - Motor Current U16 0 - R Adop6 = 100/k 10 2008h 0 Y - Motor Forume U16 - - R 26.0 10.0/W 12 - - P00-20 Rating Bior U16 - - R 26.0 3.0.0 13 - - P00-20 Roting Hay Status U16 - - <			0	V		Control Mard		WORD			D /\A/	Cae Delaw
3 2002h 0 Y - Reported F. - - R.V. Production 5 2004h 0 Y - High Resolution Frequency Setpoint S16 30000 R.V. 20p. E., 500 = 5.00; 6 2004h 0 Y - Transport S16 0 5000 R. 10p, e.g. 100 = 1.00; 7 2008h 0 Y - Motor Torque S16 0 5533 R. 30p, e.g. 100 = 1.00; 9 2008h 0 Y - Motor Torque S16 0 65533 R. 30p, e.g. 300 = 1.00; 12 - P00-20 Digital Input Status WORD - R Sep Below 13 - P00-20 Dogitage rating U16 - R Sep Below 15 27EAh 0 N P00-20 Dorgitage rating U16 - R Tornasport 20 and			-		-			-				
4 2003h 0 Y - High Resolution Frequency Setpoint 116 3000 2000 R See Below 6 2004h 0 Y - Error code Drive status WORD - R See Below 7 2006h 0 Y - Drive status WORD - R See Below 8 2000h 0 Y - Motor Current U16 0 R 140, e.g. 100 = 10.0A: 10 2006h 0 Y - Motor Forque U16 - R 1400 = 10.0K: 12 - - P00-20 Reger rating U16 - R 182 app. e.g. 300 = 3.00: 13 - - P00-20 Reger rating U16 - - R 22pp. e.g. 30 = 3.00 14 - - P00-20 Reger rating U16 - - R 22pp. e.g. 30 = 3.00 15 216.h 0 <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>510</td> <td></td> <td></td> <td></td> <td></td>			-		-			510				
5 2004h 0 Y - High Resolution Frequency Setiont Site 30000 30000 R See Below 7 2008h 0 Y - Output Frequency Site 0 5000 R See, 21.00 = 10.0Hz 8 2005h 0 Y - Motor Torque Site 0 65335 R 3dp, eg, 100 = 1.00AHz 10 2005h 0 Y - Motor Torque Site 0 65335 R 3dp, eg, 100 = 1.00AHz 11 2012h 0 Y P00-20 Raing ID U16 - R Internal Value 12 - P00-20 P00-20 Power raing U16 - R See Below 13 - - P00-20 P00-20 Power raing U16 - R R see Below 14 - - P00-20 Power raing U16 - R Internal Value Internal Value			-		-			-				
6 200Ah 0 Y - Error code Dirke status WORD - - - R see Below 8 200Dh 0 Y - Mutor Current U16 0 - R log, eg. 100 = 1.0.0A 9 200Eh 0 Y - Mutor Foruser U16 0 - R log, eg. 100 = 1.0.0A 12 00 Y PO02-00 Poruser rating U16 - - R log, eg. 30 = 3.0.0W 12 - - PO02-20 Poruser rating U16 - - R log, eg. 30 = 3.0.0 13 - - PO02-20 Voruser rating U16 - - R log, eg. 30 = 3.0.0 14 - - PO02-20 Porue rating U16 - - R htternal value 15 27EAh 0 N PO02-30 Doruse coses orbanavare version U16 - - <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-		-							
7 2008h 0 Y - Output Frequency 516 0 5000 R 1dp, eg. 100 = 10.0Ar. 9 2006h 0 Y - Motor Torque 516 0 65335 R 2dp, eg. 100 = 10.0Ar. 10 2007h 0 Y - Motor Torque 516 0 65335 R 2dp, eg. 100 = 10.0Ar. 11 2012h 0 Y P00-20 Raing 10 U16 - - R Res Below 12 - - P00-20 Power raing U16 - - R Res Below 13 - - P00-20 Power raing U16 - - R Zdp, eg. 300 = 3.00 14 - - P00-20 Power some U16 - - R Res Below - 17 - - P00-20 Conver spec L016 - - R Rinternal Format <			0		-	High Resolution Free	uency Setpoint	-	-30000	30000	R	See Below
8 2000h 0 Y - Motor Current U16 0 - R Job e 100A 10 200Fh 0 Y - Motor Power U16 0 - R See Below 11 2017h 0 Y P00-04 Digital Input Status WORD - R See Below 12 - - P00-20 Power rating U16 - - R Zeg, 37 - 0.37W/ HP 13 - - P00-20 Voltage rating U16 - - R Zeg, 37 - 0.37W/ HP 14 - - P00-20 Vorter rating U16 - - R Zeg, 20 - 3.00 15 27E3h O N P00-18 Oprocessor software version U16 - - R Internal Format 18 2010h O Y P00-48 Scope Channel 1 Data S16 - R Internal Format	6	200Ah	0	Y	-	Error code	Drive status	WORD	-	-	R	See Below
9 2026h 0 Y - Motor Targue 516 0 65335 R 20p, ep. 100 - 100W 11 2012h 0 Y P0020 Bailing ID U16 - - R 20p, ep. 100 - 100W 13 - - P0020 P0020 rating ID U16 - - R Internal Value 13 - - P0020 P0022 rating rating U16 - - R Internal Value 14 - - P0020 P0022 rating rating U16 - - R Zap, eg. 300 - 3.00 15 27EAh 0 N P0020 Drive type U16 - - R Internal Format 12 - - N P0048 Sope Channel 3 Data S16 - - R Internal Format 13 2010h 0 Y P0048 Sope Channel 3 Data S16 - R Internal Format <td>7</td> <td>200Bh</td> <td>0</td> <td>Y</td> <td>-</td> <td>Output Frequency</td> <td></td> <td>S16</td> <td>0</td> <td>5000</td> <td>R</td> <td>1dp, e.g. 100 = 10.0Hz</td>	7	200Bh	0	Y	-	Output Frequency		S16	0	5000	R	1dp, e.g. 100 = 10.0Hz
10 200Fh 0 Y - Motor Power ULG 0 - R 2dp. e.g. 100 = 1.00kW 11 2012 - - P00-40 Digital input Status WORD - R Bee Below 12 - - P00-20 Power rating U16 - R 2dp. e.g. 30 = 0.37W/ HP 13 - - P00-20 Verser rating U16 - R 2dp. e.g. 300 = 3.00 15 27E8h 0 N P00-18 Moro control processor software version U16 - - R 12dp. e.g. 300 = 3.00 16 27EAh 0 N P00-48 Scope Channel 2 Data S16 - - R Internal Format 18 2012h 0 Y P00-48 Scope Channel 2 Data S16 - - R Internal Format 12 2014h 0 Y P00-48 Scope Channel 2 Data S16 0 1000 <td< td=""><td>8</td><td>200Dh</td><td>0</td><td>Y</td><td>-</td><td>Motor Current</td><td></td><td>U16</td><td>0</td><td>-</td><td>R</td><td>1dp, e.g. 100 = 10.0A</td></td<>	8	200Dh	0	Y	-	Motor Current		U16	0	-	R	1dp, e.g. 100 = 10.0A
11 2012 0 Y PO0-20 Right D U16 - R Reserved 13 - - PO0-20 Power rating U16 - R Idental Value 13 - - PO0-20 Power rating U16 - R See Below 14 - - PO0-20 Power rating U16 - - R See Below 15 27E8h 0 N PO0-30 Power rating U16 - - R Zdp, e.g. 300 = 3.00 16 27E8h 0 N PO0-20 Dive type U16 - - R Internal Value 17 - - PO0-48 Scope Channel J Data S16 - - R Internal Format 10 2015h 0 Y PO0-49 Scope Channel J Data S16 - - R Internal Format 2015h 0 Y P	9	200Eh	0	Y	-	Motor Torque		S16	0	65535	R	4096 = 100%
12 . . PO0-20 Power rating U16 . . R Polopeage Power rating 13 . . PO0-20 Voltage rating U16 . R 260, e.g. 37 - 0.37W/ HP 14 . . . PO0-30 Voltage rating U16 . R 260, e.g. 30 - 3.00 15 27E8h 0 N PO0-38 More control processors oftware U16 . . R Res elsew 18 2010h 0 Y PO0-48 Scope Channel 2 Data 516 . . R Internal Format 18 2010h 0 Y PO0-48 Scope Channel 2 Data 516 . R Internal Format 20 2013h 0 Y PO0-42 Analog 2 Input resuit U16 0 1000 R 1dp. e.g. 500 - 50.0% 2 2014h 0 Y PO0-42 Analog 2 Input resuit U16 0 1000 R 1dp. e.g. 500 - 50.0% 2 2014h 0 Y PO0-42 </td <td>10</td> <td>200Fh</td> <td>0</td> <td>Y</td> <td>-</td> <td>Motor Power</td> <td></td> <td>U16</td> <td>0</td> <td>-</td> <td>R</td> <td>2dp, e.g. 100 = 1.00kW</td>	10	200Fh	0	Y	-	Motor Power		U16	0	-	R	2dp, e.g. 100 = 1.00kW
12 . . PO0-20 Power rating U16 . . R Polopeage Power rating 13 . . PO0-20 Voltage rating U16 . R 260, e.g. 37 - 0.37W/ HP 14 . . . PO0-30 Voltage rating U16 . R 260, e.g. 30 - 3.00 15 27E8h 0 N PO0-38 More control processors oftware U16 . . R Res elsew 18 2010h 0 Y PO0-48 Scope Channel 2 Data 516 . . R Internal Format 18 2010h 0 Y PO0-48 Scope Channel 2 Data 516 . R Internal Format 20 2013h 0 Y PO0-42 Analog 2 Input resuit U16 0 1000 R 1dp. e.g. 500 - 50.0% 2 2014h 0 Y PO0-42 Analog 2 Input resuit U16 0 1000 R 1dp. e.g. 500 - 50.0% 2 2014h 0 Y PO0-42 </td <td>11</td> <td>2012h</td> <td>0</td> <td>Y</td> <td>P00-04</td> <td>Digital Input Status</td> <td></td> <td>WORD</td> <td>-</td> <td>-</td> <td>R</td> <td>See Below</td>	11	2012h	0	Y	P00-04	Digital Input Status		WORD	-	-	R	See Below
13 - PP0.20 Power rating U16 - R 2dp. eg. 37 = 0.37kW / HP 14 - P002-0 Voltage rating U16 - - R 2dp. eg. 300 = 3.00 15 27EAh 0 N P0018 Mobro control processor software U16 - R 2dp. eg. 300 = 3.00 16 27EAh 0 N P00128 Mobro control processor software U16 - R Internal Yolue 18 201Ch 0 Y P00448 Scoge Channel 2 Data S16 - R Internal Format 10 201Dh 0 Y P00448 Scoge Channel 2 Data S16 - R Internal Format 201Bh 0 Y P0044 Scoge Channel 3 Data S16 - R Internal Format 201Bh 0 Y P0040 Analog 1 input result U16 0 10000 R Idp.eg. 500 = 50.0% 21 201Ah V	12	-	-		P00-20				-	-	R	Internal Value
14 . . PP020 Voltage range U16 . . R See Below 15 27EAh 0 N PP001a 10 processor software version U16 - . R 2dp. e.g. 300 - 3.00 17 - - V PP004 Stope Channel 1 Data S16 - . R Internal Value 18 2010h 0 Y P00448 Scope Channel 2 Data S16 - . R Internal Format 2011h 0 Y P00449 Scope Channel 2 Data S16 - R Internal Format 2011h 0 Y P00449 Scope Channel 4 Data S16 - R Internal Format 21 2014h 0 Y P0043 Analog Luput result U16 0 1000 R Idp.e.g. 500 - 50.0% 22 1 - P00030 Pre-Ramp Speed Reference Value S16 0 5000 R Id		-	-		P00-20	-		U16	-	-	R	2dp. e.g. 37 = 0.37kW / HP
15 27E8h 0 N P00-18 Motor control processor software U16 - R 2dp. e.g. 300 = 3.00 16 27EAh 0 N P00-18 Motor control processor software U16 - R 2dp. e.g. 300 = 3.00 17 - - P00-20 Drive type U16 - R Internal Value 18 201Ch 0 Y P00-48 Scope Channel 2 Data S16 - R Internal Format 201Eh 0 Y P00-49 Scope Channel 2 Data S16 - R Internal Format 20 2013h 0 Y P00-49 Scope Channel 4 Data S16 - R Internal Format 20 2013h 0 Y P00-20 Analog 2 input result U16 0 10000 R Idp. e.g. 500 = 50.0% 21 201h 0 Y P00-20 Drive Sprai Auge temperature S16 10 150 R S0 =			-							-		
16 27EAh 0 N P00.18 Motor control processor software U16 - - R 20p, e.g. 300 = 3.00 17 - - P00.20 Drive type U16 - - R Internal Value 18 2010h 0 Y P00.48 Scope Channel J Data S16 - - R Internal Format - 2016h 0 Y P00.49 Scope Channel J Data S16 - R Internal Format - 2016h 0 Y P00.49 Scope Channel J Data S16 - R Internal Format 2017 0 Y P00.49 Scope Channel J Data S16 0 000 R Idp.e.g. 500 - 50.0% 21 2014h 0 Y P00.29 Analog Unput % U16 0 1000 R Idp.e.g. 500 - 50.0% 22 - P00.29 PC-Bary Scage Temperature S16 10 150 R			0	N		<u> </u>		-				
Image: Constraint of the second sec			-		-							
17 · · P00-20 Drive type U16 · · R Internal Value 18 2010h 0 Y P00-48 Scope Channel 2 Data S16 · · R Internal Format 2011h 0 Y P00-48 Scope Channel 2 Data S16 · R Internal Format 2011h 0 Y P00-49 Scope Channel 4 Data S16 R Internal Format 2011h 0 Y P00-49 Analog 2 input result U16 0 1000 R Idp, e.g. 500 = 50.0% 21 2011h 0 Y P00-48 Dicput result U16 0 1000 R Idp, e.g. 500 = 50.0% 22 - - P00-30 Drive Pore Amp Speed Reference Value S16 0 1000 R Idp, e.g. 500 = 50.0% 23 2011h 0 Y P00-48 DC Bus Voltage U16 - R S60 = 50°C 24 <td>10</td> <td>ZZZAN</td> <td>0</td> <td>IN</td> <td>F00-18</td> <td></td> <td>SSUI SUILWAIE</td> <td>010</td> <td>-</td> <td>-</td> <td>n</td> <td>20p, e.g. 300 – 3.00</td>	10	ZZZAN	0	IN	F00-18		SSUI SUILWAIE	010	-	-	n	20p, e.g. 300 – 3.00
