
FANUC Robotics SYSTEM
R-J3iB Controller KAREL
Reference Manual
MARAIKLRF06031E REV A
Applies to Version 6.31 and later

©2003 FANUC Robotics America, Inc.

About This Manual

Copyrights and Trademarks

This new publication contains proprietary information of FANUC Robotics America, Inc. furnished
for customer use only. No other uses are authorized without the express written permission of
FANUC Robotics America, Inc.

FANUC Robotics America, Inc
3900 W. Hamlin Road
Rochester Hills, Michigan 48309-3253

FANUC Robotics America, Inc. The descriptions and specifications contained in this manual were in
effect at the time this manual was approved. FANUC Robotics America, Inc, hereinafter referred to as
FANUC Robotics, reserves the right to discontinue models at any time or to change specifications or
design without notice and without incurring obligations.

FANUC Robotics manuals present descriptions, specifications, drawings, schematics, bills of
material, parts, connections and/or procedures for installing, disassembling, connecting, operating and
programming FANUC Robotics� products and/or systems. Such systems consist of robots, extended
axes, robot controllers, application software, the KAREL® programming language, INSIGHT®
vision equipment, and special tools.

FANUC Robotics recommends that only persons who have been trained in one or more approved
FANUC Robotics Training Course(s) be permitted to install, operate, use, perform procedures on,
repair, and/or maintain FANUC Robotics� products and/or systems and their respective components.
Approved training necessitates that the courses selected be relevant to the type of system installed
and application performed at the customer site.

Warning

This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instruction manual,
may cause interference to radio communications. As temporarily
permitted by regulation, it has not been tested for compliance with the
limits for Class A computing devices pursuant to subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection against
such interference. Operation of the equipment in a residential area is
likely to cause interference, in which case the user, at his own expense,
will be required to take whatever measure may be required to correct
the interference.

FANUC Robotics conducts courses on its systems and products on a regularly scheduled basis at its
headquarters in Rochester Hills, Michigan. For additional information contact

i

About This Manual MARAIKLRF06031E REV A

FANUC Robotics America, Inc
Training Department
3900 W. Hamlin Road
Rochester Hills, Michigan 48309-3253

www.fanucrobotics.com

For customer assistance, including Technical Support, Service, Parts & Part Repair, and
Marketing Requests, contact the Customer Resource Center, 24 hours a day, at 1-800-47-ROBOT
(1-800-477-6268). International customers should call 011-1-248-377-7159.

Send your comments and suggestions about this manual to:
product.documentation@fanucrobotics.com

The information illustrated or contained herein is not to be reproduced, copied, translated into another
language, or transmitted in whole or in part in any way without the prior written consent of FANUC
Robotics America, Inc.

AccuStat®, ArcTool®, KAREL®, PaintTool®, PalletTool®, SOCKETS®, SpotTool®,
SpotWorks®, and TorchMate® are Registered Trademarks of FANUC Robotics.

FANUC Robotics reserves all proprietary rights, including but not limited to trademark and trade
name rights, in the following names:

AccuAir�, AccuCal�, AccuChop�, AccuFlow�, AccuPath�, AccuSeal�, ARC Mate�,
ARC Mate Sr.�, ARC Mate System 1�, ARC Mate System 2�, ARC Mate System 3�, ARC
Mate System 4�, ARC Mate System 5�, ARCWorks Pro�, AssistTool�, AutoNormal�,
AutoTCP�, BellTool�, BODYWorks�, Cal Mate�, Cell Finder�, Center Finder�, Clean
Wall�, CollisionGuard�, DispenseTool�, F-100�, F-200i�, FabTool�, FANUC LASER
DRILL�, Flexibell�, FlexTool�, HandlingTool�, HandlingWorks�, INSIGHT�, INSIGHT
II�, IntelliTrak�, Integrated Process Solution�, Intelligent Assist Device�, IPC -Integrated Pump
Control�, IPD Integral Pneumatic Dispenser�, ISA Integral Servo Applicator�, ISD Integral
Servo Dispenser�, Laser Mate System 3�, Laser Mate System 4�, LaserPro�, LaserTool�,
LR Tool�, MIG Eye�, MotionParts�, NoBots�, Paint Stick�, PaintPro�, PaintTool 100�,
PAINTWorks�, PAINTWorks II�, PAINTWorks III�, PalletMate�, PalletMate PC�, PalletTool
PC�, PayloadID�, RecipTool�, RemovalTool�, Robo Chop�, Robo Spray�, S-420i�,
S-430i�, ShapeGen�, SoftFloat�, SOFT PARTS�, SpotTool+�, SR Mate�, SR ShotTool�,
SureWeld�, SYSTEM R-J2 Controller�, SYSTEM R-J3 Controller�, SYSTEM R-J3iMODEL B
Controller�, TCP Mate�, TorchMate�, TurboMove�, visLOC�, visPRO-3D�, visTRAC�,
WebServer�, WebTP�, and YagTool�.

Patents

One for more of the following U.S. patents might be related to the FANUC Robotics products
described in this manual.

ii

MARAIKLRF06031E REV A About This Manual

3,906,323 4,274,802 4,289,441 4,299,529 4,336,926 4,348,623 4,359,815 4,366,423 4,374,349
4,396,973 4,396,975 4,396,987 4,406,576 4,415,965 4,416,577 4,430,923 4,431,366 4,458,188
4,462,748 4,465,424 4,466,769 4,475,160 4,479,673 4,479,754 4,481,568 4,482,289 4,482,968
4,484,855 4,488,242 4,488,746 4,489,821 4,492,301 4,495,453 4,502,830 4,504,771 4,530,062
4,530,636 4,538,639 4,540,212 4,542,471 4,543,639 4,544,971 4,549,276 4,549,846 4,552,506
4,554,497 4,556,361 4,557,660 4,562,551 4,575,666 4,576,537 4,591,944 4,603,286 4,626,756
4,628,778 4,630,567 4,637,773 4,638,143 4,639,878 4,647,753 4,647,827 4,650,952 4,652,203
4,653,975 4,659,279 4,659,280 4,663,730 4,672,287 4,679,297 4,680,518 4,697,979 4,698,777
4,700,118 4,700,314 4,701,686 4,702,665 4,706,000 4,706,001 4,706,003 4,707,647 4,708,175
4,708,580 4,712,972 4,723,207 4,727,303 4,728,247 4,728,872 4,732,526 4,742,207 4,742,611
4,750,858 4,753,128 4,754,392 4,771,222 4,773,523 4,773,813 4,774,674 4,775,787 4,776,247
4,777,783 4,780,045 4,780,703 4,782,713 4,785,155 4,796,005 4,805,477 4,807,486 4,812,836
4,813,844 4,815,011 4,815,190 4,816,728 4,816,733 4,816,734 4,827,203 4,827,782 4,828,094
4,829,454 4,829,840 4,831,235 4,835,362 4,836,048 4,837,487 4,842,474 4,851,754 4,852,024
4,852,114 4,855,657 4,857,700 4,859,139 4,859,845 4,866,238 4,873,476 4,877,973 4,892,457
4,892,992 4,894,594 4,894,596 4,894,908 4,899,095 4,902,362 4,903,539 4,904,911 4,904,915
4,906,121 4,906,814 4,907,467 4,908,559 4,908,734 4,908,738 4,916,375 4,916,636 4,920,248
4,922,436 4,931,617 4,931,711 4,934,504 4,942,539 4,943,759 4,953,992 4,956,594 4,956,765
4,965,500 4,967,125 4,969,109 4,969,722 4,969,795 4,970,370 4,970,448 4,972,080 4,972,735
4,973,895 4,974,229 4,975,920 4,979,127 4,979,128 4,984,175 4,984,745 4,988,934 4,990,729
5,004,968 5,006,035 5,008,832 5,008,834 5,012,173 5,013,988 5,034,618 5,051,676 5,055,754
5,057,756 5,057,995 5,060,533 5,063,281 5,063,295 5,065,337 5,066,847 5,066,902 5,075,534
5,085,619 5,093,552 5,094,311 5,099,707 5,105,136 5,107,716 5,111,019 5,111,709 5,115,690
5,192,595 5,221,047 5,238,029 5,239,739 5,272,805 5,286,160 5,289,947 5,293,107 5,293,911
5,313,854 5,316,217 5,331,264 5,367,944 5,373,221 5,421,218 5,423,648 5,434,489 5,644,898
5670202 5,696,687 5,737,218 5,823,389 5853027 5,887,800 5,941,679 5,959,425 5,987,726
6,059,092 6,064,168 6,070,109 6,082,797 6,086,294 6,122,062 6,147,323 6,193,621 6,204,620
6,243,621 6,253,799 6,285,920 6,313,595 6,325,302 6,345,818 6,360,142 6,378,190 6,385,508

VersaBell, ServoBell and SpeedDock Patents Pending.

Conventions

This manual includes information essential to the safety of personnel, equipment, software, and data.
This information is indicated by headings and boxes in the text.

Warning

Information appearing under WARNING concerns the protection of
personnel. It is boxed and in bold type to set it apart from other text.

Caution

Information appearing under CAUTION concerns the protection of equipment,
software, and data. It is boxed to set it apart from other text.

iii

About This Manual MARAIKLRF06031E REV A

Note Information appearing next to NOTE concerns related information or useful hints.

iv

Contents

About This Manual ... i

Safety ... xxix

Chapter 1 KAREL LANGUAGE OVERVIEW ... 1�1
1.1 OVERVIEW.. 1�2
1.2 KAREL PROGRAMMING LANGUAGE ... 1�2
1.2.1 Overview .. 1�2
1.2.2 Entering a Program .. 1�4
1.2.3 Translating a Program .. 1�4
1.2.4 Loading Program Logic and Data ... 1�4
1.2.5 Executing a Program .. 1�5
1.2.6 Execution History ... 1�5
1.2.7 Program Structure ... 1�6
1.3 SYSTEM SOFTWARE .. 1�7
1.3.1 Software Components .. 1�7
1.3.2 Supported Robots .. 1�8
1.4 CONTROLLERS.. 1�8
1.4.1 Memory .. 1�8
1.4.2 Input/Output System .. 1�10
1.4.3 User Interface Devices ... 1�10

Chapter 2 LANGUAGE ELEMENTS .. 2�1
2.1 LANGUAGE COMPONENTS .. 2�2
2.1.1 Character Set .. 2�2
2.1.2 Operators ... 2�5
2.1.3 Reserved Words .. 2�6
2.1.4 User-Defined Identifiers ... 2�8
2.1.5 Labels ... 2�9
2.1.6 Predefined Identifiers ... 2�9
2.1.7 System Variables ... 2�13
2.1.8 Comments ... 2�13
2.2 TRANSLATOR DIRECTIVES ... 2�13
2.3 DATA TYPES .. 2�16
2.4 USER-DEFINED DATA TYPES AND STRUCTURES ... 2�17
2.4.1 User-Defined Data Types .. 2�18
2.4.2 User-Defined Data Structures .. 2�19
2.5 ARRAYS ... 2�22
2.5.1 Multi-Dimensional Arrays .. 2�22
2.5.2 Variable-Sized Arrays .. 2�24

Chapter 3 USE OF OPERATORS .. 3�1

v

Contents MARAIKLRF06031E REV A

3.1 EXPRESSIONS AND ASSIGNMENTS .. 3�2
3.1.1 Rule for Expressions and Assignments .. 3�2
3.1.2 Evaluation of Expressions and Assignments ... 3�2
3.1.3 Variables and Expressions ... 3�4
3.2 OPERATIONS ... 3�4
3.2.1 Arithmetic Operations .. 3�5
3.2.2 Relational Operations ... 3�7
3.2.3 Boolean Operations ... 3�8
3.2.4 Special Operations ... 3�10

Chapter 4 MOTION AND PROGRAM CONTROL ... 4�1
4.1 MOTION CONTROL STATEMENTS .. 4�2
4.1.1 Extended Axis Motion ... 4�4
4.1.2 Group Motion ... 4�4
4.2 PROGRAM CONTROL STRUCTURES ... 4�5
4.2.1 Alternation Control Structures ... 4�5
4.2.2 Looping Control Statements .. 4�6
4.2.3 Unconditional Branch Statement .. 4�6
4.2.4 Execution Control Statements .. 4�6
4.2.5 Condition Handlers .. 4�7

Chapter 5 ROUTINES ... 5�1
5.1 ROUTINE EXECUTION ... 5�2
5.1.1 Declaring Routines .. 5�2
5.1.2 Invoking Routines ... 5�5
5.1.3 Returning from Routines .. 5�7
5.1.4 Scope of Variables ... 5�8
5.1.5 Parameters and Arguments .. 5�9
5.1.6 Stack Usage ... 5�13
5.2 BUILT- IN ROUTINES .. 5�16

Chapter 6 CONDITION HANDLERS .. 6�1
6.1 CONDITION HANDLER OPERATIONS ... 6�3
6.1.1 Global Condition Handlers .. 6�4
6.1.2 Local Condition Handlers ... 6�7
6.2 CONDITIONS ... 6�9
6.2.1 Port_Id Conditions .. 6�10
6.2.2 Relational Conditions ... 6�10
6.2.3 System and Program Event Conditions .. 6�12
6.2.4 Local Conditions ... 6�17
6.2.5 Synchronization of Local Condition Handlers ... 6�18
6.3 ACTIONS ... 6�20
6.3.1 Assignment Actions ... 6�21
6.3.2 Motion Related Actions .. 6�22
6.3.3 Routine Call Actions .. 6�23
6.3.4 Miscellaneous Actions ... 6�24

Chapter 7 FILE INPUT/OUTPUT OPERATIONS ... 7�1
7.1 FILE VARIABLES .. 7�3
7.2 OPEN FILE STATEMENT ... 7�5
7.2.1 Setting File and Port Attributes .. 7�5

vi

MARAIKLRF06031E REV A Contents

7.2.2 File String .. 7�12
7.2.3 Usage String ... 7�12
7.3 CLOSE FILE STATEMENT ... 7�16
7.4 READ STATEMENT ... 7�16
7.5 WRITE STATEMENT ... 7�18
7.6 INPUT/OUTPUT BUFFER ... 7�20
7.7 FORMATTING TEXT (ASCII) INPUT/OUTPUT ... 7�20
7.7.1 Formatting INTEGER Data Items ... 7�22
7.7.2 Formatting REAL Data Items .. 7�24
7.7.3 Formatting BOOLEAN Data Items ... 7�26
7.7.4 Formatting STRING Data Items ... 7�28
7.7.5 Formatting VECTOR Data Items .. 7�31
7.7.6 Formatting Positional Data Items ... 7�31
7.8 FORMATTING BINARY INPUT/OUTPUT .. 7�32
7.8.1 Formatting INTEGER Data Items ... 7�34
7.8.2 Formatting REAL Data Items .. 7�35
7.8.3 Formatting BOOLEAN Data Items ... 7�35
7.8.4 Formatting STRING Data Items ... 7�35
7.8.5 Formatting VECTOR Data Items .. 7�36
7.8.6 Formatting POSITION Data Items .. 7�36
7.8.7 Formatting XYZWPR Data Items ... 7�36
7.8.8 Formatting XYZWPREXT Data Items .. 7�37
7.8.9 Formatting JOINTPOS Data Items ... 7�37
7.9 USER INTERFACE TIPS ... 7�37
7.9.1 USER Menu on the Teach Pendant ... 7�37
7.9.2 USER Menu on the CRT/KB ... 7�39

Chapter 8 MOTION ... 8�1
8.1 POSITIONAL DATA ... 8�2
8.2 FRAMES OF REFERENCE ... 8�4
8.2.1 World Frame .. 8�5
8.2.2 User Frame (UFRAME) ... 8�5
8.2.3 Tool Definition (UTOOL) ... 8�5
8.2.4 Using Frames in the Teach Pendant Editor (TP) .. 8�6
8.3 JOG COORDINATE SYSTEMS .. 8�6
8.4 MOTION CONTROL .. 8�7
8.4.1 Motion Trajectory ... 8�10
8.4.2 Motion Trajectories with Extended Axes .. 8�18
8.4.3 Acceleration and Deceleration ... 8�19
8.4.4 Motion Speed ... 8�23
8.4.5 Motion Termination ... 8�28
8.4.6 Multiple Segment Motion ... 8�31
8.4.7 Path Motion ... 8�38
8.4.8 Motion Times ... 8�41
8.4.9 Correspondence Between Teach Pendant Program Motion and KAREL Program Motion 8�45

Chapter 9 FILE SYSTEM .. 9�1
9.1 FILE SPECIFICATION .. 9�3
9.1.1 Device Name .. 9�3
9.1.2 File Name.. 9�4
9.1.3 File Type... 9�5

vii

Contents MARAIKLRF06031E REV A

9.2 STORAGE DEVICE ACCESS .. 9�6
9.2.1 Memory File Devices ... 9�7
9.2.2 Virtual Devices ... 9�8
9.2.3 File Pipes ... 9�9
9.3 FILE ACCESS ... 9�14
9.4 MEMORY DEVICE .. 9�14

Chapter 10 DICTIONARIES AND FORMS ... 10�1
10.1 CREATING USER DICTIONARIES .. 10�3
10.1.1 Dictionary Syntax ... 10�3
10.1.2 Dictionary Element Number .. 10�4
10.1.3 Dictionary Element Name ... 10�5
10.1.4 Dictionary Cursor Positioning .. 10�5
10.1.5 Dictionary Element Text ... 10�6
10.1.6 Dictionary Reserved Word Commands .. 10�9
10.1.7 Character Codes ... 10�10
10.1.8 Nesting Dictionary Elements .. 10�10
10.1.9 Dictionary Comment ... 10�11
10.1.10 Generating a KAREL Constant File ... 10�11
10.1.11 Compressing and Loading Dictionaries on the Controller ... 10�11
10.1.12 Accessing Dictionary Elements from a KAREL Program ... 10�12
10.2 CREATING USER FORMS ... 10�13
10.2.1 Form Syntax .. 10�14
10.2.2 Form Attributes ... 10�15
10.2.3 Form Title and Menu Label .. 10�16
10.2.4 Form Menu Text .. 10�17
10.2.5 Form Selectable Menu Item .. 10�17
10.2.6 Edit Data Item ... 10�18
10.2.7 Non-Selectable Text .. 10�24
10.2.8 Display Only Data Items .. 10�24
10.2.9 Cursor Position Attributes .. 10�25
10.2.10 Form Reserved Words and Character Codes .. 10�25
10.2.11 Form Function Key Element Name or Number .. 10�27
10.2.12 Form Help Element Name or Number .. 10�28
10.2.13 Teach Pendant Form Screen ... 10�28
10.2.14 CRT/KB Form Screen ... 10�29
10.2.15 Form File Naming Convention .. 10�30
10.2.16 Compressing and Loading Forms on the Controller ... 10�30
10.2.17 Displaying a Form .. 10�32

Chapter 11 FULL SCREEN EDITOR .. 11�1
11.1 SCREEN LAYOUT ... 11�2
11.1.1 Edit Windows ... 11�3
11.1.2 Function Key Line ... 11�5
11.2 EDITOR COMMAND SUMMARY ... 11�6
11.2.1 Cursor Manipulation ... 11�13
11.2.2 Text Scrolling .. 11�14
11.2.3 Text Insertion and Editing Modes .. 11�15
11.2.4 Text Deletion ... 11�16
11.2.5 Text Find and Replace ... 11�16
11.2.6 Text Block Manipulation ... 11�18
11.2.7 Window Manipulation ... 11�19
11.2.8 KAREL Program Translation .. 11�20

viii

MARAIKLRF06031E REV A Contents

11.2.9 Miscellaneous Editor Commands .. 11�20
11.2.10 File Save and Exit .. 11�21

Chapter 12 SYSTEM VARIABLES ... 12�1
12.1 ACCESS RIGHTS .. 12�2
12.1.1 System Variables Accessed by KAREL Programs .. 12�3
12.2 STORAGE ... 12�4

Chapter 13 KAREL COMMAND LANGUAGE (KCL) .. 13�1
13.1 COMMAND FORMAT .. 13�2
13.1.1 Default Program .. 13�2
13.1.2 Variables and Data Types .. 13�3
13.2 MOTION CONTROL COMMANDS ... 13�3
13.3 ENTERING COMMANDS ... 13�3
13.3.1 Abbreviations ... 13�4
13.3.2 Error Messages ... 13�4
13.3.3 Subdirectories ... 13�4
13.4 COMMAND PROCEDURES .. 13�4
13.4.1 Command Procedure Format ... 13�5
13.4.2 Creating Command Procedures .. 13�6
13.4.3 Error Processing .. 13�6
13.4.4 Executing Command Procedures .. 13�6

Chapter 14 INPUT/OUTPUT SYSTEM ... 14�1
14.1 USER-DEFINED SIGNALS ... 14�2
14.1.1 DIN and DOUT Signals .. 14�2
14.1.2 GIN and GOUT Signals .. 14�3
14.1.3 AIN and AOUT Signals .. 14�3
14.1.4 Hand Signals .. 14�6
14.2 SYSTEM-DEFINED SIGNALS .. 14�7
14.2.1 Robot Digital Input and Output Signals (RDI/RDO) ... 14�7
14.2.2 Operator Panel Input and Output Signals (OPIN/OPOUT) ... 14�7
14.2.3 Teach Pendant Input and Output Signals (TPIN/TPOUT) ... 14�19
14.3 HARDWARE CONFIGURATIONS .. 14�26
14.3.1 Modular I/O .. 14�27
14.3.2 PROCESS I/O ... 14�31
14.3.3 External Operator Panel Signals .. 14�33
14.3.4 Serial Input/Output ... 14�37

Chapter 15 MULTI-TASKING ... 15�1
15.1 MULTI-TASKING TERMINOLOGY ... 15�2
15.2 INTERPRETER ASSIGNMENT ... 15�3
15.3 MOTION CONTROL .. 15�3
15.4 TASK SCHEDULING ... 15�4
15.4.1 Priority Scheduling .. 15�5
15.4.2 Time Slicing ... 15�6
15.5 STARTING TASKS ... 15�6
15.5.1 Running Programs from the User Operator Panel (UOP) PNS Signal .. 15�7
15.5.2 Child Tasks .. 15�7
15.6 TASK CONTROL AND MONITORING ... 15�8

ix

Contents MARAIKLRF06031E REV A

15.6.1 From TPP Programs .. 15�8
15.6.2 From KAREL Programs ... 15�8
15.6.3 From KCL ... 15�9
15.7 USING SEMAPHORES AND TASK SYNCHRONIZATION ... 15�9
15.8 USING QUEUES FOR TASK COMMUNICATIONS ... 15�15

Appendix A KAREL LANGUAGE ALPHABETICAL DESCRIPTION ... A�1
A.1 - A - KAREL LANGUAGE DESCRIPTION .. A�16
A.1.1 ABORT Action ... A�16
A.1.2 ABORT Condition ... A�16
A.1.3 ABORT Statement ... A�17
A.1.4 ABORT_TASK Built-In Procedure ... A�17
A.1.5 ABS Built-In Function ... A�18
A.1.6 ACOS Built-In Function ... A�19
A.1.7 ACT_SCREEN Built-In Procedure ... A�20
A.1.8 ADD_BYNAMEPC Built-In Procedure ... A�20
A.1.9 ADD_DICT Built-In Procedure ... A�22
A.1.10 ADD_INTPC Built-In Procedure .. A�23
A.1.11 ADD_REALPC Built-In Procedure .. A�24
A.1.12 ADD_STRINGPC Built-In Procedure ... A�25
A.1.13 %ALPHABETIZE Translator Directive ... A�27
A.1.14 APPEND_NODE Built-In Procedure .. A�27
A.1.15 APPEND_QUEUE Built-In Procedure .. A�28
A.1.16 APPROACH Built-In Function .. A�29
A.1.17 ARRAY Data Type .. A�29
A.1.18 ARRAY_LEN Built-In Function .. A�31
A.1.19 ASIN Built-In Function .. A�31
A.1.20 Assignment Action .. A�32
A.1.21 Assignment Statement .. A�33
A.1.22 AT NODE Condition ... A�35
A.1.23 ATAN2 Built-In Function ... A�35
A.1.24 ATTACH Statement ... A�36
A.1.25 ATT_WINDOW_D Built-In Procedure .. A�37
A.1.26 ATT_WINDOW_S Built-In Procedure .. A�38
A.1.27 AVL_POS_NUM Built-In Procedure .. A�38
A.2 - B - KAREL LANGUAGE DESCRIPTION .. A�39
A.2.1 BOOLEAN Data Type ... A�39
A.2.2 BYNAME Built-In Function ... A�41
A.2.3 BYTE Data Type ... A�41
A.2.4 BYTES_AHEAD Built-In Procedure .. A�42
A.2.5 BYTES_LEFT Built-In Function .. A�44
A.3 - C - KAREL LANGUAGE DESCRIPTION .. A�45
A.3.1 CALL_PROG Built-In Procedure ... A�45
A.3.2 CALL_PROGLIN Built-In Procedure ... A�46
A.3.3 CANCEL Action ... A�46
A.3.4 CANCEL Statement .. A�47
A.3.5 CANCEL FILE Statement .. A�49
A.3.6 CHECK_DICT Built-In Procedure ... A�50
A.3.7 CHECK_EPOS Built-In Procedure ... A�50
A.3.8 CHECK_NAME Built-In Procedure ... A�51
A.3.9 CHR Built-In Function ... A�52
A.3.10 CLEAR Built-In Procedure ... A�52
A.3.11 CLEAR_SEMA Built-In Procedure .. A�53
A.3.12 CLOSE FILE Statement ... A�54

x

MARAIKLRF06031E REV A Contents

A.3.13 CLOSE HAND Statement ... A�54
A.3.14 CLOSE_TPE Built-In Procedure .. A�55
A.3.15 CLR_IO_STAT Built-In Procedure ... A�55
A.3.16 CLR_PORT_SIM Built-In Procedure .. A�56
A.3.17 CLR_POS_REG Built-In Procedure ... A�56
A.3.18 %CMOSVARS Translator Directive ... A�57
A.3.19 CNC_DYN_DISB Built-In Procedure ... A�58
A.3.20 CNC_DYN_DISE Built-In Procedure ... A�58
A.3.21 CNC_DYN_DISI Built-In Procedure .. A�59
A.3.22 CNC_DYN_DISP Built-In Procedure ... A�60
A.3.23 CNC_DYN_DISR Built-In Procedure ... A�60
A.3.24 CNC_DYN_DISS Built-In Procedure ... A�61
A.3.25 CNCL_STP_MTN Built-In Procedure ... A�62
A.3.26 CNV_CONF_STR Built-In Procedure ... A�63
A.3.27 CNV_INT_STR Built-In Procedure .. A�63
A.3.28 CNV_JPOS_REL Built-In Procedure .. A�64
A.3.29 CNV_REAL_STR Built-In Procedure ... A�65
A.3.30 CNV_REL_JPOS Built-In Procedure .. A�66
A.3.31 CNV_STR_CONF Built-In Procedure ... A�67
A.3.32 CNV_STR_INT Built-In Procedure .. A�67
A.3.33 CNV_STR_REAL Built-In Procedure ... A�68
A.3.34 CNV_STR_TIME Built-In Procedure ... A�69
A.3.35 CNV_TIME_STR Built-In Procedure ... A�69
A.3.36 %COMMENT Translator Directive .. A�70
A.3.37 COMMON_ASSOC Data Type ... A�71
A.3.38 CONDITION...ENDCONDITION Statement ... A�72
A.3.39 CONFIG Data Type ... A�73
A.3.40 CONNECT TIMER Statement ... A�74
A.3.41 CONTINUE Action ... A�75
A.3.42 CONTINUE Condition ... A�76
A.3.43 CONT_TASK Built-In Procedure ... A�76
A.3.44 COPY_FILE Built-In Procedure ... A�77
A.3.45 COPY_PATH Built-In Procedure .. A�78
A.3.46 COPY_QUEUE Built-In Procedure .. A�80
A.3.47 COPY_TPE Built-In Procedure .. A�82
A.3.48 COS Built-In Function ... A�82
A.3.49 CR Input/Output Item .. A�83
A.3.50 CREATE_TPE Built-In Procedure .. A�84
A.3.51 CREATE_VAR Built-In Procedure ... A�85
A.3.52 %CRTDEVICE ... A�87
A.3.53 CURJPOS Built-In Function ... A�88
A.3.54 CURPOS Built-In Function ... A�89
A.3.55 CURR_PROG Built-In Function .. A�90
A.4 - D - KAREL LANGUAGE DESCRIPTION .. A�90
A.4.1 DAQ_CHECKP Built-In Procedure .. A�90
A.4.2 DAQ_REGPIPE Built-In Procedure .. A�91
A.4.3 DAQ_START Built-In Procedure ... A�93
A.4.4 DAQ_STOP Built-In Procedure ... A�95
A.4.5 DAQ_UNREG Built-In Procedure .. A�96
A.4.6 DAQ_WRITE Built-In Procedure ... A�97
A.4.7 %DEFGROUP Translator Directive .. A�99
A.4.8 DEF_SCREEN Built-In Procedure ... A�100
A.4.9 DEF_WINDOW Built-In Procedure .. A�100
A.4.10 %DELAY Translator Directive .. A�102
A.4.11 DELAY Statement ... A�102

xi

Contents MARAIKLRF06031E REV A

A.4.12 DELETE_FILE Built-In Procedure ... A�103
A.4.13 DELETE_NODE Built-In Procedure ... A�104
A.4.14 DELETE_QUEUE Built-In Procedure ... A�104
A.4.15 DEL_INST_TPE Built-In Procedure ... A�105
A.4.16 DET_WINDOW Built-In Procedure ... A�106
A.4.17 DISABLE CONDITION Action ... A�106
A.4.18 DISABLE CONDITION Statement .. A�107
A.4.19 DISCONNECT TIMER Statement ... A�108
A.4.20 DISCTRL_ALPH Built_In Procedure ... A�109
A.4.21 DISCTRL_FORM Built_In Procedure ... A�111
A.4.22 DISCTRL_LIST Built-In Procedure .. A�113
A.4.23 DISCTRL_PLMN Built-In Procedure ... A�114
A.4.24 DISCTRL_SBMN Built-In Procedure ... A�116
A.4.25 DISCTRL_TBL Built-In Procedure .. A�119
A.4.26 DISMOUNT_DEV Built-In Procedure .. A�122
A.4.27 DISP_DAT_T Data Type .. A�122
A.5 - E - KAREL LANGUAGE DESCRIPTION .. A�124
A.5.1 ENABLE CONDITION Action ... A�124
A.5.2 ENABLE CONDITION Statement ... A�124
A.5.3 %ENVIRONMENT Translator Directive ... A�125
A.5.4 ERR_DATA Built-In Procedure ... A�127
A.5.5 ERROR Condition ... A�128
A.5.6 EVAL Clause ... A�129
A.5.7 EVENT Condition ... A�129
A.5.8 EXP Built-In Function ... A�130
A.6 - F - KAREL LANGUAGE DESCRIPTION .. A�131
A.6.1 FILE Data Type .. A�131
A.6.2 FILE_LIST Built-In Procedure .. A�131
A.6.3 FOR...ENDFOR Statement ... A�133
A.6.4 FORCE_SPMENU Built-In Procedure .. A�134
A.6.5 FORMAT_DEV Built-In Procedure .. A�137
A.6.6 FRAME Built-In Function .. A�138
A.6.7 FROM Clause .. A�139
A.7 - G - KAREL LANGUAGE DESCRIPTION .. A�140
A.7.1 GET_ATTR_PRG Built-In Procedure ... A�140
A.7.2 GET_FILE_POS Built-In Function ... A�142
A.7.3 GET_JPOS_REG Built-In Function .. A�143
A.7.4 GET_JPOS_TPE Built-In Function ... A�144
A.7.5 GET_PORT_ASG Built-in Procedure ... A�145
A.7.6 GET_PORT_ATR Built-In Function ... A�146
A.7.7 GET_PORT_CMT Built-In Procedure ... A�149
A.7.8 GET_PORT_MOD Built-In Procedure .. A�149
A.7.9 GET_PORT_SIM Built-In Procedure .. A�151
A.7.10 GET_PORT_VAL Built-In Procedure .. A�152
A.7.11 GET_POS_FRM Built-In Procedure ... A�152
A.7.12 GET_POS_REG Built-In Function ... A�153
A.7.13 GET_POS_TPE Built-In Function .. A�154
A.7.14 GET_POS_TYP Built-In Procedure .. A�155
A.7.15 GET_PREG_CMT Built-In-Procedure .. A�156
A.7.16 GET_QUEUE Built-In Procedure ... A�156
A.7.17 GET_REG Built-In Procedure ... A�158
A.7.18 GET_REG_CMT.. A�158
A.7.19 GET_TIME Built-In Procedure ... A�159
A.7.20 GET_TPE_CMT Built-in Procedure ... A�160

