2 General Information

2.1 General Information 4B1270.00-490

The P127 COMPACT HMI CAN is a powerful operator panel with a compact design. This CAN panel has a 4×20 LC display.

The display contrast can be set using keys.
This panel is also equipped with a membrane keypad with 24 keys, 12 of which are illuminated with LEDs.

The left key block can be labeled using legend strips, the LOGO can also be changed by using a different legend strip.

The CAN interface is electrically isolated and uses a 9 pin D-type connector.
Baud rate and node number can be set using the number switches on the side of the unit.
 ($145 \times 180 \times 30 \mathrm{~mm}$).

2.2 General Information 4B1270.00-390

The P127 COMPACT HMI CAN is a powerful operator panel with a compact design. This CAN panel has a 4×20 LC display.
The display contrast can be set using keys.
This panel is also equipped with a membrane keypad with 20 keys, 14 of which are illuminated with LEDs.
The 14 keys below can be labeled using legend strips.
The CAN interface is electrically isolated and uses a 9 pin D-type connector.
Baud rate and node number can be set using the number switches on the backside of the unit.
All of the functions listed above are integrated into a compact housing ($153 \times 120 \times 43.7 \mathrm{~mm}$).

2.3 Dimensions

2.3.1 Dimensions 4B1270.00-490

2.3.2 Dimensions 4B1270.00-390

3 Technical Data

3.1 Technical Data 4B1270.00.490

Model Name	P127 COMPACT HMI CAN
Model Number	4B1270.00-490
LC Display Resolution	4×20 characters
Background Lighting Brightness	LED yellow / green $200 \mathrm{~cd} / \mathrm{cm}^{2}$
Keypad	Membrane keypad with 24 keys, 12 with LED illumination (yellow)
Supply Voltage	24 VDC (min. 18 VDC, max 30 VDC)
Power Consumption $P_{\mathrm{t} \mathrm{typ}}$ $P_{\max }$	$\begin{aligned} & \text { 3.3 W (< Rev F0: 2.8 W) } \\ & \text { 3.8 W (< Rev F0: 3.3 W) } \end{aligned}$
CAN Interface	9 pin D-type connector (electrically isolated)
Operating Temperature	5 to $50^{\circ} \mathrm{C}$
Relative Humidity	5 to 95\% (not condensing)
Dimensions	$145 \mathrm{~mm}, 180 \mathrm{~mm}, 30 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$

3.2 Technical Data 4B1270.00.390

Model Name	P127 COMPACT HMI CAN
Model Number	4B1270.00-390
LC Display Resolution	4×20 characters
Background Lighting Brightness	LED yellow / green $200 \mathrm{~cd} / \mathrm{cm}^{2}$
Keypad	Membrane keypad with 20 keys, 14 with LED illumination (yellow)
Supply Voltage	24 VDC (min. 18 VDC, max 30 VDC)
Power Consumption $\begin{aligned} & P_{\text {typ }} \\ & P_{\text {max }} \end{aligned}$	$\begin{aligned} & \text { 2.7 W (<Rev FO: 2.2 W) } \\ & \text { 3.0 W (<Rev F0: 2.5 W) } \end{aligned}$
CAN Interface	9 pin D-type connector (electrically isolated)
Operating Temperature	5 to $50^{\circ} \mathrm{C}$
Relative Humidity	5 to 95\% (not condensing)
Dimensions	$153 \mathrm{~mm}, 120 \mathrm{~mm}, 43.7 \mathrm{~mm}$ ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)

4.3 Supply Voltage 4B1270.00-490 und -390

The P127 is supplied with 24 VDC using a 3 -pin terminal block. The 24VDC on the terminal block is applied to the panel via a 3-pin pin-connector. The supply is protected against surge, burst, ESD and radiated disturbances. The $\stackrel{\text { N }}{=}$ pin should be connected to ground with as short a line as possible.

Terminal	Symbol	Description
1	\pitchfork	Ground
2	-	GND \perp
3	+	+24 VDC

4.4 CAN Interface 4B1270.00-490 und -390

The P127 is equipped with a CAN interface. The baud rate and node number can be set using hex switches. These hex switches can be accessed through holes in the housing.
The interface is electrically isolated and uses a 9 pin D-type connector.

9 Pin D-Type Connector (M)

4.4.1 Hex Switches

The hex switches can be used to set the baud rate and CAN node number. Each hex switch represents a 4 bit value. The first 2 bits of hex switch SW1 are used to set the baud rate. The second 2 bits of hex switch SW1 together with all 4 bits of hex switch SW0 determine the CAN node number.
See table on the following page for possible settings.

	SW1	SW0	Baud(kBit/sec)	Node\#
	0	1 .. F	250	1.. 15
	1	0 .. F	250	$16 . .31$
	2	0	250	32
	4	1..F	125	1.. 15
	5	0 .. F	125	$16 . .31$
	6	0	125	32
	8	$1 . . \mathrm{F}$	20	1.. 15
	9	0 .. F	20	$16 . .31$
	A	0	20	32
	C	1.. F	500	1.. 15
	D	0 .. F	500	$16 . .31$
	E	0	500	32

Switch settings that are not shown are invalid.
Invalid settings are indicated on the display with " CAN Node number: -- " and " Baud rate: -- ".