18 2010h 0 Y P00-48 Scope Channel 1 Data 516 - R Internal Format 19 2010h 0 Y P00-48 Scope Channel 2 Data 516 - R Internal Format 2011h 0 Y P00-49 Scope Channel 4 Data 516 R Internal Format 2012h 0 Y P00-49 Scope Channel 4 Data 516 R Internal Format 2012h 0 Y P00-02 Analog 2 Input result U16 0 1000 R Idp, e.g. 500 = 50.0% 2011h 0 Y P00-03 Pre-Ramp Speed Reference Value 516 0 5000 R Idp, e.g. 500 = 50.0% 24 - P00-03 Drive Power Stage Temperature 516 -10 150 R 50 = 50°C 25 - - P00-30 Drive Serial Number 2 U16 - R See Below 26 - - P00-30 Driv	17				DOO 20			1116			D	Internal Value
19 2010h 0 Y P00-48 Scope Channel 2 Data S16 - - R Internal Format 2016h 0 Y P00-49 Scope Channel 4 Data S16 - R Internal Format 20 2013h 0 Y P00-01 Analog 2 input result U16 0 1000 R 10p, e.g. S00 = 50.0% 21 2013h 0 Y P00-01 Analog 2 input result U16 0 1000 R 10p, e.g. S00 = 50.0% 21 2013h 0 Y P00-08 Dre-Ramg Speed Reference Value S16 0 5000 R 50 = 50.0% 22 - - P00-08 Drive Serial Number 4 U16 - R 50 = 50°C 24 - - P00-30 Drive Serial Number 2 U16 - R 80 = 50°C 25 - - P00-30 Drive Serial Number 2 U16 - R 80 = 50°C				V	-	<i>,</i> ,						
201En 0 Y P00-49 Scope Channel 3 Data 516 Internal Format 201Fh 0 Y P00-49 Scope Channel 3 Data 516 R Internal Format 201 2013h 0 Y P00-01 Analog 1 input result U16 0 1000 R 1dp, eg, S00 = 50.0% 2013h 0 Y P00-02 Analog 2 input result U16 0 1000 R 1dp, eg, S00 = 50.0% 2013h 0 Y P00-08 Pce-Ramp Speed Reference Value 516 -10 1500 R 500 = 600 Volts 24 - P00-03 Drive Power Stage Temperature S16 -10 150 R 50 = 50°C 25 - P00-30 Drive Serial Number 3 U16 - R Re Below 26 - - P00-30 Drive Serial Number 3 U16 - R Re Below 27 - P00-30 Drive Serial Number 3 U16 -										-		
201Fh 0 Y P00-49 Scope Channel 4 Data 516 Image and the second sec		-	-						-	-		
20 2013h 0 Y P00-01 Analog 1 input result U16 0 1000 R 1dp, e.g. 500 = 50.0% 21 2014h 0 Y P-0-02 Analog 2 input result U16 0 1000 R 1dp, e.g. 500 = 50.0% 22 - - P00-03 Pre-Ramp Speed Reference Value 516 0 5000 R 1dp, e.g. 500 = 50.0% 23 2011h 0 Y P00-03 Dreve Serial Number 2 U16 0 1000 R 500 = 600 Volts 24 - - P00-30 Drive Serial Number 3 U16 - R See Below 25 - - P00-30 Drive Serial Number 2 U16 - R R 26 - - P00-30 Drive Serial Number 2 U16 - R R 27 - P00-30 Drive Serial Number 3 U16 - R N Incrinin 1= Relay Contacts Closed R	-		-				-					
21 2014h 0 Y P00-02 Analog 2 input result U16 0 1000 R 1dp, e.g. 500 = 50.0% 22 - - P00-30 Pre-Ram Speed Reference Value 516 0 5000 R 1dp, e.g. 500 = 50.0% 23 2011h 0 Y P00-30 DC Bus Voltage U16 0 1000 R 600 = 600 Volts 24 - P00-30 Drive Stage Temperature 516 -10 150 R 50 = 50°C 25 - - P00-30 Drive Serial Number 3 U16 - - R See Below 26 - P00-30 Drive Serial Number 2 U16 - - R 30 - R Reserved - - R No Function 29 2017h 0 Y - Reserved - - R No Function 31 - - Reserved - - R </td <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-									
2015h 0 Y Processing U16 0 1000 R 1dp, e.g. 500 = 50.0% 22 - - P00-03 Pre-Ramp Speed Reference Value S16 0 5000 R 1dp, e.g. 500 = 50.0% 23 2011h 0 Y P00-09 Drive Power Stage Temperature S16 -10 150 R 500 = 50.0°C 24 - P00-03 Drive Serial Number 4 U16 - R See Below 25 - P00-30 Drive Serial Number 3 U16 - R See Below 26 - - P00-30 Drive Serial Number 2 U16 - R 28 - - P00-30 Drive Serial Number 2 U16 - R 29 2017h 0 Y - Reserved - - R 31 - - Reserved - - R No Function 32 203Ch <	20	2013h	0		P00-01	Analog 1 input result	t	U16	0	1000	R	1dp, e.g. 500 = 50.0%
22 . . P00-03 Pre-Ramp Speed Reference Value \$16 0 5000 R 1dp, e.g. 500 = 50.0Hz 23 2011h 0 Y P00-08 DC Bus Voltage U16 0 1000 R 600 = 600 Volts 24 . P00-00 Drive Power Stage Temperature 516 -10 150 R 50 = 50°C 25 . . P00-30 Drive Serial Number 3 U16 . R 26 . . P00-30 Drive Serial Number 3 U16 . R 27 . . P00-30 Drive Serial Number 3 U16 . R 28 . . P00-30 Drive Serial Number 1 U16 . R 30 . . . Relay Output Status WORD 0 1 R No Function 31 . . . Reserved . . R No Function	21	2014h	0	Y	P00-02	Analog 2 input result	t	U16	0	1000	R	1dp, e.g. 500 = 50.0%
23 2011h 0 Y P00-08 DC Bus Voltage U16 0 1000 R 600 = 600 Volts 24 - - P00-09 Drive Power Stage Temperature S16 -10 150 R 50 = 50°C 25 - - P00-30 Drive Serial Number 4 U16 - - R See Below 26 - - P00-30 Drive Serial Number 3 U16 - - R 27 - - P00-30 Drive Serial Number 1 U16 - R R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 31 - - - Reserved - - R No Function 32 203Ch 0 Y P00-26 MVh Meter U16 0 R 10 = 100MVh 33 203Dh 0 Y P00-10	-	2015h	0	Y	-			U16	0	1000	R	1dp, e.g. 500 = 50.0%
24 - - P00-09 Drive Power Stage Temperature S16 -10 150 R S0 = 50°C - 2043h 0 Y - Control board temperature S16 -10 150 R S0 = 50°C 25 - - P00-30 Drive Serial Number 4 U16 - - R 26 - - P00-30 Drive Serial Number 2 U16 - - R 28 - P00-30 Drive Serial Number 1 U16 - - R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 30 - - - Reserved - - R No Function 31 - - Reserved - - R No Function 32 2036h 0 Y P00-26 MWh Meter U16 0 R	22	-	-		P00-03	Pre-Ramp Speed Ref	erence Value	S16	0	5000	R	1dp, e.g. 500 = 50.0Hz
- 2043h 0 Y - Control board temperature S16 -10 150 R S0 = 50°C 25 - - P00-30 Drive Serial Number 3 U16 - - R See Below 26 - - P00-30 Drive Serial Number 3 U16 - - R 27 - - P00-30 Drive Serial Number 1 U16 - - R 28 - - P00-30 Drive Serial Number 2 U16 - - R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 1= Relay Contacts Closed 30 - - Reserved - - R No Function 31 - - R Reserved - - R No Function 32 203Ch 0 Y P00-26 MVM Meter U16 <t< td=""><td>23</td><td>2011h</td><td>0</td><td>Y</td><td>P00-08</td><td>DC Bus Voltage</td><td></td><td>U16</td><td>0</td><td>1000</td><td>R</td><td>600 = 600 Volts</td></t<>	23	2011h	0	Y	P00-08	DC Bus Voltage		U16	0	1000	R	600 = 600 Volts
- 2043h 0 Y - Control board temperature S16 -10 150 R S0 = 50°C 25 - - P00-30 Drive Serial Number 3 U16 - - R See Below 26 - - P00-30 Drive Serial Number 3 U16 - - R 27 - - P00-30 Drive Serial Number 1 U16 - - R 28 - - P00-30 Drive Serial Number 2 U16 - - R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 1= Relay Contacts Closed 30 - - Reserved - - R No Function 31 - - R Reserved - - R No Function 32 203Ch 0 Y P00-26 MVM Meter U16 <t< td=""><td>24</td><td>-</td><td></td><td></td><td>P00-09</td><td>Drive Power Stage T</td><td>emperature</td><td>S16</td><td>-10</td><td>150</td><td>R</td><td>50 = 50°C</td></t<>	24	-			P00-09	Drive Power Stage T	emperature	S16	-10	150	R	50 = 50°C
25 - - P00-30 Drive Serial Number 4 U16 - - R See Below 26 - - P00-30 Drive Serial Number 2 U16 - - R 27 - P00-30 Drive Serial Number 2 U16 - - R 28 - - P00-30 Drive Serial Number 1 U16 - R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 30 - - Reserved - - R No Function 31 - - Reserved - - R No Function 32 203ch 0 Y P00-26 MWh Meter U16 0 R 10= 10MWh 34 203Eh 0 Y P00-10 Runing Time - Minutes & Seconds U16 R 10= 100 Seconds 36	-	2043h	0	Y	-			S16	-10	150	R	50 = 50°C
26 - - P00-30 Drive Serial Number 3 U16 - - R 27 - - P00-30 Drive Serial Number 2 U16 - - R 28 - P00-30 Drive Serial Number 1 U16 - - R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 30 - - Reserved - - R No Function 31 - - Reserved - - R No Function 32 203Ch 0 Y P00-26 KWh Meter U16 0 R 10 = 100Wh 33 203Ch 0 Y P00-10 Running Time – Hours U16 R 100 = 100 Seconds 36 204h 0 Y P00-14 Run time since last enable – Hours U16 R 100 = 100 Seconds 37 </td <td>25</td> <td>-</td> <td>-</td> <td></td> <td>P00-30</td> <td></td> <td></td> <td>U16</td> <td>-</td> <td>-</td> <td>R</td> <td>See Below</td>	25	-	-		P00-30			U16	-	-	R	See Below
27 - P00-30 Drive Serial Number 2 U16 - - R 28 - - P00-30 Drive Serial Number 1 U16 - - R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 1 = Relay Contacts Closed 30 - - Reserved - - - R No Function 31 - - Reserved - - - R No Function 32 2030h 0 Y P00-26 MWh Meter U16 0 R 10e, eg. 100 = 10.0kWh 33 203h 0 Y P00-10 Running Time – Hours U16 R 1 1 dp. eg. 100 = 10.0kWh 34 203th 0 Y P00-10 Running Time – Hours U16 R 1 1 dp. eg. 100 = 10.0kWh 35 204h 0 Y P00-10 Running Time – Hours U1		-	-						-	-	R	
28 - - P00-30 Drive Serial Number 1 U16 - - R 29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit Ondicates Relay Status 30 - - Reserved - - R No Function 31 - - Reserved - - R No Function 32 203Ch 0 Y P00-26 kWh Meter U16 0 9999 R 1dp, eg. 100 = 10.0kWh 33 203Dh 0 Y P00-10 Running Time – Hours U16 0 R 1 = 1 Hour 35 203Fh 0 Y P00-10 Running Time – Minutes & Seconds U16 R 1 = 1 Hour 36 2040h 0 Y P00-14 Run time since last enable – Mours U16 R No Function 38 - - Reserved U16 R No Function		-	-						-	-		
29 2017h 0 Y - Relay Output Status WORD 0 1 R Bit 0 Indicates Relay Status 30 - - Reserved - - R No Function 31 - - Reserved - - R No Function 32 203Ch 0 Y P00-26 kWh Meter U16 0 9999 R 1dp, e.g. 100 = 10.0kWh 34 203Eh 0 Y P00-26 MWh Meter U16 0 R 1 = 1 Hour 35 203Fh 0 Y P00-10 Running Time – Minutes & Seconds U16 R 1 = 1 Hour 36 2040h 0 Y P00-14 Run time since last enable – Hours U16 R 1 = 1 Hour 37 2041h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 2 = 20C 40 2044h 0 Y P00-20		-	-									-
Image: Constraint of the second of the sec		2017h	0	v	-		1					Bit O Indicates Belay Status
30 - - Reserved - - R No Function 31 - - Reserved - - R No Function 32 203Ch 0 Y P00-26 kWh Meter U16 0 9999 R 1dp, e.g. 100 = 10.0kWh 33 203Dh 0 Y P00-26 kWh Meter U16 0 R 10 = 100.0kWh 34 203Eh 0 Y P00-10 Running Time – Hours U16 R 1 = 1 Hour 35 203Fh 0 Y P00-10 Running Time – Minutes & Seconds U16 R 1 0 = 100 Seconds 36 2040h 0 Y P00-14 Run time since last enable – Hours U16 R 1 00 = 100 Seconds 37 2041h 0 Y P00-14 Run time since last enable – Minutes & U16 R 100 = 100 Seconds 38 - - - Reserved U16 R 100 = 20C 40 204th 0 Y P00-20 Internal Drive Temperature <td>25</td> <td>201/11</td> <td>Ŭ</td> <td></td> <td></td> <td>newy output status</td> <td></td> <td>wond</td> <td>Ŭ</td> <td>-</td> <td>, n</td> <td>-</td>	25	201/11	Ŭ			newy output status		wond	Ŭ	-	, n	-
31 - - Reserved - - R No Function 32 203Ch 0 Y P00-26 kWh Meter U16 0 9999 R 1dp, eg. 100 = 10.0kWh 33 203Dh 0 Y P00-26 MWh Meter U16 0 R 10 = 10MWh 34 203Eh 0 Y P00-10 Running Time – Hours U16 0 R 1 = 1 Hour 35 203Fh 0 Y P00-10 Running Time – Minutes & Seconds U16 R 1 = 1 Hour 36 2040h 0 Y P00-14 Run time since last enable – Hours U16 R 1 00 = 100 Seconds 38 - - - Reserved U16 R No Function 39 2010h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 20 = 20C 40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz	20	_	_		_	Posonuod		_		_	D	'