xii

MARAIKLRF06031E REV A Contents

A.7.21 GET_TPE_PRM Built-in Procedure ... A�161
A.7.22 GET_TSK_INFO Built-In Procedure .. A�163
A.7.23 GET_VAR Built-In Procedure ... A�165
A.7.24 GO TO Statement .. A�167
A.7.25 GROUP_ASSOC Data Type .. A�168
A.8 - H - KAREL LANGUAGE DESCRIPTION .. A�169
A.8.1 HOLD Action ... A�169
A.8.2 HOLD Statement .. A�170
A.9 - I - KAREL LANGUAGE DESCRIPTION ... A�171
A.9.1 IF ... ENDIF Statement .. A�171
A.9.2 IN Clause .. A�172
A.9.3 %INCLUDE Translator Directive ... A�173
A.9.4 INDEX Built-In Function ... A�174
A.9.5 INI_DYN_DISB Built-In Procedure ... A�174
A.9.6 INI_DYN_DISE Built-In Procedure .. A�176
A.9.7 INI_DYN_DISI Built-In Procedure .. A�177
A.9.8 INI_DYN_DISP Built-In Procedure .. A�179
A.9.9 INI_DYN_DISR Built-In Procedure ... A�180
A.9.10 INI_DYN_DISS Built-In Procedure .. A�181
A.9.11 INIT_QUEUE Built-In Procedure .. A�182
A.9.12 INIT_TBL Built-In Procedure ... A�183
A.9.13 IN_RANGE Built-In Function ... A�195
A.9.14 INSERT_NODE Built-In Procedure .. A�196
A.9.15 INSERT_QUEUE Built-In Procedure .. A�197
A.9.16 INTEGER Data Type ... A�198
A.9.17 INV Built-In Function .. A�199
A.9.18 IO_MOD_TYPE Built-In Procedure ... A�200
A.9.19 IO_STATUS Built-In Function ... A�201
A.10 - J - KAREL LANGUAGE DESCRIPTION ... A�203
A.10.1 J_IN_RANGE Built-In Function .. A�203
A.10.2 JOINTPOS Data Type .. A�203
A.10.3 JOINT2POS Built-In Function ... A�204
A.11 - K - KAREL LANGUAGE DESCRIPTION .. A�205
A.11.1 KCL Built-In Procedure ... A�205
A.11.2 KCL_NO_WAIT Built-In Procedure ... A�206
A.11.3 KCL_STATUS Built-In Procedure .. A�207
A.12 - L - KAREL LANGUAGE DESCRIPTION .. A�208
A.12.1 LN Built-In Function ... A�208
A.12.2 LOAD Built-In Procedure ... A�208
A.12.3 LOAD_STATUS Built-In Procedure ... A�209
A.12.4 LOCK_GROUP Built-In Procedure .. A�210
A.12.5 %LOCKGROUP Translator Directive ... A�212
A.13 - M - KAREL LANGUAGE DESCRIPTION ... A�213
A.13.1 MIRROR Built-In Function ... A�213
A.13.2 MODIFY_QUEUE Built-In Procedure .. A�215
A.13.3 MOTION_CTL Built-In Function .. A�216
A.13.4 MOUNT_DEV Built-In Procedure ... A�217
A.13.5 MOVE ABOUT Statement .. A�217
A.13.6 MOVE ALONG Statement ... A�219
A.13.7 MOVE AWAY Statement .. A�220
A.13.8 MOVE AXIS Statement ... A�222
A.13.9 MOVE_FILE Built-In Procedure .. A�223
A.13.10 MOVE NEAR Statement .. A�224

xiii

Contents MARAIKLRF06031E REV A

A.13.11 MOVE RELATIVE Statement ... A�225
A.13.12 MOVE TO Statement ... A�227
A.13.13 MSG_CONNECT Built-In Procedure ... A�228
A.13.14 MSG_DISCO Built-In Procedure ... A�229
A.13.15 MSG_PING ... A�230
A.14 - N - KAREL LANGUAGE DESCRIPTION .. A�231
A.14.1 NOABORT Action .. A�231
A.14.2 %NOABORT Translator Directive ... A�232
A.14.3 %NOBUSYLAMP Translator Directive .. A�232
A.14.4 NODE_SIZE Built-In Function .. A�232
A.14.5 %NOLOCKGROUP Translator Directive .. A�234
A.14.6 NOMESSAGE Action .. A�235
A.14.7 NOPAUSE Action ... A�236
A.14.8 %NOPAUSE Translator Directive .. A�236
A.14.9 %NOPAUSESHFT Translator Directive .. A�237
A.14.10 NOWAIT Clause ... A�237
A.15 - O - KAREL LANGUAGE DESCRIPTION .. A�238
A.15.1 OPEN FILE Statement ... A�238
A.15.2 OPEN HAND Statement ... A�239
A.15.3 OPEN_TPE Built-In Procedure .. A�239
A.15.4 ORD Built-In Function ... A�241
A.15.5 ORIENT Built-In Function .. A�241
A.16 - P - KAREL LANGUAGE DESCRIPTION .. A�242
A.16.1 PATH Data Type ... A�242
A.16.2 PATH_LEN Built-In Function .. A�245
A.16.3 PAUSE Action .. A�245
A.16.4 PAUSE Condition ... A�246
A.16.5 PAUSE Statement ... A�247
A.16.6 PAUSE_TASK Built-In Procedure .. A�248
A.16.7 PEND_SEMA Built-In Procedure .. A�249
A.16.8 PIPE_CONFIG Built-In Procedure ... A�249
A.16.9 POP_KEY_RD Built-In Procedure ... A�250
A.16.10 Port_Id Action .. A�251
A.16.11 Port_Id Condition .. A�252
A.16.12 POS Built-In Function .. A�253
A.16.13 POS2JOINT Built-In Function ... A�253
A.16.14 POS_REG_TYPE Built-In Procedure .. A�255
A.16.15 POSITION Data Type .. A�257
A.16.16 POST_ERR Built-In Procedure .. A�258
A.16.17 POST_SEMA Built-In Procedure ... A�259
A.16.18 PRINT_FILE Built-In Procedure .. A�259
A.16.19 %PRIORITY Translator Directive .. A�260
A.16.20 PROG_LIST Built-In Procedure ... A�260
A.16.21 PROGRAM Statement ... A�262
A.16.22 PULSE Action .. A�263
A.16.23 PULSE Statement ... A�263
A.16.24 PURGE CONDITION Statement ... A�265
A.16.25 PURGE_DEV Built-In Procedure ... A�265
A.16.26 PUSH_KEY_RD Built-In Procedure ... A�266
A.17 - Q - KAREL LANGUAGE DESCRIPTION .. A�268
A.17.1 QUEUE_TYPE Data Type .. A�268
A.18 - R - KAREL LANGUAGE DESCRIPTION .. A�268
A.18.1 READ Statement ... A�268
A.18.2 READ_DICT Built-In Procedure .. A�270

xiv

MARAIKLRF06031E REV A Contents

A.18.3 READ_DICT_V Built-In-Procedure ... A�271
A.18.4 READ_KB Built-In Procedure ... A�273
A.18.5 REAL Data Type ... A�277
A.18.6 Relational Condition .. A�278
A.18.7 RELAX HAND Statement .. A�279
A.18.8 RELEASE Statement ... A�280
A.18.9 REMOVE_DICT Built-In Procedure ... A�281
A.18.10 RENAME_FILE Built-In Procedure ... A�282
A.18.11 RENAME_VAR Built-In Procedure .. A�282
A.18.12 RENAME_VARS Built-In Procedure .. A�283
A.18.13 REPEAT ... UNTIL Statement ... A�284
A.18.14 RESET Built-In Procedure .. A�285
A.18.15 RESUME Action .. A�285
A.18.16 RESUME Statement .. A�286
A.18.17 RETURN Statement .. A�287
A.18.18 ROUND Built-In Function .. A�287
A.18.19 ROUTINE Statement ... A�288
A.18.20 RUN_TASK Built-In Procedure ... A�289
A.19 - S - KAREL LANGUAGE DESCRIPTION .. A�291
A.19.1 SAVE Built-In Procedure .. A�291
A.19.2 SAVE_DRAM Built-In Procedure.. A�292
A.19.3 SELECT ... ENDSELECT Statement .. A�292
A.19.4 SELECT_TPE Built-In Procedure .. A�293
A.19.5 SEMA_COUNT Built-In Function ... A�294
A.19.6 SEMAPHORE Condition ... A�295
A.19.7 SEND_DATAPC Built-In Procedure ... A�295
A.19.8 SEND_EVENTPC Built-In Procedure ... A�296
A.19.9 SET_ATTR_PRG Built-In Procedure .. A�297
A.19.10 SET_CURSOR Built-In Procedure ... A�299
A.19.11 SET_EPOS_REG Built-In Procedure .. A�299
A.19.12 SET_EPOS_TPE Built-In Procedure ... A�301
A.19.13 SET_FILE_ATR Built-In Procedure ... A�301
A.19.14 SET_FILE_POS Built-In Procedure .. A�302
A.19.15 SET_INT_REG Built-In Procedure ... A�303
A.19.16 SET_JPOS_REG Built-In Procedure ... A�304
A.19.17 SET_JPOS_TPE Built-In Procedure ... A�305
A.19.18 SET_LANG Built-In Procedure ... A�305
A.19.19 SET_PERCH Built-In Procedure .. A�306
A.19.20 SET_PORT_ASG Built-In Procedure .. A�307
A.19.21 SET_PORT_ATR Built-In Function .. A�309
A.19.22 SET_PORT_CMT Built-In Procedure ... A�311
A.19.23 SET_PORT_MOD Built-In Procedure ... A�312
A.19.24 SET_PORT_SIM Built-In Procedure ... A�313
A.19.25 SET_PORT_VAL Built-In Procedure .. A�314
A.19.26 SET_POS_REG Built-In Procedure .. A�315
A.19.27 SET_POS_TPE Built-In Procedure ... A�316
A.19.28 SET_PREG_CMT Built-In-Procedure .. A�317
A.19.29 SET_REAL_REG Built-In Procedure ... A�317
A.19.30 SET_REG_CMT Built-In-Procedure .. A�318
A.19.31 SET_TIME Built-In Procedure .. A�318
A.19.32 SET_TPE_CMT Built-In Procedure .. A�320
A.19.33 SET_TRNS_TPE Built-In Procedure .. A�320
A.19.34 SET_TSK_ATTR Built-In Procedure .. A�321
A.19.35 SET_TSK_NAME Built-In Procedure ... A�322
A.19.36 SET_VAR Built-In Procedure .. A�323

xv

Contents MARAIKLRF06031E REV A

A.19.37 SHORT Data Type ... A�324
A.19.38 SIGNAL EVENT Action .. A�325
A.19.39 SIGNAL EVENT Statement .. A�325
A.19.40 SIGNAL SEMAPHORE Action ... A�326
A.19.41 SIN Built-In Function .. A�326
A.19.42 SQRT Built-In Function ... A�327
A.19.43 %STACKSIZE Translator Directive .. A�327
A.19.44 STD_PTH_NODE Data Type .. A�328
A.19.45 STOP Action .. A�328
A.19.46 STOP Statement .. A�329
A.19.47 STRING Data Type ... A�330
A.19.48 STR_LEN Built-In Function ... A�331
A.19.49 STRUCTURE Data Type .. A�332
A.19.50 SUB_STR Built-In Function ... A�333
A.20 - T - KAREL LANGUAGE DESCRIPTION .. A�334
A.20.1 TAN Built-In Function ... A�334
A.20.2 TIME Condition .. A�334
A.20.3 %TIMESLICE Translator Directive .. A�335
A.20.4 %TPMOTION Translator Directive .. A�336
A.20.5 TRANSLATE Built-In Procedure ... A�336
A.20.6 TRUNC Built-In Function .. A�337
A.21 - U - KAREL LANGUAGE DESCRIPTION .. A�338
A.21.1 UNHOLD Action .. A�338
A.21.2 UNHOLD Statement .. A�339
A.21.3 UNINIT Built-In Function .. A�340
A.21.4 UNLOCK_GROUP Built-In Procedure ... A�340
A.21.5 UNPAUSE Action ... A�342
A.21.6 UNPOS Built-In Procedure ... A�343
A.21.7 UNTIL Clause .. A�343
A.21.8 USING ... ENDUSING Statement .. A�344
A.22 - V - KAREL LANGUAGE DESCRIPTION .. A�345
A.22.1 VAR_INFO Built-In Procedure .. A�345
A.22.2 VAR_LIST Built-In Procedure ... A�348
A.22.3 VECTOR Data Type .. A�351
A.22.4 VIA Clause .. A�352
A.22.5 VOL_SPACE Built-In Procedure .. A�352
A.23 - W - KAREL LANGUAGE DESCRIPTION ... A�354
A.23.1 WAIT FOR Statement .. A�354
A.23.2 WHEN Clause .. A�354
A.23.3 WHILE...ENDWHILE Statement ... A�355
A.23.4 WITH Clause ... A�356
A.23.5 WRITE Statement ... A�357
A.23.6 WRITE_DICT Built-In Procedure .. A�358
A.23.7 WRITE_DICT_V Built-In Procedure .. A�358
A.24 - X - KAREL LANGUAGE DESCRIPTION .. A�360
A.24.1 XYZWPR Data Type ... A�360
A.24.2 XYZWPREXT Data Type ... A�361
A.25 - Y - KAREL LANGUAGE DESCRIPTION .. A�362
A.26 - Z - KAREL LANGUAGE DESCRIPTION .. A�362

Appendix B KAREL EXAMPLE PROGRAMS .. B�1
B.1 SETTING UP DIGITAL OUTPUT PORTS FOR PROCESS MONITORING B�10

xvi

MARAIKLRF06031E REV A Contents

B.2 COPYING PATH VARIABLES... B�23
B.3 SAVING DATA TO THE DEFAULT DEVICE... B�33
B.4 STANDARD ROUTINES .. B�36
B.5 USING REGISTER BUILT-INS .. B�38
B.6 PATH VARIABLES AND CONDITION HANDLERS PROGRAM ... B�43
B.7 LISTING FILES AND PROGRAMS AND MANIPULATING STRINGS................................... B�49
B.8 GENERATING AND MOVING ALONG A HEXAGON PATH.. B�55
B.9 USING THE FILE AND DEVICE BUILT-INS... B�58
B.10 USING DYNAMIC DISPLAY BUILT-INS ... B�62
B.11 MANIPULATING VALUES OF DYNAMICALLY DISPLAYED VARIABLES B�74
B.12 DISPLAYING A LIST FROM A DICTIONARY FILE .. B�76
B.12.1 Dictionary Files .. B�86
B.13 USING THE DISCTRL_ALPHA BUILT-IN.. B�87
B.13.1 Dictionary Files .. B�91
B.14 APPLYING OFFSETS TO A COPIED TEACH PENDANT PROGRAM.................................... B�92

Appendix C KCL COMMAND ALPHABETICAL DESCRIPTION .. C�1
C.1 ABORT command ... C�3
C.2 APPEND FILE command ... C�4
C.3 APPEND NODE command ... C�4
C.4 CHDIR command ... C�5
C.5 CLEAR ALL command ... C�5
C.6 CLEAR BREAK CONDITION command ... C�6
C.7 CLEAR BREAK PROGRAM command ... C�6
C.8 CLEAR DICT command .. C�6
C.9 CLEAR PROGRAM command ... C�7
C.10 CLEAR VARS command ... C�7
C.11 COMPRESS DICT command .. C�8
C.12 COMPRESS FORM command .. C�8
C.13 CONTINUE command ... C�8
C.14 COPY FILE command ... C�9
C.15 CREATE VARIABLE command ... C�10
C.16 DELETE FILE command .. C�10
C.17 DELETE NODE command .. C�11
C.18 DELETE VARIABLE command ... C�11
C.19 DIRECTORY command .. C�12
C.20 DISABLE BREAK PROGRAM command ... C�12
C.21 DISABLE CONDITION command ... C�13
C.22 DISMOUNT command ... C�13
C.23 EDIT command ... C�13
C.24 ENABLE BREAK PROGRAM .. C�14
C.25 ENABLE CONDITION command .. C�14

xvii

Contents MARAIKLRF06031E REV A

C.26 FORMAT command ... C�15
C.27 HELP command .. C�15
C.28 HOLD command ... C�15
C.29 INSERT NODE command ... C�16
C.30 LOAD ALL command .. C�16
C.31 LOAD DICT command ... C�17
C.32 LOAD FORM command ... C�17
C.33 LOAD MASTER command ... C�18
C.34 LOAD PROGRAM command ... C�18
C.35 LOAD SERVO command ... C�19
C.36 LOAD SYSTEM command ... C�19
C.37 LOAD TP command .. C�20
C.38 LOAD VARS command ... C�20
C.39 LOGOUT command .. C�21
C.40 MKDIR command ... C�22
C.41 MOUNT command .. C�22
C.42 MOVE FILE command .. C�22
C.43 PAUSE command .. C�23
C.44 PURGE command ... C�24
C.45 PRINT command .. C�24
C.46 RECORD command .. C�24
C.47 RENAME FILE command .. C�25
C.48 RENAME VARIABLE command ... C�25
C.49 RENAME VARS command .. C�26
C.50 RESET command .. C�27
C.51 RMDIR command ... C�27
C.52 RUN command ... C�27
C.53 RUNCF command ... C�28
C.54 SAVE MASTER command ... C�29
C.55 SAVE SERVO command .. C�29
C.56 SAVE SYSTEM command .. C�29
C.57 SAVE TP command ... C�30
C.58 SAVE VARS command .. C�30
C.59 SET BREAK CONDITION command .. C�31
C.60 SET BREAK PROGRAM command .. C�32
C.61 SET CLOCK command .. C�32
C.62 SET DEFAULT command .. C�33
C.63 SET GROUP command .. C�33
C.64 SET LANGUAGE command ... C�33
C.65 SET LOCAL VARIABLE command ... C�34
C.66 SET PORT command ... C�34

xviii

MARAIKLRF06031E REV A Contents

C.67 SET TASK command ... C�35
C.68 SET TRACE command .. C�35
C.69 SET VARIABLE command ... C�36
C.70 SET VERIFY command ... C�37
C.71 SHOW BREAK command .. C�37
C.72 SHOW BUILTINS command .. C�38
C.73 SHOW CONDITION command ... C�38
C.74 SHOW CLOCK command .. C�38
C.75 SHOW CURPOS command .. C�38
C.76 SHOW DEFAULT command ... C�39
C.77 SHOW DEVICE command ... C�39
C.78 SHOW DICTS command .. C�39
C.79 SHOW GROUP command .. C�39
C.80 SHOW HISTORY command ... C�39
C.81 SHOW LANG command .. C�40
C.82 SHOW LANGS command .. C�40
C.83 SHOW LOCAL VARIABLE command ... C�40
C.84 SHOW LOCAL VARS command ... C�41
C.85 SHOW MEMORY command .. C�42
C.86 SHOW PROGRAM command ... C�42
C.87 SHOW PROGRAMS command ... C�42
C.88 SHOW SYSTEM command .. C�43
C.89 SHOW TASK command ... C�43
C.90 SHOW TASKS command ... C�43
C.91 SHOW TRACE command .. C�44
C.92 SHOW TYPES command ... C�44
C.93 SHOW VARIABLE command ... C�45
C.94 SHOW VARS command ... C�45
C.95 SHOW data_type command .. C�46
C.96 SIMULATE command ... C�46
C.97 SKIP command ... C�47
C.98 STEP OFF command ... C�48
C.99 STEP ON command .. C�48
C.100 TRANSLATE command ... C�48
C.101 TYPE command .. C�49
C.102 UNSIMULATE command ... C�49
C.103 WAIT command .. C�50

Appendix D CHARACTER CODES ... D�1
D.1 CHARACTER CODES ... D�2

Appendix E SYNTAX DIAGRAMS .. E�1

xix

List of Figures

Figure 1�1. Controller Memory .. 1�9
Figure 1�2. R-J3iB Controller .. 1�11
Figure 3�1. Determining w_handle Relative to WORLD Frame .. 3�11
Figure 3�2. Determining b_handle Relative to BUMPER Frame ... 3�12
Figure 6�1. Timing of BEFORE, AT and AFTER Conditions .. 6�19
Figure 7�1. "t_sc" Screen .. 7�38
Figure 7�2. "t_sc" Screen with $TP_USESTAT = TRUE .. 7�39
Figure 7�3. "c_sc" Screen ... 7�40
Figure 7�4. "c_sc" Screen with $CRT_USERSTAT = TRUE ... 7�41
Figure 8�1. Referencing Positions in KAREL ... 8�4
Figure 8�2. Motion Terms ... 8�9
Figure 8�3. Motion Characteristics ... 8�10
Figure 8�4. Interpolation Rates .. 8�11
Figure 8�5. Location Interpolation of the TCP .. 8�12
Figure 8�6. CIRCULAR Interpolated Motion ... 8�13
Figure 8�7. Two-Angle Orientation Control ... 8�14
Figure 8�8. Three-Angle Orientation Control ... 8�15
Figure 8�9. Acceleration and Velocity Profile with Stage_1 = Stage_2 .. 8�20
Figure 8�10. Acceleration and Velocity Profile with Stage_2 = 0 ... 8�21
Figure 8�11. Acceleration and Velocity Profile with Stage_1 = 2* Stage_2 .. 8�21
Figure 8�12. Effect of $TERMTYPE on Timing ... 8�32
Figure 8�13. Effect of $TERMTYPE on Path ... 8�33
Figure 8�14. NOWAIT Example .. 8�34
Figure 8�15. NODECEL Example ... 8�35
Figure 8�16. NOSETTLE Example .. 8�35
Figure 8�17. COARSE Example .. 8�36
Figure 8�18. Local Condition Handler When Timer Before Example .. 8�36
Figure 8�19. Effect of Speed on Path .. 8�37
Figure 8�20. Short Motions and Long Motions ... 8�44
Figure 10�1. Dictionary Compressor and User Dictionary File ... 10�12
Figure 10�2. Teach Pendant Form Screen ... 10�29
Figure 10�3. CRT/KB Form Screen ... 10�29
Figure 10�4. Dictionary Compressor and Form Dictionary File ... 10�31

xxi

Contents MARAIKLRF06031E REV A

Figure 10�5. Example of Selectable Menu Items .. 10�32
Figure 10�6. Example of Edit Data Items ... 10�35
Figure 10�7. Example of Display Only Data Items ... 10�39
Figure 11�1. KAREL Editor Screen, One Edit Window .. 11�3
Figure 11�2. KAREL Editor Screen, Two Edit Windows .. 11�3
Figure 14�1. KAREL Logic for Converting Input to a Real Value Representing the Voltage 14�4
Figure 14�2. RSR Timing Diagram ... 14�18
Figure 14�3. PNS Timing Diagram ... 14�19
Figure 14�4. Modular (Model A) I/O Hardware Layout For Digital I/O .. 14�27
Figure 14�5. Process I/O Board Hardware Layout for Group I/O ... 14�32
Figure 14�6. External ON/OFF Buttons ... 14�34
Figure 14�7. External Emergency Stop .. 14�35
Figure 14�8. Emergency Stop Outputs ... 14�36
Figure 14�9. Emergency Stop Through a Safety Fence .. 14�37
Figure 14�10. Location of Ports on the Controller... 14�39
Figure 15�1. Task Synchronization Using a Semaphore ... 15�10
Figure A�1. FRAME Built-In Function .. A�139
Figure E�1. ... E�3
Figure E�2. ... E�4
Figure E�3. ... E�5
Figure E�4. ... E�6
Figure E�5. ... E�7
Figure E�6. ... E�8
Figure E�7. ... E�9
Figure E�8. ... E�10
Figure E�9. ... E�11
Figure E�10. ... E�12
Figure E�11. ... E�13
Figure E�12. ... E�14
Figure E�13. ... E�15
Figure E�14. ... E�16
Figure E�15. ... E�17
Figure E�16. ... E�18
Figure E�17. ... E�19
Figure E�18. ... E�20
Figure E�19. ... E�21
Figure E�20. ... E�22
Figure E�21. ... E�23
Figure E�22. ... E�24
Figure E�23. ... E�25
Figure E�24. ... E�26

xxii

MARAIKLRF06031E REV A Contents

Figure E�25. ... E�27
Figure E�26. ... E�28
Figure E�27. ... E�29

xxiii

List of Tables

Table 2�1. ASCII Character Set .. 2�3
Table 2�2. Multinational Character Set ... 2�4
Table 2�3. Graphics Character Set ... 2�5
Table 2�4. KAREL Operators .. 2�5
Table 2�5. KAREL Operator Precedence .. 2�6
Table 2�6. Reserved Word List ... 2�6
Table 2�7. Predefined Identifier and Value Summary .. 2�9
Table 2�8. Port and File Predefined Identifier Summary .. 2�10
Table 2�9. Translator Directives ... 2�14
Table 2�10. Simple and Structured Data Types .. 2�17
Table 3�1. Summary of Operation Result Types ... 3�3
Table 3�2. KAREL Operators .. 3�5
Table 3�3. Arithmetic Operations Using +, -, and * Operators .. 3�5
Table 3�4. Arithmetic Operations Examples .. 3�6
Table 3�5. Arithmetic Operations Using Bitwise Operands .. 3�6
Table 3�6. KAREL Operator Precedence .. 3�7
Table 3�7. Relational Operation Examples .. 3�8
Table 3�8. BOOLEAN Operation Summary .. 3�9
Table 3�9. BOOLEAN Operations Using AND, OR, and NOT Operators ... 3�9
Table 3�10. Examples of Vector Operations .. 3�13
Table 5�1. Stack Usage ... 5�13
Table 5�2. KAREL Built-In Routine Summary .. 5�17
Table 6�1. Conditions ... 6�2
Table 6�2. Actions ... 6�3
Table 6�3. Condition Handler Operations ... 6�4
Table 6�4. Interval Between Global Condition Handler Scans .. 6�5
Table 6�5. Port_Id Conditions .. 6�10
Table 6�6. Relational Conditions .. 6�11
Table 6�7. System and Program Event Conditions .. 6�12
Table 6�8. Error Facility Codes .. 6�13
Table 6�9. Local Conditions .. 6�17
Table 6�10. Assignment Actions .. 6�21
Table 6�11. Motion Related Actions .. 6�22

xxv

Contents MARAIKLRF06031E REV A

Table 6�12. Miscellaneous Actions ... 6�24
Table 7�1. Predefined File Variables .. 7�3
Table 7�2. Predefined Attribute Types ... 7�5
Table 7�3. Attribute Values .. 7�7
Table 7�4. Usage Specifiers ... 7�13
Table 7�5. Text (ASCII) Input Format Specifiers ... 7�21
Table 7�6. Text (ASCII) Output Format Specifiers ... 7�21
Table 7�7. Examples of INTEGER Input Data Items .. 7�23
Table 7�8. Examples of INTEGER Output Data Items .. 7�24
Table 7�9. Examples of REAL Input Data Items .. 7�25
Table 7�10. Examples of REAL Output Data Items .. 7�26
Table 7�11. Examples of BOOLEAN Input Data Items ... 7�27
Table 7�12. Examples of BOOLEAN Output Data Items ... 7�28
Table 7�13. Examples of STRING Input Data Items ... 7�29
Table 7�14. Examples of STRING Output Data Items .. 7�30
Table 7�15. Examples of VECTOR Output Data Items ... 7�31
Table 7�16. Examples of POSITION Output Data Items (p =

POS(2.0,-4.0,8.0,0.0,90.0,0.0,config_var)) .. 7�32
Table 7�17. Binary Input/Output Format Specifiers .. 7�34
Table 7�18. Defined Windows for t_sc" ... 7�37
Table 7�19. Defined Windows for c_sc" ... 7�39
Table 8�1. Turn Number Definitions .. 8�3
Table 8�2. Motion Time Symbols ... 8�42
Table 8�3. Correspondence between $GROUP System Variables and Teach Pendant Motion

Instructions ... 8�45
Table 9�1. File Type Descriptions ... 9�5
Table 9�2. Virtual Devices ... 9�8
Table 9�3. System Variable Field Descriptions .. 9�11
Table 9�4. File Listings for the MD Device ... 9�15
Table 9�5. Testing Restrictions when Using the MD: Device .. 9�18
Table 10�1. Conversion Characters ... 10�7
Table 10�2. Reserved Words .. 10�9
Table 10�3. Conversion Characters .. 10�19
Table 10�4. Reserved Words ... 10�25
Table 10�5. Reserved Words for Scrolling Window ... 10�26
Table 11�1. Size of Edit Windows .. 11�4
Table 11�2. Alternate Key Sequences for ^Q, ^S, and ^W ... 11�9
Table 11�3. Editor Function Key Summary .. 11�9
Table 11�4. Cursor Manipulation ... 11�13
Table 11�5. Text Scrolling .. 11�15
Table 11�6. Text Insertion and Editing Modes .. 11�15

xxvi

MARAIKLRF06031E REV A Contents

Table 11�7. Text Deletion .. 11�16
Table 11�8. Text Find and Replace ... 11�17
Table 11�9. Find/Replace Options ... 11�17
Table 11�10. Editing Search Strings ... 11�18
Table 11�11. Text Block Manipulation ... 11�18
Table 11�12. Window Manipulation .. 11�19
Table 11�13. KAREL Program Translation ... 11�20
Table 11�14. Miscellaneous Editor Commands .. 11�20
Table 11�15. File Save and Exit .. 11�21
Table 12�1. Access Rights for System Variables .. 12�3
Table 12�2. System Variables Accessed by Programs ... 12�4
Table 14�1. Analog Input Module Configuration ... 14�5
Table 14�2. Analog Output Module Configuration ... 14�5
Table 14�3. Standard Operator Panel Input Signals .. 14�8
Table 14�4. Standard Operator Panel Output Signals .. 14�9
Table 14�5. User Operator Panel Input Signals ... 14�10
Table 14�6. User Operator Panel Output Signals ... 14�15
Table 14�7. Teach Pendant Input Signal Assignments .. 14�20
Table 14�8. Digital Input Modules ... 14�28
Table 14�9. Digital Output Modules ... 14�28
Table 14�10. Analog Input Module Configuration .. 14�29
Table 14�11. Analog Output Module Configuration .. 14�30
Table 14�12. Process I/O Board Configurations ... 14�32
Table 14�13. Ports P1, P2, P3, and P4 .. 14�40
Table 14�14. Default Communications Settings for Devices ... 14�40
Table 15�1. System Function Priority Table .. 15�6
Table A�1. Syntax Notation ... A�5
Table A�2. Actions .. A�7
Table A�3. Clauses .. A�8
Table A�4. Conditions .. A�8
Table A�5. Data Types .. A�9
Table A�6. Directives ... A�9
Table A�7. BuiltIn Functions and Procedures ... A�10
Table A�8. Items .. A�15
Table A�9. Statements ... A�15
Table A�10. Valid and Invalid BOOLEAN Values .. A�40
Table A�11. INTEGER Representation of Current Time .. A�159
Table A�12. Conversion Characters ... A�178
Table A�13. Conversion Characters ... A�187
Table A�14. Valid and Invalid INTEGER Literals .. A�198
Table A�15. IO_STATUS Errors ... A�201

xxvii

Contents MARAIKLRF06031E REV A

Table A�16. Group_mask Setting .. A�211
Table A�17. Group_mask Setting .. A�216
Table A�18. Valid and Invalid REAL operators .. A�278
Table A�19. Group_mask setting ... A�290
Table A�20. Attribute Values .. A�310
Table A�21. 32�Bit INTEGER Format of Time .. A�319
Table A�22. Example STRING Literals .. A�331
Table A�23. Group_mask Settings ... A�341
Table A�24. Valid Data Types ... A�346
Table A�25. Valid Data Types ... A�349
Table B�1. KAREL Example Programs ... B�3
Table D�1. ASCII Character Codes ... D�2
Table D�2. Special ASCII Character Codes .. D�4
Table D�3. Multinational Character Codes ... D�4
Table D�4. Graphics Character Codes .. D�6
Table D�5. Teach Pendant Input Codes .. D�8
Table D�6. European Character Codes ... D�9
Table D�7. Graphics Characters .. D�11

xxviii

Safety
FANUCRobotics is not and does not represent itself as an expert in safety systems, safety equipment, or
the specific safety aspects of your company and/or its work force. It is the responsibility of the owner,
employer, or user to take all necessary steps to guarantee the safety of all personnel in the workplace.

The appropriate level of safety for your application and installation can best be determined by safety
system professionals. FANUC Robotics therefore, recommends that each customer consult with such
professionals in order to provide a workplace that allows for the safe application, use, and operation of
FANUC Robotic systems.