32 203Ch 0 Y P00-26 kWh Meter U16 0 9999 R 1dp, e.g. 100 = 10.0kWh 33 203Dh 0 Y P00-26 MWh Meter U16 0 R 10 = 100MWh 34 203Eh 0 Y P00-10 Running Time – Hours U16 R 1 = 1 Hour 35 203Fh 0 Y P00-14 Run time since last enable – Hours U16 R 1 = 1 Hour 36 2040h 0 Y P00-14 Run time since last enable – Minutes & U16 R 1 = 1 Hour 37 2041h 0 Y P00-14 Run time since last enable – Minutes & U16 R No Function 38 - - - Reserved U16 R No Function 39 2010h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 20 = 20C 40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz												
33 203Dh 0 Y P00-26 MWh Meter U16 0 R 10 = 10MWh 34 203Fh 0 Y P00-10 Running Time – Hours U16 Image: Constraint of the seconds U16 R 1 = 1 Hour 35 203Fh 0 Y P00-10 Running Time – Minutes & Seconds U16 Image: Constraint of the seconds Image: Const			-	v				-		-		
34 203Eh 0 Y P00-10 Running Time – Hours U16 R 1 = 1 Hour 35 203Fh 0 Y P00-10 Running Time – Minutes & Seconds U16 R 100 = 100 Seconds 36 2040h 0 Y P00-14 Run time since last enable – Hours U16 R 1 = 1 Hour 37 2041h 0 Y P00-14 Run time since last enable – Minutes & U16 R 1 = 1 Hour 38 - - Reserved U16 R No Function 39 2010h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 20 = 20C 40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz 41 - - Reserved - - R 100 = 100 Volts AC RMS 42 2046h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 -			-							9999		
35 203Fh 0 Y P00-10 Running Time – Minutes & Seconds U16 R 100 = 100 Seconds 36 2040h 0 Y P00-14 Run time since last enable – Hours U16 R 1 = 1 Hour 37 2041h 0 Y P00-14 Run time since last enable – Minutes & U16 R 1 = 1 Hour 38 - - - Reserved U16 R No Function 39 2010h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 20 = 20C 40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz 41 - - Reserved - - R No Function 42 2046h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 - - Parameter Access Value			-					-	0			
362040h0YP00-14Run time since last enable – HoursU16IR1 = 1 Hour372041h0YP00-14Run time since last enable – Minutes & secondsU16IRR100 = 100 Seconds38I-ReservedU16IRN Function392010h0YP00-20Internal Drive TemperatureS16-10100R20 = 20C402044h0Y-Speed Reference (Internal Format)U160P-01R300 = 50Hz41KSpeed Reference (Internal Format)U160P-01R300 = 50Hz422046h0YP00-07Digital Pot / Keypad ReferenceU160P-01R300 = 50Hz432048h0YP00-07Output VoltageU160P-01R300 = 50Hz44RPortorionU160-R100 e100 Volts AC RMS45RPortorionParameter Access ValueS16RSee Below46N-Parameter ChecksumU16065535RSee Below-2049h0NP00-55PI outputU1601000RWIo0<=100.0%			-									
37 2041h 0 Y P00-14 Run time since last enable – Minutes & u16 seconds R 100 = 100 Seconds 38 - - Reserved U16 R No Function 39 2010h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 20 = 20C 40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz 41 - - Reserved - - R No Function 42 2046h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz 41 - - Reserved - - R No Function 42 2046h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 43 2048h 0 Y P00-07 Output Voltage U16 1 60 R see Below 44 -												
Image: SecondsImage: SecondsImage: SecondsImage: SecondsImage: SecondsImage: Seconds38NoNoNoNoNoNoNo392010h0YPO0-20Internal Drive TemperatureS16-10100R20 = 20C402044h0Y-Speed Reference (Internal Format)U160P-01R3000 = 50Hz41NoNoNoNoNoSpeed Reference (Internal Format)U160P-01R3000 = 50Hz41NoNoNoNoReservedRNo Function422046h0YDigital Pot / Keypad ReferenceU160P-01R3000 = 50Hz432048h0YP00-07Output VoltageU160R100 = 100 Volts AC RMS44Parameter Access IndexU16160RSee Below45NParameter Access ValueS16RSee Below46NNParameter Access ValueU1601000R1000 = 100.0%-23E8h0N-Scope Index 12Image: Scope Index 14RWImage: Scope Index 14Image: Scope Index 14RW-23E9h0N-Scope Index 12Image: Scope Index 14Ima			-									
38 - - Reserved U16 R No Function 39 2010h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 20 = 20C 40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz 41 - - Reserved - - R No Function 42 2046h 0 Y Digital Pot / Keypad Reference U16 0 P-01 R 3000 = 50Hz 43 2048h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 - - Parameter Access Index U16 1 60 R See Below 45 - - N - Parameter Access Value S16 - - R See Below 46 - - N - Parameter Checksum U16 0 1000 R 1000 = 100.0% <t< td=""><td>37</td><td>2041h</td><td>0</td><td>Y</td><td>P00-14</td><td></td><td>nable – Minutes &</td><td>U16</td><td></td><td></td><td>R</td><td>100 = 100 Seconds</td></t<>	37	2041h	0	Y	P00-14		nable – Minutes &	U16			R	100 = 100 Seconds
39 2010h 0 Y P00-20 Internal Drive Temperature S16 -10 100 R 20 = 20C 40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz 41 - - Reserved - - R No Function 42 2046h 0 Y Digital Pot / Keypad Reference U16 0 P-01 R 3000 = 50Hz 43 2048h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 - - - Parameter Access Index U16 1 60 R See Below 45 - - N - Parameter Checksum U16 0 65535 R See Below - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 RW RW<												
40 2044h 0 Y - Speed Reference (Internal Format) U16 0 P-01 R 3000 = 50Hz 41 - - Reserved - - R No Function 42 2046h 0 Y Digital Pot / Keypad Reference U16 0 P-01 R 3000 = 50Hz 43 2048h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 - - - Parameter Access Index U16 1 60 R See Below 45 - - N - Parameter Access Value S16 - - R See Below 46 - - N - Parameter Checksum U16 0 1000 R 1000 = 100.0% - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0%								-				
41 - - Reserved - - R No Function 42 2046h 0 Y Digital Pot / Keypad Reference U16 0 P-01 R 3000 = 50Hz 43 2048h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 - - - Parameter Access Index U16 1 60 R See Below 45 - - Parameter Access Value S16 - - R See Below 46 - - N - Parameter Checksum U16 0 65535 R See Below - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 RW RW RW - 23E9h 0 N - Scope Index 34 RW RW 1 = 1 Hour - 27D0h 0 N			-		P00-20							
42 2046h 0 Y Digital Pot / Keypad Reference U16 0 P-01 R 3000 = 50Hz 43 2048h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 - - Parameter Access Index U16 1 60 R See Below 45 - - Parameter Access Value S16 - - R See Below 46 - - N - Parameter Checksum U16 0 1000 R See Below - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 - RW RW - 23E9h 0 N - Scope Index 34 - RW RU - 27D0h <t< td=""><td></td><td>2044h</td><td>0</td><td>Y</td><td></td><td></td><td>ternal Format)</td><td>U16</td><td>0</td><td>P-01</td><td>R</td><td></td></t<>		2044h	0	Y			ternal Format)	U16	0	P-01	R	
43 2048h 0 Y P00-07 Output Voltage U16 0 - R 100 = 100 Volts AC RMS 44 - - - Parameter Access Index U16 1 60 R See Below 45 - - N - Parameter Access Value S16 - - R See Below 46 - - N - Parameter Checksum U16 0 65535 R See Below - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 - RW - - 23E9h 0 N - Scope Index 34 - RW - - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65		-	-		-			-	-	-	R	
44 - - Parameter Access Index U16 1 60 R See Below 45 - - Parameter Access Value S16 - - R See Below 46 - - N - Parameter Checksum U16 0 65535 R See Below - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 - RW - - 23E9h 0 N - Scope Index 34 - RW - - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 - Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R	42	2046h	0	Y		Digital Pot / Keypad	Reference	U16	0	P-01	R	3000 = 50Hz
45 - - Parameter Access Value S16 - - R See Below 46 - - N - Parameter Checksum U16 0 65535 R See Below - 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 - RW - - 23E9h 0 N - Scope Index 34 - RW - - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 - Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour	43	2048h	0	Y	P00-07	Output Voltage		U16	0	-	R	100 = 100 Volts AC RMS
46 - N - Parameter Checksum U16 0 65535 R See Below - 2049h 0 Y P00-05 Pl Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 - RW RW - 23E9h 0 N - Scope Index 34 - RW RW - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 - Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour	44	-	-		-	Parameter Access In	dex	U16	1	60	R	See Below
46 - N - Parameter Checksum U16 0 65535 R See Below - 2049h 0 Y P00-05 Pl Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 - RW RW - 23E9h 0 N - Scope Index 34 - RW RW - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 - Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour	45	-	-		-	Parameter Access Va	alue	S16	-	-	R	See Below
- 2049h 0 Y P00-05 PI Output U16 0 1000 R 1000 = 100.0% - 23E8h 0 N - Scope Index 12 RW RW - 23E9h 0 N - Scope Index 34 RW RW - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 - Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour	46	-	-	N	-	Parameter Checksun	n		0	65535	R	See Below
- 23E8h 0 N - Scope Index 12 RW - 23E9h 0 N - Scope Index 34 RW RW - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 - Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour		2049h	0		P00-05							
- 23E9h 0 N - Scope Index 34 Image: Non-Scope Index 34 RW - 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 – Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour	-											
- 27D0h 0 N P00-11 Run Time Since Last Trip 1 – Hours U16 0 65535 R 1 = 1 Hour - 27D1h 0 N P00-11 Run Time Since Last Trip 1 – Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour												
- 27D1h 0 N P00-11 Run Time Since Last Trip 1 - Seconds U16 0 3599 R 100 = 100 Seconds - 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour							Trin 1 – Hours	1116	0	65525		1 = 1 Hour
- 27D2h 0 N P00-12 Run Time Since Last Trip 2 – Hours U16 0 65535 R 1 = 1 Hour	-											
	-							-				
- I 570501 O I N I 200-12 IKUN HITE SINCE LAST IND 2 - SECONDS I OTO I O I 3599 I K ITOU = TOU SECONDS			-									
							mp z - seconds		U	2222		100 - 100 Secolias
- 27D4h 0 N P00-13 Trip Log 2 & 1 VICPAS	-	27040	U	IN	PUU-13	Trip Log 2 & 1			-	-	к	

Optidrive E3 Advanced Technical Manual Issue 06.Docx

Modbus RTU	CAN Open	Sub Index	PDO Map	Parameter Number	Upper byte	Lower Byte	Format	Min	Max	Туре	Scaling
Register	Index	0		DOD 43			14/000				
-	27D5h	0	N	P00-13	Trip Log 4 & 3		WORD	-	-	R	1 1.11-0-0-
-	27D6h	0	N	P00-13	Trip 1 Time – Hours	-	U16	0	65535	R	1 = 1 Hour
-	26D7h 27D8h	0	N N	P00-13 P00-13	Trip 1 Time - Second Trip 2 Time – Hours	5	U16 U16	0	3599 65535	R R	100 = 100 Seconds 1 = 1 Hour
-	27D811 27D9h	0	N	P00-13 P00-13	Trip 2 Time - Second	ç	U16	0	3599	R	100 = 100 Seconds
-	27D3h	0	N	P00-13	Trip 3 Time – Hours	3	U16	0	65535	R	1 = 1 Hour
-	27DBh	0	N	P00-13	Trip 3 Time - Second	s	U16	0	3599	R	100 = 100 Seconds
-	27DCh	0	N	P00-13	Trip 4 Time – Hours	5	U16	0	65535	R	1 = 1 Hour
-	27DDh	0	N	P00-13	Trip 4 Time - Second	s	U16	0	3599	R	100 = 100 Seconds
-	27DEh	0	N	P00-23	Time Heatsink > 85°		U16	0	65535	R	1 = 1 Hour
-	27DFh	0	Ν	P00-23	Time Heatsink > 85°0		U16	0	3599	R	100 = 100 Seconds
-	27E0h	0	Ν	P00-24	Time Internal > 80°C	– Hours	U16	0	65535	R	1 = 1 Hour
-	27E1h	0	Ν	P00-24	Time Internal > 80°C	- Seconds	U16	0	3599	R	100 = 100 Seconds
-	27E2h	0	Ν	P00-27	Fan Run Time – Hour	rs	U16	0	65535	R	1 = 1 Hour
-	27E3h	0	N	P00-27	Fan Run Time - Secor	nds	U16	0	3599	R	100 = 100 Seconds
-	27E4h	0	Ν	-	Fire Mode Active Tin	ne – Hours	U16	0	65535	R	1 = 1 Hour
-	27E5h	0	Ν	-	Fire Mode Active Tin	ne - Seconds	U16	0	3599	R	100 = 100 Seconds
-	27E6h	0	Ν	-	Power on Time – Hours		U16	0	65535	R	1 = 1 Hour
-	27E7h	0	Ν	-	Power on Time - Seconds		U16	0	3599	R	100 = 100 Seconds
-	27E9h	0	Ν	P00-28	IO Checksum N DSP Checksum N			-	-	R	
-	27EBh	0	N	P00-28	DSP Checksum	WORD	-	-	R		
-	27ECh	0	Ν	P00-19	Ambient Temperatur	S16	-10	150	R	50 = 50°C	
-	27Edh	0	Ν	P00-19	Ambient Temperatur	S16	-10	150	R	50 = 50°C	
-	27EEh	0	N	P00-19	Ambient Temperatur	S16	-10	150	R	50 = 50°C	
-	27EFh	0	N	P00-19	Ambient Temperatur	S16	-10	150	R	50 = 50°C	
-	27F0h	0	N	P00-19	Ambient Temperatur	S16	-10	150	R	50 = 50°C	
-	27F1h	0	N	P00-19	Ambient Temperatur	S16	-10	150	R	50 = 50°C	
-	27F2h	0	N	P00-19	Ambient Temperatur		\$16	-10	150 150	R	50 = 50°C 50 = 50°C
-	27F3h 27F4h	0	N N	P00-19 P00-15	Ambient Temperatur	<u> </u>	S16 U16	-10 0	1000	R R	50 = 50 C 600 = 600 Volts
-	27F4f1 27F5h	0	N	P00-15 P00-15	DC Bus Voltage Log 1 DC Bus Voltage Log 2		U16	0	1000	R	600 = 600 Volts
-	27F5h	0	N	P00-15	DC Bus Voltage Log 2		U16	0	1000	R	600 = 600 Volts
-	27F7h	0	N	P00-15	DC Bus Voltage Log 4		U16	0	1000	R	600 = 600 Volts
_	27F8h	0	N	P00-15	DC Bus Voltage Log 5		U16	0	1000	R	600 = 600 Volts
-	27F9h	0	N	P00-15	DC Bus Voltage Log 6		U16	0	1000	R	600 = 600 Volts
-	27FAh	0	N	P00-15	DC Bus Voltage Log 7		U16	0	1000	R	600 = 600 Volts
-	27FBh	0	N	P00-15	DC Bus Voltage Log 8		U16	0	1000	R	600 = 600 Volts
-	27FCh	0	N	P00-16	Heatsink Temperatu		S16	-10	150	R	50 = 50°C
-	27FDh	0	N	P00-16	Heatsink Temperatu	ě	S16	-10	150	R	50 = 50°C
-	27FEh	0	N	P00-16	Heatsink Temperatu	<u> </u>	S16	-10	150	R	50 = 50°C
-	27FFh	0	Ν	P00-16	Heatsink Temperatu	-	S16	-10	150	R	50 = 50°C
-	2800h	0	N	P00-16	Heatsink Temperatu	re Log 5	S16	-10	150	R	50 = 50°C
-	2801h	0	Ν	P00-16	Heatsink Temperatu	re Log 6	S16	-10	150	R	50 = 50°C
-	2802h	0	Ν	P00-16	Heatsink Temperatu	re Log 7	S16	-10	150	R	50 = 50°C
-	2803h	0	Ν	P00-16	Heatsink Temperatu	re Log 8	S16	-10	150	R	50 = 50°C
-	2804h	0	Ν	P00-17	Motor Current Log 1		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	2805h	0	Ν	P00-17	Motor Current Log 2		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	2806h	0	Ν	P00-17	Motor Current Log 3		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	2807h	0	Ν	P00-17	Motor Current Log 4		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	2808h	0	Ν	P00-17	Motor Current Log 5		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	2809h	0	Ν	P00-17	Motor Current Log 6		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	280Ah	0	Ν	P00-17	Motor Current Log 7		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	280Bh	0	N	P00-17	Motor Current Log 8		U16	0	-	R	1dp, e.g. 100 = 10.0A
-	280Ch	0	N	P00-18	DC Ripple Log 1		U16	0	-	R	1 = 1 Volt
-	280Dh	0	N	P00-18	DC Ripple Log 2		U16	0	-	R	1 = 1 Volt
	280Eh	0	N	P00-18	DC Ripple Log 3		U16	0	-	R	1 = 1 Volt
-	280Fh	0	N	P00-18	DC Ripple Log 4		U16	0	-	R	1 = 1 Volt
-	2810h	0	N	P00-18	DC Ripple Log 5		U16	0	-	R	1 = 1 Volt
-	2811h	0	N	P00-18	DC Ripple Log 6		U16	0	-	R	1 = 1 Volt
-	2812h	0	N	P00-18	DC Ripple Log 7		U16	0	-	R	1 = 1 Volt
-	2813h	0	N	P00-18	DC Ripple Log 8	od	U16	0	-	R	1 = 1 Volt
-	2814h 2815h	0	N N	P00-25 P00-32	Estimated Rotor Spece Actual PWM Frequer		S16 U16	-	-	R R	
-	2815h	0	N	P00-32 P00-31	Motor Current iD	illy illustration of the second se	U16 U16	- 0	-	R	
-	2816h 2817h	0	N	P00-31 P00-31	Motor Current ID		U16 U16	0	-	R	
-	2817h 2818h	0	N	P00-31 P00-33	O-I Trip Counter		U16	0	-	R	
J	201011	-	N	P00-33	O-V Trip Counter		U16	0	-	R	
-	2810h	Ω					010	U	-		
-	2819h 281Ah	0					U16	0	-	R	
	281Ah	0	Ν	P00-35	U-V Trip Counter		U16 U16	0	-	R R	
-							U16 U16 U16	0 0 0		R R R	

4.6.2 Modbus RTU / CAN Index – Parameters

		RIU/	CAN Index – Parameters				1
Modbus RTU Register	CAN Open Index	Par.	Description	Format	Min	Мах	Data format / scaling
129	2065h	01	Max speed limit	U16	0	5*P-09	Internal value (3000 = 50.0Hz)
130	2066h	02	Min speed limit	U16	0	P-01	Internal value (3000 = 50.0Hz)
131	2067h	03	Accel ramp time	U16	0	60000	2dp, e.g. 300=3.00s
132	2068h	04	Decel ramp time	U16	0	60000	2dp, e.g. 300=3.00s
133	2069h	05	Stop Mode	U16	0	3	0: Ramp to stop + Mains Loss Ride Through 1: Coast to stop
	206Ah			U16	0	1	2: Ramp to stop + Fast Stop 3: AC Flux Braking + Fast Stop 0: Disabled
134	200All	06	Energy Optimiser	U16	0	250	1: Enabled
135 136	206Ch	07 08	Motor rated voltage Motor rated current	U16	0	500 500 Drive Rating Dependent	400 = 400 Volts
130	200Ch	08	Motor rated frequency	U16	25	500	1dp, e.g. 100 = 10.0A Data unit is in Hz
138	206Eh	10	Motor rated speed	U16	0	60 * P-09	RPM
139	200Eh	10	Boost Value	U16	0	Drive Rating Dependent	1dp, e.g. 100 = 10.0%
140	2070h	12	Control mode	U16	0	6	0: Terminal Control 1: Keypad forward only 2: Keypad forward and reverse 3: Modbus control mode 4: Modbus control with ramp control 5: PID control 6: PID control with analog speed sum 7: CAN 8: CAN + Ramp Control 9: Slave Mode
141	2071h	13	Application Mode	U16	0	2	0: Industrial Mode 1: Pump Mode 2: Fan Mode
142	2072h	14	Access code	U16	0	9999	No Scaling
142	2072h	14	Digital input function	U16	0	17	See section 2.6 for function details
145	2073h	15		U16	0	7	0: 010V
144	2075h	16	Analog input format	U16	0	5	2: 020mA 3: t 420mA 4: r 420mA 5: t 204mA 6: r 204mA 7: 100V 0 = 4KHz
145		17	Effective switching frequency			(Drive Rating Dependent)	1 = 8KHz 2 = 12Khz 3 =16KHz 4 = 24KHz 5 = 32KHz
146	2076h	18	Relay Output Function	U16	0	9	See parameter description for details
147	2077h	19	Digital Threshold	U16	0	1000	100 = 10.0%
148	2078h	20	Preset Speed 1	U16	-P-01	P-01	Internal value (3000 = 50.0Hz)
149	2079h	21	Preset Speed 2	U16	-P-01	P-01	Internal value (3000 = 50.0Hz)
150	207Ah	22	Preset Speed 3	U16	-P-01	P-01	Internal value (3000 = 50.0Hz)
151	207Bh	23	Preset Speed 4	U16	-P-01	P-01	Internal value (3000 = 50.0Hz)
152	207Ch	24	2 nd Ramp	U16	0	60000	2dp e.g. 250 = 2.50s
153	207Dh	25	Analog Output Function	U16	0	10	See user guide for function details
154	207Eh	26	Skip Frequency Centre	U16	0	P-01	Internal value (3000 = 50.0Hz)
155	207Fh	27	Skip Frequency Band	U16	0	P-01	Internal value (3000 = 50.0Hz)
156	2080h	28	V/F Adjust Voltage	U16	0	P-07	100 = 100V
157	2081h	29	V/F Adjust Frequency	U16	0	P-09	50 = 50Hz
158	2082h	30	Start Mode Select	WORD	See Belo		•
159	2083h	31	Keypad restart mode	U16	0	7	See parameter description for details
160	2084h	32	DC Injection	WORD	See Belo		
161	2085h	33	Spin Start Enable	U16	0	2	See parameter description for details
162	2086h	34	Brake circuit enable	U16	0	4	See parameter description for details
162	2080h	35	Analog Input / Slave Scaling	U16	0	20000	1000 = 100.0%
165	2087h	36	Communication Settings	WORD	See Belo		1000 - 100.070
164	2088h 2089h	36	Access code definition	U16	0	w 9999	
202	2089h 208Ah	37	Parameter lock	U16	0	1	0: Unlocked
166							1: Locked
167	208Bh	39	Analog input offset	U16	-5000	5000	1dp, e.g. 300=30.0%
			Analog input offset Display Scaling Function User PI P gain	U16 WORD U16	-5000 See Belo		