According to the industry standard ANSI/RIA R15-06, the owner or user is advised to consult the
standards to ensure compliance with its requests for Robotics System design, usability, operation,
maintenance, and service. Additionally, as the owner, employer, or user of a robotic system, it is your
responsibility to arrange for the training of the operator of a robot system to recognize and respond to
known hazards associated with your robotic system and to be aware of the recommended operating
procedures for your particular application and robot installation.

FANUC Robotics therefore, recommends that all personnel who intend to operate, program, repair,
or otherwise use the robotics system be trained in an approved FANUC Robotics training course and
become familiar with the proper operation of the system. Persons responsible for programming the
system-including the design, implementation, and debugging of application programs-must be familiar
with the recommended programming procedures for your application and robot installation.

The following guidelines are provided to emphasize the importance of safety in the workplace.

CONSIDERING SAFETY FOR YOUR ROBOT INSTALLATION

Safety is essential whenever robots are used. Keep in mind the following factors with regard to safety:

• The safety of people and equipment

• Use of safety enhancing devices

• Techniques for safe teaching and manual operation of the robot(s)

• Techniques for safe automatic operation of the robot(s)

• Regular scheduled inspection of the robot and workcell

• Proper maintenance of the robot

Keeping People and Equipment Safe

The safety of people is always of primary importance in any situation. However, equipment must be
kept safe, too. When prioritizing how to apply safety to your robotic system, consider the following:

xxix

Safety MARAIKLRF06031E REV A

• People

• External devices

• Robot(s)

• Tooling

• Workpiece

Using Safety Enhancing Devices

Always give appropriate attention to the work area that surrounds the robot. The safety of the work
area can be enhanced by the installation of some or all of the following devices:

• Safety fences, barriers, or chains

• Light curtains

• Interlocks

• Pressure mats

• Floor markings

• Warning lights

• Mechanical stops

• EMERGENCY STOP buttons

• DEADMAN switches

Setting Up a Safe Workcell

A safe workcell is essential to protect people and equipment. Observe the following guidelines to
ensure that the workcell is set up safely. These suggestions are intended to supplement and not replace
existing federal, state, and local laws, regulations, and guidelines that pertain to safety.

• Sponsor your personnel for training in approved FANUC Robotics training course(s) related to
your application. Never permit untrained personnel to operate the robots.

• Install a lockout device that uses an access code to prevent unauthorized persons from operating
the robot.

• Use anti-tie-down logic to prevent the operator from bypassing safety measures.

• Arrange the workcell so the operator faces the workcell and can see what is going on inside the
cell.

xxx

MARAIKLRF06031E REV A Safety

• Clearly identify the work envelope of each robot in the system with floor markings, signs, and
special barriers. The work envelope is the area defined by the maximum motion range of the
robot, including any tooling attached to the wrist flange that extend this range.

• Position all controllers outside the robot work envelope.

• Never rely on software as the primary safety element.

• Mount an adequate number of EMERGENCY STOP buttons or switches within easy reach of the
operator and at critical points inside and around the outside of the workcell.

• Install flashing lights and/or audible warning devices that activate whenever the robot is
operating, that is, whenever power is applied to the servo drive system. Audible warning devices
shall exceed the ambient noise level at the end-use application.

• Wherever possible, install safety fences to protect against unauthorized entry by personnel into
the work envelope.

• Install special guarding that prevents the operator from reaching into restricted areas of the
work envelope.

• Use interlocks.

• Use presence or proximity sensing devices such as light curtains, mats, and capacitance and
vision systems to enhance safety.

• Periodically check the safety joints or safety clutches that can be optionally installed between the
robot wrist flange and tooling. If the tooling strikes an object, these devices dislodge, remove
power from the system, and help to minimize damage to the tooling and robot.

• Make sure all external devices are properly filtered, grounded, shielded, and suppressed to
prevent hazardous motion due to the effects of electro-magnetic interference (EMI), radio
frequency interference (RFI), and electro-static discharge (ESD).

• Make provisions for power lockout/tagout at the controller.

• Eliminate pinch points . Pinch points are areas where personnel could get trapped between a
moving robot and other equipment.

• Provide enough room inside the workcell to permit personnel to teach the robot and perform
maintenance safely.

• Program the robot to load and unload material safely.

• If high voltage electrostatics are present, be sure to provide appropriate interlocks, warning, and
beacons.

• If materials are being applied at dangerously high pressure, provide electrical interlocks for
lockout of material flow and pressure.

Staying Safe While Teaching or Manually Operating the Robot

Advise all personnel who must teach the robot or otherwise manually operate the robot to observe the
following rules:

xxxi

Safety MARAIKLRF06031E REV A

• Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

• Know whether or not you are using an intrinsically safe teach pendant if you are working in
a hazardous environment.

• Before teaching, visually inspect the robot and work envelope to make sure that no potentially
hazardous conditions exist. The work envelope is the area defined by the maximum motion range
of the robot. These include tooling attached to the wrist flange that extends this range.

• The area near the robot must be clean and free of oil, water, or debris. Immediately report unsafe
working conditions to the supervisor or safety department.

• FANUC Robotics recommends that no one enter the work envelope of a robot that is on, except for
robot teaching operations. However, if you must enter the work envelope, be sure all safeguards
are in place, check the teach pendant DEADMAN switch for proper operation, and place the
robot in teach mode. Take the teach pendant with you, turn it on, and be prepared to release the
DEADMAN switch. Only the person with the teach pendant should be in the work envelope.

Warning

Never bypass, strap, or otherwise deactivate a safety device, such as a
limit switch, for any operational convenience. Deactivating a safety
device is known to have resulted in serious injury and death.

• Know the path that can be used to escape from a moving robot; make sure the escape path is
never blocked.

• Isolate the robot from all remote control signals that can cause motion while data is being taught.

• Test any program being run for the first time in the following manner:

Warning

Stay outside the robot work envelope whenever a program is being
run. Failure to do so can result in injury.

� Using a low motion speed, single step the program for at least one full cycle.

� Using a low motion speed, test run the program continuously for at least one full cycle.

� Using the programmed speed, test run the program continuously for at least one full cycle.

• Make sure all personnel are outside the work envelope before running production.

Staying Safe During Automatic Operation

Advise all personnel who operate the robot during production to observe the following rules:

xxxii

MARAIKLRF06031E REV A Safety

• Make sure all safety provisions are present and active.

• Know the entire workcell area. The workcell includes the robot and its work envelope, plus the
area occupied by all external devices and other equipment with which the robot interacts.

• Understand the complete task the robot is programmed to perform before initiating automatic
operation.

• Make sure all personnel are outside the work envelope before operating the robot.

• Never enter or allow others to enter the work envelope during automatic operation of the robot.

• Know the location and status of all switches, sensors, and control signals that could cause the
robot to move.

• Know where the EMERGENCY STOP buttons are located on both the robot control and external
control devices. Be prepared to press these buttons in an emergency.

• Never assume that a program is complete if the robot is not moving. The robot could be waiting
for an input signal that will permit it to continue activity.

• If the robot is running in a pattern, do not assume it will continue to run in the same pattern.

• Never try to stop the robot, or break its motion, with your body. The only way to stop robot
motion immediately is to press an EMERGENCY STOP button located on the controller panel,
teach pendant, or emergency stop stations around the workcell.

Staying Safe During Inspection

When inspecting the robot, be sure to

• Turn off power at the controller.

• Lock out and tag out the power source at the controller according to the policies of your plant.

• Turn off the compressed air source and relieve the air pressure.

• If robot motion is not needed for inspecting the electrical circuits, press the EMERGENCY
STOP button on the operator panel.

• Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

• If power is needed to check the robot motion or electrical circuits, be prepared to press the
EMERGENCY STOP button, in an emergency.

• Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is
not supported or resting on a hard stop. Support the arm on a solid support before you release
the brake.

xxxiii

Safety MARAIKLRF06031E REV A

Staying Safe During Maintenance

When performing maintenance on your robot system, observe the following rules:

• Never enter the work envelope while the robot or a program is in operation.

• Before entering the work envelope, visually inspect the workcell to make sure no potentially
hazardous conditions exist.

• Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

• Consider all or any overlapping work envelopes of adjoining robots when standing in a work
envelope.

• Test the teach pendant for proper operation before entering the work envelope.

• If it is necessary for you to enter the robot work envelope while power is turned on, you must be
sure that you are in control of the robot. Be sure to take the teach pendant with you, press the
DEADMAN switch, and turn the teach pendant on. Be prepared to release the DEADMAN switch
to turn off servo power to the robot immediately.

• Whenever possible, perform maintenance with the power turned off. Before you open the
controller front panel or enter the work envelope, turn off and lock out the 3-phase power source
at the controller.

• Be aware that an applicator bell cup can continue to spin at a very high speed even if the robot is
idle. Use protective gloves or disable bearing air and turbine air before servicing these items.

• Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is
not supported or resting on a hard stop. Support the arm on a solid support before you release
the brake.

Warning

Lethal voltage is present in the controller WHENEVER IT IS
CONNECTED to a power source. Be extremely careful to avoid
electrical shock.HIGH VOLTAGE IS PRESENT at the input side
whenever the controller is connected to a power source. Turning the
disconnect or circuit breaker to the OFF position removes power from
the output side of the device only.

• Release or block all stored energy. Before working on the pneumatic system, shut off the system
air supply and purge the air lines.

• Isolate the robot from all remote control signals. If maintenance must be done when the power
is on, make sure the person inside the work envelope has sole control of the robot. The teach
pendant must be held by this person.

xxxiv

MARAIKLRF06031E REV A Safety

• Make sure personnel cannot get trapped between the moving robot and other equipment. Know
the path that can be used to escape from a moving robot. Make sure the escape route is never
blocked.

• Use blocks, mechanical stops, and pins to prevent hazardous movement by the robot. Make sure
that such devices do not create pinch points that could trap personnel.

Warning

Do not try to remove any mechanical component from the robot
before thoroughly reading and understanding the procedures in the
appropriate manual. Doing so can result in serious personal injury and
component destruction.

• Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is
not supported or resting on a hard stop. Support the arm on a solid support before you release
the brake.

• When replacing or installing components, make sure dirt and debris do not enter the system.

• Use only specified parts for replacement. To avoid fires and damage to parts in the controller,
never use nonspecified fuses.

• Before restarting a robot, make sure no one is inside the work envelope; be sure that the robot and
all external devices are operating normally.

KEEPING MACHINE TOOLS AND EXTERNAL DEVICES SAFE

Certain programming and mechanical measures are useful in keeping the machine tools and other
external devices safe. Some of these measures are outlined below. Make sure you know all associated
measures for safe use of such devices.

Programming Safety Precautions

Implement the following programming safety measures to prevent damage to machine tools and
other external devices.

• Back-check limit switches in the workcell to make sure they do not fail.

• Implement �failure routines� in programs that will provide appropriate robot actions if an external
device or another robot in the workcell fails.

• Use handshaking protocol to synchronize robot and external device operations.

• Program the robot to check the condition of all external devices during an operating cycle.

xxxv

Safety MARAIKLRF06031E REV A

Mechanical Safety Precautions

Implement the following mechanical safety measures to prevent damage to machine tools and other
external devices.

• Make sure the workcell is clean and free of oil, water, and debris.

• Use software limits, limit switches, and mechanical hardstops to prevent undesired movement of
the robot into the work area of machine tools and external devices.

KEEPING THE ROBOT SAFE

Observe the following operating and programming guidelines to prevent damage to the robot.

Operating Safety Precautions

The following measures are designed to prevent damage to the robot during operation.

• Use a low override speed to increase your control over the robot when jogging the robot.

• Visualize the movement the robot will make before you press the jog keys on the teach pendant.

• Make sure the work envelope is clean and free of oil, water, or debris.

• Use circuit breakers to guard against electrical overload.

Programming Safety Precautions

The following safety measures are designed to prevent damage to the robot during programming:

• Establish interference zones to prevent collisions when two or more robots share a work area.

• Make sure that the program ends with the robot near or at the home position.

• Be aware of signals or other operations that could trigger operation of tooling resulting in
personal injury or equipment damage.

• In dispensing applications, be aware of all safety guidelines with respect to the dispensing
materials.

Note Any deviation from the methods and safety practices described in this manual must conform
to the approved standards of your company. If you have questions, see your supervisor.

xxxvi

MARAIKLRF06031E REV A Safety

ADDITIONAL SAFETY CONSIDERATIONS FOR PAINT ROBOT
INSTALLATIONS

Process technicians are sometimes required to enter the paint booth, for example, during daily or
routine calibration or while teaching new paths to a robot. Maintenance personal also must work
inside the paint booth periodically.

Whenever personnel are working inside the paint booth, ventilation equipment must be used.
Instruction on the proper use of ventilating equipment usually is provided by the paint shop supervisor.

Although paint booth hazards have been minimized, potential dangers still exist. Therefore, today�s
highly automated paint booth requires that process and maintenance personnel have full awareness of
the system and its capabilities. They must understand the interaction that occurs between the vehicle
moving along the conveyor and the robot(s), hood/deck and door opening devices, and high-voltage
electrostatic tools.

Paint robots are operated in three modes:

• Teach or manual mode

• Automatic mode, including automatic and exercise operation

• Diagnostic mode

During both teach and automatic modes, the robots in the paint booth will follow a predetermined
pattern of movements. In teach mode, the process technician teaches (programs) paint paths using
the teach pendant.

In automatic mode, robot operation is initiated at the System Operator Console (SOC) or Manual
Control Panel (MCP), if available, and can be monitored from outside the paint booth. All personnel
must remain outside of the booth or in a designated safe area within the booth whenever automatic
mode is initiated at the SOC or MCP.

In automatic mode, the robots will execute the path movements they were taught during teach mode,
but generally at production speeds.

When process and maintenance personnel run diagnostic routines that require them to remain in the
paint booth, they must stay in a designated safe area.

Paint System Safety Features

Process technicians and maintenance personnel must become totally familiar with the equipment and
its capabilities. To minimize the risk of injury when working near robots and related equipment,
personnel must comply strictly with the procedures in the manuals.

xxxvii

Safety MARAIKLRF06031E REV A

This section provides information about the safety features that are included in the paint system and
also explains the way the robot interacts with other equipment in the system.

The paint system includes the following safety features:

• Most paint booths have red warning beacons that illuminate when the robots are armed and ready
to paint. Your booth might have other kinds of indicators. Learn what these are.

• Some paint booths have a blue beacon that, when illuminated, indicates that the electrostatic
devices are enabled. Your booth might have other kinds of indicators. Learn what these are.

• EMERGENCY STOP buttons are located on the robot controller and teach pendant. Become
familiar with the locations of all E-STOP buttons.

• An intrinsically safe teach pendant is used when teaching in hazardous paint atmospheres.

• A DEADMAN switch is located on each teach pendant. When this switch is held in, and the
teach pendant is on, power is applied to the robot servo system. If the engaged DEADMAN
switch is released during robot operation, power is removed from the servo system, all axis
brakes are applied, and the robot comes to an EMERGENCY STOP. Safety interlocks within
the system might also E-STOP other robots.

Warning

An EMERGENCY STOP will occur if the DEADMAN switch is released
on a bypassed robot.

• Overtravel by robot axes is prevented by software limits. All of the major and minor axes are
governed by software limits. Limit switches and hardstops also limit travel by the major axes.

• EMERGENCY STOP limit switches and photoelectric eyes might be part of your system.
Limit switches, located on the entrance/exit doors of each booth, will EMERGENCY STOP all
equipment in the booth if a door is opened while the system is operating in automatic or manual
mode. For some systems, signals to these switches are inactive when the switch on the SCC is
in teach mode.When present, photoelectric eyes are sometimes used to monitor unauthorized
intrusion through the entrance/exit silhouette openings.

• System status is monitored by computer. Severe conditions result in automatic system shutdown.

Staying Safe While Operating the Paint Robot

When you work in or near the paint booth, observe the following rules, in addition to all rules for
safe operation that apply to all robot systems.

Warning

Observe all safety rules and guidelines to avoid injury.

xxxviii

MARAIKLRF06031E REV A Safety

Warning

Never bypass, strap, or otherwise deactivate a safety device, such as a
limit switch, for any operational convenience. Deactivating a safety device
is known to have resulted in serious injury and death.

• Know the work area of the entire paint station (workcell).

• Know the work envelope of the robot and hood/deck and door opening devices.

• Be aware of overlapping work envelopes of adjacent robots.

• Know where all red, mushroom-shaped EMERGENCY STOP buttons are located.

• Know the location and status of all switches, sensors, and/or control signals that might cause the
robot, conveyor, and opening devices to move.

• Make sure that the work area near the robot is clean and free of water, oil, and debris. Report
unsafe conditions to your supervisor.

• Become familiar with the complete task the robot will perform BEFORE starting automatic mode.

• Make sure all personnel are outside the paint booth before you turn on power to the robot
servo system.

• Never enter the work envelope or paint booth before you turn off power to the robot servo system.

• Never enter the work envelope during automatic operation unless a safe area has been designated.

• Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

• Remove all metallic objects, such as rings, watches, and belts, before entering a booth when the
electrostatic devices are enabled.

• Stay out of areas where you might get trapped between a moving robot, conveyor, or opening
device and another object.

• Be aware of signals and/or operations that could result in the triggering of guns or bells.

• Be aware of all safety precautions when dispensing of paint is required.

• Follow the procedures described in this manual.

Staying Safe While Operating Paint Application Equipment

When you work with paint application equipment, observe the following rules, in addition to all rules
for safe operation that apply to all robot systems.

xxxix

Safety MARAIKLRF06031E REV A

Warning

When working with electrostatic paint equipment, follow all national and
local codes as well as all safety guidelines within your organization.
Also reference the following standards: NFPA 33 Standards for Spray
Application Using Flammable or Combustible Materials, and NFPA 70
National Electrical Code.

• Grounding: All electrically conductive objects in the spray area must be grounded. This includes
the spray booth, robots, conveyors, workstations, part carriers, hooks, paint pressure pots, as well
as solvent containers. Grounding is defined as the object or objects shall be electrically connected
to ground with a resistance of not more than 1 megohms.

• High Voltage: High voltage should only be on during actual spray operations. Voltage should be
off when the painting process is completed. Never leave high voltage on during a cap cleaning
process.

• Avoid any accumulation of combustible vapors or coating matter.
• Follow all manufacturer recommended cleaning procedures.
• Make sure all interlocks are operational.
• No smoking.
• Post all warning signs regarding the electrostatic equipment and operation of electrostatic
equipment according to NFPA 33 Standard for Spray Application Using Flammable or
Combustible Material.

• Disable all air and paint pressure to bell.
• Verify that the lines are not under pressure.

Staying Safe During Maintenance

When you perform maintenance on the painter system, observe the following rules, and all other
maintenance safety rules that apply to all robot installations. Only qualified, trained service or
maintenance personnel should perform repair work on a robot.

• Paint robots operate in a potentially explosive environment. Use caution when working with
electric tools.

• When a maintenance technician is repairing or adjusting a robot, the work area is under the control
of that technician. All personnel not participating in the maintenance must stay out of the area.

• For some maintenance procedures, station a second person at the control panel within reach
of the EMERGENCY STOP button. This person must understand the robot and associated
potential hazards.

• Be sure all covers and inspection plates are in good repair and in place.

• Always return the robot to the ��home�� position before you disarm it.

xl

MARAIKLRF06031E REV A Safety

• Never use machine power to aid in removing any component from the robot.

• During robot operations, be aware of the robot�s movements. Excess vibration, unusual sounds,
and so forth, can alert you to potential problems.

• Whenever possible, turn off the main electrical disconnect before you clean the robot.

• When using vinyl resin observe the following:

� Wear eye protection and protective gloves during application and removal

� Adequate ventilation is required. Overexposure could cause drowsiness or skin and eye
irritation.

� If there is contact with the skin, wash with water.

• When using paint remover observe the following:

� Eye protection, protective rubber gloves, boots, and apron are required during booth cleaning.

� Adequate ventilation is required. Overexposure could cause drowsiness.

� If there is contact with the skin or eyes, rinse with water for at least 15 minutes. Then,
seek medical attention as soon as possible.

xli

Chapter 1
KAREL LANGUAGE OVERVIEW

Contents

Chapter 1 KAREL LANGUAGE OVERVIEW ... 1�1
1.1 OVERVIEW.. 1�2
1.2 KAREL PROGRAMMING LANGUAGE ... 1�2

1.2.1 Overview... 1�2
1.2.2 Entering a Program ... 1�4
1.2.3 Translating a Program .. 1�4
1.2.4 Loading Program Logic and Data ... 1�4
1.2.5 Executing a Program .. 1�5
1.2.6 Execution History ... 1�5
1.2.7 Program Structure .. 1�6
1.3 SYSTEM SOFTWARE .. 1�7

1.3.1 Software Components .. 1�7
1.3.2 Supported Robots ... 1�8
1.4 CONTROLLERS .. 1�8

1.4.1 Memory ... 1�8
1.4.2 Input/Output System .. 1�10
1.4.3 User Interface Devices ... 1�10

1�1

1. KAREL LANGUAGE OVERVIEW MARAIKLRF06031E REV A

1.1 OVERVIEW

FANUC Robotics� KAREL system consists of a robot, a controller, and system software. It
accomplishes industrial tasks using programs written in the KAREL programming language. KAREL
can direct robot motion, control and communicate with related equipment, and interact with an
operator.

The SYSTEM R-J3iB controller with KAREL works with a wide range of robot models to handle
a variety of applications. This means common operating, programming, and troubleshooting
procedures, as well as fewer spare parts. KAREL systems expand to include a full line of support
products such as integral vision, off-line programming, and application-specific software packages.

The KAREL programming language is a practical blend of the logical, English-like features of
high-level languages, such as Pascal and PL/1, and the proven factory-floor effectiveness of machine
control languages. KAREL incorporates structures and conventions common to high-level languages
as well as features developed especially for robotics applications. These KAREL features include

• Simple and structured data types

• Arithmetic, relational, and Boolean operators

• Control structures for loops and selections

• Condition handlers

• Procedure and function routines

• Motion control statements

• Input and output operations

• Multi-programming and concurrent motion support

This chapter summarizes the KAREL programming language, and describes the KAREL system
software and the R-J3iB controller.

1.2 KAREL PROGRAMMING LANGUAGE

1.2.1 Overview

A KAREL program is made up of declarations and executable statements stored in a source code file.
The variable data values associated with a program are stored in a variable file.

KAREL programs are created and edited on the Cathode Ray Tube/Keyboard (CRT/KB) . They can be
created using the KAREL full screen editor. The editor will create a new program if one does not
already exist or it will open a previously created file for editing.

1�2

MARAIKLRF06031E REV A 1. KAREL LANGUAGE OVERVIEW

The KAREL language translator turns the source code into an internal format called p-code
and generates a p-code file. Programs translated from inside the KAREL editor will be loaded
automatically. Programs can also be loaded using the KAREL Command Language (KCL) or the
FILE menu.

During loading, the system will create any required variables that are not in RAM and set them
uninitialized. When you run the program, the KAREL interpreter executes the loaded p-code
instructions.

A KAREL program is composed of the program logic and the program data. Program logic defines a
sequence of steps to be taken to perform a specific task. Program data is the task-related information
that the program logic uses. In KAREL the program logic is separate from the program data.

Program logic is defined by KAREL executable statements between the BEGIN and the END
statements in a KAREL program. Program data includes variables that are identified in the VAR
declaration section of a KAREL program by name, data type and storage area in RAM.

Values for program data can be taught using the teach pendant to jog the robot, computed by the
program, read from data files, set from within the CRT/KB or teach pendant menu structure, or
accepted as input to the program during execution. The data values can change from one execution to
the next, but the same program logic is used to manipulate the data.

Program logic and program data are separate in a KAREL program for the following reasons:

• To allow a single taught position to be referenced from several places in the same program

• To allow more than one program to reference or share the same data

• To allow a program to use alternative data

• To facilitate the building of data files by an off-line computer-aided design (CAD) system

The executable section of the program contains the motion statements, I/O statements, and routine
calls.

The program development cycle is described briefly in the following list. Section 1.2.2 - Section
1.2.6 that follow provide details on each phase.

• Enter a program into random access memory (RAM) and save it to a file on a file device.

• Translate the program file.

• Load the program logic and data into RAM.

• Execute the program from RAM.

• Maintain the execute history of the program.

A log or history of programs that have been executed is maintained by the controller and can be
viewed.

1�3

1. KAREL LANGUAGE OVERVIEW MARAIKLRF06031E REV A

1.2.2 Entering a Program

You can enter a program into the KAREL system with the KAREL full screen editor or copy the
complete program from an off-line storage device or a communication link from another computer.

When you have finished editing a program, you can save it to a file device. You can also invoke
the translator from the editor.

The program is stored in a file on a file device. This file, containing KAREL statements, is called the
source file or source code .

See Also: Chapter 11 FULL SCREEN EDITOR

1.2.3 Translating a Program

KAREL source files must be translated into internal code, called p- code , before they are executed.
The KAREL language translator performs this function and also checks for errors in the source code.

The KAREL language translator starts at the first line of the source code and continues until it
encounters an error or translates the program successfully. If an error is encountered, the translator
tries to continue checking the program, but no p-code will be generated.

You can invoke the translator from the editor, and the source code you were editing will be translated.
After a successful translation, the translator displays a successful translation message and creates a
p-code file. This p-code file is stored on the default file device specified by the $DEVICE system
variable, using the program name for the file name and a .PC file type. This file contains an internal
representation of the source code and information the system needs to link the program to variable
data and routines. If you are translating from the KAREL editor, the translator will load the program
into RAM.

If the translator detects any errors, it displays the error messages and the source lines that were being
translated. After you have corrected the errors, you can translate the program again.

From KCL, the LIST option on the TRANSLATE command will create a listing file on the default file
device. The listing file contains the source code lines, numbered consecutively as they are displayed
during translation, and any errors that were encountered.

1.2.4 Loading Program Logic and Data

The p-code for a program must be loaded from a file device into RAM before the program can be
executed. This is done automatically when the program is translated from inside the KAREL editor.
Variable data can be loaded from KCL or the FILE menu. Subsequent changes to variable data must
be saved using the teach pendant or the CRT/KB.

1�4

MARAIKLRF06031E REV A 1. KAREL LANGUAGE OVERVIEW

When a program is loaded, a variable data table, containing all the static variables in the program, is
created in RAM. The variable data table contains the program identifier, all of the variable identifiers,
and the name of the storage area in RAM where the variables are located.

Loading a program also establishes the links between statements and variables. If the variable file
does not get loaded, the values in the variable data table will be uninitialized. If the variable file
is loaded successfully, the values of any variables will be stored in the variable data storage area
(CMOS, DRAM, IMAGE, VISION).

Multiple programs are often used to break a large application or problem into smaller pieces that can
be developed and tested separately. The KAREL system permits loading of multiple programs into
RAM from a file device. Each program that is loaded has its own p-code structure.

Variable data can be shared among multiple programs. In this case, the KAREL language FROM
clause must be specified in the VAR declaration so that the system can perform the link when the
program is loaded. This saves the storage required to include multiple copies of the data.

The following limits apply to the number and size of KAREL programs that can be loaded:

• Number of programs is limited to 2704 or available RAM.

• Number of variables per program is limited to 2704 or available RAM.

See Also: Section 1.2

1.2.5 Executing a Program

After you have selected a program from the program list and the p-code and variable files are loaded
into RAM, test and debug the program to make sure that the robot moves the way it should.

Program execution begins at the first executable line. A stack of 300 words is allocated unless you
specify a stack size. The stack is allocated from available user RAM. Stack usage is described
in Section 5.1.6.

1.2.6 Execution History

Each time a program is executed, a log of the nested routines and the line numbers that have been
executed can be displayed from KCL with the SHOW HISTORY command.

This is useful when a program has paused or been aborted unexpectedly. Execution history displays
the sequence of events that led to the disruption.

1�5

1. KAREL LANGUAGE OVERVIEW MARAIKLRF06031E REV A

1.2.7 Program Structure

A KAREL program is composed of declaration and executable sections made up of KAREL language
statements, as shown in Structure of a KAREL Program .

Structure of a KAREL Program
PROGRAM prog_name

Translator Directives
CONST, TYPE, and/or VAR Declarations
ROUTINE Declarations

BEGIN
Executable Statements

END prog_name
ROUTINE Declarations

In Structure of a KAREL Program , the words shown in uppercase letters are KAREL reserved
words, which have dedicated meanings. PROGRAM, CONST, TYPE, VAR, and ROUTINE indicate
declaration sections of the program. BEGIN and END mark the executable section. Reserved words
are described in Section 2.1.3.�

The PROGRAM statement, which identifies the program, must be the first statement in any KAREL
program. The PROGRAM statement consists of the reserved word PROGRAM and an identifier of
your choice (prog_name in Structure of a KAREL Program). Identifiers are described in Section 2.1.4.

Note Your program must reside in a file. The file can, but does not have to, have the same name
as the program. This distinction is important because you invoke the translator and load programs
with the name of the file containing your program, but you initiate execution of the program and clear
the program with the program name.

For example, if a program named mover was contained in a file named transfer, you would reference
the file by transfer to translate it, but would use the program name mover to execute the program.
If both the program and the file were named mover, you could use mover to translate the file and
also to execute the program.

A task is created to execute the program and the task name is the name of the program you initiate.
The program can call a routine in another program, but the task name does not change.

The identifier used to name the program cannot be used in the program for any other purpose, such
as to identify a variable or constant.

The CONST (constant), TYPE (type), and VAR (variable) declaration sections come after the
PROGRAM statement. A program can contain any number of CONST, TYPE, and VAR sections.
Each section can also contain any number of individual declaration statements. Also, multiple
CONST, TYPE, and VAR sections can appear in any order. The number of CONST, TYPE, and VAR
sections, and declaration statements are limited only by the amount of memory available.

1�6

MARAIKLRF06031E REV A 1. KAREL LANGUAGE OVERVIEW

ROUTINE declarations can follow the CONST, TYPE, and VAR sections. Each routine begins with
the reserved word ROUTINE and is similar in syntax to a program. ROUTINE declarations can also
follow the executable section of the main program after the END statement.

The executable section must be marked by BEGIN at the beginning and END, followed by the
program identifier (prog_name in Structure of a KAREL Program), at the end. The same program
identifier must be used in the END statement as in the PROGRAM statement. The executable section
can contain any number of executable statements, limited only by the amount of memory available.

See Also: Chapter 2 LANGUAGE ELEMENTS , Chapter 3 USE OF OPERATORS , and Chapter
5 ROUTINES .

1.3 SYSTEM SOFTWARE

The KAREL system includes a robot and controller electronics. KAREL hardware interfaces and
system software support programming, daily operation, maintenance, and troubleshooting.

This section provides an overview of the supported system software and robot models.

Hardware topics are covered in greater detail in the Maintenance Manual specific for your robot
and controller model.

1.3.1 Software Components

KAREL system software is the FANUC Robotics-supplied software that is executed by the controller
CPU, which allows you to operate the KAREL system. You use the system software to develop
programs, as well as to perform daily operations, maintenance, and troubleshooting.

The components of the system software include:

• Motion Control - movement of the tool center point (TCP) from an initial position to a desired
destination position

• File System - storage of data on the RAM disk or peripheral storage devices

• Full Screen Editor - means of editing new or existing KAREL or other files

• System Variables - permanently defined variables declared as part of the KAREL system software

• CRT/KB or Teach Pendant Screens - screens that facilitate operation of the KAREL system

• KCL - KAREL Command Language

• KAREL Translator - translates KAREL source files into internal code

• KAREL Interpreter - executes KAREL programs

1�7

1. KAREL LANGUAGE OVERVIEW MARAIKLRF06031E REV A

See Also: FANUC Robotics SYSTEM R-J3iB Controller HandlingTool Setup and Operations Manual
for detailed operation procedures using the CRT/KB and teach pendant screens.

1.3.2 Supported Robots

The robot, using the appropriate tooling, performs application tasks directed by the system software
and controller. The KAREL system supports a variety of robots, each designed for a specific type of
application.

For a current list of supported robot models, consult your FANUC Robotics technical representative.

See Also: The Maintenance Manual for your specific robot type, for more information on your robot.

1.4 CONTROLLERS

The KAREL controller contains the electronic circuitry and memory required to operate the KAREL
system. The electronic circuitry, supported by the system software, directs the operation and motion
of the robot and allows communication with peripheral devices.

Controller electronics includes a central processing unit (CPU), several types of memory, an
input/output (I/O) system, and user interface devices. A cabinet houses the controller electronics and
the ports to which remote user interface devices and other peripheral devices are connected.

1.4.1 Memory

Controller memory consists of three types of memory.

• Dynamic random access memory (DRAM)

DRAM memory is volatile. Memory contents do not retain their stored values when power is
removed. DRAM memory is also referred to as temporary memory (TEMP).