Modbus	CAN						
RTU	Open	Par.	Description	Format	Min	Max	Data format / scaling
Register	Index						
170	208Eh	42	User PI I time constant	U16	0	300	1dp, e.g. 10 = 1.0s
171	208Fh	43	User PI mode select	U16	0	1	See parameter description for details
172	2090h	44	User PI reference select	U16	0	1	See parameter description for details
173	2091h	45	User PI digital reference	U16	0	1000	1dp, e.g. 100 =10.0%
174	2092h	46	User PI feedback select	U16	0	3	See parameter description for details
175	2093h	47	Analog Input 2 Format	U16	0	6	0: 010V 1: 020mA 2: t 420mA 3: r 420mA 4: t 204mA 5: r 204mA 6: Ptc-th
176	2094h	48	Standby Mode Timer	U16	0	250	1dp, e.g. 250 = 25.0s
177	2095h	49	PI Wake Up Error Level	U16	0	1000	1dp, e.g. 50 = 5.0%
178	2096h	50	User Relay Output Hysteresis	U16	0	1000	1dp e.g. 100 = 10.0%
179	2097h	51	Motor Control Mode	U16	0	5	0: IM Vector 1: V/F 2: PM Motor 3: BLDC Motor 4: SynRM Motor
180	2098h	52	Motor Parameter Autotune	U16	0	1	
181	2099h	53	Vector Mode Gain	U16	0	2000	1dp, e.g. 500 = 50.0%
182	209Ah	54	Maximum Current Limit	U16	0	1750	1dp, e.g. 1000 = 100.0%
183	209Bh	55	Motor Stator Resistance	U16	0	65535	2dp, e.g. 100 = 1.00R
184	209Ch	56	Motor Stator d-axis Inductance (Lsd)	U16	0	65535	1dp, e.g. 1000 = 100.0mH
185	209Dh	57	Motor Stator q-axis Inductance (Lsq)	U16	0	65535	1dp, e.g. 1000 = 100.0mH
186	209Eh	58	DC Injection Speed	U16	0	P-01	3000 = 50.0Hz
187	209Fh	59	DC Injection Current	U16	0	1000	1dp, e.g. 100 = 10.0%
188	20A0h	60	Thermal Overload Retention	U16	0	1	

4.7 Additional Information

4.7.1 Drive Control Word Format

0			0.4.10													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				High	byte							Lov	v byte			

Bit 0: Run/Stop command: Set to 1 to enable the drive. Set to 0 to stop the drive.

Bit 1: Fast stop request. Set to 1 to enable drive to stop with 2nd deceleration ramp.

Bit 2: Reset request. Set to 1 in order to reset the drive if drive is under trip condition.

User must clear this bit when drive is under normal condition to prevent un-expected reset.

Bit 3: Coast stop request. Set to 1 to issue a coast stop command.

For normal operation, Bit 3 has the highest priority, bit 0 has the lowest priority (bit 3>bit 1>bit 0). For example, if user set command as 0x0009, drive will do a coast stop rather than run. For normal run/start, just set this register to 1.

Note that stat/stop (bit 0), fast stop (bit 1) and coast stop (bit 3) only works if P-31= 0 or 1. Otherwise, start/stop function is controlled by drive control terminals. Reset function (bit 2) works all the time as long as the drive is operated under Modbus control mode (P-12=3 or 4).

4.7.2 Speed Reference Format (Standard resolution)

Speed reference value is transferred with one decimal place (200 = 20.0Hz). The maximum speed reference value is limited by P-01. Either register 2 or register 5 can be used for speed reference control, however only one reference should be used in any control system, otherwise unexpected behaviour can result.

4.7.3 Acceleration / Deceleration Ramp Time

Active only when P-12 = 4, this register specifies the drive acceleration and deceleration ramp time. The same value is applied simultaneously to the acceleration and deceleration ramp times. The value has two decimal places, e.g. 500 = 5.00 seconds.

4.7.4 High Resolution Speed Reference

This register allows the user to set the speed reference value in the internal format, e.g. 3000 = 50.0Hz. This allows control resolution to 1 RPM with a 2-pole motor. The maximum allowed value is limited by P-01.

ICPAS

Either register 2 or register 5 can be used for speed reference control, however only one reference should be used in any control system, otherwise unexpected behaviour can result.

4.7.5 Drive status and error code Word

High byte gives drive error code. (Valid when the drive is tripped, see 0 for further details)

Low byte gives drive status information as follows: -

Bit 0: 0 = Drive Stopped, 1 = Drive Running

- Bit 1: 0 = OK, 1 = Drive Tripped
- Bit 5: 0 = OK, 1 = In Standby Mode

Bit 6: 0 = Not Ready, 1 = Drive Ready to Run (not tripped, hardware enabled and no mains loss condition)

4.7.6 Scope Channel Data Values

These registers show the scope present data sample value for the first two scope channels. The channel data source selection is carried out through Optitools Studio.

4.7.7 Modbus RTU Registers 25 - 28: Drive Serial Number

The drive serial number may be read using these four registers. The serial number has 11 digits, stored as follows: -

Regis	ter 28		Regis	ter 27		Regis	ter 26		Register 25	
х	х	х	х	х	х	х	х	х	х	x
eр										

e.g.											
Register 25	1	L									
Register 26	1	L									
Register 27	87	45									
Register 28	57										
Drive Serial Number	5	7	8	7	4	5	0	1	0	0	1

4.7.8 Start Mode, Auto Restart & Fire Mode Configuration (P-30)

This parameter contains 3 values, stored as follows: -

High By	te							Low By	te						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input Ty	ype			Input Se	ense			Start M	ode / Aut	o Restart	as: -				
0: Cons): Constant I: Momentary Start				nally Close	ed (Open	Fire	0: Edge	-r						
1: Mom	L: Momentary Start Mode)							1: Auto	-0						
	1: Momentary Start			1: Norm	nally Oper	n (Closed	Fire	2: Auto	-1						
				Mode)				3: Auto	-2						
								4: Auto	-3						
							5: Auto	-4							
								6: Auto	-5						

4.7.9 DC Injection Configuration (P-32)

The parameter value is stored as a combined 16-bit word which is constructed as follows: -

High B	yte							Low By	te						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC Inje	ection Mo	de						DC Inje	ction Dur	ation: 1d	p, e.g. 0 –	250 = 0.0	– 25.0s		
0: DC I	njection o	n Start													
1: DC I	njection o	n Stop													
2: DC I	njection o	n Start &	Stop												

4.7.10 Communications Configuration (P-36)

This Register entry contains multiple data entries, as follows: -

Hi	High Byte								Low By	te				
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
Tri	Trip Configuration Baud Rate							Drive A	ddress					

Data values can be interpreted as follows: -

		led as follows: -	
Drive Address	1 to 63		
Baud Rate	Setting	Modbus RTU	CAN
	0	115k2	500
	1	115k2	500
	2	9k6	500
	3	19k2	500
	4	38k4	500
	5	57k6	500
	6	115k2	500
	7	115k2	125
	8	115k2	250
	9	115k2	500
	10	115k2	1000
Trip Time Set-up	0	Comms Loss Trip Disabled	
	1	30ms Watchdog, Trip on Com	ims Loss
	2	300ms Watchdog, Trip on Co	mms Loss
	3	1000ms Watchdog, Trip on Co	omms Loss
	4	3000ms Watchdog, Trip on Co	omms Loss
	5	30ms Watchdog, Ramp to Sto	op on Comms Loss
	6	300ms Watchdog, Ramp to Si	top on Comms Loss
	7	1000ms Watchdog, Ramp to	Stop on Comms Loss
	8	3000ms Watchdog, Ramp to	Stop on Comms Loss

4.7.11 Display Scaling (P-40)

The parameter value is stored as a combined 16-bit word which is constructed as follows: -

High Byte								Lov	v Byt	e					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Display Scaling So	urce	Disp	lay Sca	aling Fa	actor:	3dp, (e.g. 0	- 16	000 =	0.00	0-1	6.000)		
0: Motor Speed															
1: Motor Current	•														
2: Analog Input 2															
3: PI Feedback															

4.7.12 Parameter Checksum Modbus Register 46

A checksum is calculated based on the present value of all user adjustable parameters and stored in Modbus Register 46. This may be read to determine if parameter settings have been adjusted.

4.8 Modbus RTU Indirect Parameter Access

Optidrive E3 allows Read / Write access to all user adjustable parameters using a simple method as detailed below. This is achieved using the following two Modbus registers.

4.8.1.1 Register 44: Drive parameter index

This index value will be used by register 45 to carry out parameter read and write function. The valid range of this parameter is from 1 to 60 (maximum number of drive user adjustable parameters)

4.8.1.2 Register 45: Drive parameter value

When reading this register, the value represents the drive parameter value which index is specified by register 44. When writing to this register, the value will be written to the drive parameter number specified by register 44.

4.8.2 Parameter Read Method

In order to read a parameter, firstly write the parameter number to register 44, then read the value from register 45, e.g. to Read the Value of P-01

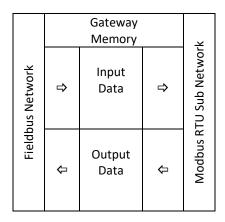
- Write 1 to Register 44
- Read the Value of Register 45

4.8.3 Parameter Write Method

Writing parameter values can be achieved by the same method, however, register 45 is used to write the parameter value <u>after</u> the parameter number has been selected using Register 44, e.g. to Write a Value of 60.0Hz to parameter P-01

- Write 1 to Register 44
- Register 45 will return the present value of P-01, which can be Read if required
- Referring to the parameter table shown in 4.6.2, apply any scaling necessary

 In this case, 60.0Hz = 3600
- Write the scaled value to Register 45. P-01 now changes to 60.0Hz, or an exception code may be returned.



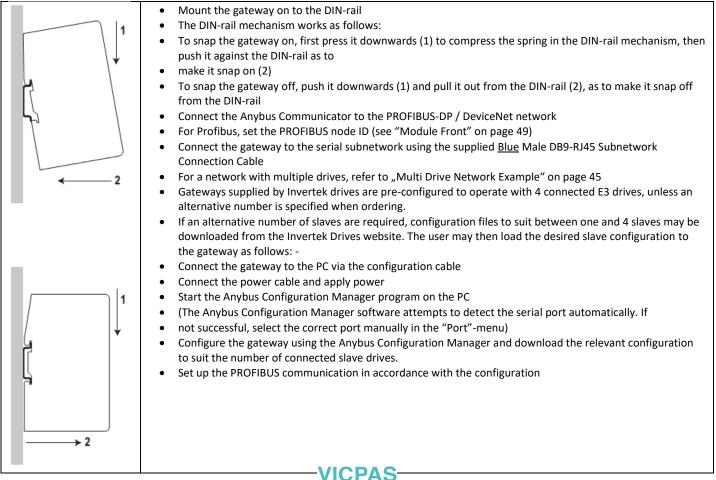
5 Fieldbus Gateways

5.1 Gateway Concept

The fieldbus gateway acts as an interface between the Modbus RTU interface embedded into the Optidrive E3, and a high-level fieldbus network such as Profibus DP or DeviceNet. The gateway supports multiple drive connection up to 8 drives, providing a cost-effective method to connect Optidrive E3 units to a Profibus network.

The gateway internally consists of two segments of memory. Data transferred from the fieldbus Master System is written to the first memory area, and the fieldbus Master may Read data from the second memory area.

The fieldbus Master can normally be configured to Read and Write the entire gateway memory area in a single transaction, or separate transaction per drive may be configured. The gateway is the pre-configured by Invertek to carry out the necessary individual Modbus RTU transactions to communicate with the Sub Network of connected drives.


5.2 Gateway Included Components

Each gateway is supplied with the following: -

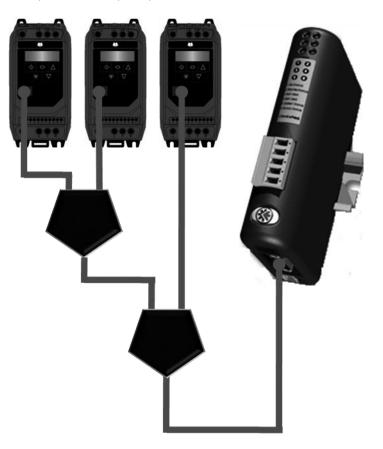
- Anybus Communicator Profibus AB7000 OR Anybus Communicator DeviceNet AB7001
- Anybus Communicator Resource CD (Includes configuration software, manuals, GSD / EDS file and application notes)
- Female DB9-RJ10 Black RS232 configuration cable
- Male DB9-RJ45 Blue Subnetwork Connection Cable

Note: PROFIBUS / DeviceNet network cable and connector are not included.

5.3 Gateway Installation

5.4 Subnetwork Connection

The drive sub network connects to the connector on the bottom of the gateway, using the supplied DB9-RJ45 cable. For a single drive installation, the cable can be connected directly from the gateway to the Optidrive. For a network of multiple drives, the network can be easily constructed using suitable RJ45 cables and splitters available from your Invertek Drives Sales Partner.