• A limited amount of battery-backed static/random access memory (SRAM).

SRAM memory is nonvolatile. Older KAREL controllers used a CMOS implementation of SRAM.
The KAREL programming language has many lexical references to CMOS, but the current technology
used is non-CMOS SRAM. SRAM memory is also referred to as permanent memory (PERM). The
TPP memory pool (used for TP programs) is allocated from PERM. A portion of permanent memory
is set aside as a storage device called the memory file device (MF:). Since permanent memory can be
set aside on SRAM, the controller further distinguishes SRAM memory as the RAM disk (RD:).

• Flash memory (FROM)

1�8

MARAIKLRF06031E REV A 1. KAREL LANGUAGE OVERVIEW

FROM memory is nonvolatile. A portion of permanent memory is set aside as a storage device
called the memory file device (MF:). Since permanent memory can also be set aside on FROM, the
controller further distinguishes FROM memory as the FROM disk (FR:).

Additional off-line storage for archiving programs and data is also available as an optional feature.

Figure 1�1. Controller Memory

CMOS RAM
(PERM)

Loaded TP Programs

System Variables
Selected KAREL Variables

DRAM
(TEMP)

Working memory for the system
Loaded KAREL programs

Most KAREL variables

Off-Line Storage
Saved Programs and Data

FROM Disk (FR:)
Saved Programs

Saved Data
System Software

RAM Disk (RD:)
Saved Programs

Saved Data

A bootstrap ROM (or BootROM) is a piece of ROM-based software that is executed immediately
when the power to the controller is turned on.

Storage

• KAREL System Software is stored in FROM and is automatically loaded to DRAM on power
up for execution.

• System and Application Programs use DRAM as working memory. A KAREL program and
its variable data must be loaded in DRAM before the program can be executed. Any KAREL
variables that are not in SRAM (called CMOS in older platforms) will be uninitialized when
power is removed. Therefore, it is important to save recorded positional data before powering
down. KAREL variables can also be created in SRAM.

• Teach Pendant Programs are stored in SRAM memory and DRAM memory.

1�9

1. KAREL LANGUAGE OVERVIEW MARAIKLRF06031E REV A

• Memory File or Virtual Devices , FR: and RD:, provide storage for programs and data when
they are not being used. You can read data from and write data to the memory file devices. Files
on these devices should be copied to an off-line device for backup purposes. Files on RD: will be
cleared when an INIT start of the controller is performed. Files on FR: will be cleared when a
clear of FROM is performed from the BootROM.

• Optional Disk Drive Units , the PS-100, PS-110 and PS-200, can provide off-line storage on
3½" or 5¼" MS-DOS formatted diskettes. The optional KAREL Off-Line programming package
(OLPC) can also be used for off-line storage on an IBM personal computer or compatible.

• Memory Card, MC:, can be formatted and used as an MS-DOS file system. It can be read from
and written to on the controller and a personal computer equipped with the proper hardware and
software.

See Also: Chapter 9 FILE SYSTEM

1.4.2 Input/Output System

The R-J3iB controller can support a modular I/O structure, allowing you to add I/O boards as required
by your application. Both digital and analog input and output modules are supported. In addition, you
can add optional process I/O boards for additional I/O. The type and number of I/O signals you have
depends on the requirements of your application.

See Also: Chapter 14 INPUT/OUTPUT SYSTEM , for more information

1.4.3 User Interface Devices

The user interface devices enable you to program and operate the KAREL system. The common user
interface devices supported by KAREL include the operator panel, Cathode Ray Tube/Keyboard
(CRT/KB), and teach pendant.

Figure 1�2 illustrates these user interface devices. The operator panel and teach pendant have the
same basic functions for all models; however, different configurations are also available.

The operator panel, located on the front of the controller cabinet, provides buttons for performing
daily operations such as powering up, running a program, and powering down. Light emitting diodes
(LEDs) on the operator panel indicate operating conditions such as when the power is on and when
the robot is in cycle.

The KAREL system also supports I/O signals for a user operator panel (UOP) , which is a
user-supplied device such as a custom control panel, a programmable controller, or a host computer.
Refer to Chapter 13 KAREL COMMAND LANGUAGE (KCL) .

1�10

MARAIKLRF06031E REV A 1. KAREL LANGUAGE OVERVIEW

Figure 1�2. R-J3iB Controller

CRT/KB

Teach pendant
Operator panelMode switch

The CRT/KB resembles a standard computer terminal. It consists of a 24-line by 80-character display
and is available as a remote, stand-alone unit.

The CRT/KB is used for developing application programs. In addition, CRT/KB display screens
provide access to a variety of information such as the current position of the robot, output from
application programs, and on-line diagnostics.

The teach pendant consists of an 16-line by 40-character LCD display, menu-driven function keys,
keypad keys, and status LEDs. It is connected to the controller cabinet via a cable, allowing you to
perform operations away from the controller.

Internally, the teach pendant connects to the controller�s Main CPU board. It is used to jog the robot,
teach program data, test and debug programs, and adjust variables. It can also be used to monitor and
control I/O, to control end-of-arm tooling, and to display information such as the current position of
the robot or the status of an application program.

The FANUC Robotics SYSTEM R-J3iB Controller HandlingTool Setup and Operations Manual
provides descriptions of each of the user interface devices, as well as procedures for operating each
device.

1�11

Chapter 2
LANGUAGE ELEMENTS

Contents

Chapter 2 LANGUAGE ELEMENTS .. 2�1
2.1 LANGUAGE COMPONENTS .. 2�2

2.1.1 Character Set .. 2�2
2.1.2 Operators .. 2�5
2.1.3 Reserved Words ... 2�6
2.1.4 User-Defined Identifiers .. 2�8
2.1.5 Labels ... 2�9
2.1.6 Predefined Identifiers .. 2�9
2.1.7 System Variables ... 2�13
2.1.8 Comments ... 2�13
2.2 TRANSLATOR DIRECTIVES ... 2�13
2.3 DATA TYPES .. 2�16
2.4 USER-DEFINED DATA TYPES AND STRUCTURES 2�17

2.4.1 User-Defined Data Types ... 2�18
2.4.2 User-Defined Data Structures .. 2�19
2.5 ARRAYS ... 2�22

2.5.1 Multi-Dimensional Arrays .. 2�22
2.5.2 Variable-Sized Arrays ... 2�24

2�1

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

The KAREL language provides the elements necessary for programming effective robotics
applications. This chapter lists and describes each of the components of the KAREL language, the
available translator directives and the available data types.

2.1 LANGUAGE COMPONENTS

This section describes the following basic components of the KAREL language:

• Character set

• Operators

• Reserved words

• User-defined Identifiers

• Labels

• Predefined Identifiers

• System Variables

• Comments

2.1.1 Character Set

The ASCII character set is available in the KAREL language. Table 2�1 lists the elements in the
ASCII character set. Three character sets are available in the KAREL language:

• ASCII Character Set

• Multinational Character Set

• Graphics Character Set

All of the characters recognized by the KAREL language are listed in Table 2�1 , Table 2�2 , and
Table 2�3 . The default character set is ASCII. The multinational and graphics character sets are
permitted only in literals, data, and comments.

See Also: CHR Built-In Procedure, Appendix A.

2�2

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

Table 2�1. ASCII Character Set

Letters
a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Digits
0 1 2 3 4 5 6 7 8 9

Symbols
@ < > = / * + - _ , ; : . # $ � [] () & % { }

Special
Characters blank or space

form feed (treated as new line)

tab (treated as a blank space)

The following rules are applicable for the ASCII character set:

• Blanks or spaces are:

� Required to separate reserved words and identifiers. For example, the statement PROGRAM
prog_name must include a blank between PROGRAM and prog_name .

� Allowed but are not required within expressions between symbolic operators and their
operands. For example, the statement a = b is equivalent to a=b .

� Used to indent lines in a program.

• Carriage return or a semi-colon (;) separate statements. Carriage returns can also appear in
other places.

2�3

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

Table 2�2. Multinational Character Set

¡ ¢ £ ¥ § ¤

©
a

« О ± 2

3 µ ¶ � 1 o

Symbols

» ¼ ½ ¿

À Á Â Ã Ä Å

Æ Ç È É Ê Ë

Ì Í Î Ï Ñ Ò

Ó Ô Õ Ö � Ø

Ù Ú Û Ü Y ß

à á â ã ä å

æ ç è é ê ë

ì í î ï ñ

ò ó ô õ ö �

Special Characters

ø ù ú û ü ÿ

2�4

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

Table 2�3. Graphics Character Set

Letters A B C D E F G H I J K L MN O P Q R S T U V W X Y Z

Digits 0 1 2 3 4 5 6 7 8 9

Symbols @ < > = / * + - , ; : . # $ � \ [] () & % ! " ^

Special
Characters

♦♦♦♦ H

T

F

F

C
R

L

F

О ± N
L

V
T ┘ ┐ ┌ └

+ - - - - _ ├ ┤ ┴ ┬ | ≤ ≥ Π

≠ £ .

See Also: Appendix D for a listing of the character codes for each character set

2.1.2 Operators

KAREL provides operators for standard arithmetic operations, relational operations, and Boolean
(logical) operations. KAREL also includes special operators that can be used with positional and
VECTOR data types as operands.

Table 2�4 lists all of the operators available for use with KAREL.

Table 2�4. KAREL Operators

Arithmetic + - * / DIV MOD

Relational < < = = < > > = >

Boolean AND OR NOT

Special > = < : # @

The precedence rules for these operators are as follows:

• Expressions within parentheses are evaluated first.

2�5

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

• Within a given level of parentheses, operations are performed starting with those of highest
precedence and proceeding to those of lowest precedence.

• Within the same level of parentheses and operator precedence, operations are performed from
left to right.

Table 2�5 lists the precedence levels for the KAREL operators.

Table 2�5. KAREL Operator Precedence

OPERATOR PRECEDENCE LEVEL

NOT High

:, @, # ↓

*, /, AND, DIV, MOD ↓

Unary + and -, OR, +, - ↓

<, >, =, < >, < =, > =, > = < Low

See Also: Chapter 3 USE OF OPERATORS , for descriptions of functions operators perform

2.1.3 Reserved Words

Reserved words have a dedicated meaning in KAREL. They can be used only in their prescribed
contexts. All KAREL reserved words are listed in Table 2�6 .

Table 2�6. Reserved Word List

ABORT CONST GET_VAR NOPAUSE STOP

ABOUT CONTINUE GO NOT STRING

ABS COORDINATED GOTO NOWAIT STRUCTURE

AFTER CR GROUP OF THEN

ALONG DELAY GROUP_ASSOC OPEN TIME

2�6

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

Table 2�6. Reserved Word List (Cont�d)

ALSO DISABLE HAND OR TIMER

AND DISCONNECT HOLD PATH TO

ARRAY DIV IF PATHHEADER TPENABLE

ARRAY_LEN DO IN PAUSE TYPE

AT DOWNTO INDEPENDENT POSITION UNHOLD

ATTACH DRAM INTEGER POWERUP UNINIT

AWAY ELSE JOINTPOS PROGRAM UNPAUSE

AXIS ENABLE JOINTPOS1 PULSE UNTIL

BEFORE END JOINTPOS2 PURGE USING

BEGIN ENDCONDITION JOINTPOS3 READ VAR

BOOLEAN ENDFOR JOINTPOS4 REAL VECTOR

BY ENDIF JOINTPOS5 RELATIVE VIA

BYNAME ENDMOVE JOINTPOS6 RELAX VIS_PROCESS

BYTE ENDSELECT JOINTPOS7 RELEASE WAIT

CAM_SETUP ENDSTRUCTURE JOINTPOS8 REPEAT WHEN

CANCEL ENDUSING JOINTPOS9 RESTORE WHILE

CASE ENDWHILE MOD RESUME WITH

CLOSE ERROR MODEL RETURN WRITE

CMOS EVAL MOVE ROUTINE XYZWPR

2�7

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

Table 2�6. Reserved Word List (Cont�d)

COMMAND EVENT NEAR SELECT XYZWPREXT

COMMON_ASSOC END NOABORT SEMAPHORE

CONDITION FILE NODE SET_VAR

CONFIG FOR NODEDATA SHORT

CONNECT FROM NOMESSAGE SIGNAL

See Also: Index for references to descriptions of KAREL reserved words

2.1.4 User-Defined Identifiers

User-defined identifiers represent constants, data types, statement labels, variables, routine names,
and program names. Identifiers

• Start with a letter

• Can include letters, digits, and underscores

• Can have a maximum of 12 characters

• Can have only one meaning within a particular scope. Refer to Section 5.1.4 .

• Cannot be reserved words

• Must be defined before they can be used.

For example, the program excerpt in Declaring Identifiers shows how to declare program, variable,
and constant identifiers.

Declaring Identifiers
PROGRAM mover --program identifier (mover)

VAR
original : POSITION --variable identifier (original)

CONST
no_of_parts = 10 --constant identifier (no_of_parts)

2�8

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

2.1.5 Labels

Labels are special identifiers that mark places in the program to which program control can be
transferred using the GOTO Statement.

• Are immediately followed by two colons (::). Executable statements are permitted on the same
line and subsequent lines following the two colons.

• Cannot be used to transfer control into or out of a routine.

In Using Labels , weld: : denotes the section of the program in which a part is welded. When the
statement go to weld is executed, program control is transferred to the weld section.

Using Labels
weld:: --label

. --additional program statements

.

.
GOTO weld

2.1.6 Predefined Identifiers

Predefined identifiers within the KAREL language have a predefined meaning. These can be
constants, types, variables, or built-in routine names. Table 2�7 and Table 2�8 list the predefined
identifiers along with their corresponding values. Either the identifier or the value can be specified in
the program statement. For example, $MOTYPE = 7 is the same as $MOTYPE = LINEAR. However,
the predefined identifier MININT is an exception to this rule. This identifier must always be used in
place of its value, -2147483648. The value or number itself can not be used.

Table 2�7. Predefined Identifier and Value Summary

Predefined Identifier Type Value

TRUE

FALSE

BOOLEAN ON

OFF

ON

OFF

BOOLEAN ON

OFF

2�9

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

Table 2�7. Predefined Identifier and Value Summary (Cont�d)

Predefined Identifier Type Value

MAXINT

MININT

INTEGER +2147483647

-2147483648

RSWORLD

AESWORLD

WRISTJOINT

Orientation Type:

$ORIENT_TYPE

1

2

3

JOINT

LINEAR (or STRAIGHT)

CIRCULAR

Motion Type:

$MOTYPE

6

7

8

FINE

COARSE

NOSETTLE

NODECEL

VARDECEL

Termination Types:

$TERMTYPE and

$SEGTERMTYPE

1

2

3

4

5

Table 2�8. Port and File Predefined Identifier Summary

Predefined Identifier Type

DIN (Digital input)

DOUT (Digital output)

Boolean port array

2�10

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

Table 2�8. Port and File Predefined Identifier Summary (Cont�d)

Predefined Identifier Type

GIN (Group input)

GOUT (Group output)

AIN (Analog output)

AOUT (Analog output)

Integer port array

2�11

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

Table 2�8. Port and File Predefined Identifier Summary (Cont�d)

Predefined Identifier Type

TPIN (Teach pendant input)

TPOUT (Teach pendant output)

RDI (Robot digital input)

RDO (Robot digital output)

OPIN (Operator panel input)

OPOUT (Operator panel output)

WDI (Weld input)

WDOUT (Weld output)

Boolean port array

TPDISPLAY (Teach pendant KAREL display)*

TPERROR (Teach pendant message line)

TPPROMPT (Teach pendant function key line)*

TPFUNC (Teach pendant function key line)*

TPSTATUS (Teach pendant status line)*

INPUT (CRT/KB KAREL keyboard)*

OUTPUT (CRT/KB KAREL screen)*

CRTERROR (CRT/KB message line)

CRTFUNC (CRT function key line)*

CRTSTATUS (CRT status line)*

CRTPROMPT (CRT prompt line)*

VIS_MONITOR (Vision Monitor Screen)

File

*Input and output occurs on the USER menu of the teach pendant or CRT/KB.

2�12

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

2.1.7 System Variables

System variables are variables that are declared as part of the KAREL system software. They have
permanently defined variable names, that begin with a dollar sign ($). Many are robot specific,
meaning their values depend on the type of robot that is attached to the system.

Some system variables are not accessible to KAREL programs. Access rights govern whether or not
a KAREL program can read from or write to system variables.

See Also: FANUC Robotics SYSTEM R-J3iB Controller Software Reference Manual for a complete
list and description of all available system variables

2.1.8 Comments

Comments are lines of text within a program used to make the program easier for you or another
programmer to understand. For example, Comments From Within a Program contains some
comments from %INCLUDE Directive in a KAREL Program and Include File mover_decs for
a KAREL Program .

Comments From Within a Program
--This program, called mover, picks up 10 objects
--from an original POSITION and puts them down
--at a destination POSITION.

original : POSITION --POSITION of objects
destination : POSITION --Destination of objects
count : INTEGER --Number of objects moved

A comment is marked by a pair of consecutive hyphens (- -). On a program line, anything to the
right of these hyphens is treated as a comment.

Comments can be inserted on lines by themselves or at the ends of lines containing any program
statement. They are ignored by the translator and have absolutely no effect on a running program.

2.2 TRANSLATOR DIRECTIVES

Translator directives provide a mechanism for directing the translation of a KAREL program.
Translator directives are special statements used within a KAREL program to

• Include other files into a program at translation time

• Specify program and task attributes

2�13

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

All directives except %INCLUDE must be after the program statement but before any other
statements. Table 2�9 lists and briefly describes each translator directive. Refer to Appendix A for a
complete description of each translator directive.

Table 2�9. Translator Directives

Directive Description

%ALPHABETIZE Specifies that variables will be created in alphabetical order when
p-code is loaded.

%CMOSVARS Specifies the default storage for KAREL variables is CMOS RAM.

%COMMENT = �comment� Specifies a comment of up to 16 characters. During load time, the
comment is stored as a program attribute and can be displayed on the
SELECT screen of the teach pendant or CRT/KB.

%CRTDEVICE Specifies that the CRT/KB user window will be the default in the READ
and WRITE statements instead of the TPDISPLAY window.

%DEFGROUP = n Specifies the default motion group to be used by the translator.

%DELAY Specifies the amount of time the program will be delayed out of every
250 milliseconds.

%ENVIRONMENT filename Used by the off-line translator to specify that a particular environment
file should be loaded.

%INCLUDE filename Specifies files to insert into a program at translation time.

%LOCKGROUP =n,n Specifies the motion group(s) locked by this task.

%NOABORT = option Specifies a set of conditions which will be prevented from aborting the
program.

%NOBUSYLAMP Specifies that the busy lamp will be OFF during execution.

%NOLOCKGROUP Specifies that no motion groups will be locked by this task.

%NOPAUSE = option Specifies a set of conditions which will be prevented from pausing the
program.

2�14

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

Table 2�9. Translator Directives (Cont�d)

Directive Description

%NOPAUSESHFT Specifies that the task is not paused if the teach pendant shift key is
released.

%PRIORITY = n Specifies the task priority.

%STACKSIZE = n Specifies the stack size in long words.

%TIMESLICE = n Supports round-robin type time slicing for tasks with the same priority.

%TPMOTION Specifies that task motion is enabled only when the teach pendant
is enabled.

%INCLUDE Directive in a KAREL Program illustrates the %INCLUDE directive. Include File
mover_decs for a KAREL Program shows the included file.

%INCLUDE Directive in a KAREL Program
PROGRAM mover
-- This program, called mover, picks up 10 objects
-- from an original POSITION and puts them down
-- at a destination POSITION.

%INCLUDE mover_decs
-- Uses %INCLUDE directive to include the file
-- called mover_decs containing declarations

BEGIN
$SPEED = 200.0
$MOTYPE = LINEAR
OPEN HAND gripper

-- Loop to move total number of objects
FOR count = 1 TO num_of_parts DO

MOVE TO original
CLOSE HAND gripper
MOVE TO destination
OPEN HAND gripper

ENDFOR -- End of loop

END mover

2�15

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

Include File mover_decs for a KAREL Program
-- Declarations for program mover in file mover_decs

VAR
original : POSITION --POSITION of objects
destination : POSITION --Destination of objects
count : INTEGER --Number of objects moved

CONST
gripper = 1 -- Hand number 1
num_of_parts = 10 -- Number of objects to move

2.3 DATA TYPES

Three forms of data types are provided by KAREL to define data items in a program:

• Simple type data items

� Can be assigned constants or variables in a KAREL program

� Can be assigned actual (literal) values in a KAREL program

� Can assume only single values

• Structured type data items

� Are defined as data items that permit or require more than a single value

� Are composites of simple data and structured data

• User-defined type data items

� Are defined in terms of existing data types including other user-defined types

� Can be defined as structures consisting of several KAREL variable data types

� Cannot include itself

Table 2�10 lists the simple and structured data types available in KAREL. User-defined data types
are described in Section 2.4.

2�16

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

Table 2�10. Simple and Structured Data Types

Simple Structured

BOOLEAN ARRAY OF BYTE JOINTPOS7

FILE CAM_SETUP JOINTPOS8

INTEGER COMMON_ASSOC JOINTPOS9

REAL CONFIG MODEL

STRING GROUP_ASSOC PATH

JOINTPOS POSITION

JOINTPOS1 QUEUE_TYPE

JOINTPOS2 ARRAY OF SHORT

JOINTPOS3 VECTOR

JOINTPOS4 VIS_PROCESS

JOINTPOS5 XYZWPR

JOINTPOS6 XYZWPREXT

See Also: Appendix A for a detailed description of each data type.

2.4 USER-DEFINED DATA TYPES AND STRUCTURES

User-defined data types are data types you define in terms of existing data types. User-defined data
structures are data structures in which you define a new data type as a structure consisting of several
KAREL variable data types, including previously defined user data types.

2�17

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

2.4.1 User-Defined Data Types

User-defined data types are data types you define in terms of existing data types. With user-defined
data types, you

• Include their declarations in the TYPE sections of a KAREL program.

• Define a KAREL name to represent a new data type, described in terms of other data types.

• Can use predefined data types required for specific applications.

User-defined data types can be defined as structures, consisting of several KAREL variable data types.

The continuation character, "&", can be used to continue a declaration on a new line.

User-Defined Data Type Example shows an example of user-defined data type usage and continuation
character usage.

User-Defined Data Type Example
CONST

n_pages = 20
n_lines = 40
std_str_lng = 8

TYPE
std_string_t = STRING [std_str_lng]
std_table_t = ARRAY [n_pages]& --continuation character
OF ARRAY [n_lines] OF std_string_t

path_hdr_t FROM main_prog = STRUCTURE --user defined data type
ph_uframe: POSITION
ph_utool: POSITION

ENDSTRUCTURE

node_data_t FROM main_prog = STRUCTURE
gun_on: BOOLEAN
air_flow: INTEGER

ENDSTRUCTURE

std_path_t FROM main_prog =
PATH PATHDATA = path_hdr_t NODEDATA = node_data_t

VAR
msg_table_1: std_table_t
msg_table_2: std_table_t
temp_string: std_string_t
seam_1_path: std_path_t

2�18

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

Usage

User-defined type data can be

• Assigned to other variables of the same type

• Passed as a parameter

• Returned as a function

Assignment between variables of different user-defined data types, even if identically declared, is not
permitted. In addition, the system provides the ability to load and save variables of user-defined data
types, checking consistency during the load with the current declaration of the data type.

Restrictions

A user-defined data type cannot

• Include itself

• Include any type that includes it, either directly or indirectly

• Be declared within a routine

2.4.2 User-Defined Data Structures

A structure is used to store a collection of information that is generally used together. User-defined
data structures are data structures in which you define a new data type as a structure consisting of
several KAREL variable data types.

When a program containing variables of user-defined data types is loaded, the definitions of these
types are checked against a previously created definition. If a previously created definition does not
exist, a new one is created.

With user-defined data structures, you

• Define a data type as a structure consisting of a list of component fields, each of which can be a
standard data type or another, previously defined, user data type. See Defining a Data Type as
a User-Defined Structure .

Defining a Data Type as a User-Defined Structure
new_type_name = STRUCTURE

field_name_1: type_name_1
field_name_2: type_name_2
..

ENDSTRUCTURE

2�19

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

• Access elements of a data type defined as a structure in a KAREL program. The continuation
character, "&", can be used to continue access of the structure elements. See Accessing Elements
of a User-Defined Structure in a KAREL Program .

Accessing Elements of a User-Defined Structure in a KAREL Program
var_name = new_type_name.field_nam_1
new_type_name.field_name_2 = expression
outer_struct_name.inner_struct_name&

.field_name = expression

• Access elements of a data type defined as a structure from the CRT/KB and at the teach pendant.

• Define a range of executable statements in which fields of a STRUCTURE type variable can
be accessed without repeating the name of the variable. See Defining a Range of Executable
Statements .

Defining a Range of Executable Statements
USING struct_var, struct_var2 DO

statements
..

ENDUSING

In the above example, struct_var and struct_var2 are the names of structure type variables.

Note If the same name is both a field name and a variable name, the field name is assumed. If the same
field name appears in more than one variable, the right-most variable in the USING statement is used.

Restrictions

User-defined data structures have the following restrictions:

• The following data types are not valid as part of a data structure:

� STRUCTURE definitions; types that are declared structures are permitted. See Valid
STRUCTURE Definitions .

Valid STRUCTURE Definitions
The following is valid:

TYPE
sub_struct = STRUCTURE

subs_field_1: INTEGER
subs_field_2: BOOLEAN

ENDSTRUCTURE

2�20

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

big_struct = STRUCTURE
bigs_field_1: INTEGER
bigs_field_2: sub_struct

ENDSTRUCTURE

The following is not valid:

big_struct = STRUCTURE
bigs_field_1: INTEGER
bigs_field_2: STRUCTURE
subs_field_1: INTEGER
subs_field_2: BOOLEAN

ENDSTRUCTURE
ENDSTRUCTURE

� PATH types

� FILE types

� VISION types

� Variable length arrays

� The data structure itself, or any type that includes it, either directly or indirectly

� Any structure not previously defined.

• A variable can not be defined as a structure, but can be defined as a data type previously defined
as a structure. See Defining a Variable as a Type Previously Defined as a Structure .

Defining a Variable as a Type Previously Defined as a Structure
The following is valid:

TYPE
struct_t = STRUCTURE

st_1: BOOLEAN
st_2: REAL

ENDSTRUCTURE
VAR

var_name: struct_t

The following is not valid:
VAR

var_name: STRUCTURE
vn_1: BOOLEAN
vn_2: REAL

ENDSTRUCTURE

2�21

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

2.5 ARRAYS

You can declare arrays of any data type except PATH.

You can access elements of these arrays in a KAREL program, from the CRT/KB, and from the
teach pendant.

In addition, you can define two types of arrays:

• Multi-dimensional arrays

• Variable-sized arrays

2.5.1 Multi-Dimensional Arrays

Multi-dimensional arrays are arrays of elements with two or three dimensions. These arrays allow you
to identify an element using two or three subscripts.

Multi-dimensional arrays allow you to

• Declare variables as arrays with two or three (but not more) dimensions. See Declaring Variables
as Arrays with Two or Three Dimensions .

Declaring Variables as Arrays with Two or Three Dimensions
VAR

name: ARRAY [size_1] OF ARRAY [size_2] .., OF element_type

OR

VAR
name: ARRAY [size_1, size_2,...] OF element_type

• Access elements of these arrays in KAREL statements. See Accessing Elements of
Multi-Dimensional Arrays in KAREL Statements .

Accessing Elements of Multi-Dimensional Arrays in KAREL Statements
name [subscript_1, subscript_2,...] = value

value = name [subscript_1, subscript_2,...]

2�22

MARAIKLRF06031E REV A 2. LANGUAGE ELEMENTS

• Declare routine parameters as multi-dimensional arrays. See Declaring Routine Parameters as
Multi-Dimensional Arrays .

Declaring Routine Parameters as Multi-Dimensional Arrays
Routine expects 2-dimensional array of INTEGER.

ROUTINE array_user (array_param:ARRAY [*,*] OF INTEGER)

The following are equivalent:
ROUTINE rtn_name(array_param: ARRAY[*] OF INTEGER)
and
ROUTINE rtn_name(array_param: ARRAY OF INTEGER)

• Access elements with KCL commands and the teach pendant.

• Save and load multi-dimensional arrays to and from variable files.

Restrictions

The following restrictions apply to multi-dimensional arrays:

• A subarray can be passed as a parameter or assigned to another array by omitting one or more of
the right-most subscripts only if it was defined as a separate type. See Using a Subarray .

Using a Subarray
TYPE

array_30 = ARRAY[30] OF INTEGER
array_20_30 = ARRAY[20] OF array_30

VAR
array_1: array_30
array_2: array_20_30
array_3: ARRAY[10] OF array_20_30

ROUTINE array_user(array_data: ARRAY OF INTEGER
FROM other-prog

BEGIN
array_2 = array_3[10] -- assigns elements array_3[10,1,1]

-- through array_3[10,20,30] to
array_2
array_2[2] = array_1 -- assigns elements array_1[1] through

-- array_1 [30] to elements array_2[2,1]
-- through array_2[2,30]

array_user(array_3[5,3]) -- passes elements array_3[5,3,1]
-- through array_3[5,3,30] to array_user

2�23

2. LANGUAGE ELEMENTS MARAIKLRF06031E REV A

• The element type cannot be any of the following:

� Array (but it can be a user-defined type that is an array)

� Path

2.5.2 Variable-Sized Arrays

Variable-sized arrays are arrays whose actual size is not known, and that differ from one use of the
program to another. Variable-sized arrays allow you to write KAREL programs without establishing
dimensions of the array variables. In all cases, the dimension of the variable must be established
before the .PC file is loaded.

Variable-sized arrays allow you to

• Declare an array size as ��to-be-determined �� (*). See Indicates that the Size of an Array is
"To-Be-Determined" .

Indicates that the Size of an Array is "To-Be-Determined"
VAR

one_d_array: ARRAY[*] OF type
two_d_array: ARRAY[*,*] OF type

• Determine an array size from that in a variable file or from a KCL CREATE VAR command
rather than from the KAREL source code.

The actual size of a variable-sized array will be determined by the actual size of the array if it already
exists, the size of the array in a variable file if it is loaded first, or the size specified in a KCL CREATE
VAR command executed before the program is loaded. Dimensions explicitly specified in a program
must agree with those specified from the .VR file or specified in the KCL CREATE VAR command.

Restrictions

Variable-sized arrays have the following restrictions:

• The variable must be loaded or created in memory (in a .VR file or using KCL), with a known
length, before it can be used.

• When the .PC file is loaded, it uses the established dimension, otherwise it uses 0.

• Variable-sized arrays are only allowed in the VAR section and not the TYPE section of a program.

• Variable-sized arrays are only allowed for static variables.

2�24

Chapter 3
USE OF OPERATORS

Contents

Chapter 3 USE OF OPERATORS .. 3�1
3.1 EXPRESSIONS AND ASSIGNMENTS .. 3�2

3.1.1 Rule for Expressions and Assignments .. 3�2
3.1.2 Evaluation of Expressions and Assignments ... 3�2
3.1.3 Variables and Expressions ... 3�4
3.2 OPERATIONS .. 3�4

3.2.1 Arithmetic Operations ... 3�5
3.2.2 Relational Operations ... 3�7
3.2.3 Boolean Operations .. 3�8
3.2.4 Special Operations .. 3�10

3�1

3. USE OF OPERATORS MARAIKLRF06031E REV A

This chapter describes how operators are used with other language elements to perform operations
within a KAREL application program. Expressions and assignments, which are program statements
that include operators and operands, are explained first. Next, the kinds of operations that can be
performed using each available KAREL operator are discussed.

3.1 EXPRESSIONS AND ASSIGNMENTS

Expressions are values defined by a series of operands, connected by operators and cause desired
computations to be made. For example, 4 + 8 is an expression in which 4 and 8 are the operands and
the plus symbol (+) is the operator .

Assignments are statements that set the value of variables to the result of an evaluated expression.

3.1.1 Rule for Expressions and Assignments

The following rules apply to expressions and assignments:

• Each operand of an expression has a data type determined by the nature of the operator.

• Each KAREL operator requires a particular operand type and causes a computation that produces
a particular result type.

• Both operands in an expression must be of the same data type. For example, the AND operator
requires that both its operands are INTEGER values or that both are BOOLEAN values. The
expression i AND b , where i is an INTEGER and b is a BOOLEAN, is invalid.

• Five special cases in which the operands can be mixed provide an exception to this rule. These
five cases include the following:

� INTEGER and REAL operands to produce a REAL result

� INTEGER and REAL operands to produce a BOOLEAN result

� INTEGER and VECTOR operands to produce a VECTOR

� REAL and VECTOR operands to produce a VECTOR

� POSITION and VECTOR operands to produce a VECTOR

• Any positional data type can be substituted for the POSITION data type.

3.1.2 Evaluation of Expressions and Assignments

Table 3�1 summarizes the data types of the values that result from the evaluation of expressions
containing KAREL operators and operands.

3�2

MARAIKLRF06031E REV A 3. USE OF OPERATORS

Table 3�1. Summary of Operation Result Types

Operator + - * / DIV
MOD

< >,>= <=,
<, >, =

> =< AND
ORNOT

@ :

Types of Operators

INTEGER I I I R I B − I − − −

REAL R R R R − B − − − − −

Mixed**

INTEGER-

REAL

R R R R − B − − − − −

BOOLEAN − − − − − B − B − − −

STRING S − − − − B − − − − −

Mixed**

INTEGER-

VECTOR

− − V V − − − − − − −

Mixed** REAL-
VECTOR

− − V V − − − − − − −

VECTOR V V − − − B*** − − V R −

POSITION − − − − − − B − − − P

Mixed**

POSITION-

VECTOR

− − − − − − − − − − V

**Mixed means one operand of each type

***VECTOR values can be compared using = < > only

3�3

3. USE OF OPERATORS MARAIKLRF06031E REV A

−Operation not allowed

I INTEGER

R REAL

B BOOLEAN

V VECTOR

P POSITION

3.1.3 Variables and Expressions

Assignment statements contain variables and expressions. The variables can be any user-defined
variable, a system variable with write access, or an output port array with write access. The expression
can be any valid KAREL expression. The following examples are acceptable assignments:

$SPEED = 200.00 -- assigns a REAL value to a system variable

count = count + 1 -- assigns an INTEGER value to an INTEGER variable

The data types of variable and expression must match with three exceptions:

• INTEGER variables can be assigned to REAL variables. In this case, the INTEGER is treated
as a REAL number during evaluation of the expression. However, a REAL number cannot be
used where an INTEGER value is expected.

• If required, a REAL number can be converted to an INTEGER using the ROUND or TRUNC
built-in functions.

• INTEGER, BYTE, and SHORT types can be assigned to each other, although a run-time error
will occur if the assigned value is out of range.

• Any positional type can be assigned to any other positional type. A run-time error will result if a
JOINTPOS from a group without kinematics is assigned to an XYZWPR.

See Also: Relational Operations, ROUND and TRUNC built-in functions, Appendix A, ��KAREL
Language Alphabetical Description��

3.2 OPERATIONS

Operations include the manipulation of variables, constants, and literals to compute values using the
available KAREL operators. The following operations are discussed:

• Arithmetic Operations

3�4

MARAIKLRF06031E REV A 3. USE OF OPERATORS

• Relational Operations

• Boolean Operations

• Special Operations

Table 3�2 lists all of the operators available for use with KAREL.

Table 3�2. KAREL Operators

Operation Operator

Arithmetic + - * / DIV MOD

Relational < < = = < > > = >

Boolean AND OR NOT

Special > = < : # @

3.2.1 Arithmetic Operations

The addition (+), subtraction (-), and multiplication (*) operators, along with the DIV and MOD
operators, can be used to compute values within arithmetic expressions. Refer to Table 3�3 .

Table 3�3. Arithmetic Operations Using +, -, and * Operators

EXPRESSION RESULT

3 + 2 5

3 - 2 1

3 * 2 6

• The DIV and MOD operators are used to perform INTEGER division. Refer to Table 3�4 .

3�5

3. USE OF OPERATORS MARAIKLRF06031E REV A

Table 3�4. Arithmetic Operations Examples

EXPRESSION RESULT

11 DIV 2 5

11 MOD 2 1

� The DIV operator truncates the result of an equation if it is not a whole number.

� The MOD operator returns the remainder of an equation that results from dividing the
left-side operand by the right-side operand.

� If the right-side operand of a MOD equation is a negative number, the result is also negative.

� If the divisor in a DIV equation or the right-side operand of a MOD equation is zero, the
KAREL program is aborted with the ��Divide by zero�� error.

• The INTEGER bitwise operators, AND, OR, and NOT, produce the result of a binary AND, OR,
or NOT operation on two INTEGER values. Refer to Table 3�5 .

Table 3�5. Arithmetic Operations Using Bitwise Operands

EXPRESSION BINARY EQUIVALENT RESULT

5 AND 8

5 OR 8

0101 AND 1000

0101 OR 1000

0000 = 0

1101 = 13

-4 AND 8

-4 OR 8

1100 AND 1000

1100 OR 1000

1000 = 8

1100 = -4

NOT 5

NOT -15

NOT 0101

NOT 110001

1010 = -6*

1110 = 14*

*Because negative INTEGER values are represented in the two�s complement form, NOT i is not the
same as -i.

• If an INTEGER or REAL equation results in a value exceeding the limit for INTEGER or REAL
variables, the program is aborted with an error. If the result is too small to represent, it is set to
zero.

Table 3�6 lists the precedence levels for the KAREL operators.

3�6

MARAIKLRF06031E REV A 3. USE OF OPERATORS

Table 3�6. KAREL Operator Precedence

OPERATOR PRECEDENCE LEVEL

NOT High

:, @, # ↓

*, /, AND, DIV, MOD ↓

Unary + and -, OR, +, - ↓

<, >, =, < >, < =, > =, > = < Low

3.2.2 Relational Operations

Relational operators (< >, =, >, <, <=, >=) produce a BOOLEAN (TRUE/FALSE) result corresponding
to whether or not the values of the operands are in the relation specified. In a relational expression,
both operands must be of the same simple data type. Two exceptions to this rule exist:

• REAL and INTEGER expressions can be mixed where the INTEGER operand is converted
to a REAL number.

For example, in the expression 1 > .56 , the number 1 is converted to 1.0 and the result is TRUE.

• VECTOR operands, which are a structured data type, can be compared in a relational expression
but only by using the equality (=) or inequality (<>) operators.

The relational operators function with INTEGER and REAL operands to evaluate standard
mathematical equations. Refer to Table 3�7 .

Note Performing equality (=) or inequality (<>) tests between REAL values might not yield the
results you expect. Because of the way REAL values are stored and manipulated, two values that
would appear to be equal might not be exactly equal. This is also true of VECTOR values which are
composed of REAL values. Use >= or <= where appropriate instead of =.

Relational operators can also have STRING values as operands. STRING values are compared
lexically character by character from left to right until one of the following occurs. Refer to Table 3�7 .

• The character code for a character in one STRING is greater than the character code for the
corresponding character in the other STRING. The result in this case is that the first string is
greater. For example, the ASCII code for A is 65 and for a is 97. Therefore, a > A = TRUE.

3�7

3. USE OF OPERATORS MARAIKLRF06031E REV A

• One STRING is exhausted while characters remain in the other STRING. The result is that the
first STRING is less than the other STRING.

• Both STRING expressions are exhausted without finding a mismatch. The result is that the
STRINGs are equal.

Table 3�7. Relational Operation Examples

EXPRESSION RESULT

�A� < �AA� TRUE

�A� = �a� FALSE

4 > 2 TRUE

17.3< > 5.6 TRUE

(3 *4) < > (4* 3) FALSE

With BOOLEAN operands, TRUE > FALSE is defined as a true statement. Thus the expression
FALSE >= TRUE is a false statement. The statements FALSE >= FALSE and TRUE >= FALSE are
also true statements.

3.2.3 Boolean Operations

The Boolean operators AND, OR, and NOT, with BOOLEAN operands, can be used to perform
standard mathematical evaluations. Table 3�8 summarizes the results of evaluating Boolean
expressions, and some examples are listed in Table 3�9 .

3�8

MARAIKLRF06031E REV A 3. USE OF OPERATORS

Table 3�8. BOOLEAN Operation Summary

OPERATOR OPERAND 1 OPERAND 2 RESULT

TRUE − FALSENOT

FALSE − TRUE

TRUETRUE

FALSE

TRUE

TRUEOR

FALSE

FALSE FALSE

TRUE TRUETRUE

FALSE

TRUE

AND

FALSE

FALSE

FALSE

Table 3�9. BOOLEAN Operations Using AND, OR, and NOT Operators

EXPRESSION RESULT

DIN[1] AND DIN[2] TRUE if DIN[1] and DIN[2] are both TRUE; otherwise FALSE

DIN[1] AND NOT DIN[2] TRUE if DIN[1] is TRUE and DIN[2] is FALSE; otherwise FALSE

(x < y) OR (y > z) TRUE if x < y or if y > z; otherwise FALSE

(i = 2) OR (i = 753) TRUE if i = 2 or if i = 753; otherwise FALSE

3�9

3. USE OF OPERATORS MARAIKLRF06031E REV A

3.2.4 Special Operations

The KAREL language provides special operators to perform functions such as testing the value of
approximately equal POSITION variables, relative POSITION variables, VECTOR variables, and
STRING variables. This section describes their operations and gives examples of their usage.

The following rules apply to approximately equal operations:

• The relational operator (>=<) determines if two POSITION operands are approximately equal
and produces a BOOLEAN result. The comparison is similar to the equality (=) relation except
that the operands compared need not be identical. Extended axis values are not considered.

• Approximately equal operations must be used in conjunction with the system variables,
$LOCTOL, $ORIENTTOL, and $CHECKCONFIG to determine how close two positions must
be. Refer to the FANUC Robotics SYSTEM R-J3iB Controller Software Reference Manual for a
description of these variables.

• The relational operator (>=<) is allowed only in normal program use and cannot be used as a
condition in a condition handler statement.

In the following example the relational operator (>=<) is used to determine if the current robot
position (determined by using the CURPOS built-in procedure) is near the designated perch position:

Relational Operator
IF perch >=< CURPOS (0,0) THEN MOVE TO perch
ELSE

ABORT
ENDIF

Relative Position Operations

To locate a position in space, you must reference it to a specific coordinate frame. In KAREL,
reference frames have the POSITION data type. The relative position operator (:) allows you to
reference a position or vector with respect to the coordinate frame of another position (that is, the
coordinate frame that has the other position as its origin point).

The relative position operator (:) is used to transform a position from one reference frame to another
frame.

In the example shown in Figure 3�1 , a vision system is used to locate a target on a car such as a bolt
head on a bumper. The relative position operator is used to calculate the position of the door handle
based on data from the car drawings. The equation shown in Figure 3�1 is used to calculate the
position of w_handle in the WORLD frame.

3�10

MARAIKLRF06031E REV A 3. USE OF OPERATORS

Figure 3�1. Determining w_handle Relative to WORLD Frame

w_handle = bolt : b_handle
(world (world (bumper
 frame) frame) frame)

bolt is the position of the BUMPER frame origin referenced in the WORLD frame.
w_handle is the handle position referenced in the WORLD frame.
b_handle is the handle position referenced in the BUMPER frame.

where:
y

z

xy

z

x

The KAREL INV Built-In Function reverses the direction of the reference.

For example, to determine the position of the door handle target (b_handle) relative to the position of
the bolt , use the equation shown in Figure 3�2 .

3�11

3. USE OF OPERATORS MARAIKLRF06031E REV A

Figure 3�2. Determining b_handle Relative to BUMPER Frame

b_handle = INV(bolt) : w_handle
(bumper (bumper (world
 frame) frame) frame)

INV(bolt) is the position of the WORLD frame origin referenced in the BUMPER frame.
w_handle is the handle position referenced in the WORLD frame.
b_handle is the handle position referenced in the BUMPER frame.

where:
y

z

x
y

z

x

Note The order of the relative operator (:) is important.where:b_handle = bolt : w_handle is NOT the
same as b_handle = w_handle : bolt

See Also: Chapter 8 MOTION , INV Built-In Function, Appendix A.

Vector Operations

The following rules apply to VECTOR operations:

• A VECTOR expression can perform addition (+) and subtraction (-) equations on VECTOR
operands. The result is a VECTOR whose components are the sum or difference of the
corresponding components of the operands. For example, the components of the VECTOR vect_3
will equal (5, 10, 9) as a result of the following program statements:

Vector Operations
vect_1.x = 4; vect_1.y = 8; vect_1.z = 5

vect_2.x = 1; vect_2.y = 2; vect_2.z = 4
vect_3 = vect_1 + vect_2

• The multiplication (*) and division (/) operators can be used with either

3�12

MARAIKLRF06031E REV A 3. USE OF OPERATORS

� A VECTOR and an INTEGER operand

� A VECTOR and a REAL operand

The product of a VECTOR and an INTEGER or a VECTOR and a REAL is a scaled version
of the VECTOR. Each component of the VECTOR is multiplied by the INTEGER (treated as
a REAL number) or the REAL.

For example, the VECTOR (8, 16, 10) is produced as a result of the following operation:
(4, 8, 5) * 2

VECTOR components can be on the left or right side of the operator.

• A VECTOR divided by an INTEGER or a REAL causes each component of the VECTOR to
be divided by the INTEGER (treated as a REAL number) or REAL. For example, (4, 8, 5) / 2
results in (2, 4, 2.5).

If the divisor is zero, the program is aborted with the ��Divide by zero�� error.

• An INTEGER or REAL divided by a VECTOR causes the INTEGER (treated as a REAL
number) or REAL to be multiplied by the reciprocal of each element of the VECTOR, thus
producing a new VECTOR. For example, 3.5 / VEC(7.0,8.0,9.0) results in (0.5,0.4375,0.38889).

If any of the elements of the VECTOR are zero, the program is aborted with the ��Divide by
zero�� error.

• The cross product operator (#) produces a VECTOR that is normal to the two operands in the
direction indicated by the right hand rule and with a magnitude equal to the product of the
magnitudes of the two vectors and SIN(Θ), whereΘis the angle between the two vectors. For
example, VEC(3.0,4.0,5.0) # VEC(6.0,7.0,8.0) results in (-3.0, 6.0, -3.0).

If either vector is zero, or the vectors are exactly parallel, an error occurs.

• The inner product operator (@) results in a REAL number that is the sum of the products of the
corresponding elements of the two vectors. For example, VEC(3.0,4.0,5.0) @ VEC(6.0,7.0,8.0)
results in 86.0.

• If the result of any of the above operations is a component of a VECTOR with a magnitude too
large for a KAREL REAL number, the program is aborted with the ��Real overflow�� error.

Table 3�10 lists additional examples of vector operations.

Table 3�10. Examples of Vector Operations

EXPRESSION RESULT

VEC(3.0,7.0,6.0) + VEC(12.6,3.2,7.5) (15.6,10.2,13.5)

VEC(7.6,9.0,7.0) - VEC(14.0,3.5,17.0) (-6.4,5.5,-10)

3�13

3. USE OF OPERATORS MARAIKLRF06031E REV A

Table 3�10. Examples of Vector Operations (Cont�d)

EXPRESSION RESULT

4.5 * VEC(3.2,7.6,4.0) (14.4,34.2,18.0)

VEC(12.7,2.0,8.3) * 7.6 (96.52,15.2,63.08)

VEC(17.3,1.5,0.23) /2 (8.65,0.75,0.115)

String Operations

The following rules apply to STRING operations:

• You can specify that a KAREL routine returns a STRING as its value. See Specifying a KAREL
Routine to Return a STRING Value .

Specifying a KAREL Routine to Return a STRING Value
ROUTINE name(parameter_list): STRING

declares name as returning a STRING value

• An operator can be used between strings to indicate the concatenation of the strings. See Using an
Operator to Concatenate Strings .

Using an Operator to Concatenate Strings
string_1 = string_2 + string_3 + ’ABC’ + ’DEF’

• STRING expressions can be used in WRITE statements. See Using a STRING Expression in a
WRITE Statement .

Using a STRING Expression in a WRITE Statement
WRITE(CHR(13) + string_1 + string_2)

writes a single string consisting of a return
character followed by string_1 and string_2

• During STRING assignment, the string will be truncated if the target string is not large enough to
hold the same string.

3�14

MARAIKLRF06031E REV A 3. USE OF OPERATORS

• You can compare or extract a character from a string. For example if string_1 = ‘ABCDE’ . Your
output would be ‘D’ . See String Comparison .

String Comparison
IF SUB_STR(string_1, 4, 1) = ’D’ THEN

• You can build a string from another string. See Building a String from Another String .

Building a String from Another String
ROUTINE toupper(p_char: INTEGER): STRING
BEGIN

IF (p_char > 96) AND (p_char < 123) THEN
p_char = p_char - 32

ENDIF
RETURN (CHR(p_char))

END toupper

BEGIN
WRITE OUTPUT (’Enter string: ’)
READ INPUT (string_1)
string_2 = ’’
FOR idx = 1 TO STR_LEN(string_1) DO
string_2 = string_2 + toupper(ORD(string_1, idx))

ENDFOR

3�15

Chapter 4
MOTION AND PROGRAM CONTROL

Contents

Chapter 4 MOTION AND PROGRAM CONTROL ... 4�1
4.1 MOTION CONTROL STATEMENTS .. 4�2

4.1.1 Extended Axis Motion ... 4�4
4.1.2 Group Motion .. 4�4
4.2 PROGRAM CONTROL STRUCTURES ... 4�5

4.2.1 Alternation Control Structures .. 4�5
4.2.2 Looping Control Statements ... 4�6
4.2.3 Unconditional Branch Statement .. 4�6
4.2.4 Execution Control Statements .. 4�6
4.2.5 Condition Handlers ... 4�7

4�1

4. MOTION AND PROGRAM CONTROL MARAIKLRF06031E REV A

The KAREL language provides several motion control statements that direct the movement of the
tool center point or the auxiliary axes. Optional clauses used in conjunction with the motion control
statements specify motion characteristics, intermediate positions, and conditions to be monitored.

Program control structures define the flow of execution within a program or routine and include
alternation, looping, and unconditional branching as well as execution control.

4.1 MOTION CONTROL STATEMENTS

In robotic applications, motion is the movement of the tool center point (TCP) from an initial position
to a desired destination position. Some applications also involve the movement of other objects, such
as auxiliary axes. Auxiliary axes can be set up either in the same group as robot axes or a separate
group. If auxiliary axes are set up in the robot group, they are called extended axes.

The MOVE statement directs the motion of the TCP, as well as any auxiliary axes, in a KAREL
program. A MOVE statement specifies the object and the destination of that object.

This chapter briefly lists the MOVE statements that are available in KAREL. For a detailed description
of each statement, action, or clause listed in this section, refer to .Appendix A.� A more in-depth view
of the motion environment is provided in Chapter 8 MOTION .

The following MOVE statements are available in KAREL:

• MOVE TO - specifies the destination of the move when the destination is TO a particular
position or individual path node. Auxiliary axes can be the object of the move if the destination
position is specified as the extended position type, ��XYZWPREXT.��

• MOVE ALONG - causes motion along the nodes defined for a PATH variable. The object being
moved (TCP and/or AUX) depends on the data stored in each path node or a subset can be
specified in the MOVE statement.

• MOVE NEAR - allows you to specify a destination that is NEAR a position value, using a
REAL value for the offset distance. The specified offset is measured in millimeters along the
negative z-axis of the specified POSITION.

• MOVE RELATIVE - allows you to specify a destination that is RELATIVE to the current
location of the group of axes using a VECTOR value for the offset distance. The (x, y, z)
components of the offset VECTOR value are in the user coordinate system ($UFRAME).

• MOVE AWAY - allows you to specify a destination that is AWAY from the current position of
the group of axes, using a REAL value for the offset distance. The specified offset is measured in
millimeters along the negative z-axis of the tool coordinate system.

• MOVE ABOUT - allows you to specify a destination that is an angular distance about a specified
vector from the current position of a group of axes. The angular distance of the destination of a
group of axes is measured from the current position of a group of axes ABOUT the specified
VECTOR value in tool coordinates by the specified angle (in degrees).

4�2

MARAIKLRF06031E REV A 4. MOTION AND PROGRAM CONTROL

• MOVE AXIS - allows you to specify a particular robot or auxiliary axis as the object being
moved BY a distance that is specified as a REAL value.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is
set up for more than one motion group, all motion must be initiated
from a teach pendant program. Otherwise, the robot could move
unexpectedly, personnel could be injured, and equipment could be
damaged.

Optional clauses included in a MOVE statement can specify motion characteristics for a single move,
intermediate positions for circular moves, and conditions to be monitored during a move. KAREL
provides the following clauses to be used for these purposes:

• WITH Clause - allows you to specify a temporary value for a system variable. This temporary
value is used by the motion environment while executing the move in which the WITH clause
is used. It remains in effect until the move statement, containing the WITH clause, is done
executing. At that time, the temporary value ceases to exist.

• VIA Clause - specifies a VIA position for moves that use circular interpolation. The VIA
position is used to define the circular arc between the initial position and the destination of a
MOVE TO motion.

• NOWAIT Clause - allows the interpreter to continue program execution beyond the current
motion statement while the motion environment carries out the motion.

• Local Condition Handler Clause - specifies local condition handlers to be defined at the end
of a MOVE statement. Each local condition handler takes effect when the motion starts and is
purged either when the conditions are satisfied and the actions have been taken or when the
motion interval is complete.

The following KAREL statements and condition handler actions terminate the motion but have no
effect on program execution.

• CANCEL - causes any motion in progress and any pending motion to be canceled.

• STOP - causes the robot and auxiliary axes to decelerate smoothly to a stop but the remainder
of the motion command is not lost. Instead, a record of the motion is saved and the motion
command can be resumed.

• HOLD - causes all robot and auxiliary axes to decelerate to a stop. HOLD also prevents motion
from being started or resumed by any KAREL motion statement or condition handler action
other than UNHOLD.

See Also: Appendix A for more detailed information on each motion instruction, Chapter 6
CONDITION HANDLERS , for more information on local condition handlers, Chapter 8 MOTION

4�3

4. MOTION AND PROGRAM CONTROL MARAIKLRF06031E REV A

4.1.1 Extended Axis Motion

Auxiliary axes can be set up either in the same group as the robot axes or in a separate group. If
the auxiliary axes are set up as part of the robot axes group, they are called extended axes. If the
auxiliary axes are separate from the robot axes group, the motion becomes group motion. Section
4.1.2 contains more information about group motion.

Since extended axes are in the same group as robot axes, a kinematics relationship needs to be
established. Three types of kinematics relationships can be specified for any extended axis: integrated
rail, swing rotary axis, and no kinematics. Because extended axis are in the same group as the robot
axis, they are usually moved, started, and stopped at the same time as the robot axis. To control
extended axis motion in KAREL, the ��XYZWPREXT�� position type is used. All MOVE statements
described in Section 4.1 are supported for extended axes.

4.1.2 Group Motion

Group motion refers to the ability of moving several groups of axes at the same time in an overlapping
manner. Group motion has the following characteristics:

• A group is referred to as a mutually exclusive collection of axes.

• Up to a maximum of three groups can be defined. Group numbers will be designated as 1, 2, and 3.
Each group can support up to nine axes. The total number of axes per controller cannot exceed 16.

• Group definitions are set by the user only during a controlled start.

• Within a group, the motion of all axes will start and stop at the same time.

• Among groups, motions are independent of each other.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is
set up for more than one motion group, all motion must be initiated
from a teach pendant program. Otherwise, the robot could move
unexpectedly, personnel could be injured, and equipment could be
damaged.

• A group is kinematic if there is a correspondence between the position in Cartesian space and
the joint angles.

4�4

MARAIKLRF06031E REV A 4. MOTION AND PROGRAM CONTROL

Caution

If you add a second motion group to a system, and there are KAREL
programs currently loaded that reference the $xxx_GRP system variables,
all of these programs must be reloaded to reference these variables properly.

4.2 PROGRAM CONTROL STRUCTURES

Program control structures can be used to define the flow of execution within a program or routine.
By default, execution starts with the first statement following the BEGIN statement and proceeds
sequentially until the END statement (or a RETURN statement) is encountered. The following control
structures are available in KAREL:

• Alternation

• Looping

• Unconditional Branching

• Execution Control

• Condition Handlers

For detailed information on each type of control structure, refer to Appendix A, ��KAREL Language
Alphabetical Description.��

4.2.1 Alternation Control Structures

An alternation control structure allows you to include alternative sequences of statements in a program
or routine. Each alternative can consist of several statements.

During program execution, an alternative is selected based on the value of one or more data items.
Program execution then proceeds through the selected sequence of statements.

Two types of alternation control structures can be used:

• IF Statement - provides a means of specifying one of two alternatives based on the value of
a BOOLEAN expression.

• SELECT Statement - used when a choice is to be made between several alternatives. An
alternative is chosen depending on the value of the specified INTEGER expression.

See Also: IF...THEN Statement, Appendix A, SELECT Statement, Appendix A.

4�5

4. MOTION AND PROGRAM CONTROL MARAIKLRF06031E REV A

4.2.2 Looping Control Statements

A looping control structure allows you to specify that a set of statements be repeated an arbitrary
number of times, based on the value of data items in the program. KAREL supports three looping
control structures:

• The FOR statement - used when a set of statements is to be executed a specified number of
times. The number of times is determined by INTEGER data items in the FOR statement. At
the beginning of the FOR loop, the initial value in the range is assigned to an INTEGER counter
variable. Each time the cycle is repeated, the counter is reevaluated.

• The REPEAT statement - allows execution of a sequence of statements to continue as long as
some BOOLEAN expression remains FALSE. The sequence of executable statements within the
REPEAT statement will always be executed once.

• The WHILE statement - used when an action is to be executed as long as a BOOLEAN
expression remains TRUE. The boolean expression is tested at the start of each iteration, so it is
possible for the action to be executed zero times.

See Also: FOR Statement, Appendix A, REPEAT Statement, Appendix A, WHILE Statement,
Appendix A

4.2.3 Unconditional Branch Statement

Unconditional branching allows you to use a GO TO Statement to transfer control from one place
in a program to a specified label in another area of the program, without being dependent upon a
condition or BOOLEAN expression.

Warning

Never include a GO TO Statement into or out of a FOR loop. The program
might be aborted with a "Run time stack overflow" error.

See Also: GO TO Statement, Appendix A.

4.2.4 Execution Control Statements

The KAREL language provides the following program control statements, which are used to terminate
or suspend program execution:

• ABORT - causes the execution of the program, including any motion in progress, to be
terminated. The program cannot be continued after being aborted.

• DELAY - causes execution to be suspended for a specified time, expressed in milliseconds.

4�6

MARAIKLRF06031E REV A 4. MOTION AND PROGRAM CONTROL

• PAUSE - causes execution to be suspended until a CONTINUE operation is executed.

• WAIT FOR - causes execution to be suspended until a specified condition or list of conditions is
satisfied.

See Also: ABORT Statement, DELAY Statement, PAUSE Statement, WAIT FOR Statement, all
inAppendix A, Chapter 6 CONDITION HANDLERS

4.2.5 Condition Handlers

A condition handler defines a series of actions which are to be performed whenever a specified
condition is satisfied. Once defined, a condition handler can be ENABLED or DISABLED.

4�7

Chapter 5
ROUTINES

Contents

Chapter 5 ROUTINES ... 5�1
5.1 ROUTINE EXECUTION .. 5�2

5.1.1 Declaring Routines ... 5�2
5.1.2 Invoking Routines ... 5�5
5.1.3 Returning from Routines .. 5�7
5.1.4 Scope of Variables .. 5�8
5.1.5 Parameters and Arguments .. 5�9
5.1.6 Stack Usage ... 5�13
5.2 BUILT- IN ROUTINES .. 5�16

5�1

5. ROUTINES MARAIKLRF06031E REV A

Routines, similar in structure to a program, provide a method of modularizing KAREL programs.
Routines can include VAR and/or CONST declarations and executable statements. Unlike programs,
however, a routine must be declared within an upper case program, and cannot include other routine
declarations.

KAREL supports two types of routines:

• Procedure Routines - do not return a value

• Function Routines - return a value

KAREL routines can be predefined routines called built-in routines or they can be user-defined.

The following rules apply to all KAREL routines:

• Parameters can be included in the declaration of a routine. This allows you to pass data to the
routine at the time it is called, and return the results to the calling program.

• Routines can be called or invoked:

� By the program in which they are declared

� By any routine contained in that program

� With declarations by another program, refer to Section 5.1.1

5.1 ROUTINE EXECUTION

This section explains the execution of procedure and function routines:

• Declaring routines

• Invoking routines

• Returning from routines

• Scope of variables

• Parameters and Arguments

5.1.1 Declaring Routines

The following rules apply to routine declarations:

• A routine cannot be declared in another routine.

• The ROUTINE statement is used to declare both procedure and function routines.

• Both procedure and function routines must be declared before they are called.

5�2

MARAIKLRF06031E REV A 5. ROUTINES

• Routines that are local to the program are completely defined in the program. Declarations
of local routines include:

� The ROUTINE statement

� Any VAR and/or CONST declarations for the routine

� The executable statements of the routine

• While the VAR and CONST sections in a routine are identical in syntax to those in a program, the
following restrictions apply:

� PATH, FILE, and vision data types cannot be specified.

� FROM clauses are not allowed.

� IN clauses are not allowed.

• Routines that are local to the program can be defined after the executable section if the routine
is declared using a FROM clause with the same program name. The parameters should only be
defined once. See Defining Local Routines Using a FROM Clause .

Defining Local Routines Using a FROM Clause
PROGRAM funct_lib

ROUTINE done_yet(x: REAL; s1, s2: STRING): BOOLEAN FROM funct_lib
BEGIN
IF done_yet(3.2, ’T’, ’’)
--
END funct_lib
ROUTINE done_yet
BEGIN
--
END done_yet

• Routines that are external to the program are declared in one program but defined in another.

� Declarations of external routines include only the ROUTINE statement and a FROM clause.

� The FROM clause identifies the name of the program in which the routine is defined.

� The routine must be defined local to the program named in the FROM clause.

• You can include a list of parameters in the declaration of a routine. A parameter list is an optional
part of the ROUTINE statement.

• If a routine is external to the program, the names in the parameter list are of no significance but
must be included to specify the parameters. If there are no parameters, the parentheses used to
enclose the list must be omitted for both external and local routines.

The examples in Local and External Procedure Declarations illustrate local and external procedure
routine declarations.

5�3

5. ROUTINES MARAIKLRF06031E REV A

Local and External Procedure Declarations
PROGRAM procs_lib

ROUTINE wait_a_bit
--local procedure, no parameters

BEGIN
DELAY 20

END wait_a_bit

ROUTINE move_there(p: POSITION)
--local procedure, one parameter

BEGIN
MOVE TO p --reference to parameter p

END move_there

ROUTINE calc_dist(p1,p2: POSITION; dist: REAL)
FROM math_lib
--external procedure defined in math_lib.kL

The example in Function Declarations illustrate local and external function routine declarations.

Function Declarations
PROGRAM funct_lib

ROUTINE done_yet(x: REAL; s1, s2 :STRING): BOOLEAN
FROM bool_lib

--external function routine defined in bool_lib.kl
--returns a BOOLEAN value

ROUTINE xy_dist(x1,y1,x2,y2: REAL): REAL
-local function, returns a REAL value
VAR

sum_square: REAL --dynamic local variable
dx,dy: REAL --dynamic local variables

BEGIN
dx = x2-x1 --references parameters x2 and x1
dy = y2-y1 --references parameters y2 and y1
sum_square = dx * dx + dy * dy
RETURN(SQRT(sum_square)) --SQRT is a built-in

END xy_dist

BEGIN
END funct_lib

See Also: FROM Clause, Appendix A, ROUTINE Statement, Appendix A.

5�4

MARAIKLRF06031E REV A 5. ROUTINES

5.1.2 Invoking Routines

Routines that are declared in a program can be called within the executable section of the program, or
within the executable section of any routine contained in the program. Calling a routine causes the
routine to be invoked. A routine is invoked according to the following procedure:

• When a routine is invoked, control of execution passes to the routine.

• After execution of a procedure is finished, control returns to the next statement after the point
where the procedure was called.

• After execution of a function is finished, control returns to the assignment statement where the
function was called.

The following rules apply when invoking procedure and function routines:

• Procedure and function routines are both called with the routine name followed by an argument
for each parameter that has been declared for the routine.

• The argument list is enclosed in parentheses.

• Routines without parameters are called with only the routine name.

• A procedure is invoked as though it were a statement. Consequently, a procedure call constitutes
a complete executable statement.

Procedure Calls shows the declarations for two procedures followed by the procedure calls to invoke
them.

Procedure Calls
ROUTINE wait_a_bit FROM proc_lib

--external procedure with no parameters

ROUTINE calc_dist(p1,p2: POSITION; dist: REAL)&
FROM math_lib

--external procedure with three parameters
BEGIN
...
wait_a_bit --invokes wait_a_bit procedure
calc_dist (start_pos, end_pos, distance)

--invokes calc_dist using three arguments for
--the three declared parameters

• Because a function returns a value, a function call must appear as part or all of an expression.