5.4.1 Single Drive Network Example

The gateway is connected to the drive using the supplied Blue Male DB9-RJ45 Subnetwork Connection Cable.

5.4.2 Multi Drive Network Example

The network can be constructed using firstly the supplied Blue Male DB9-RJ45 Subnetwork Connection Cable, and in addition, RJ45 Splitters (OPT-2-J45SP-IN) and RJ45 cables (0.5m – OPT-2J\$505-IN, 1m – OPT-J4510-IN, 3m – OPT-2-J4530-IN). Alternative cables may be used; Invertek recommend using Cat 6 shielded twisted pair cables with pin to pin construction.

5.5 Commissioning Drive Parameter Settings

5.5.1 P-36 Communication Configuration

The Optidrive communication parameters are set using P-36, which has three indices as follows: -

P-36	Serial Communications Configuration					
	Index 1: Address					
	Range: 0 – 63, default: 1					
	For a single drive network, the address must be set to 1.					
	For multiple drives, the addresses must be set sequentially starting from 1.					
Index 2: Baud Rate						
	Selects the baud rate and network type for the internal RS485 communication port.					
	When using the gateway, the baud rate must be set to 57.6kbps.					
	Index 3: Communication loss protection					
	Defines the time for which the drive will operate without receiving a valid command telegram to Register 1 (Drive Control Word)					
	after the drive has been enabled. Setting 0 disables the Watchdog timer. Setting a value of 30, 100, 1000, or 3000 defines the time					
	limit in milliseconds for operation. A 'D' suffix selects trip on loss of communication. An 'r' suffix means that the drive will coast stop					
	(output immediately disabled) but will not trip.					

5.5.2 P-12 Command Source Selection

Modbus RTU is always enabled on Optidrive E3, allowing the gateway to provide remote monitoring of the drive by a remote Profibus Master device regardless of the control configuration of the drive.

If it is desired to control the drive from the Profibus network, P-12 must be set as follows: -

P-12	Primary Command Source	0	9	0	-					
	3: Modbus Network Control. Control via the fieldbus using the internal Accel / Decel ramps (P-03 / P-04)									
	4: Modbus Network Control. Control via the fieldbus with Accel / Decel ramps	updated via N	/lodbus							

5.6 Gateway Memory Mapping

The PLC programmer can read/write the PLC memory mapping to gateway memory in order to monitor/control drives in the sub network.

5.6.1 Input memory

This part of the memory contains the real-time drive information that can be read by the PLC.

	Data	Start	Data	Data		Description
Drive	Data	Address	Length	Range	Unit	Description
	Trip code	0x0000	8 bits	0 to 11		Refer to drive User Guide
	Drive status	0x0001	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
1	Motor speed in Hz	0x0002	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
-	Motor current	0x0004	16 bits	0 to 10000	Α	One decimal place (76 = 7.6A)
	Not Used	0x0006	16 bits	-	-	
	Trip code	0x0008	8 bits	0 to 11		See error code list for further information
	Drive status	0x0009	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
2	Motor speed in Hz	0x000A	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
	Motor current	0x000C	16 bits	0 to 10000	А	One decimal place (76 = 7.6A)
	Not Used	0x000E	16 bits	-	-	
	Trip code	0x0010	8 bits	0 to 11		See error code list for further information
	Drive status	0x0011	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
3	Motor speed in Hz	0x0012	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
	Motor current	0x0014	16 bits	0 to 10000	Α	One decimal place (76 = 7.6A)
	Not Used	0x0016	16 bits	-	-	
	Trip code	0x0018	8 bits	0 to 11		See error code list for further information
	Drive status	0x0019	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
4	Motor speed in Hz	0x001A	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
	Motor current	0x001C	16 bits	0 to 10000	А	One decimal place (76 = 7.6A)
	Not Used	0x001E	16 bits	-	-	
	Trip code	0x0020	8 bits	0 to 11		See error code list for further information
	Drive status	0x0021	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
5	Motor speed in Hz	0x0022	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
	Motor current	0x0024	16 bits	0 to 10000	А	One decimal place (76 = 7.6A)
	Not Used	0x0026	16 bits	-	-	
	Trip code	0x0028	8 bits	0 to 11		See error code list for further information
	Drive status	0x0029	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
6	Motor speed in Hz	0x002A	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
	Motor current	0x002C	16 bits	0 to 10000	А	One decimal place (76 = 7.6A)
	Not Used	0x002E	16 bits	-	-	
	Trip code	0x0030	8 bits	0 to 11		See error code list for further information
	Drive status	0x0031	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
7	Motor speed in Hz	0x0032	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
	Motor current	0x0034	16 bits	0 to 10000	Α	One decimal place (76 = 7.6A)
	Not Used	0x0036	16 bits	-	-	,
	Trip code	0x0038	8 bits	0 to 11		See error code list for further information
	Drive status	0x0039	8bits	0, 1, 2,		Refer to Drive Status Word on page 48
8	Motor speed in Hz	0x003A	16 bits	-P-01 to P-01	Hz	One decimal place (500 = 50.0Hz)
	Motor current	0x003C	16 bits	0 to 10000	Α	One decimal place (76 = 7.6A)
	Not Used	0x003E	16 bits	-	-	, , , ,

5.6.2 Output memory

This part of the memory contains the control command information to allow the PLC to control the drives.

Drive	Data	Start Address	Data Length	Data Range	Unit	Description
	Control command	0x0200	16 bits	-		Refer to Drive Control Word on page 48
1	Speed reference in HZ	0x0202	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
1	No Function	0x0204	16 bits			
	Ramp Time	0x0206	16 bits	0 - 60000	S	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps
	Control command	0x0208	16 bits	-		Refer to Drive Control Word on page 48
2	Speed reference in HZ	0x020A	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
2	No Function	0x020C	16 bits			
	Ramp Time	0x020E	16 bits	0 - 60000	S	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps
	Control command	0x0210	16 bits	-		Refer to Drive Control Word on page 48
3	Speed reference in HZ	0x0212	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
5	No Function	0x0214	16 bits			
	Ramp Time	0x0216	16 bits	0 - 60000	s	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps
	Control command	0x0210	16 bits	-		Refer to Drive Control Word on page 48
4	Speed reference in HZ	0x0212	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
4	No Function	0x0214	16 bits			
	Ramp Time	0x0216	16 bits	0 - 60000	s	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps
	Control command	0x0220	16 bits	-		Refer to Drive Control Word on page 48
5	Speed reference in HZ	0x0222	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
5	No Function	0x0224	16 bits			
	Ramp Time	0x0226	16 bits	0 - 60000	s	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps
	Control command	0x0228	16 bits	-		Refer to Drive Control Word on page 48
6	Speed reference in HZ	0x022A	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
0	No Function	0x022C	16 bits			
	Ramp Time	0x022E	16 bits	0 - 60000	S	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps
	Control command	0x0230	16 bits	-		Refer to Drive Control Word on page 48
7	Speed reference in HZ	0x0232	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
,	No Function	0x0234	16 bits			
	Ramp Time	0x0236	16 bits	0 - 60000	S	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps
	Control command	0x0230	16 bits	-		Refer to Drive Control Word on page 48
8	Speed reference in HZ	0x0232	16 bits	-P-01 to P-01	Hz	Drive digital speed reference. Including one decimal place. (500 = 50.0Hz)
5	No Function	0x0234	16 bits			
	Ramp Time	0x0236	16 bits	0 - 60000	S	Ramp time in seconds x 100 (250 = 2.5s) simultaneously applied to acceleration and deceleration ramps

5.6.3 Drive Control Word

The drive Control Word format is the same as used for Modbus RTU, explained in section 4.7.1 Drive Control Word Format on page 41.

5.6.4 Drive Status Word

The drive Status Word format is the same as used for Modbus RTU, explained in section 4.7.5 Drive status and error code Word on page 42.

5.7 Controlling the Optidrive(s)

The following points should be noted when attempting to control the Optidrive(s): -


- The drive must be set for Modbus RTU control using P-12
- Digital Input, which acts as a hardware enable must be ON in order for the drive to start, otherwise the drive will not enable, and the Sub Network Status LED will illuminate Red when the user tries to start the drive.
- The Enable / Run signal is Edge triggered, and so the drive must receive a control word with Bit 0 = 0, followed by a control word with Bit 0 = 1 in order to start.
- If P-12 = 3 and the user writes any data to the Ramp Time memory area, the gateway will indicate a Sub Network Status error (red flash), as the drive rejects the data which cannot be used.

5.8 Profibus DP Gateway Features – OD-PROFB-IN

- Complete PROFIBUS-DP slave functionality according to IEC 61158
- Supports all common baud rates up to 12 Mbit (detected automatically)
- Up to 64 bytes of I/O data in each direction, allowing up to 8 Optidrives to be connected to a single gateway.
- Galvanically isolated bus electronics

5.8.1 Installation

5.8.1.1 Overview - Module Front

5.8.2 Profibus Master Configuration

The latest applicable GSD file may be downloaded from the HMS website, www.anybus.com.

The actual configuration process will differ for different Profibus Master Systems and is not possible to explain in this document. Example configurations for Siemens PLC are provided on the HMS website.

When configuring the communication between the Master System and the gateway, 4 words of Input Process Data and 4 words of Output Process Data should be allocated per drive connected the gateway, up to a maximum of 32 Input and Output words. If necessary, a configuration may be chosen in the Profibus Master which supports more than the connected number of drives, e.g. if 3 drives are connected to the gateway, the Master System can be configured for 12, 16 or even 32 words of Input and Output process data. The additional words will simply not contain any data.

Fieldbus Gateways

5.9 DeviceNet Gateway Features – OD-DEVNT-IN

- Communications Adapter, profile no. 12
- Group two server
- MacID and baud rate configuration via on-board switches
- Polled, Change-of-state and Bit strobed I/O

5.9.1 Installation

5.9.1.1 Overview - Module Front

			0	Netwo	rk O	ff		Not online		
				Status		reen		ink ok, online, co	onnected	
								Online, not connected		
						ed		Critical link failur		
						ashing Red		Connection time		
			2	Module				No power		
LI	ED Indicat	tors	•	Status		reen		Device operation	al	
6		2			FI	ashing Green	1	Data size bigger t	han configure	d
	$() = ^{i}$	Ϋ́				ed	1	Jnrecoverable fa	ult	
					FI	ashing Red		Minor fault		
		4	8	Not Us						
Configuration Switches			4	Not Us						
Configuration Switches Mac ID		6	6	Subnet Status	FI	ashing Green		Running, but one errors	or more trans	action
	2 e 🔲				G	reen		Running		
-	→				R			Fransaction error	/ subnet stop	ped
Baud rate	33		6	Device	0	ff		Power Off		-
	⊒⊒≋			Status	Α	ternating Red /	Green	nvalid / missing	configuration	
					G	reen	1	nitialising		
					FI	ashing Green		Running		
						ed		Bootloader Mode	2	
					FI	ashing Red		Diagnostic Code		
			5.9.1.2 Configur		uration Switches – Baud Rate					
			Swit	tch 1	Switch	2		Baud Rate		
			0	FF	OFF			125k		
			0	FF	ON			250k		
			-	ON O						
				ON ON 5.9.1.3 Confi		N N/A figuration Switches – MAC ID				
)			Switch		Switch		Switch 7	Switch 8
				0	OFF	OFF	OFF	OFF	OFF	OFF
				1	OFF	OFF	OFF	OFF	OFF	ON
				2	OFF	OFF	OFF	OFF	ON	OFF
				62						
			6	53	ON	ON	ON	ON	ON	ON
Bottom View	DB9					Device	let Conr	ector		
PC Connector:	1	+5V								
1. GND	2			lot Used)		_				
2. GND	3		2 Tx (N	lot Used)				Pin no	Description	
3. RS232 Rx	4	NC				_			· ·	
4. RS232 Tx	5	Signa			1)			1	V-	
	6 7			Not Used					CAN L	
	8			Not Used dbus RTU	,	1 8 8 8 8 85 3 Shield 4 CAN H		5 3	Shield	
	9			dbus RTU				CAN H		
								5	V+	
Power:	Power								¥.	
1. +24 V DC ····.	1	+24V	DC, 30	0mA						
2. GND	2	0V								
		I								

5.9.2 DeviceNet Master Configuration

The latest version of the EDS file may be downloaded from the HMS website, www.anybus.com.

The actual configuration process will differ for different DeviceNet Master Systems and is not possible to explain in this document. Example configurations for Rockwell PLC are provided on the HMS website.

When configuring the communication between the Master System and the gateway, 4 words of Input Process Data and 4 words of Output Process Data should be allocated per drive connected the gateway, up to a maximum of 32 Input and Output words. If necessary, a configuration may be chosen in the Master which supports more than the connected number of drives, e.g. if 3 drives are connected to the gateway, the Master System can be configured for 12, 16 or even 32 words of Input and Output process data. The additional words will simply not contain any data.