• When control returns to the calling program or routine, execution of the statement containing the
function call is resumed using the returned value.

Function Calls shows the declarations for two functions followed by the function calls to invoke them.

5�5

5. ROUTINES MARAIKLRF06031E REV A

Function Calls
ROUTINE error_check : BOOLEAN FROM error_prog
--external function with no parameters returns a BOOLEAN value

ROUTINE distance(p1, p2: POSITION) : REAL &
FROM funct_lib
--external function with two parameters returns a REAL value
BEGIN --Main program
--the function error_check is invoked and returns a BOOLEAN
--expression in the IF statement

IF error_check THEN
...
ENDIF
travel_time = distance(prev_pos, next_pos)/current_spd

--the function distance is invoked as part of an expression in
--an assignment statement

• Routines can call other routines as long as the other routine is declared in the program containing
the initial routine. For example, if a program named master_prog contains a routine named
call_proc , that routine can call any routine that is declared in the program, master_prog .

• A routine that calls itself is said to be recursive and is allowed in KAREL. For example, the
routine factorial , shown in Recursive Function , calls itself to calculate a factorial value.

Recursive Function
ROUTINE factorial(n: INTEGER) : INTEGER
--calculates the factorial value of the integer n
BEGIN
IF n = 0 THEN RETURN (1)
ELSE RETURN (n * factorial(n-1))

--recursive call to factorial
ENDIF

END factorial

• The only constraint on the depth of routine calling is the use of the KAREL stack , an area used
for storage of temporary and local variables and for parameters. Routine calls cause information
to be placed in memory on the stack. When the RETURN or END statement is executed in the
routine, this information is taken off of the stack. If too many routine calls are made without this
information being removed from the stack, the program will run out of stack space.

See Also: Section 5.1.6 for information on how much space is used on the stack for routine calls

5�6

MARAIKLRF06031E REV A 5. ROUTINES

5.1.3 Returning from Routines

The RETURN statement is used in a routine to restore execution control from a routine to the
calling routine or program.

The following rules apply when returning from a routine:

• In a procedure, the RETURN statement cannot include a value.

• If no RETURN statement is executed, the END statement restores control to the calling program
or routine.

Procedure RETURN Statements illustrates some examples of using the RETURN statement in a
procedure.

Procedure RETURN Statements
ROUTINE gun_on (error_flag: INTEGER)
--performs some operation while a "gun" is turned on
--returns from different statements depending on what,
--if any, error occurs.

VAR gun: INTEGER
BEGIN
IF error_flag = 1 THEN RETURN
--abnormal exit from routine, returns before
--executing WHILE loop
ENDIF
WHILE DIN[gun] DO

--continues until gun is off
...

IF error_flag = 2 THEN RETURN
--abnormal exit from routine, returns from
--within WHILE loop

ENDIF
ENDWHILE --gun is off
END gun_on --normal exit from routine

• In a function, the RETURN statement must specify a value to be passed back when control
is restored to the calling routine or program.

• The function routine can return any data type except

� FILE

� PATH

� Vision types

• If the return type is an ARRAY, you cannot specify a size. This allows an ARRAY of any length
to be returned by the function. The returned ARRAY, from an ARRAY valued function, can
be used only in a direct assignment statement. ARRAY valued functions cannot be used as

5�7

5. ROUTINES MARAIKLRF06031E REV A

parameters to other routines. Refer to Correct Passage of an ARRAY , for an example of an
ARRAY passed between two function routines.

• If no value is provided in the RETURN statement of a function, a translator error is generated.

• If no RETURN statement is executed in a function, execution of the function terminates when the
END statement is reached. No value can be passed back to the calling routine or program, so
the program aborts with an error.

Function RETURN Statements illustrates some examples using the RETURN statement in function
routines.

Function RETURN Statements
ROUTINE index_value (table: ARRAY of INTEGER;

table_size: INTEGER): INTEGER
--Returns index value of FOR loop (i) depending on
--condition of IF statement. Returns 0 in cases where
--IF condition is not satisfied.
VAR i: INTEGER
BEGIN
FOR i = 1 TO table_size DO

IF table[i] = 0 THEN RETURN (i) --returns index
ENDIF
ENDFOR
RETURN (0) --returns 0

END index_value

ROUTINE compare (test_var_1: INTEGER;
test_var_2: INTEGER): BOOLEAN

--Returns TRUE value in cases where IF test is
--satisfied. Otherwise, returns FALSE value.
BEGIN
IF test_var_1 = test_var_2 THEN

RETURN (TRUE) --returns TRUE
ELSE

RETURN (FALSE) --returns FALSE
ENDIF

END compare

See Also: ROUTINE Statement, Appendix A.

5.1.4 Scope of Variables

The scope of a variable declaration can be

• Global

5�8

MARAIKLRF06031E REV A 5. ROUTINES

• Local

Global Declarations and Definitions

The following rules apply to global declarations and definitions:

• Global declarations are recognized throughout a program.

• Global declarations are referred to as static because they are given a memory location that does
not change during program execution, even if the program is cleared or reloaded (unless the
variables themselves are cleared.)

• Declarations made in the main program, as well as predefined identifiers, are global.

• The scope rules for predefined and user-defined routines, types, variables, constants, and labels
are as follows:

� All predefined identifiers are recognized throughout the entire program.

� Routines, types, variables, and constants declared in the declaration section of a program are
recognized throughout the entire program, including routines that are in the program.

Local Declarations and Definitions

The following rules apply to local declarations and definitions:

• Local declarations are recognized only within the routines where they are declared.

• Local data is created when a routine is invoked. Local data is destroyed when the routine finishes
executing and returns.

• The scope rules for predefined and user-defined routines, variables, constants, and labels are
as follows:

� Variables and constants, declared in the declaration section of a routine, and parameters,
declared in the routine parameter list, are recognized only in that routine.

� Labels defined in a program (not in a routine of the program) are local to the body of the
program and are not recognized within any routines of the program.

� Labels defined in a routine are local to the routine and are recognized only in that routine.

• Types cannot be declared in a routine, so are never local.

5.1.5 Parameters and Arguments

Identifiers that are used in the parameter list of a routine declaration are referred to as parameters.
A parameter declared in a routine can be referenced throughout the routine. Parameters are used to
pass data between the calling program and the routine. The data supplied in a call, referred to as
arguments, can affect the way in which the routine is executed.

The following rules apply to the parameter list of a routine call:

5�9

5. ROUTINES MARAIKLRF06031E REV A

• As part of the routine call, you must supply a data item, referred to as an argument, for each
parameter in the routine declaration.

• An argument can be a variable, constant, or expression. There must be one argument
corresponding to each parameter.

• Arguments must be of the same data type as the parameters to which they correspond, with
three exceptions:

� An INTEGER argument can be passed to a REAL parameter. In this case, the INTEGER
value is treated as type REAL, and the REAL equivalent of the INTEGER is passed by
value to the routine.

� A BYTE or SHORT argument can be passed by value to an INTEGER or REAL parameter.

� Any positional types can be passed to any other positional type. If they are being passed
to a user-defined routine, the argument positional type is converted and passed by value to
the parameter type.

� ARRAY or STRING arguments of any length can be passed to parameters of the same
data type.

Corresponding Parameters and Arguments shows an example of a routine declaration and three
calls to that routine.

Corresponding Parameters and Arguments
PROGRAM params

VAR
long_string: STRING[10]; short_string: STRING[5]
exact_dist: REAL; rough_dist: INTEGER

ROUTINE label_dist (strg: STRING; dist: REAL) &
FROM procs_lib

BEGIN
...

label_dist(long_string, exact_dist)
--long_string corresponds to strg;
--exact_dist corresponds to dist

label_dist(short_string, rough_dist)
--short_string, of a different length,
--corresponds to strg; rough_dist, an
--INTEGER, corresponds to REAL dist

label_dist(’new distance’, (exact_dist * .75))
--literal constant and REAL expression
--arguments correspond to the parameters

END params

• When the routine is invoked, the argument used in the routine call is passed to the corresponding
parameter. Two methods are used for passing arguments to parameters:

� Passing Arguments By Reference

5�10

MARAIKLRF06031E REV A 5. ROUTINES

If an argument is passed by reference, the corresponding parameter shares the same memory
location as the argument. Therefore, changing the value of the parameter changes the value
of the corresponding argument.

� Passing Arguments By Value

If an argument is passed by value, a temporary copy of the argument is passed to the routine.
The corresponding parameter uses this temporary copy. Changing the parameter does not
affect the original argument.

• Constant and expression arguments are always passed to the routine by value. Variables are
normally passed by reference. The following variable arguments, however, are passed by value:

� Port array variables

� INTEGER variables passed to REAL parameters

� BYTE and SHORT arguments passed to INTEGER or REAL parameters

� System variables with read only (RO) access

� Positional parameters that need to be converted

• While variable arguments are normally passed by reference, you can pass them by value by
enclosing the variable identifier in parentheses. The parentheses, in effect, turn the variable
into an expression.

• PATH, FILE, and vision variables can not be passed by value. ARRAY elements (indexed form
of an ARRAY variable) can be passed by value, but entire ARRAY variables cannot.

Passing Variable Arguments shows a routine that affects the argument being passed to it differently
depending on how the variable argument is passed.

Passing Variable Arguments
PROGRAM reference

VAR arg : INTEGER
ROUTINE test(param : INTEGER)
BEGIN

param = param * 3
WRITE (’value of param:’, param, CR)

END test
BEGIN

arg = 5
test((arg)) --arg passed to param by value
WRITE(’value of arg:’, arg, CR)
test(arg) --arg passed to param by reference
WRITE(’value of arg:’, arg, CR)

END reference

The output from the program in Passing Variable Arguments is as follows:
value of param: 15
value of arg: 5

5�11

5. ROUTINES MARAIKLRF06031E REV A

value of param: 15
value of arg: 15

If the routine calls from Passing Variable Arguments were made in reverse order, first passing arg
by reference using "test(arg)" and then passing it by value using "test ((arg))," the output would
be affected as follows:
value of param: 15
value of arg: 15
value of param: 45
value of arg: 15

• To pass a variable as a parameter to a KAREL routine you can use one of two methods:

� You can specify the name of the variable in the parameter list. For example,
other_rtn(param_var) passes the variable param_var to the routine other_rtn. To write
this statement, you have to know the name of the variable to be passed.

� You can use BYNAME. The BYNAME feature allows a program to pass as a parameter to a
routine a variable whose name is contained in a string. For example, if the string variables
prog_name and var_name contain the name of a program and variable the operator has
entered, this variable is passed to a routine using this syntax:

other_rtn(BYNAME(prog_name,var_name, entry))

Refer to Appendix A for more information about BYNAME.

• If a function routine returns an ARRAY, a call to this function cannot be used as an argument to
another routine. If an incorrect pass is attempted, a translation error is detected.

Correct Passage of an ARRAY shows the correct use of an ARRAY passed between two function
routines.

Correct Passage of an ARRAY
PROGRAM correct

VAR a : ARRAY[8] of INTEGER

ROUTINE rtn_ary : ARRAY of INTEGER FROM util_prog

ROUTINE print_ary(arg : ARRAY of INTEGER)
VAR i : INTEGER

BEGIN
FOR i = 1 to ARRAY_LEN(arg) DO

WRITE(arg[i],cr)
ENDFOR

END print_ary
BEGIN

a = rtn_ary
print_ary(a)

END correct

5�12

MARAIKLRF06031E REV A 5. ROUTINES

Incorrect Passage of an ARRAY shows the incorrect use of an ARRAY passed between two function
routines.

Incorrect Passage of an ARRAY
PROGRAM wrong

ROUTINE rtn_ary : ARRAY of INTEGER FROM util_prog

ROUTINE print_ary(arg : ARRAY of INTEGER)
VAR i : INTEGER
BEGIN

FOR i = 1 to ARRAY_LEN(arg) DO
WRITE(arg[i],cr)

ENDFOR
END print_ary

BEGIN
print_ary(rtn_ary)

END wrong

See Also: ARRAY_LEN Built-In Function, Appendix A, STR_LEN Built-In Function, Appendix
A, Appendix E, "Syntax Diagrams

5.1.6 Stack Usage

When a program is executed, a stack of 300 words is allocated unless you specify a stack size. The
stack is allocated from available user RAM.

Stack usage can be calculated as follows:

• Each call (or function reference) uses at least five words of stack.

• In addition, for each parameter and local variable in the routine, additional space on the stack is
used, depending on the variable or parameter type as shown in Table 5�1 .

Table 5�1. Stack Usage

Type Parameter Passed
by Reference

Parameter Passed
by Value

Local Variable

BOOLEAN

ARRAY OF BOOLEAN

1 2

not allowed

1

1 + array size

ARRAY OF BYTE 1 not allowed 1 + (array size)/4

5�13

5. ROUTINES MARAIKLRF06031E REV A

Table 5�1. Stack Usage (Cont�d)

Type Parameter Passed
by Reference

Parameter Passed
by Value

Local Variable

CAM_SETUP

ARRAY OF CAM_SETUP

1 not allowed

not allowed

not allowed

not allowed

COMMON_ASSOC

ARRAY OF COMMON_ASSOC

1 2

not allowed

1

1 + array size

CONFIG

ARRAY OF CONFIG

1 2

not allowed

1

1 + array size

GROUP_ASSOC

ARRAY OF GROUP_ASSOC

1 2

not allowed

1

1 + array size

INTEGER

ARRAY OF INTEGER

1 2

not allowed

1

1 + array size

FILE

ARRAY OF FILE

1 not allowed

not allowed

not allowed

not allowed

JOINTPOS

ARRAY OF JOINTPOS

2

1

12

not allowed

10

1 + 10 * array size

JOINTPOS1

ARRAY OF JOINTPOS1

2

1

4

not allowed

2

1 + 2 * array size

JOINTPOS2

ARRAY OF JOINTPOS2

2

1

5

not allowed

3

1 + 3 * array size

5�14

MARAIKLRF06031E REV A 5. ROUTINES

Table 5�1. Stack Usage (Cont�d)

Type Parameter Passed
by Reference

Parameter Passed
by Value

Local Variable

JOINTPOS3

ARRAY OF JOINTPOS3

2

1

6

not allowed

4

1 + 4 * array size

JOINTPOS4

ARRAY OF JOINTPOS4

2

1

7

not allowed

5

1 + 5 * array size

JOINTPOS5

ARRAY OF JOINTPOS5

2

1

8

not allowed

6

1 + 6 * array size

JOINTPOS6

ARRAY OF JOINTPOS6

2

1

9

not allowed

7

1 + 7 * array size

JOINTPOS7

ARRAY OF JOINTPOS7

2

1

10

not allowed

8

1 + 8 * array size

JOINTPOS8

ARRAY OF JOINTPOS8

2

1

11

not allowed

9

1 + 9 * array size

JOINTPOS9

ARRAY OF JOINTPOS9

2

1

12

not allowed

10

1 + 10 * array size

MODEL

ARRAY OF MODEL

1

1

not allowed

not allowed

not allowed

not allowed

PATH 2 not allowed not allowed

POSITION

ARRAY OF POSITION

2

1

16

not allowed

14

1 + 14 * array size

5�15

5. ROUTINES MARAIKLRF06031E REV A

Table 5�1. Stack Usage (Cont�d)

Type Parameter Passed
by Reference

Parameter Passed
by Value

Local Variable

REAL

ARRAY OF REAL

1

1

2

not allowed

1

1 + array size

ARRAY OF SHORT 1 not allowed 1 + (array size)/2

STRING

ARRAY OF STRING

2

1

2 + (string
length+2)/4not
allowed

(string length+2)/4

1+((string length+2)

*array size)/4

VECTOR

ARRAY OF VECTOR

1

1

4

not allowed

3

1 + 3 * array size

VIS_PROCESS

ARRAY OF VIS_PROCESS

1

1

not allowed

not allowed

not allowed

not allowed

XYZWPR

ARRAY OF XYZWPR

2

1

10

not allowed

8

1 + 8 * array size

XYZWPREXT

ARRAY OF XYZWPREX

2

1

13

not allowed

11

1 + 11 * array size

ARRAY [m,n] OF some_type 1 not allowed m(ele size/4 * n + 1)+1

ARRAY [l,m,n] OF some_type 1 not allowed l(m(ele size/4 * n + 1)+1)+1

5.2 BUILT- IN ROUTINES

The KAREL language includes predefined routines referred to as KAREL built-in routines, or
built-ins. Predefined routines can be either procedure or function built-ins. They are provided as a
programming convenience and perform commonly needed services.

5�16

MARAIKLRF06031E REV A 5. ROUTINES

Many of the built-ins return a status parameter that signifies an error if not equal to 0. The error
returned can be any of the error codes defined in the FANUC Robotics SYSTEM R-J3iB Controller
HandlingTool Setup and Operations Manual . These errors can be posted to the error log and displayed
on the error line by calling the POST_ERR built-in routine with the returned status parameter.

Table 5�2 is a summary list of all the predefined built-in routines included in the KAREL language. A
detailed description of all the KAREL built-in routines is provided in Appendix A.

See Also: Appendix A, which lists optional KAREL built-ins and where they are documented.

Table 5�2. KAREL Built-In Routine Summary

Group Identifier

Byname (BYNAM) CALL_PROG

CALL_PROGLIN

CURR_PROG

FILE_LIST

PROG_LIST

VAR_INFO

VAR_LIST

Error Code
Handling (ERRS)

ERR_DATA POST_ERR

File and Device
Operation (FDEV)

COPY_FILE

DELETE_FILE

DISMOUNT_DEV

FORMAT_DEV

MOUNT_DEV

MOVE_FILE

PRINT_FILE

PURGE_DEV

RENAME_FILE

Serial I/O, File
Usage (FLBT)

BYTES_AHEAD

BYTES_LEFT

CLR_IO_STAT

GET_FILE_POS

GET_PORT_ATR

IO_STATUS

SET_FILE_ATR

SET_FILE_POS

SET_PORT_ATR

VOL_SPACE

Process I/O Setup
(IOSETUP)

CLR_PORT_SIM

GET_PORT_ASG

GET_PORT_MOD

GET_PORT_SIM

IO_MOD_TYPE

SET_PORT_ASG

SET_PORT_MOD

SET_PORT_SIM

KCL Operation
(KCLOP)

KCL KCL_NO_WAIT KCL_STATUS

5�17

5. ROUTINES MARAIKLRF06031E REV A

Table 5�2. KAREL Built-In Routine Summary (Cont�d)

Group Identifier

Memory Operation
(MEMO)

CLEAR

CREATE_VAR

LOAD

LOAD_STATUS

RENAME_VAR

RENAME_VARS

SAVE

SAVE_DRAM

MIRROR (MIR) MIRROR

Motion and
Program Control
(MOTN)

CNCL_STP_MTN MOTION_CTL RESET

Multi-programming
(MULTI)

ABORT_TASK

CLEAR_SEMA

CONT_TASK

GET_TSK_INFO

LOCK_GROUP

PAUSE_TASK

PEND_SEMA

POST_SEMA

RUN_TASK

SEMA_COUNT

SET_TSK_ATTR

SET_TSK_NAME

UNLOCK_GROUP

Path Operation
(PATHOP)

APPEND_NODE

COPY_PATH

DELETE_NODE

INSERT_NODE

NODE_SIZE

PATH_LEN

Personal Computer
Communications
(PC)

ADD_BYNAME

PCADD_INT

PCADD_REALPC

ADD_STRINGPC

SEND_DATAPC

SEND_EVENTPC

Queue Manager
(PBQMGR)

APPEND_QUEUE

COPY_QUEUE

DELETE_QUEUE

GET_QUEUE

INIT_QUEUE

INSERT_QUEUE

MODIFY_QUEUE

5�18

MARAIKLRF06031E REV A 5. ROUTINES

Table 5�2. KAREL Built-In Routine Summary (Cont�d)

Group Identifier

Register Operation
(REGOPE)

CLR_POS_REG

GET_JPOS_REG

GET_POS_REG

GET_PREG_CMT

GET_REG_CMT

GET_REG

SET_INT_REG

SET_JPOS_REG

SET_POS_REG

SET_PREG_CMT

SET_REAL_REG

SET_REG_CMT

String Operation
(STRNG)

CNV_CONF_STR

CNV_INT_STR

CNV_REAL_STR

CNV_STR_CONF

CNV_STR_INT

CNV_STR_REAL

System (SYSTEM) ABS

ACOS

ARRAY_LEN

ASIN

ATAN2

BYNAME

CHR

CNV_JPOS_REL

CNV_REL_JPOS

COS

CURJPOS

CURPOS

EXP

FRAME

GET_VAR

IN_RANGE

INDEX

INV

J_IN_RANGE

LN

ORD

POS

ROUND

SET_PERCH

SET_VAR

SIN

SQRT

STR_LEN

SUB_STR

TAN

TRUNC

UNINIT

UNPOS

Time-of-Day
Operation (TIM)

CNV_STR_TIME

CNV_TIME_STR

GET_TIME

SET_TIME

5�19

5. ROUTINES MARAIKLRF06031E REV A

Table 5�2. KAREL Built-In Routine Summary (Cont�d)

Group Identifier

TPE Program (TPE) AVL_POS_NUME

CLOSE_TPE

COPY_TPE

CREATE_TP

DEL_INST_TPE

GET_ATTR_PRG

GET_JPOS_TPE

GET_POS_TPE

GET_POS_TYP

OPEN_TPE

SELECT_TPE

SET_ATTR_PRG

SET_EPOS_TPE

SET_JPOS_TPE

SET_POS_TPE

Translate (TRANS) TRANSLATE

User Interface (UIF) ACT_SCREEN

ADD_DICT

ATT_WINDOW_D

ATT_WINDOW_S

CHECK_DICT

CNC_DYN_DISB

CNC_DYN_DISE

CNC_DYN_DISI

CNC_DYN_DISP

CNC_DYN_DISR

CNC_DYN_DISS

DEF_SCREEN

DEF_WINDOW

DET_WINDOW

DISCTRL_ALPH

DISCTRL_LIST

FORCE_SPMENU

INI_DYN_DISB

INI_DYN_DISE

INI_DYN_DISI

INI_DYN_DISP

INI_DYN_DISR

INI_DYN_DISS

POP_KEY_RD

PUSH_KEY_RD

READ_DICT

READ_DICT_V

READ_KB

REMOVE_DICT

SET_CURSOR

SET_LANG

WRITE_DICT

WRITE_DICT_V

Vector (VECTR) APPROACH ORIENT

5�20

Chapter 6
CONDITION HANDLERS

Contents

Chapter 6 CONDITION HANDLERS .. 6�1
6.1 CONDITION HANDLER OPERATIONS ... 6�3

6.1.1 Global Condition Handlers .. 6�4
6.1.2 Local Condition Handlers ... 6�7
6.2 CONDITIONS ... 6�9

6.2.1 Port_Id Conditions ... 6�10
6.2.2 Relational Conditions .. 6�10
6.2.3 System and Program Event Conditions ... 6�12
6.2.4 Local Conditions .. 6�17
6.2.5 Synchronization of Local Condition Handlers ... 6�18
6.3 ACTIONS .. 6�20

6.3.1 Assignment Actions .. 6�21
6.3.2 Motion Related Actions .. 6�22
6.3.3 Routine Call Actions .. 6�23
6.3.4 Miscellaneous Actions ... 6�24

6�1

6. CONDITION HANDLERS MARAIKLRF06031E REV A

The condition handler feature of the KAREL language allows a program to respond to external
conditions more efficiently than conventional program control structures allow. Two kinds of
condition handlers are available in KAREL:

• Global - used to monitor and act on conditions throughout an entire program.

• Local - defined as part of a move statement and are in effect only while the motion is in progress.

These condition handlers allow specified conditions to be monitored in parallel with normal program
execution and, if the conditions occur, corresponding actions to be taken in response.

For a condition handler to be monitored, it must be defined first and then enabled. Disabling a
condition handler removes it from the group being scanned. Purging condition handlers deletes
their definition.

Table 6�1 lists the conditions that can be monitored by condition handlers.

Table 6�1. Conditions

GLOBAL OR LOCAL CONDITIONS LOCAL CONDITIONS

port_id[n] ERROR[n] AT NODE[n]

NOT port_id[n] EVENT[n] TIME t BEFORE NODE[n]

port_id[n]+ ABORT TIME t AFTER NODE[n]

port_id[n]- PAUSE

operand = operand CONTINUE

operand <> operand SEMAPHORE[n]

operand < operand

operand <= operand

operand > operand

operand >= operand

Table 6�2 lists the actions that can be taken.

6�2

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

Table 6�2. Actions

variable = expression NOABORT

port_id[n] = expression NOMESSAGE

STOP NOPAUSE

CANCEL ENABLE CONDITION[n]

RESUME DISABLE CONDITION[n]

HOLD PULSE DOUT[n] FOR t

UNHOLD UNPAUSE

routine_name ABORT

SIGNAL EVENT[n] CONTINUE

PAUSE

SIGNAL SEMAPHORE[n]

6.1 CONDITION HANDLER OPERATIONS

Global condition handler operations differ from those of local condition handlers. Table 6�3
summarizes condition handler operations.

6�3

6. CONDITION HANDLERS MARAIKLRF06031E REV A

Table 6�3. Condition Handler Operations

OPERATION GLOBAL CONDITION HANDLER LOCAL CONDITION HANDLER

Define CONDITION[n]:<WITH $SCAN_TIME = n>.

WHEN conds DO actions

ENDCONDITION

MOVE ... ,

WHEN conds DO actions

UNTIL conds

UNTIL conds THEN actions

ENDMOVE

Enable ENABLE CONDITION[n] (statement or
action)

Motion start, RESUME or UNHOLD

Disable DISABLE CONDITION[n] (statement or
action) or conditions satisfied

Motion STOP or HOLD

Purge PURGE CONDITION[n] (statement),
program terminated

Motion completed or canceled,
program terminated, or conditions
satisfied

6.1.1 Global Condition Handlers

Global condition handlers are defined by executing a CONDITION statement in the executable
section of a program. The definition specifies conditions/actions pairs. The following rules apply
to global condition handlers.

• Each global condition handler is referenced throughout the program by a specified number, from
1 to 1000. If a condition handler with the specified number was previously defined, it must be
purged before it is replaced by the new one.

• The conditions/action s pairs of a global condition handler are specified in the WHEN clauses
of a CONDITION statement. All WHEN clauses for a condition handler are enabled, disabled,
and purged together.

• The condition list represents a list of conditions to be monitored when the condition handler is
scanned.

• By default, each global condition handler is scanned at a rate based on the value of
$SCR.$cond_time. If the ��WITH $SCAN_TIME = n�� clause is used in a CONDITION
statement, the condition will be scanned roughly every ��n�� milliseconds. The actual interval
between the scans is determined as shown in Table 6�4 .

6�4

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

Table 6�4. Interval Between Global Condition Handler Scans

"n" Interval Between Scans

n <= $COND_TIME $COND_TIME

$COND_TIME < n <= (2 * $COND_TIME) (2 * $COND_TIME)

(2 * $COND_TIME) < n <= (4 * $COND_TIME) (4 * $COND_TIME)

(4 * $COND_TIME) < n <= (8 * $COND_TIME) (8 * $COND_TIME)

(8 * $COND_TIME) < n <= (16 * $COND_TIME) (16 * $COND_TIME)

(16 * $COND_TIME) < n <= (32 * $COND_TIME) (32 * $COND_TIME)

(32 * $COND_TIME) < n <= (64 * $COND_TIME) (64 * $COND_TIME)

(64 * $COND_TIME) < n <= (128 * $COND_TIME) (128 * $COND_TIME)

(128 * $COND_TIME) < n <= (256 * $COND_TIME) (256 * $COND_TIME)

(256 * $COND_TIME) < n (512 * $COND_TIME)

• Multiple conditions must all be separated by the AND operator or the OR operator. Mixing of
AND and OR is not allowed.

• If AND is used, all of the conditions of a single WHEN clause must be satisfied simultaneously
for the condition handler to be triggered.

• If OR is used, the actions are triggered when any of the conditions are TRUE.

• The action list represents a list of actions to be taken when the corresponding conditions of the
WHEN clause are simultaneously satisfied.

• Multiple actions must be separated by a comma or a new line.

Global Condition Handler Definitions shows three examples of defining global condition handlers.

See Also: $SCR.$cond_time System Variable, FANUC Robotics SYSTEM R-J3iB Controller Software
Reference Manual $SCAN_TIME Condition Handler Qualifier, FANUC Robotics SYSTEM R-J3iB
Controller Software Reference Manual

Global Condition Handler Definitions
CONDITION[1]: --defines condition handler number

6�5

6. CONDITION HANDLERS MARAIKLRF06031E REV A

1
WHEN DIN[1] DO DOUT[1] = TRUE --triggered if any one
WHEN DIN[2] DO DOUT[2] = TRUE --of the WHEN clauses
WHEN DIN[3] DO DOUT[3] = TRUE --is satisfied

ENDCONDITION

CONDITION[2]: --defines condition handler number 2
WHEN PAUSE DO --one condition triggers

AOUT[speed_out] = 0 --multiple actions
DOUT[pause_light] = TRUE
ENABLE CONDITION [2] --enables this condition

ENDCONDITION --handler again

CONDITION[3]:
WHEN DIN[1] AND DIN[2] AND DIN[3] DO --multiple
DOUT[1] = TRUE --conditions separated by AND;
DOUT[2] = TRUE --all three conditions must be
DOUT[3] = TRUE --satisfied at the same time

ENDCONDITION

• You can enable, disable, and purge global condition handlers as needed throughout the program.
Whenever a condition handler is triggered, it is automatically disabled, unless an ENABLE action
is included in the action list. (See condition handler 2 in Global Condition Handler Definitions .)

� The ENABLE statement or action enables the specified condition handler. The condition
handler will be scanned during the next scan operation and will continue to be scanned
until it is disabled.

� The DISABLE statement or action removes the specified condition handler from the group
of scanned condition handlers. The condition handler remains defined and can be enabled
again with the ENABLE statement or action.

� The PURGE statement deletes the definition of the specified condition handler.

• ENABLE, DISABLE, and PURGE have no effect if the specified condition handler is not
defined. If the specified condition handler is already enabled, ENABLE has no effect; if it is
already disabled, DISABLE has no effect.

Using Global Condition Handlers shows examples of enabling, disabling, and purging global
condition handlers.

Using Global Condition Handlers
CONDITION[1]: --defines condition handler number 1

WHEN line_stop = TRUE DO DOUT[1] = FALSE
ENDCONDITION

CONDITION[2]: --defines condition handler number 2
WHEN line_go = TRUE DO
DOUT[1] = TRUE, ENABLE CONDITION [1]

6�6

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

ENDCONDITION

ENABLE CONDITION[2] --condition handler 2 is enabled
. . .

IF ready THEN line_go = TRUE; ENDIF
--If ready is TRUE condition handler 2 is triggered (and
--disabled) and condition handler 1 is enabled.

--Otherwise, condition handler 2 is not triggered (and is
--still enabled), condition handler 1 is not yet enabled,
--and the next two statements will have no effect.
DISABLE CONDITION[1]
ENABLE CONDITION[2]
. . .
ENABLE CONDITION[1] --condition handler 1 is enabled
. . .
line_stop = TRUE --triggers (and disables) condition handler 1
. . .
PURGE CONDITION[2] --definition of condition handler 2 deleted
ENABLE CONDITION[2] --no longer has any effect
line_go = TRUE --no longer a monitored condition

6.1.2 Local Condition Handlers

A local condition handler is defined at the end of a MOVE statement and includes one or more
conditions/actions pairs in conjunction with the WHEN or UNTIL clauses. The following rules apply
to local condition handlers:

• They are defined only during execution of a particular motion statement and are automatically
enabled when the motion starts, and purged when the motion completes or is cancelled.

• A comma (,) separates the condition handler definition from the rest of the MOVE statement.

• The reserved word ENDMOVE, which must be on a new line, ends a MOVE statement that
contains condition handler definitions.

• The conditions/actions pairs of a local condition handler can be specified in WHEN clauses or
UNTIL clauses.

• WHEN clauses and UNTIL clauses can be used in any order and combination; each must begin
on a separate line.

� The WHEN clause specifies conditions to be monitored and actions to be taken when the
conditions are satisfied.

� The UNTIL clause specifies that the motion is to be canceled if the conditions are satisfied.

6�7

6. CONDITION HANDLERS MARAIKLRF06031E REV A

The optional THEN portion of the UNTIL clause an be used to specify other actions (in
addition to canceling the motion) to be taken when the conditions are satisfied.

• The condition list represents a list of conditions to be monitored when the condition
handler is scanned. Each condition handler is scanned at a rate based on the value of the
$SCR.$COND_TIME system variable.

� Multiple conditions must all be separated by the AND operator or the OR operator. Mixing
of AND and OR is not allowed.

� When AND is used, all of the conditions in a single WHEN or UNTIL clause must be
satisfied simultaneously for the condition handler to be triggered.

� When OR is used, the condition handler is triggered when any of the conditions are satisfied.

• The action list represents a list of actions to be taken when the corresponding conditions in
the WHEN or UNTIL clause are simultaneously satisfied. Multiple actions must be separated
by a comma or a new line.

• A local condition handler is automatically enabled when the physical motion starts. It is
automatically purged when the condition handler is triggered, when the motion is completed, or
when the motion is canceled. Unlike global condition handlers, each WHEN block in a MOVE is
a separate condition handler. If one WHEN block triggers, only that WHEN block is disabled.

• The time delay between executing the MOVE statement and enabling a condition handler might
be long for MOVE statements following incomplete NOWAIT moves.

• Local condition handlers automatically are disabled when the motion is held or stopped and
are re-enabled when the motion starts again due to execution of an UNHOLD or RESUME
statement or action.

Local Condition Handler Examples shows an example of local condition handlers in MOVE
statements with both WHEN and UNTIL clauses.

See Also: $SCR.$cond_time System Variable, FANUC Robotics SYSTEM R-J3iB Controller Software
Reference Manual

Local Condition Handler Examples
--local condition handler at end of move statement

WITH $SPEED = 200, $MOTYPE = CIRCULAR
MOVE ALONG paint_path NOWAIT, --comma

--start of local condition handler
WHEN TIME 100 BEFORE NODE[2] DO DOUT[2] = TRUE

ENDMOVE --end of local condition handler

MOVE TO posn,
WHEN AT NODE[3] AND DIN[1] DO --multiple conditions

CANCEL
ENDMOVE

MOVE ALONG weld_pth, --multiple cond/action pairs
UNTIL ERROR[stop_error] THEN

6�8

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

SIGNAL EVENT[shut_off] --multiple actions
clean_up --call interrupt routine

WHEN PAUSE DO
tmp_clean_up --call interrupt routine

WHEN TIME 100 BEFORE NODE[last_node] DO
clean_up --call interrupt routine

ENDMOVE

6.2 CONDITIONS

One or more conditions are specified in the condition list of a WHEN or UNTIL clause, defining the
conditions portion of a conditions/actions pair. Conditions can be

• States - which remain satisfied as long as the state exists. Examples of states are DIN[1] and
(VAR1 > VAR2).

• Events - which are satisfied only at the instant the event occurs. Examples of events are
ERROR[n], DIN[n]+, and PAUSE.

The following rules apply to system and program event conditions:

• After a condition handler is enabled, the specified conditions are monitored.

� If all of the conditions of an AND, WHEN, or UNTIL clause are simultaneously satisfied, the
condition handler is triggered and corresponding actions are performed.

� If all of the conditions of an OR, WHEN, or UNTIL clause are satisfied, the condition
handler is triggered and corresponding actions are performed.

• Event conditions very rarely occur simultaneously. Therefore, you should never use AND
between two event conditions in a single WHEN or UNTIL clause because, both conditions
will not be satisfied simultaneously.

• While many conditions are similar in form to BOOLEAN expressions in KAREL, and are
similar in meaning, only the forms listed in this section, not general BOOLEAN expressions,
are permitted.

• Expressions are permitted within an EVAL clause. More general expressions may be used on
the right side of comparison conditions, by enclosing the expression in an EVAL clause: EVAL
(expression). However, expressions in an EVAL clause are evaluated when the condition handler
is defined. They are not evaluated dynamically.

• The value of an EVAL clause expression must be INTEGER, REAL, or BOOLEAN.

See Also: EVAL Clause, Appendix A.

6�9

6. CONDITION HANDLERS MARAIKLRF06031E REV A

6.2.1 Port_Id Conditions

Port_id conditions are used to monitor digital port signals. Port_id must be one of the predefined
BOOLEAN port array identifiers (DIN, DOUT, OPIN, OPOUT, TPIN, TPOUT, RDI, RDO, WDI, or
WDO). The value ofn specifies the port array signal to be monitored. Table 6�5 lists the available
port_id conditions.

Table 6�5. Port_Id Conditions

CONDITION SATISFIED (TRUE) WHEN

port_id[n] Digital port n is TRUE. (state)

NOT port_id[n] Digital port n is FALSE. (state)

port_id[n]+ Digital port n changes from FALSE to TRUE. (event)

port_id[n]- Digital port n changes from TRUE to FALSE. (event)

• For the state conditions, port_id[n] and NOT port_id[n] , the port is tested during every scan.
The following conditions would be satisfied if, during a scan, DIN[1] was TRUE and DIN[2]
was FALSE:
WHEN DIN[1] AND NOT DIN[2] DO . . .

Note that an input signal should remain ON or OFF for the minimum scan time to ensure that
its state is detected.

• For the event condition port_id[n]+ , the initial port value is tested when the condition handler is
enabled. Each scan tests for the specified change in the signal. The change must occur while the
condition handler is enabled.

The following condition would only be satisfied if, while the condition handler was enabled,
DIN[1] changed from TRUE to FALSE since the last scan.

WHEN DIN[1]- DO . . .

6.2.2 Relational Conditions

Relational conditions are used to test the relationship between two operands. They are satisfied
when the specified relationship is TRUE. Relational conditions are state conditions, meaning the
relationship is tested during every scan. Table 6�6 lists the relational conditions.

6�10

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

Table 6�6. Relational Conditions

CONDITION SATISFIED (TRUE) WHEN

operand = operand

operand < > operand

operand < operand

operand < = operand

operand > operand

operand > = operand

Relationship specified is TRUE. Operands on the left can be a port
array element, referenced as port_id[n], or a variable. Operands on
the right can be a variable, a constant, or an EVAL clause. (state)

The following rules apply to relational conditions:

• Both operands must be of the same data type and can only be of type INTEGER, REAL, or
BOOLEAN. (As in other situations, INTEGER constants can be used where REAL values are
required, and will be treated as REAL values.)

• The operand on the left side of the condition can be any of the port array signals, a user-defined
variable, a static variable, or a system variable that can be read by a KAREL program.

• The operand on the right side of the condition can be a user-defined variable, a static variable, a
system variable that can be read by a KAREL program, any constant, or an EVAL clause. For
example:
WHEN DIN[1] = ON DO . . . --port_id and constant
WHEN flag = TRUE DO . . . --variable and constant
WHEN AIN[1] >= temp DO . . . --port_id and variable
WHEN flag_1 <> flag_2 DO . . . --variable and variable
WHEN AIN[1] <= EVAL(temp * scale) DO . . .

--port_id and EVAL clause
WHEN dif > EVAL(max_count - count) DO . . .

--variable and EVAL clause

• The EVAL clause allows you to include expressions in relational conditions. However, it is
evaluated only when the condition handler is defined. The expression in the EVAL clause cannot
include any routine calls.

See Also: EVAL Clause, Appendix A.

6�11

6. CONDITION HANDLERS MARAIKLRF06031E REV A

6.2.3 System and Program Event Conditions

System and program event conditions are used to monitor system and program generated events. The
specified condition is satisfied only if the event occurs when the condition handler is enabled.

Enabled condition handlers containing ERROR, EVENT, PAUSE, ABORT, POWERUP, or
CONTINUE conditions are scanned only if the specified type of event occurs. For example, an
enabled condition handler containing an ERROR condition will be scanned only when an error occurs.
Table 6�7 lists the available system and program event conditions.

Table 6�7. System and Program Event Conditions

CONDITION SATISFIED (TRUE) WHEN

ERROR [n] The error specified by n is reached or, if n = *, any error occurs.
(event)

EVENT[n] The event specified by n is signaled. (event)

ABORT The program is aborted. (event)

PAUSE The program is paused. (event)

CONTINUE The program is continued. (event)

POWERUP The program is continued. (event)

SEMAPHORE[n] The value of the semaphore specified by n is posted.

The following rules apply to these conditions:

ERROR Condition

• The ERROR condition can be used to monitor the occurrence of a particular error by specifying
the error code for that error. For example, ERROR[15018] monitors the occurrence of the error
represented by the error code 15018.

The error codes are listed in the following format:
ffccc (decimal)

where
ff represents the facility code of the error

6�12

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

ccc represents the error code within the specified facility

For example, 15018 is MOTN-018, which is "Position not reachable." The facility code is 15
and the error code is 018. The error facility codes are listed in Table 6�8. Refer to the FANUC
Robotics SYSTEM R-J3iB Controller HandlingTool Setup and Operations Manual for a complete
listing of error codes.

Table 6�8. Error Facility Codes

Facility Name Facility Code (Decimal) Description

SRIO 1 Serial driver

FILE 2 File system

PROG 3 Interpreter

COND 4 Condition handler

ELOG 5 Error logger

MCTL 6 Motion control manager

MEMO 7 Memory manager

OPIF 8 Operator interface

TPIF 9 Teach pendant user interface

FLPY 10 Serial floppy disk system

SRVO 11 FLTR&SERVO in motion sub-system

INTP 12 Interpreter errors

PRIO 13 Digital I/O subsystem

TPAX 14 Aux task/subsystem

MOTN 15 Motion subsystem

6�13

6. CONDITION HANDLERS MARAIKLRF06031E REV A

Table 6�8. Error Facility Codes (Cont�d)

Facility Name Facility Code (Decimal) Description

VARS 16 Variable manager subsystem

ROUT 17 Interpreter built-ins

WNDW 18 Window I/O manager

JOG 19 Manual jog task

APPL 20 Application manager

LANG 21 Language utility

SPOT 23 Spot application

SYST 24 Facility code of system

SCIO 25 Syntax checking routine for teach
pendant programs

PALT 26 Pallet

UAPL 27 UAMR

VISN 32 Vision system

DICT 33 Dictionary processor

TRAN 35 Translator

TKSP 36 Translator/KCL scanner/parser

KT 37 KAREL tools

APSH 38 Application shell

6�14

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

Table 6�8. Error Facility Codes (Cont�d)

Facility Name Facility Code (Decimal) Description

CMND 42 Command processor

RPSM 43 Root pass memorization

LNTK 44 Line tracking

WEAV 45 Weaving

TCPP 46 TCP speed prediction

TAST 47 Through-arc seam tracking

MUPS 48 Multi-pass motion

MIGE 49 MIG-Eye tracking

LSW 50 Laser welding

SEAL 51 Sealing

PAIN 52 Paint application errors

ARC 53 Arc welding

TRAK 54 TRACK softpart

CMCC 55 CMC softpart

SP 56 Softparts utility loader

MACR 57 MACRO option

SENS 58 Sensor interface

COMP 59 Computer interface

6�15

6. CONDITION HANDLERS MARAIKLRF06031E REV A

Table 6�8. Error Facility Codes (Cont�d)

Facility Name Facility Code (Decimal) Description

THSR 60 Touch sensing

DJOG 64 Detached jog

OPTN 65 Option installation

• The ERROR condition can also be used to monitor the occurrence of any error by specifying an
asterisk (*), the wildcard character, in place of a specific error code. For example, ERROR[*]
monitors the occurrence of any error.

• The ERROR condition is satisfied only for the scan performed when the error was detected. The
error is not remembered in subsequent scans.

EVENT Condition

• The EVENT condition monitors the occurrence of the specified program event. The SIGNAL
statement or action in a program indicates that an event has occurred.

• The EVENT condition is satisfied only for the scan performed when the event was signaled. The
event is not remembered in subsequent scans.

ABORT Condition

• The ABORT condition monitors the aborting of program execution. If an ABORT occurs, the
corresponding actions are performed. However, if one of the actions is a routine call, the routine
will not be executed because program execution has been aborted.

If an ABORT condition is used in a condition handler all actions, except routine calls, will be
performed even though the program has aborted.

PAUSE Condition

• The PAUSE condition monitors the pausing of program execution. If one of the corresponding
actions is a routine call, it is also necessary to specify a NOPAUSE or UNPAUSE action.

CONTINUE Condition

• The CONTINUE condition monitors the resumption of program execution. If program execution
is paused, the CONTINUE action, the KCL> CONTINUE command, a CYCLE START from
the operator panel, or the teach pendant FWD key will continue program execution and satisfy
the CONTINUE condition.

6�16

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

POWERUP Condition

• The POWERUP condition monitors the resumption of program execution after a power failure
recovery. The controller must be able to recover successfully from a power failure before the
program can be resumed.

SEMAPHORE Condition

• The SEMAPHORE condition monitors the specified semaphore. The CLEAR_SEMA built-in can
be used to set the semaphore value to 0. The POST_SEMA built-in or the SIGNAL SEMAPHORE
action can be used to increment the semaphore value and satisfy the SEMAPHORE condition.

See Also: In Appendix A:

ABORT Condition

CONTINUE Condition

ERROR Condition

EVENT Condition

PAUSE Condition

POWERUP Condition

SEMAPHORE Condition

FANUC Robotics SYSTEM R-J3iB Controller Application-Specific Setup and Operations Manual for
error codes. FANUC Robotics SYSTEM R-J3iB Controller Error Code Manual.

6.2.4 Local Conditions

The conditions that can be monitored only by local condition handlers are listed in Table 6�9.

Table 6�9. Local Conditions

CONDITION SATISFIED (TRUE) WHEN

AT NODE[n] The node specified by n is reached or, in n = * , any node is
reached. (event)

6�17

6. CONDITION HANDLERS MARAIKLRF06031E REV A

Table 6�9. Local Conditions (Cont�d)

TIME t BEFORE NODE[n] It is specified time t before the specified node n (or any node
if n = *) will be reached during a move. (event)

TIME t AFTER NODE[n] It is specified time t after the specified node n (or any node if
n = *) was reached during a move. (event)

These are used for monitoring the progress of a move to a position or along a PATH.

The following rules apply to local conditions:

• n is an INTEGER that indicates the path node or a position AT which, BEFORE which, or
AFTER which the condition is satisfied. The wildcard character (*) can be specified for n,
indicating every path node.

• TIME t is an INTEGER expression specifying a time interval in milliseconds.

• If the motion segment preceding NODE[n] is less than t milliseconds long for a TIME t BEFORE
condition, the condition is considered satisfied at the start of the segment.

• If the motion completes or is canceled before t milliseconds after NODE[n] (or any node if n =
*) is reached for a TIME t AFTER condition, the condition is never satisfied.

• NODE[0] represents the start of the move.

• For non-path moves such as MOVE TO position, MOVE AWAY, and MOVE NEAR, NODE[1]
represents the destination of the move.

• The TIME t BEFORE condition will not be satisfied before NODE[0]. The TIME t AFTER
condition will not be satisfied after the last node.

6.2.5 Synchronization of Local Condition Handlers

The triggering of local conditions depends on the motion segment termination type. The timing
associated with interval and segment termination is shown in Figure 6�1 .

This figure shows a two-node PATH in Cartesian coordinates. The first segment is a motion along
the x-axis in the negative direction followed by a segment with motion parallel to the y-axis in the
positive direction. The PATH is the xy_path used in the examples that follow.

6�18

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

Figure 6�1. Timing of BEFORE, AT and AFTER Conditions

X and Y Speed Profiles

X speed Y speed
Node 0 Node 1 Node 2

Motion Start Closest to Node 1 At Node 2

Node 2
+ Y axis

Node 1

Closest to Node 1

+X axis
Node 0

*

*

The following MOVE statement, which moves the tool center point (TCP) along the PATH in Figure
6�1, is used in the remainder of this section to clarify the timing associated with the motion and the
triggering of conditions. The numbers in parentheses to the left of the WHEN clauses are used to refer
to specific clauses in the discussion that follows.

WITH $TERMTYPE = COARSE

MOVE ALONG xy_path,

(1) WHEN AT NODE[0] DO DOUT[1] = TRUE

(2) WHEN TIME 100 AFTER NODE[0] DO DOUT[2] = TRUE

(3) WHEN TIME 100 BEFORE NODE[1] DO DOUT[3] = TRUE

(4) WHEN AT NODE[1] DO DOUT[4] = TRUE

(5) WHEN TIME 100 AFTER NODE[1] DO DOUT[5] = TRUE

(6) WHEN AT NODE[2] DO DOUT[6] = TRUE

(7) WHEN TIME 100 AFTER NODE[2] DO DOUT[7] = TRUE

6�19

6. CONDITION HANDLERS MARAIKLRF06031E REV A

ENDMOVE

First, note the numbering used for nodes. Node[0] is used to denote the starting position of the motion.
If the motion were a single segment motion (MOVE TO posn), then Node[0] would refer to the start
of the motion and Node[1] to the end of the motion, even though a PATH is not actually used.

Clause 1 asks for a digital output to be turned on at the start of the motion. In this case, since the
node specified is Node[0], ��AT�� means the time when motion first begins (labeled �Motion Start�
in Figure 6�1).

In Clause 2, the time is measured from the start of motion. That is, the digital output would be set 100
ms after the point marked ��Motion Start�� in Figure 6�1.

In Clause 3, the time is measured back from the point when the TCP would come closest to the
taught node in the path.

Clause 6 uses the end of the motion as the basis for timing because NODE[2] is the final node in
the PATH.

The entire deceleration time is included in the segment time whenever anything but NODECEL or
VARDECEL is used for the termination type for the last node in the path. If NODECEL is used, then
the timing for the last node would include half the deceleration time.

Clause 7 is an example of a condition handler that will never be triggered. All local condition handlers
are deleted when the interval for which they are defined terminates. Therefore, actions after the last
node cannot be performed.

See Also: Program Synchronization, Chapter 8 MOTION

��User-Defined Associated Data, Chapter 8 MOTION

AT NODE and TIME Conditions, Appendix A.

�$USETIMESHFT optional System Variable in FANUC Robotics SYSTEM R-J3iB Controller
Software ReferenceManual

6.3 ACTIONS

Actions are specified in the action list of a WHEN or UNTIL clause. Actions can be

• Specially defined KAREL actions that are executed in parallel with the program

• A routine call, which will interrupt program execution

When the conditions of a condition handler are satisfied, the condition handler is triggered. The
actions corresponding to the satisfied conditions are performed in the sequence in which they appear

6�20

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

in the condition handler definition, except for routine calls. Routines are executed after all of the
other actions have been performed.

Note that, although many of the actions are similar in form to KAREL statements and the effects are
similar to corresponding KAREL statements, the actions are not executable statements. Only the
forms indicated in this section are permitted.

See Also: Actions and Statements, Appendix A.

6.3.1 Assignment Actions

The available assignment actions are given in Table 6�10.

Table 6�10. Assignment Actions

ACTION RESULT

variable = expression The value of the expression is assigned to the variable.
The expression can be a variable, a constant, a port array
element, or an EVAL clause.

port_id[n] = expression The value of the expression is assigned to the port array
element referenced by n. The expression can be a variable, a
constant, or an EVAL clause.

The following rules apply to assignment actions:

• The assignment actions, ��variable = expression�� and ��port_id[n] = expression�� can be used to
assign values to variables and port array elements.

� The variable must be either a user-defined variable, a static variable, or a system variable
without a minimum/maximum range and that can be written to by a KAREL program.

� The port array, if on the left, must be an output port array that can be set by a KAREL program.

� The expression can be a user-defined variable, a static variable. a system variable that can be
read by a KAREL program, any constant, or an EVAL clause.

• If a variable is on the left side of the assignment, the expression can also be a port array element.
However, you cannot assign a port array element to a port array element directly. For example,
the first assignment shown is invalid, but the next two are valid:
DOUT[1] = DOUT[2] --invalid action

port_var = DOUT[2] --valid action, where port_var is a variable
DOUT[1] = port_var --another valid action, which if executed

--after port_var = DOUT[2], would in effect
--assign DOUT[2] to DOUT[1]

6�21

6. CONDITION HANDLERS MARAIKLRF06031E REV A

• If the expression is a variable, it must be a global variable. The value used is the current value
of the variable at the time the action is taken, not when the condition handler is defined. If the
expression is an EVAL clause, it is evaluated when the condition handler is defined and that
value is assigned when the action is taken.

• Both sides of the assignment action must be of the same data type. An INTEGER or EVAL
clause is permitted on the right side of the assignment with an INTEGER, REAL, or BOOLEAN
on the left.

6.3.2 Motion Related Actions

Motion related actions affect the current motion and might affect subsequent motions. They are
given in Table 6�11 .

Table 6�11. Motion Related Actions

ACTION RESULT

STOP Current motion is stopped.

RESUME The last stopped motion is resumed.

CANCEL Current motion is canceled.

HOLD Current motion is held. Subsequent motions are not started.

UNHOLD Held motion is released.

The following rules apply to motion related actions:

• If a STOP is issued, the current motion and any queued motions are pushed as a set on a stopped
motion stack. If no motion is in progress, an empty entry is pushed on the stack.

• If a RESUME is issued, the newest stopped motion set on the stopped motion stack is queued
for execution.

• If a CANCEL is issued, the motion currently in progress is canceled. If no motion is in progress,
the action has no effect.

Note The CANCEL action in a local condition handler differs from the same action in a global
condition handler and the CANCEL statement. In a local condition handler, a CANCEL action
cancels only the motion in progress, permitting any queued behind it to start. For a CANCEL
action in a global condition handler or a CANCEL statement, any motions queued to the same
group behind the current motion are also canceled.

6�22

MARAIKLRF06031E REV A 6. CONDITION HANDLERS

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is
set up for more than one motion group, all motion must be initiated
from a teach pendant program. Otherwise, the robot could move
unexpectedly, personnel could be injured, and equipment could be
damaged.

• If a HOLD is issued, the current motion is held and subsequent motions are prevented from
starting. The UNHOLD action releases held motion.

See Also: Chapter 8 MOTION , for more information on stopping and starting motions.

6.3.3 Routine Call Actions

Routine call actions, or interrupt routines, are specified by

<WITH $PRIORITY = n> routine_name

The following restrictions apply to routine call actions or interrupt routines:

• The interrupt routine cannot have parameters and must be a procedure (not a function).

• If the interrupted program is using READ statements, the interrupt routine cannot read from the
same file variable. If an interrupted program is reading and the interrupt routine attempts a read
from the same file variable, the program is aborted.

• When an interrupt routine is started, the interrupted KAREL program is suspended until the
routine returns.

• Interrupt routines, like KAREL programs, can be interrupted by other routines. The maximum
depth of interruption is limited only by stack memory size.

• Routines are started in the sequence in which they appear in the condition handler definition, but
since they interrupt each other, they will actually execute in reverse order.

• Interrupts can be prioritized so that certain interrupt routines cannot be interrupted by others. The
$PRIORITY condition handler qualifier can be used to set the priority of execution for an indicated
routine action. $PRIORITY values must be 0-255 where the lower value represents a lower
priority. If a low priority routine is called while a routine with a higher priority is running, it will
be executed only when the higher priority routine has completed. If $PRIORITY is not specified,
the routine�s priority will default to the current value of the $PRIORITY system variable.

See Also: WITH Clause, Appendix A, ��KAREL Language Alphabetical Description," for more
information on $PRIORITY

6�23

6. CONDITION HANDLERS MARAIKLRF06031E REV A

6.3.4 Miscellaneous Actions

Table 6�12 describes other allowable actions.

Table 6�12. Miscellaneous Actions

ACTION RESULT

SIGNAL EVENT[n] The event specified by n is signaled.

NOMESSAGE The error message that otherwise would have been generated is
not displayed or logged.

NOPAUSE Program execution is resumed if the program was paused, or is
prevented from pausing.

NOABORT Program execution is resumed if the program was aborted, or is
prevented from aborting.

ABORT Program execution is aborted.

CONTINUE Program execution is continued.

PAUSE Program execution is paused.

SIGNAL SEMAPHORE[n] Specified semaphore is signaled.

ENABLE CONDITION[n] Condition handler n is enabled.

DISABLE CONDITION[n] Condition handler n is disabled.

PULSE DOUT[n] FOR t Specified port n is pulsed for the time interval t (in milliseconds).

UNPAUSE If a routine_name is specified as an action, but program execution
is paused, execution is resumed only for the duration of the routine
and then is paused again.

See Also: Appendix A for more information on each miscellaneous action.

6�24

Chapter 7
FILE INPUT/OUTPUT OPERATIONS

Contents

Chapter 7 FILE INPUT/OUTPUT OPERATIONS ... 7�1
7.1 FILE VARIABLES .. 7�3
7.2 OPEN FILE STATEMENT ... 7�5

7.2.1 Setting File and Port Attributes ... 7�5
7.2.2 File String .. 7�12
7.2.3 Usage String .. 7�12
7.3 CLOSE FILE STATEMENT .. 7�16
7.4 READ STATEMENT .. 7�16
7.5 WRITE STATEMENT ... 7�18
7.6 INPUT/OUTPUT BUFFER .. 7�20
7.7 FORMATTING TEXT (ASCII) INPUT/OUTPUT .. 7�20

7.7.1 Formatting INTEGER Data Items .. 7�22
7.7.2 Formatting REAL Data Items ... 7�24
7.7.3 Formatting BOOLEAN Data Items .. 7�26
7.7.4 Formatting STRING Data Items .. 7�28
7.7.5 Formatting VECTOR Data Items ... 7�31
7.7.6 Formatting Positional Data Items ... 7�31
7.8 FORMATTING BINARY INPUT/OUTPUT .. 7�32

7.8.1 Formatting INTEGER Data Items .. 7�34
7.8.2 Formatting REAL Data Items ... 7�35
7.8.3 Formatting BOOLEAN Data Items .. 7�35
7.8.4 Formatting STRING Data Items .. 7�35
7.8.5 Formatting VECTOR Data Items ... 7�36
7.8.6 Formatting POSITION Data Items ... 7�36
7.8.7 Formatting XYZWPR Data Items .. 7�36
7.8.8 Formatting XYZWPREXT Data Items .. 7�37
7.8.9 Formatting JOINTPOS Data Items .. 7�37
7.9 USER INTERFACE TIPS ... 7�37

7�1

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

7.9.1 USER Menu on the Teach Pendant .. 7�37
7.9.2 USER Menu on the CRT/KB ... 7�39

7�2

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

The KAREL language facilities allow you to perform the following serial input/output (I/O)
operations:

• Open data files and serial communication ports using the OPEN FILE Statement

• Close data files and serial communication ports using the CLOSE FILE Statement

• Read from files, communication ports, and user interface devices using the READ Statement

• Write to files, communication ports, and user interface devices using the WRITE Statement

• Cancel read or write operations

File variables are used to indicate the file, communication port, or device on which a serial I/O
operation is to be performed.

Buffers are used to hold data that has not yet been transmitted. The use of data items in READ and
WRITE statements and their format specifiers depend on whether the data is text (ASCII) or binary,
and on the data type.

7.1 FILE VARIABLES

A KAREL program can perform serial I/O operations on the following:

• Data files residing in the KAREL file system

• Serial communication ports associated with connectors on the KAREL controller

• User interface devices including the CRT/KB and teach pendant

A file variable is used to indicate the file, communication port, or device on which you want to
perform a particular serial I/O operation.

Table 7�1 lists the predefined file variables for user interface devices. These file variables are already
opened and can be used in the READ or WRITE statements.

Table 7�1. Predefined File Variables

IDENTIFIER DEVICE OPERATIONS

CRTFUNC* CRT/KB function key line Both

INPUT CRT/KB keyboard Read

OUTPUT* CRT/KB KAREL screen Write

CRTPROMPT* CRT/KB prompt line Both

7�3

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�1. Predefined File Variables (Cont�d)

CRTERROR CRT/KB message line Write

CRTSTATUS* CRT/KB status line Write

TPFUNC* Teach pendant function key line Both

TPDISPLAY* Teach pendant KAREL display Both

TPPROMPT* Teach pendant prompt line Both

TPERROR Teach pendant message line Write

TPSTATUS* Teach pendant status line Write

VIS_MONITOR Vision Monitor Screen Write

* Only displayed when teach pendant or CRT is in the user menu.

A file variable can be specified in a KAREL statement as a FILE variable. Using FILE in a KAREL
Program shows an example of declaring a FILE variable and of using FILE in the executable section
of a program.

Using FILE in a KAREL Program
PROGRAM lun_prog

VAR
curnt_file : FILE

ROUTINE input_data(file_spec:FILE) FROM util_prog

BEGIN
OPEN FILE curnt_file (’RW’,’text.dt’) --variable FILE
input_data(curnt_file) --file variable argument
WRITE TPERROR (’Error has occurred’)

END lun_prog

Sharing FILE variables between programs is allowed as long as a single task is executing the
programs. Sharing file variables between tasks is not allowed.

7�4

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

7.2 OPEN FILE STATEMENT

The OPEN FILE statement associates the file variable with a particular data file or communication
port.

The association remains in effect until the file is closed, either explicitly by a CLOSE FILE statement
or implicitly when program execution terminates or is aborted.

The OPEN FILE statement specifies how the file is to be used (usage string), and which file or
port (file string) is used.

7.2.1 Setting File and Port Attributes

Attributes specify the details of operation of a serial port, or KAREL FILE variable. The
SET_PORT_ATR and SET_FILE_ATR built-ins are used to set these attributes. SET_FILE_ATR
must be called before the FILE is opened. SET_PORT_ATR can be called before or after the FILE
that is using a serial port, is opened.

Table 7�2 lists each attribute type, its function and whether the attribute is intended for use with teach
pendant and CRT/KB devices, serial ports, data files, or pipes. Refer to Appendix A, "KAREL
Language Alphabetical Descriptions" for more information.

Table 7�2. Predefined Attribute Types

ATTRIBUTE TYPE FUNCTION SET_PORT_ATR OR
SET_FILE_ATR

TP/ CRT SERIAL
PORTS

DATA
FILES

PIPES SOCKET
MESSAGING

ATR_BAUD Baud rate SET_PORT_ATR not used valid not
used

not
used

not used

ATR_DBITS Data length SET_PORT_ATR not used valid not
used

not
used

not used

ATR_EOL End of line SET_FILE_ATR not used valid not
used

valid valid

ATR_FIELD Field SET_FILE_ATR valid valid valid valid valid

ATR_IA Interactively
write

SET_FILE_ATR valid valid valid valid valid

7�5

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�2. Predefined Attribute Types (Cont�d)

ATTRIBUTE TYPE FUNCTION SET_PORT_ATR OR
SET_FILE_ATR

TP/ CRT SERIAL
PORTS

DATA
FILES

PIPES SOCKET
MESSAGING

ATR_MODEM Modem line SET_PORT_ATR not used valid not
used

not
used

not used

ATR_PARITY Parity SET_PORT_ATR not used valid not
used

not
used

not used

ATR_PASSALL Passall SET_FILE_ATR valid valid not
used

valid valid

ATR_READAHD Read ahead
buffer

SET_PORT_ATR not used valid not
used

not
used

not used

ATR_REVERSE Reverse
transfer

SET_FILE_ATR not used valid valid valid valid

ATR_SBITS Stop bits SET_PORT_ATR not used valid not
used

not
used

not used

ATR_TIMEOUT Timeout SET_FILE_ATR valid valid not
used

valid valid

ATR_UF Unformatted
transfer

SET_FILE_ATR not used valid valid valid valid

ATR_XONOFF XON/XOFF SET_PORT_ATR not used valid not
used

not
used

not used

ATR_PIPOVADV Pipe
Overflow

SET_FILE_ATR not used not
used

not
used

valid valid

ATR_PIPWAIT Wait for data SET_FILE_ATR not used not
used

not
used

valid valid

Table 7�3 contains detailed explanations of each attribute.

7�6

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Table 7�3. Attribute Values

Attribute Type Description Valid Device Usage
Mode

Valid Values Default Value

ATR_BAUD

Baud rate

The baud rate of a
serial port can be
changed to one of the
valid attribute values.

PORT Read/
Write

BAUD_9600:
9600 baud

BAUD_4800:
4800 baud

BAUD_2400:
2400 baud

BAUD_1200:
1200 baud

BAUD_9600

ATR_DBITS

Data length

If specified, the data
length for a serial
port is changed to
the specified attribute
values.

PORT Read/
Write

DBITS_5: 5
bits

DBITS_6: 6
bits

DBITS_7: 7
bits

DBITS_8: 8
bits

DBITS_8

ATR_EOL

End of line

If specified, the serial
port is changed to
terminate read when
the specified attribute
value. Refer to
Appendix D, for a
listing of valid attribute
values.

PORT Read/
Write

Any ASCII
character
code

13 (carriage
return)

7�7

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�3. Attribute Values (Cont�d)

Attribute Type Description Valid Device Usage
Mode

Valid Values Default Value

ATR_FIELD

Field

If specified, the
amount of data read
depends on the format
specifier in the READ
statement, or the
default value of the
data type being read.
If not specified, the
data is read until the
terminator character
(EOL) appears.