5.10 Diagnostics and Troubleshooting

0	5
Symptom	Suggested Actions
No Communication,	Check all network cables
Master > Gateway	Check correct bus termination
	Check correct node address on gateway
	Check GSD / EDS file is recognised and used by the Master
	Check the Status LEDs 1 and 2
Profibus Communication	Check the subnetwork Status LED
ОК,	Check all sub network connections
Not possible to control	Check correct baud rate set in drives
the Optidrive(s)	Check drives are addressed sequentially from 1
	Check that data is written to the correct memory area(s)

6 Diagnostic and Fault Messages

6.1 Fault Messages

Fault	No.	Description
Code	_	
no-Flt	00	No Fault
OI-b	01	Brake channel over current
OL-br	02	Brake resistor overload
0-1	03	Instantaneous over current
l.t-trp	04	Motor Thermal Overload (I2t)
O-Volt	06	Over voltage on DC bus
U-Volt	07	Under voltage on DC bus
0-t	08	Heatsink over temperature
U-t	09	Under temperature
P-dEF	10	Factory Default parameters have been loaded
E-trip	11	External trip
SC-ObS	12	Optibus comms loss
FLt-dc	13	DC bus ripple too high
P-LOSS	14	Input phase loss trip
h O-I	15	Instantaneous over current on drive output.
th-Flt	16	Faulty thermistor on heatsink.
dAtA-F	17	Internal memory fault. (IO)
4-20 F	18	4-20mA Signal Lost
dAtA-E	19	Internal memory fault. (DSP)
U-dEF	20	User Default Parameters Loaded
F-Ptc	21	Motor PTC thermistor trip
FAN-F	22	Cooling Fan Fault
O-hEAt	23	Environmental temperature too high
Out-F	26	Drive output fault
AtF-01	40	Measured motor stator resistance varies between phases.
AtF-02	41	Measured motor stator resistance is too large.
AtF-03	42	Measured motor inductance is too low.
AtF-04	43	Measured motor inductance is too large.
Out-Ph	44	Output (motor) phase missing
Out-Ph	49	Output (Motor) phase loss
SC-F01	50	Modbus comms loss fault
SC-F02	51	CAN comms loss trip

6.2 Resetting a Fault

When the drive trips, and a fault message is displayed, it can be reset in one of the following ways: -

- Completely remove the incoming power supply and allow the power to dissipate completely. Re-apply the power.
 - Remove and reapply the enable input
 - Press the stop / Reset button
 - If Modbus or CAN are in use, set the reset bit in the control word from 0 to 1

In the event of O-I, hO-I or I.t-trp faults, in order to prevent damage that may occur through repeatedly enabling the drive into a fault condition, these trips cannot be reset immediately. A delay time according to the following table must be allowed before reset is possible.

First Trip	2 seconds delay before reset is possible
Second Trip	4 seconds delay before reset is possible
Third Trip	8 seconds delay before reset is possible
Fourth Trip	16 seconds delay before reset is possible
Fifth Trip	32 seconds delay before reset is possible
Subsequent Trips	64 seconds delay before reset is possible

7 Rated Temperatures and De-rating curves

7.1 Thermal Management

The Optidrive E3 product range has an integrated Thermal Management function. This function allows the drive to automatically reduce the drive output switching frequency when operating at higher heatsink temperatures to avoid the risk of an over temperature trip. The tables below show the heatsink temperature threshold points at which thermal management occurs.

NOTE

The available range of switching frequencies is subject to the drive frame size, power rating and voltage rating. Refer to section 3.1 Available Effective Switching Frequency Options for further information.

7.1.1 IP20 Drives

Temperature Threshold	Action
70 °C	Auto reduce from 32kHz to 24kHz
75 ^o C	Auto reduce from 24kHz to 16kHz
80 ^o C	Auto reduce from 16kHz to 12kHz
85 ^o C	Auto reduce from 12kHz to 8kHz
90 ^o C	Auto reduce from 8kHz to 4kHz
97 ^o C	Over temp trip

7.1.2 IP66 Drives

Temperature Threshold	Action
70 °C	Auto reduce from 32kHz to 24kHz
75 ^o C	Auto reduce from 24kHz to 16kHz
80 ⁰ C	Auto reduce from 16kHz to 12kHz
85 ^o C	Auto reduce from 12kHz to 8kHz
90 °C	Auto reduce from 8kHz to 4kHz
97 °C	Over temp trip

7.2 De-rating for Effective Switching Frequency and Ambient Temperature

The tables below show the maximum permissible continuous output current as a percentage of the drive rated output current for each available effective switching frequency and the ambient temperature at which it applies.

7.2.1 IP20 Drives

	Permissible L	oad for each	Effective Sv	vitching Frec	uency Settir	ng at Ambien	t Temperati	ure		
Frame	Effective Switching	Ambient Temperature -10 0 10 20 30 40 50 60								
Size	Frequency	-10	0	10	20	30	40	50	60	
1	4 kHz	100%	100%	100%	100%	100%	100%	100%	85.7%	
	8 kHz	100%	100%	100%	100%	100%	100%	94.3%	80.0%	
	12 kHz	100%	100%	100%	100%	97.1%	90.0%	87.0%	74.3%	
	16 kHz	100%	100%	100%	100%	97.1%	90.0%	80.0%	68.6%	
	24 kHz	100%	100%	100%	100%	97.1%	84.3%	71.0%	60.0%	
	32 kHz	100%	100%	100%	100%	92.9%	78.6%	58.6%	54.3%	
2	4 kHz	100%	100%	100%	100%	100%	100%	100%	83.8%	
	8 kHz	100%	100%	100%	100%	100%	100%	89.5%	75.8%	
	12 kHz	100%	100%	100%	100%	100%	88.4%	74.7%	63.2%	
	16 kHz	100%	100%	100%	94.7%	84.2%	73.7%	64.2%	54.7%	
	24 kHz	100%	91.6%	84.2%	77.9%	70.5%	63.2%	55.8%	N/A	
	32 kHz	66.3%	66.3%	64.2%	61.1%	58.9%	55.8%	45.7%	N/A	
3	4 kHz	100%	100%	100%	100%	100%	100%	100%	84.9%	
	8 kHz	100%	100%	100%	100%	100%	100%	100%	54.6%	
	12 kHz	100%	100%	100%	100%	100%	100%	97.5%	47.5%	
	16 kHz	100%	100%	100%	100%	100%	95.4%	73.8%	43.3%	
	24 kHz	100%	100%	100%	100%	88.8%	70.4%	51.7%	34.2%	
4	4 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	85.0%	
	8 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	85.0%	
	12 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	83.5%	70.9%	
	16 kHz	100.0%	100.0%	100.0%	100.0%	100%	83.9%	71.5%	60.7%	
	24 kHz	100.0%	100.0%	100.0%	100%	80.2%	65.0%	52.0%	44.1%	
5	4 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	N/A	
	8 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	84.7%	N/A	
	12 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	94.4%	69.4%	N/A	
	16 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	90.3%	54.2%	N/A	
	24 kHz	100.0%	100.0%	100.0%	100.0%	100.0%	84.7%	38.9%	N/A	

7.2.2 IP66 Outdoor Drives

	Permissible Load for eac	h Effective	Switching	Frequency	Setting at A	mbient Te	mperature	
Frame	Effective Switching			Ambi	ent Temper	ature		
Size	Frequency	-10	0	10	20	30	40	50
1	4 kHz	100%	100%	100%	100%	100%	100%	85%
	8 kHz	100%	100%	100%	100%	100%	100%	85%
	12 kHz	100%	100%	100%	100%	100%	100%	85%
	16 kHz	100%	100%	100%	100%	100%	100%	85%
	24 kHz	100%	100%	100%	100%	100%	100%	85%
	32 kHz	100%	100%	100%	100%	97.6%	81.4%	58.1%
2	4 kHz	100%	100%	100%	100%	100%	100%	85%
	8 kHz	100%	100%	100%	100%	100%	100%	85%
	12 kHz	100%	100%	100%	100%	100%	100%	85%
	16 kHz	100%	100%	100%	100%	92.6%	78.9%	57.9%
	24 kHz	78.9%	78.9%	78.9%	75.6%	54.7%	47.4%	33.7%
	32 kHz	72.6%	72.6%	68.4%	54.7%	47.4%	33.7%	0%
3	4 kHz	100%	100%	100%	100%	100%	100%	85%
	8 kHz	100%	100%	100%	100%	100%	100%	85%
	12 kHz	100%	100%	100%	100%	100%	100%	85%
	16 kHz	100%	100%	100%	100%	100%	92.1%	64.2%
	24 kHz	100%	100%	100%	100%	100%	77.1%	47.1%
4	4 kHz	100%	100%	100%	100%	100%	100%	85%
	8 kHz	100%	100%	100%	100%	100%	100%	85%
	12 kHz	100%	100%	100%	100%	83.3%	86.9%	67.4%
	16 kHz	100%	100%	91.3%	78.3%	65.2%	50.0%	34.8%
	24 kHz	76.1%	76.1%	65.2%	52.2%	41.3%	29.3%	0%

8 Immunity Tests

8.1 Electrostatic Discharge (ESD)

The Optidrive E3 product range has been designed and tested to comply with the limits defined in EN 61800-3:2004+A1-2012. The test techniques used are as defined in EN 61000-4-2:2009.

Application	Test points	Test Method	Level
	Control Terminals	Contact Discharge	±4kV
Direct	control terminals	Air Discharge	±8kV
	Power Terminals	Air Discharge	±8kV
Indirect	Vertical coupling plane	Contact Discharge	±4kV
indirect	Horizontal coupling plane	Contact Discharge±4kVAir Discharge±8kVAir Discharge±8kVContact Discharge±4kV	±4kV

8.2 Electrical Fast Transient Burst (EFT/B)

The Optidrive E3 product range has been designed and tested to comply with the limits defined in EN 61800-3: 2004+A1-2012. The test techniques used are as defined in EN 61000-4-4:2004.

Test points	Test Method	Level
Control Terminals	Capacitive clamp	±1kV at 5kHz
Motor Power Terminals	Capacitive clamp	±2kV at 5kHz
1-PH Supply Power Terminals	Coupling Decoupling Network	±2kV at 5kHz
3-PH Supply Power Terminals	Capacitive clamp	±4kV at 5kHz

8.3 Surge

The Optidrive E3 product range has been designed and tested to comply with the limits defined in EN 61800-3: 2004+A1-2012. The test techniques used are as defined in EN 61000-4-5:2006.

Drive Type	Test Method	Level
200-240V	Line to Line/Neutral	±1kV
200-2407	Line/Neutral to Earth	±2kV
380-480V	Line to Line	±2kV
380-4807	Line to Earth	±4kV

8.4 Dielectric strength (Flash)

The Optidrive E3 product range has been designed and tested to comply with the limits defined in EN 61800-5-1: 2007. The test techniques used are as defined in EN 61800-5-1: 2007.

Drive Type	Level
200-240V	1.5kV
380-480V	2.5kV

9 General Technical and Performance Data

9.1 Electrical Data

9.1.1 Mains Supply Details	
Supply Voltage Range	110 Volt Units – 110 – 115 Volt +10% / -10%
	230 Volt Units – 200 – 240 Volt +10% / -10%
	400 Volt Units – 380 – 480 Volt +10% / -10%
Supply Frequency	48 – 62Hz
Inrush Current	< rated input current
Power Up Cycles	>120x /hr, evenly spaced
Single Phase Operation	Three phase drives can be operated from a single-phase supply with 50% derating of the maximum output
	current
9.1.2 Motor Control	
Output Frequency Range	0 to 500Hz in 0.1 Hz steps
	Max Output Frequency = Max Switching Frequency / 16.
Output Voltage Range	0 to Supply Voltage
Speed Regulation	Open Loop < 2% motor rated speed
Torque Control	0 – 175% of rated torque, + / -5% accuracy, Response time <10ms
Effective Switching Frequency	Refer to section 3.1
Acceleration Time	0 – 600 seconds, 0.01s resolution
Deceleration Time	Two deceleration ramps
	0 – 600 seconds, 0.01s resolution
9.1.3 Overload Capacity	
Overload Capacity	150% of rated current for 60 seconds, repeat cycle every 10 minutes.
	175% / 4 seconds

9.2 Input Output Current Ratings

9.2.1 110V Input

Frame	Supply Voltage	Power Rating (kW)	Input Current	iTHD (%)	AC Line Choke	Input Current	iTHD (%)	Output Current
Size	110V. 1 Ph.	0.37	(A) 7.8		OPT-2-L1016-20	(A) 7.1		(A) 2.3
1	1100, 1 PH.	0.75	15.8	<60.0	OPT-2-L1016-20	15.0		4.3
2	110V, 1 Ph.	1.1	21.9		OPT-2-L1025-20	20.1		5.8

The data above is provided to show typical values. Results measured at the point of installation may vary according to the installation site and load conditions Test results are measured under the following conditions: -

- 400 Volt RMS AC Supply Voltage
- Operating IE2 motor with matching power rating according to the drive
- Operated at full rated output current capacity

9.2.2 230V Input

Frame	Supply	Power	Input	iTHD	AC	Input	iTHD	Output
Size	Voltage	Rating	Current	(%)	Line	Current	(%)	Current
		(kW)	(A)		Choke	(A)		(A)
		0.37	3.7	<175%	OPT-2-L1016-20	2.9		2.3
	230V, 1ph	0.75	7.5	<175%	OPT-2-L1016-20	6.6		4.3
1		1.5	12.9	<175%	OPT-2-L1016-20	9.7		7.0
1		0.37	3.4	<85.0	OPT-2-L3006-20	3.4		2.3
	230V, 3ph	0.75	5.6	<85.0	OPT-2-L3006-20	5.6		4.3
		1.5	9.5	<85.0	OPT-2-L3010-20	6.3		7.0
	230V, 1ph	1.5	12.9	<125.0	OPT-2-L1016-20	11.4		7.0
2	2500, 101	2.2	19.2	<100.0	OPT-2-L1025-20	17.0		10.5
2	230V, 3ph	1.5	8.9	<85.0	OPT-2-L3006-20	7.0		7.0
	250V, 5pm	2.2	12.1	<85.0	OPT-2-L3010-20	9.9		10.5
	230V, 1ph	4.0	29.2	<125.0	-	25.9		15.3
3	230V, 3ph	4.0	20.9	<85.0	OPT-2-L3036-20	13.5		18
	250V, 5pm	5.5	26.4	<85.0	OPT-2-L3036-20	17.4		24
		5.5	26.9	<85.0	OPT-2-L3036-20	22.0		24
4	230V, 3ph	7.5	33.3	<85.0	OPT-2-L3036-20	27.7		30
		11	50.1	<85.0	OPT-2-L3050-20	41.7		46

The data above is provided to show typical values. Results measured at the point of installation may vary according to the installation site and load conditions Test results are measured under the following conditions: -

- 230 Volt RMS AC Supply Voltage
- Operating IE2 motor with matching power rating according to the drive
- Operated at full rated output current capacity

9.2.3 400 / 460 Volt Input

		Power	Input	iTHD	AC	Input	iTHD	Output
Frame	Supply	Rating	Current	(%)	Line	Current	(%)	Current
Size	Voltage	(kW)	(A)		Choke	(A)		(A)
1		0.75	3.5	<85.0	OPT-2-L3006-20	1.5		2.2
1		1.5	5.6	<85.0	OPT-2-L3006-20	2.7		4.1
		1.5	5.6	<85.0	OPT-2-L3006-20	4.5		4.1
2		2.2	7.5	<85.0	OPT-2-L3006-20	5.5		5.8
		4.0	11.5	<85.0	OPT-2-L3010-20	9.2		9.5
	400V, 3ph	5.5	17.2	<85.0	OPT-2-L3036-20	14.5		14
3		7.5	21.2	<85.0	OPT-2-L3036-20	17.2		18
		11	27.5	<85.0	OPT-2-L3036-20	21.7		24
4		15	34.2	<85.0	OPT-2-L3036-20	27.0		30
4		18.5	44.1	<85.0	OPT-2-L3050-20	34.8		39
		22	51.9	<85.0	OPT-2-L3050-20	40.9		46

The data above is provided to show typical values. Results measured at the point of installation may vary according to the installation site and load conditions Test results are measured under the following conditions: -

- 400 Volt RMS AC Supply Voltage
- Operating IE2 motor with matching power rating according to the drive
- Operated at full rated output current capacity

9.3 Standby Power Consumption

The following table shows the power consumption of the drive under the following conditions.

- Drive is powered from the nominal rated mains supply voltage (e.g. 230 or 400 Volt)
- Output disabled
- Cooling fan off
- No external power drawn from the control terminals

Frame Size	Voltage	Phase	Consumption				
1	230	1	3.07W				
	230	3	3.07W				
	400	3	4.55W				
2	230	1	4.51W				
	230	3	4.51W				
	400	3	6.44W				
3	230	1	5.16W				
	230	3	5.16W				
	400	3	6.42W				
4	230	3	7.54W				
	400	3	14.6W				
	VICPAS HMI Parts Center						

9.4 DC Bus Discharge Time

DC Bus discharge times are based on maximum continuous rated DC bus voltage. In compliance with EN 61800-5-1:2007, all drives have a caution on the rating labels stating "Power down for 5 minutes before removing cover"

Frame	Supply		DC Bus Voltage		
Size	Voltage	Max	after 5s	after 60s	reach 50V
1	240Vac +10%	375	323	24.8	26 sec
1	480Vac +10%	680	510	36	34 sec
2	240Vac +10%	375	332	27.3	42 sec
Z	480Vac +10%	680	564	24.5	48 sec
3	240Vac +10%	375	324	36.4	27 sec
5	480Vac +10%	680	601	59.6	109 sec
4	240Vac +10%	375	301	28.6	46 sec
4	480Vac +10%	680	610	40.2	58 sec

9.5 Earth Leakage Current (Touch Current)

The Optidrive E3 product range has been designed and tested to comply with the limits defined in EN 61800-5-1: 2007. The test techniques used are as defined in EN 60990:2000.

As stated in the standard 61800-5-1:2007, 5.2.3.5 the motor does not have to be loaded, however, the motor type, cable type and length can have a significant impact on the results.

Frame	Typical Supply Co	onditions	Maximum Supply Co	onditions
Size	Supply Voltage	I _{Touch} (mA)	Supply Voltage	I _{Touch} (mA)
	1ph 230V 50Hz	3.5	1ph 240V +10% 60Hz	4.8
1	3ph 230V 50Hz	4.6	3ph 240V +10% 60Hz	7.5
	3ph 400V 50Hz	8	3ph 480V +10% 60Hz	13
	1ph 230V 50Hz	3.5	1ph 240V +10% 60Hz	4.8
2	3ph 230V 50Hz	4.7	3ph 240V +10% 60Hz	7.2
	3ph 400V 50Hz	8.1	3ph 480V +10% 60Hz	12.6
	1ph 230V 50Hz	3.5	1ph 240V +10% 60Hz	4.7
3	3ph 230V 50Hz	4.7	3ph 240V +10% 60Hz	6.8
	3ph 400V 50Hz	8.1	3ph 480V +10% 60Hz	12.7
4	3ph 230Vac 50Hz	4.8	3ph 240V +10% 60Hz	6.9
4	3ph 400Vac 50Hz	8.2	3ph 480V +10% 60Hz	12.9

NOTE

The Touch Current value is based on: -

Normal operating conditions, i.e. all phases balanced and connected correctly with the motor running

8 – 30 V dc, Internal or External supply, NPN (positive logic)

• Drive fitted with integrated EMC filter

9.6 Digital & Analog I/O

9.6.1 Digital Inputs Specification

Voltage Range	
Response Time	

Time < 8ms
9.6.2 Analog Inputs Specification

Range	Current: 0-20mA, 4-20mA. 20mA max input current
	Voltage: -10-10V (Analog Input 1 Only), 0-10V, 0-5V, 0/24V, 30V max input
Resolution	Analog Input 1: 12-bit, <16ms response time (Uni-Polar)
	Analog Input 2: 12-bit, <16ms response time (Uni-Polar)
Accuracy	better than 1% of full scale
Scaling & Offset	Parameter adjustable

9.6.3 Analog Output Specification

Range	Current: 020mA, 420mA, 20mA max Analog: 010V, 0 / 24V (digital), 20mA max
Resolution	10-bit
Accuracy	better than 1% of full scale

9.6.4 Relay Output

Maximum Switching Voltage :	250VAC, 30 VDC
Maximum Switching Current :	5A at 30 Volt DC, 6A at 250 Volt AC

9.7 Environmental Data

9.7.1 Temperature Range				
Ambient Temperature Range: Operation	IP20 Drives: -10 - +50	IP20 Drives: -10 - +50°C (14 - 122°F) without derating		
	IP55 & IP66 Drives: -:	IP55 & IP66 Drives: -10 - + 40°C (14 - 104°F) without derating		
Note: No frost or condensation permissible				
Ambient Temperature Range: Storage	-40 60 °C. No Frost or Condensation			
9.7.2 Altitude				
Maximum Altitude (No derating)	1000m Derate above	1000m by 1% per 100m		
Maximum Altitude (UL Approved)	2000m			
Maximum Altitude	4000m			
9.7.3 Relative Humidity				
Relative Humidity Limit	95% Maximum, non-	95% Maximum, non-condensing		
9.7.4 Contamination Levels				
Standard	IEC 721-3-3, Non-conductive dust allowed			
Transportation	Class 1C2 (chemical g	gases),		
	Class 1S2 (solid particles)			
Storage	Class 2C2 (chemical g	Class 2C2 (chemical gases),		
	Class 2S2 (solid particles)			
Operation	Class 3C2 (chemical gases),			
	Class 3S2 (solid particles			
9.7.5 Vibration Levels				
Shock Test	Pulse Shape	Half-Sine		

Shock Test	Pulse Shape	Half-Sine
	Peak Acceleration	15g
	Duration	11ms
	Axes Tested	3 Orthogonal
	Number of Shocks	3 in each direction (18 in total)
	Configuration	Non-operational throughout
Sinusoidal vibration test	Frequency Range	10Hz – 150Hz
	Severity	10Hz – 57.55Hz: 0.15mm peak-peak displacement
		57.55Hz – 150Hz: 1g peak acceleration
	Sweep Rate	1 octave/minute
	Axes Tested	3 Orthogonal
	Number of Cycles	10 cycles/axis (1 cycle consists of an up and a down sweep)
	Configuration	Non-operational throughout

9.8 Response Times

Command Source	Response Time
Digital Input	<8ms
Analog Input	<16ms
Modbus RTU Interface	<8ms from receipt of valid command
CAN Interface	<8ms from receipt of valid command
Master / Slave Function	<8ms, response, 60ms cycle
Power Stage	<10ms to enable output

9.9 Motor Control Performance

9.9.1 V/F Mode

Speed Regulation: + / - 20% of motor slip with slip compensation enabled

9.9.2 Vector Mode

Static Speed Accuracy:	+ / - 0.033%	
Speed Regulation	0 – 100% Load Range: + / - 1%	
Torque Response:	1- 8ms	
Torque Linearity	(10 – 90% of motor rated speed, 20 – 100% load torque range):	+/-5%

9.10 Output Current Limit

9.10.1 Overload Operation

Optidrive E3 provides the following overall limits:

- 150% Output current / 60 Seconds Maximum
- 175% Output current / 3.75 Seconds Maximum

9.10.2 Overview

Optidrive E3 features both hardware and software protection of the output stage to prevent damage. In addition, an Ixt system is used to monitor motor overload condition and prevent damage to the motor due to operation for prolonged periods at high load.

I x t protection is software based, using the value for motor rated current programmed in P-08. An internal accumulator register is used to estimate the point at which damage may occur to the motor, and operates as follows

Motor Current < P-08

The accumulator value reduces towards zero. The time required depends on the actual load current as explained further below.

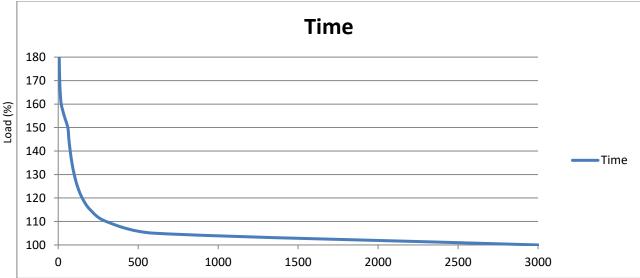
Motor Current = 100% P-08

The accumulator value remains static.

Motor Current > 100% P-08 < 150% P-08

The accumulator value increases at a rate proportional to the overload level, e.g. (Motor Current / Rated current) – 100%. If the overload limit is reached, the drive will trip, displaying it.trp. to protect the motor.

Motor Current > 150% P-08


For high current levels, the accumulator operates 16 times faster than for current levels below 150% of P-08.

Peak over current trip levels are shown in the table below.

9.10.3 Example Operation

Maximum overload operation is 150% of motor rated current for 60 seconds. As this represents an overload of 50%, the accumulator trip level is 3000. This means that if the drive operates with 125% load current, the time can be calculated as 3000 / (125 - 100) = 120 Seconds. Above 150% load, accumulation is 16 times faster, hence for 160% load current, the time is 3000 / 16 / (160 - 150) = 18.75 seconds

9.10.4 Overload Curve

9.10.5 Additional Special Case Overload Operation

For ODE-3-240095-3F4# models, when output frequency <5Hz, overload accumulation is 2.5 times faster.

9.11 Under / Over Voltage Trip Levels

The following levels are not user adjustable and define the operating voltage levels of the drive and brake chopper circuit.

Drive Rated	Drive Type	DC Bus Voltage Level (Volts DC)				
Supply Voltage		Brake	Brake	Under	Minimum	Over
		Chopper	Chopper	Voltage	Operating	Voltage
		On	Off	Trip	(Inrush	Trip
					Disabled)	
110 – 115 Volts AC	Single Phase Output	195	189	80	113	208
110 – 115 Volts AC	Voltage Doubler	390	378	160	239	418
200 – 240 Volts AC	All	390	378	160	239	418
380 – 480 Volts AC	All	780	756	320	478	835

Optidrive E3 Advanced Technical Manual Issue 06.Docx