TP/CRT,
PORT, FILE

Read only Ignored Read data
until terminator
character (EOL)
appears

ATR_IA

Interactively
write

If specified, the
contents of the buffer
are output when each
write operation to the
buffer is complete.
(Interactive)

If not specified, the
contents of the buffer
are output only when
the buffer becomes
full or when CR is
specified. The size of
the output buffer is 256
bytes. (Not interactive)

TP/CRT,
PORT, FILE

Write only Ignored TP/CRT is
interactive,
PORT, FILE are
not interactive

ATR_MODEM

Modem line

Refer to "Modem Line"
section that follows for
information.

ATR_PARITY

Parity

The parity for a serial
port can be changed
to one of the valid
attribute values.

PORT Read/
Write

PARITY_NONE:
No parity

PARITY_ODD:
Odd parity

PARITY_EVEN:
Even parity

PARITY_NONE

7�8

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Table 7�3. Attribute Values (Cont�d)

Attribute Type Description Valid Device Usage
Mode

Valid Values Default Value

ATR_PASSALL

Passall

If specified, input
is read without
interpretation or
transaction. Since the
terminator character
(EOL) will not terminate
the read, the field
attribute automatically
assumes the ��field��
option.

TP/CRT,
PORT

Read only Ignored Read only the
displayable keys
until enter key is
pressed

ATR_PIPOVADV Configures the
behavior of the read
when an overflow
occurs. By default the
behavior is to signal an
end of file (EOF) when
the overflow occurs.

PIPE Read The value
must be
between 0
and the total
number of
bytes in the
pipe. The
value will be
rounded up
to the nearest
binary record.

The value
parameter is
either OVF_EOF
(sets the default
behavior) or
the number of
bytes to advance
when an overflow
occurs.

ATR_PIPWAIT The read operation
waits for data to arrive
in the pipe.

PIPE Read WAIT_USED
or
WAIT_NOTUSED

The default is
snapshot which
means that the
system returns an
EOF when all the
data in the pipe
has been read.

ATR_READAHD

Read Ahead
Buffer

The attribute value is
specified in units of 128
bytes, and allocates a
read ahead buffer of
the indicated size.

PORT Read/
Write

any positive
integer

1=128 bytes

2=256 bytes

0=disable
bytes

1 (128 byte buffer)

7�9

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�3. Attribute Values (Cont�d)

Attribute Type Description Valid Device Usage
Mode

Valid Values Default Value

ATR_REVERSE

Reverse transfer

The bytes will be
swapped.

PORT, FILE Read/
Write

Ignored Not reverse
transfer

ATR_SBITS

Stop bits

This specifies the
number of stop bits for
the serial port.

PORT Read/
Write

SBITS_1:1 bit

SBITS_15:
1.5 bits

SBITS_2:2
bits

SBITS_1

ATR_TIMEOUT

Timeout

If specified, an error
will be returned by
IO_STATUS if the
read takes longer than
the specified attribute
value.

TP/CRT,
PORT

Read only Any integer
value (units
are in msec)

0 (external)

ATR_UF

Unformatted
transfer

If specified, a binary
transfer is performed.
For read operations,
the terminator
character (EOL) will
not terminate the
read, and therefore
automatically assumes
the ��field�� option. If
not specified, ASCII
transfer is performed.

PORT, FILE Read/
Write

Ignored ASCII transfer

ATR_XONOFF

XON/XOFF

If specified, the
XON/XOFF for a serial
port is changed to
the specified attribute
value.

PORT Read/
Write

XF_NOT_USED:
Not used

XF_USED:
Used

XF_USED

Modem line

Valid device : PORT

7�10

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Usage mode : Read/Write

Default value : MD_NOT_USED: DSR, DTR, and RTS not used

Valid attribute values : MD_NOT_USED: DSR, DTR, and RTS not used

MD_USE_DSR: DSR used

MD_NOUSE_DSR: DSR not used

MD_USE_DTR: DTR used

MD_NOUSE_DTR: DTR not used

MD_USE_RTS: RTS used

MD_NOUSE_RTS: RTS not used

• This attribute controls the operation of the modem line. The control is based on the following
binary mask, where the flag bits are used to indicate what bit value you are changing.

RTS value DSR value DTR value RTS flag DSR flag DTR flag

� RTS (request to send) and DTR (data terminal ready) are both outputs.

� DSR (data set ready) is an input.

• Set the modem line attribute by doing the following.

� To indicate RTS is used (HIGH/ON): status = SET_PORT_ATR (port_name, ATR_MODEM,
MD_USE_RTS)

� To indicate RTS is NOT used (LOW/OFF):status = SET_PORT_ATR (port_name,
ATR_MODEM, MD_NOUSE_RTS)

� To indicate RTS is used (HIGH/ON) and DTR is not used (LOW/OFF):status =
SET_PORT_ATR (port_name, ATR_MODEM, MD_USE_RTS orMD_NOUSE_DTR)

• The following examples demonstrate how to use the returned attribute value from the
GET_PORT_ATR built-in.
status = GET_PORT_ATR (port, ATR_MODEM, atr_value)

� To determine if DTR is used:
IF ((atr_value AND MD_USE_DTR) = MD_USE_DTR) THEN

write (’DTR is in use’,cr)
ENDIF

� To determine if DTR is not used (LOW/OFF)

7�11

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

IF (atr_value AND MD_USE_DTR) = MD_NOUSE_DTR) THEN
write (’DTR is not in use’, cr)

ENDIF

For more information on GET_PORT_ATR Built-in, refer to Appendix A.

7.2.2 File String

The file string in an OPEN FILE statement specifies a data file name and type, or a communication
port.

• The OPEN FILE statement associates the data file or port specified by the file string with the file
variable. For example, OPEN FILE file_var (�RO�, �data_file.dt�) associates the data file called
�data_file.dt� with the file file_var.

• If the file string is enclosed in single quotes, it is treated as a literal. Otherwise, it is treated
as a STRING variable or constant identifier.

• When specifying a data file, you must include both a file name and a valid KAREL file type (any
1, 2, or 3 character file extension).

• The following STRING values can be used to associate file variables with serial communication
ports on the KAREL controller. Defaults for R-J3iB are:

� ‘FLPY: \filename’ - Floppy disk drive connected to the RS-232-C connector on the operator
panel

� ‘P3:’ - CRT/KB connector on the inside of the operator panel

� ‘P4:’ - RS-232-C, JD17 connector on the Main CPU board

� ‘P5:’ - RS-422, JD17 connector on the Main CPU board

� ‘KB:tp kb’ - Input from numeric keypad on the teach pendant. TPDISPLAY or TPPROMPT
are generally used, so OPEN FILE is not required.

� ‘KB:cr kb’ - Input from CRT/KB. INPUT or CRTPROMPT are generally used, so OPEN
FILE is not required.

� ‘WD:window_name’ - Writes to a window.

� ‘WD:window_name</keyboard_name>’ , where keyboard_name is either ‘tpkb’ or
’crkb’ - Writes to the specified window. Inputs are from the TP keypad (tpkb) or the CRT
keyboard (crkb). Inputs will be echoed in the specified window.

See Also: Chapter 9 FILE SYSTEM , for a description of file names and file types.

7.2.3 Usage String

The usage string in an OPEN FILE statement indicates how the file is to be used.

7�12

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

• It is composed of one usage specifier.

• It applies only to the file specified by the OPEN FILE statement and has no effect on other FILEs.

• It must be enclosed in single quotes if it is expressed as a literal.

• It can be expressed as a variable or a constant.

Table 7�4 lists each usage specifier, its function, and the devices or ports for which it is intended.

• ��TP/CRT�� indicates teach pendant and CRT/KB.

• ��Ports�� indicates serial ports.

• ��Files�� indicates data files.

• ��Pipes�� indicates pipe devices.

• ��Valid�� indicates a permissible use.

• ��No use�� indicates a permissible use that might have unpredictable side effects.

Table 7�4. Usage Specifiers

SPECIFIER FUNCTION TP/CRT PORTS FILES PIPES

RO
� Permits only read

operations

� Sets file position
to beginning of file

� File must already
exist

valid valid valid valid

RW
� Rewrites over

existing data in
a file, deleting
existing data

� Permits read and
write operations

� Sets file position
to beginning of file

� File will be created
if it does not exist

valid valid valid

No use on
FRx:

valid

7�13

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�4. Usage Specifiers (Cont�d)

AP
� Appends to end of

existing data

� Permits read
and write (First
operation must be
a write.)

� Sets file position
to end of file

� File will be created
if it does not exist

no use valid valid -RAM
disk* no use
on floppy
disk or FRx:

valid

UD
� Updates from

beginning of
existing data.
(Number of
characters to
be written must
equal number of
characters to be
replaced.)

� Overwrites the
existing data with
the new data

� Permits read and
write

� Sets file position
to beginning of
existing file

no use valid valid -RAM
disk* no use
on floppy
disk or FRx:

no use

* AP and UD specifiers can only be used with uncompressed files on the RAM disk. Refer to Chapter
9 FILE SYSTEM , for more information on the RAM disk and Pipe devices.

File String Examples shows a program that includes examples of various file strings in OPEN FILE
statements. The CONST and VAR sections are included to illustrate how file and port strings are
declared.

File String Examples
PROGRAM open_luns

7�14

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

CONST
part_file_c =’parts.dt’ --data file STRING constant
comm_port = ’P3:’ --port STRING constant

VAR
file_var1 : FILE
file_var2 : FILE
file_var3 : FILE
file_var4 : FILE
file_var5 : FILE
file_var12 : FILE
temp_file : STRING[19]
--a STRING size of 19 accommodates 4 character device names,
--12 character file names, the period, and 2 character,
--file types.
port_var : STRING[3]

BEGIN
--literal file name and type
OPEN FILE file_var1 (’RO’,’log_file.dt’)

--constant specifying parts.dt
OPEN FILE file_var2 (’RW’, part_file_c)

--variable specifying new_file_dt
temp_file = ’RD:new_file.dt’
OPEN FILE file_var3 (’AP’, temp_file)

--literal communication port
OPEN FILE file_var4 (’RW’, ’FLPY:’)

--constant specifying C0:
OPEN FILE file_var5 (’RW’, comm_port)

--variable specifying C3:
port_var = ’C3:’
OPEN FILE file_var12 (’RW’, port_var)

END open_luns

See Also: Chapter 9 FILE SYSTEM , for more information on the available storage devices

Chapter 14 INPUT/OUTPUT SYSTEM , for more information on the C0: and C3: ports

7�15

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

7.3 CLOSE FILE STATEMENT

The CLOSE FILE statement is used to break the association between a specified file variable and its
data file or communication port. It accomplishes two objectives:

• Any buffered data is written to the file or port.

• The file variable is freed for another use.

CLOSE FILE Example shows a program that includes an example of using the CLOSE FILE
statement in a FOR loop, where several files are opened, read, and then closed. The same file variable
is used for each file.

CLOSE FILE Example
PROGRAM read_files

VAR
file_var : FILE
file_names : ARRAY[10] OF STRING[15]
loop_count : INTEGER
loop_file : STRING[15]

ROUTINE read_ops(file_spec:FILE) FROM util_prog
--performs some read operations

ROUTINE get_names(names:ARRAY OF STRING) FROM util_prog
--gets file names and types

BEGIN
get_names(file_names)
FOR loop_count = 1 TO 10 DO

loop_file = file_names[loop_count]
OPEN FILE file_var (’RO’, loop_file)
read_ops(file_var) --call routine for read operations
CLOSE FILE file_var

ENDFOR END read_files

See Also: CLOSE FILE Statement, Appendix A.

IO_STATUS Built-In Function, Appendix A for a description of errors.

7.4 READ STATEMENT

The READ statement is used to read one or more specified data items from the indicated device. The
data items are listed as part of the READ statement. The following rules apply to the READ statement:

7�16

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

• The OPEN FILE statement must be used to associate the file variable with the file opened in
the statement before any read operations can be performed unless one of the predefined files is
used (refer to Table 7�1).

• If the file variable is omitted from the READ statement, then TPDISPLAY is used as the default.

• Using the %CRTDEVICE directive will change the default to INPUT (CRT input window).

• Format specifiers can be used to control the amount of data that is read for each data item. The
effect of format specifiers depends on the data type of the item being read and on whether the data
is in text (ASCII) or binary (unformatted) form.

• When the READ statement is executed (for ASCII files), data is read beginning with the next
nonblank input character and ending with the last character before the next blank, end of line, or
end of file for all input types except STRING.

• With STRING values, the input field begins with the next character and continues to the end of
the line or end of the file. If a STRING is read from the same line following a nonstring field, any
separating blanks are included in the STRING.

• ARRAY variables must be read element by element; they cannot be read in unsubscripted form.
Frequently, they are read using a READ statement in a FOR loop.

• PATH variables can be specified as follows in a READ statement, where ��path_name�� is a PATH
variable and ��n�� and ��m�� are PATH node indexes:

� path_name : specifies that the entire path, starting with a header and including all of the
nodes and their associated data, is to be read. The header consists of the path length and the
associated data description in effect when the PATH was written.

� path_name [0] : specifies that only the header is to be read. The path header consists of
the path length and the associated data description in effect when the PATH was written.
Nodes are deleted or created to make the path the correct length, and all new nodes are set
uninitialized.

� path_name [n] : specifies that data is to be read into node[n] from the current file position.
The value of n must be in the range from 0 to the length of the PATH.

� path_name [n .. m] : specifies that data is to be read into nodes n through m. The value of n
must be in the range from 0 to the length of the PATH and can be less than, equal to, or greater
than the value of m. The value of m must be in the range from 1 to the length of the PATH.

If an error occurs while reading node n (where n is greater than 0), it is handled as follows:

If n > original path length (prior to the read operation), the nodes from n to the new path length
are set uninitialized.

If n <=original path length, the nodes from n to the original path length remain as they were prior to
the read operation and any new nodes (greater than the original path length) are set uninitialized.

• If the associated data description that is read from the PATH does not agree with the current user
associated data, the read operation is terminated and the path will remain as it was prior to the
read operation. The IO_STATUS built-in function will return an error if this occurs.

7�17

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

• PATH data must be read in binary (unformatted) form.

READ Statement Examples shows several examples of the READ statement using a variety of file
variables and data lists.

READ Statement Examples
READ (next_part_no) --uses default TPDISPLAY

OPEN FILE file_var (’RO’,’data_file.dt’)
READ file_var (color, style, option)

READ host_line (color, style, option, CR)

FOR i = 1 TO array_size DO
READ data (data_array[i])

ENDFOR

If any errors occur during input, the variable being read and all subsequent variables up to CR in the
data list are set uninitialized unless the file variable is open to a window device.

If reading from a window device, an error message is displayed indicating the bad data_item and you
are prompted to enter a replacement for the invalid data_item and to reenter all subsequent items.

The built-in function IO_STATUS can be used to determine the success or failure (and the reason
for the failure) of a READ operation.

See Also: READ Statement, Appendix A.

IO_STATUS Built-In Functions, Appendix A for a list of I/O error messages

%CRTDEVICE Translator Directive, Appendix A.

7.5 WRITE STATEMENT

The WRITE statement is used to write one or more specified data items to the indicated device. The
data items are listed as part of the WRITE statement. The following rules apply to the WRITE
statement:

• The OPEN FILE statement must be used to associate the file variable with the file opened in
the statement before any write operations can be performed unless one of the predefined files is
used (refer to Table 7�1).

• If the file variable is omitted from the WRITE statement, then TPDISPLAY is used as the default.

• Using the %CRTDEVICE directive will change the default to OUTPUT (CRT output window).

7�18

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

• Format specifiers can be used to control the format of data that is written for each data_item. The
effect of format specifiers depends on the data type of the item being written and on whether the
data is in text (ASCII) or binary (unformatted) form.

• ARRAY variables must be written element by element; they cannot be written in unsubscripted
form. Frequently, they are written using a WRITE statement in a FOR loop.

• PATH variables can be specified as follows in a WRITE statement, where ��path_name�� is
a PATH variable and ��n�� and ��m�� are PATH node indexes:

� path_name : specifies that the entire path is to be written, starting with a header that provides
the path length and associated data table, and followed by all of the nodes, including their
associated data.

� path_name [0] : specifies that only the header is to be written. The path header consists of the
path length and a copy of the associated data table.

� path_name [n] : specifies that node[n] is to be written.

� path_name [n .. m] : specifies that nodes n through m are to be written. The value of n must
be in the range from 0 to the length of the PATH and can be less than, equal to, or greater than
the value of m. The value of m must be in the range from 1 to the length of the PATH.

• PATH data must be written in binary (unformatted) form.

WRITE Statement Examples shows several examples of the WRITE statement using a variety of
file variables and data lists.

WRITE Statement Examples
WRITE TPPROMPT(’Press T.P. key "GO" when ready’)

WRITE TPFUNC (’ GO RECD QUIT BACK1 FWD-1’)
WRITE log_file (part_no:5, good_count:5, bad_count:5, operator:3,

CR)

WRITE (’This is line 1’, CR, ’This is line 2’, CR)
--uses default TPDISPLAY

FOR i = 1 TO array_size DO
WRITE data (data_array[i])

ENDFOR

See Also: WRITE Statement, Appendix A.

IO_STATUS Built-In Functions, Appendix A.

7�19

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

7.6 INPUT/OUTPUT BUFFER

An area of RAM, called a buffer , is used to hold up to 256 bytes of data that has not yet been
transmitted during a read or write operation.

Buffers are used by the READ and WRITE statements as follows:

• During the execution of a READ statement, if more data was read from the file than required by
the READ statement, the remaining data is kept in a buffer for subsequent read operations. For
example, if you enter more data in a keyboard input line than is required to satisfy the READ
statement the extra data is kept in a buffer.

• If a WRITE statement is executed to a non-interactive file and the last data item was not a CR, the
data is left in a buffer until a subsequent WRITE either specifies a CR or the buffer is filled.

• The total data that can be processed in a single READ or WRITE statement is limited to 127 bytes.

7.7 FORMATTING TEXT (ASCII) INPUT/OUTPUT

This section explains the format specifiers used to read and write ASCII (formatted) text for each
data type.

The following rules apply to formatting data types:

• For text files, data items in READ and WRITE statements can be of any of the simple data types
(INTEGER, REAL, BOOLEAN, and STRING).

• Positional and VECTOR variables cannot be read from text files but can be used in WRITE
statements.

• ARRAY variables cannot be read or written in unsubscripted form. The elements of an ARRAY
are read or written in the format that corresponds to the data type of the ARRAY.

• PATH variables cannot be read or written.

• Some formats and data combinations are not read in the same manner as they were written or
become invalid if read with the same format.

The amount of data that is read or written can be controlled using zero, one, or two format
specifiers for each data item in a READ or WRITE statement. Each format specifier, represented
as an INTEGER literal, is preceded by double colons (::).

Table 7�5 summarizes the input format specifiers that can be used with the data items in a READ
statement. The default format of each data type and the format specifiers that can affect each
data type are explained in Section 7.7.1, through Section 7.7.6.

7�20

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Table 7�5. Text (ASCII) Input Format Specifiers

DATA TYPE 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER

INTEGER Total number of characters read Number base in range 2 - 16

REAL Total number of characters read Ignored

BOOLEAN Total number of characters read Ignored

STRING Total number of characters read 0 - unquoted STRING

2 - quoted STRING

Table 7�6 summarizes the output format specifiers that can be used with the data items in a WRITE
statement. The default format of each data type and the format specifiers that can affect each data type
are explained in Section 7.7.1 through Section 7.7.6 .

Table 7�6. Text (ASCII) Output Format Specifiers

DATA TYPE 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER

INTEGER Total number of characters written Number base in range 2-16

REAL Total number of characters written Number of digits to the right of decimal
point to be written

If negative, uses scientific notation

BOOLEAN Total number of characters written 0 - Left justified

1 - Right justified

STRING Total number of characters written 0 - Left justified

1 - Right justified

2 - Left justified in quotes (leading
blank)

3 - Right justified n quotes (leading
blank)

7�21

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�6. Text (ASCII) Output Format Specifiers (Cont�d)

DATA TYPE 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER

VECTOR Uses REAL format for each
component

Uses REAL format for each
component

POSITION Uses REAL format for each
component

Uses REAL format for each
component

XYZWPR Uses REAL format for each
component

Uses REAL format for each
component

XYZWPREXT Uses REAL format for each
component

Uses REAL format for each
component

JOINTPOSn Uses REAL format for each
component

Uses REAL format for each
component

7.7.1 Formatting INTEGER Data Items

INTEGER data items in a READ statement are processed as follows:

Default: Read as a decimal (base 10) INTEGER, starting with the next nonblank character on the
input line and continuing until a blank or end of line is encountered. If the characters read do not
form a valid INTEGER, the read operation fails.

First Format Specifier: Indicates the total number of characters to be read. The input field must be
entirely on the current input line and can include leading, but not trailing, blanks.

Second Format Specifier: Indicates the number base used for the input and must be in the range of 2
(binary) to 16 (hexadecimal).

For bases over 10, the letters A, B, C, D, E, and F are used as input for the digits with values 10, 11,
12, 13, 14, and 15, respectively. Lowercase letters are accepted.

Table 7�7 lists examples of INTEGER input data items and their format specifiers. The input data
and the resulting value of the INTEGER data items are included in the table. (The symbol [eol]
indicates end of line.)

7�22

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Table 7�7. Examples of INTEGER Input Data Items

DATA ITEM INPUT DATA RESULT

int_var -2[eol] int_var = -2

int_var 20 30 ... int_var = 20

int_var::3 10000 int_var = 100

int_var::5::2 10101

(base 2 input)

int_var = 21

(base 10 value)

int_var 1.00 format error

(invalid INTEGER)

int_var::5 100[eol] format error

(too few digits)

INTEGER data items in a WRITE statement are formatted as follows:

Default: Written as a decimal (base 10) INTEGER using the required number of digits and one
leading blank. A minus sign precedes the digits if the INTEGER is a negative value.

First Format Specifier: Indicates the total number of characters to be written, including blanks and
minus sign. If the format specifier is larger than required for the data, leading blanks are added. If it is
smaller than required, the field is extended as required.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

Second Format Specifier: Indicates the number base used for the output and must be in the range of
2 (binary) to 16 (hexadecimal).

If a number base other than 10 (decimal) is specified, the number of characters specified in the first
format specifier (minus one for the leading blank) is written, with leading zeros added if needed.

For bases over 10, the letters A, B, C, D, E, and F are used as input for the digits with values 10,
11, 12, 13, 14, and 15, respectively.

Table 7�8 lists examples of INTEGER output data items and their format specifiers. The output
values of the INTEGER data items are also included in the table. Double quotes are used in the table
as delimiters to show leading blanks; however, double quotes are not written by KAREL programs.

7�23

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�8. Examples of INTEGER Output Data Items

DATA ITEM OUTPUT COMMENT

123
" 123"

Leading blank

-5
" -5 "

Leading blank

123::6
" 123"

Right justified (leading blanks)

-123::2
" -123"

Expanded as required

1024::0::16
" 400"

Hexadecimal output

5::6::2
" 00101"

Binary output (leading zeros)

-1::9::16
" FFFFFFFF"

Hexadecimal output

7.7.2 Formatting REAL Data Items

REAL data items in a READ statement are processed as follows:

Default: Read starting with the next nonblank character on the input line and continuing until a
blank or end of line is encountered.

Data can be supplied with or without a fractional part. The E used for scientific notation can be in
upper or lower case. If the characters do not form a valid REAL, the read operation fails.

First Format Specifier: Indicates the total number of characters to be read. The input field must be
entirely on the current input line and can include leading, but not trailing, blanks.

Second Format Specifier: Ignored for REAL data items.

Table 7�9 lists examples of REAL input data items and their format specifiers. The input data and the
resulting value of the REAL data items are included in the table. The symbol [eol] indicates end of
line and X indicates extraneous data on the input line.

7�24

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Table 7�9. Examples of REAL Input Data Items

DATA ITEM INPUT DATA RESULT

real_var 1[eol] 1.0

real_var 1.000[eol] 1.0

real_var 2.5 XX 2.50

real_var 1E5 XX 100000.0

real_var::7 2.5 XX format error (trailing blank)

real_var 1E format error (no exponent)

real_var::4 1E 2 format error (embedded blank)

REAL data items in a WRITE statement are formatted as follows:

Default: Written in scientific notation in the following form:

(blank)(msign)(d).(d)(d)(d)(d)(d)E(esign)(d)(d)

where:

(blank) is a single blank

(msign) is a minus sign, if required

(d) is a digit

(esign) is a plus or minus sign

First Format Specifier: Indicates the total number of characters to be written, including all the digits,
blanks, signs, and a decimal point. If the format specifier is larger than required for the data, leading
blanks are added. If it is smaller than required, the field is extended as required.

In the case of scientific notation, character length should be greater than (8 + 2nd format specifier)
to write the data completely.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

7�25

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Second Format Specifier: Indicates the number of digits to be output to the right of the decimal
point, whether or not scientific notation is to be used.

The absolute value of the second format specifier indicates the number of digits to be output to the
right of the decimal point.

If the format specifier is positive, the data is displayed in fixed format (that is, without an exponent).
If it is negative, scientific notation is used.

Table 7�10 lists examples of REAL output data items and their format specifiers. The output values of
the REAL data items are also included in the table. Double quotes are used in the table as delimiters
to show leading blanks; however, double quotes are not written by KAREL programs.

Table 7�10. Examples of REAL Output Data Items

DATA ITEM OUTPUT COMMENT

123.0
" 1.23000E+02"

Scientific notation (default format)

123.456789
" 1.23457E+02"

Rounded to 5 digits in fractional part

.00123
" 1.23000E-03"

Negative exponent

-1.00
" -1.00000E+00"

Negative value

-123.456::9
" -1.234560E+02"

Field expanded

123.456::12
" 1.234560E+02"

Leading blank added

123.456::9::2
" 123.46"

Right justified and rounded

123.::12::-3
" 1.230E+02"

Scientific notation

7.7.3 Formatting BOOLEAN Data Items

BOOLEAN data items in a READ statement are formatted as follows:

Default: Read starting with the next nonblank character on the input line and continuing until a
blank or end of line is encountered.

7�26

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Valid input values for TRUE include TRUE, TRU, TR, T, and ON. Valid input values for FALSE
include FALSE, FALS, FAL, FA, F, OFF, and OF. If the characters read do not form a valid
BOOLEAN, the read operation fails.

First Format Specifier: Indicates the total number of characters to be read. The input field must be
entirely on the current input line and can include leading, but not trailing, blanks.

Second Format Specifier: Ignored for BOOLEAN data items.

Table 7�11 lists examples of BOOLEAN input data items and their format specifiers. The input data
and the resulting value of the BOOLEAN data items are included in the table. (The symbol [eol]
indicates end of line and X indicates extraneous data on the input line.)

Table 7�11. Examples of BOOLEAN Input Data Items

DATA ITEM INPUT DATA RESULT

bool_var FALSE[eol] FALSE

bool_var FAL 3... FALSE

bool_var T[eol] TRUE

bool_var::1 FXX FALSE (only reads �� F��)

bool_var O[eol] format error (ambiguous)

bool_var 1.2[eol] format error (not BOOLEAN)

bool_var::3 F [eol] format error (trailing blanks)

bool_var::6 TRUE[eol] format error (not enough data)

BOOLEAN data items in a WRITE statement are formatted as follows:

Default: Written as either ��TRUE�� or ��FALSE". (Double quotes are used in the table as delimiters
to show leading blanks; however, double quotes are not written by KAREL programs.)

First Format Specifier: Indicates the total number of characters to be written, including blanks (a
leading blank is always included). If the format specifier is larger than required for the data, trailing
blanks are added. If it is smaller than required, the field is truncated on the right.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

7�27

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Second Format Specifier: Indicates whether the data is left or right justified. If the format specifier
is equal to 0, the output word is left justified in the output field with one leading blank, and trailing
blanks as required. If it is equal to 1, the output word is right justified in the output field, with
leading blanks as required.

Table 7�12 lists examples of BOOLEAN output data items and their format specifiers. The output
values of the BOOLEAN data items are also included in the table. Double quotes are used in the table
as delimiters to show leading blanks; however, double quotes are not written by KAREL programs.

Table 7�12. Examples of BOOLEAN Output Data Items

DATA ITEM OUTPUT COMMENT

FALSE
" FALSE"

Default includes a leading blank

TRUE
" TRUE"

TRUE is shorter than FALSE

FALSE::8
" FALSE "

Left justified (default)

FALSE::8::1
" FALSE"

Right justified

TRUE::2
" T"

Truncated

7.7.4 Formatting STRING Data Items

STRING data items in a READ statement are formatted as follows:

Default: Read starting at the current position and continuing to the end of the line. If the length of the
data obtained is longer than the declared length of the STRING, the data is truncated on the right. If it
is shorter, the current length of the STRING is set to the actual length.

First Format Specifier: Indicates the total field length of the input data. If the field length is longer
than the declared length of the STRING, the input data is truncated on the right. If it is shorter, the
current length of the STRING is set to the specified field length.

Second Format Specifier: Indicates whether or not the input STRING is enclosed in single quotes. If
the format specifier is equal to 0, the input is not enclosed in quotes.

If it is equal to 2, the input must be enclosed in quotes. The input is scanned for the next nonblank
character. If the character is not a quote, the STRING is not valid and the read operation fails.

If the character is a quote, the remaining characters are scanned until another quote or the end of line
is found. If another quote is not found, the STRING is not valid and the read operation fails.

7�28

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

If both quotes are found, all of the characters between them are read into the STRING variable, unless
the declared length of the STRING is too short, in which case the data is truncated on the right.

Table 7�13 lists examples of STRING input data items and their format specifiers, where str_var
has been declared as a STRING[5]. The input data and the resulting value of the STRING data
items are included in the table. The symbol [eol] indicates end of line and X indicates extraneous
data on the input line.

Table 7�13. Examples of STRING Input Data Items

DATA ITEM INPUT DATA RESULT

str_var
"ABC[eol]" "ABC"

str_var
"ABCDEFG[eol]" "ABCDE"

(FG is read but the STRING is truncated to
5 characters)

str_var
" ’ABC’XX" " ’AB"

(blanks and quote are read as data)

str_var::0::2
"’ABC’XX" "’ABC’"

(read ends with second quote)

STRING data items in a WRITE statement are formatted as follows:

Default: Content of the STRING is written with no trailing or leading blanks or quotes.

The STRING must not be over 127 bytes in length for files or 126 bytes in length for other output
devices. Otherwise, the program will be aborted with the ��STRING TOO LONG�� error.

First Format Specifier: Indicates the total number of characters to be written, including blanks. If
the format specifier is larger than required for the data, the data is left justified and trailing blanks are
added. If the format specifier is smaller than required, the STRING is truncated on the right.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

Second Format Specifier: Indicates whether the output is to be left or right justified and whether the
STRING is to be enclosed in quotes using the following values:

0 left justified, no quotes

1 right justified, no quotes

2 left justified, quotes

7�29

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

3 right justified, quotes

Quoted STRING values, even if left justified, are preceded by a blank. Unquoted STRING values are
not automatically preceded by a blank.

Table 7�14 lists examples of STRING output data items and their format specifiers. The output values
of the STRING data items are also included in the table. Double quotes are used in the table as
delimiters to show leading blanks; however, double quotes are not written by KAREL programs.

Table 7�14. Examples of STRING Output Data Items

DATA ITEM OUTPUT COMMENT

�ABC�
"ABC"

No leading blanks

�ABC�::2
"AB"

Truncated on right

�ABC�::8
"ABC "

Left justified

�ABC�::8::0
"ABC "

Same as previous

�ABC�::8::1
" ABC"

Right justified

�ABC�::8::2
" ’ABC’ "

Note leading blank

�ABC�::8::3
" ’ABC’"

Right justified

�ABC�::4::2
" ’A’"

Truncated

Format specifiers for STRING data items can cause the truncation of the original STRING values
or the addition of trailing blanks when the values are read again.

If STRING values must be successively written and read, the following guidelines will help you
ensure that STRING values of varying lengths can be read back identically:

• The variable into which the STRING is being read must have a declared length at least as long as
the actual STRING that is being read, or truncation will occur.

• Some provision must be made to separate STRING values from preceding variables on the
same data line. One possibility is to write a � � (blank) between a STRING and the variable
that precedes it.

• If format specifiers are not used in the read operation, write STRING values at the ends of their
respective data lines (that is, followed in the output list by a CR) because STRING variables
without format specifiers are read until the end of the line is reached.

7�30

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

• The most general way to write string values to a file and read them back is to use the format
::0::2 for both the read and write.

7.7.5 Formatting VECTOR Data Items

VECTOR data items cannot be read from text (ASCII) files. However, you can read three REAL
values and assign them to the elements of a VECTOR variable. VECTOR data items in a WRITE
statement are formatted as three REAL values on the same line.

Table 7�15 lists examples of VECTOR output data items and their format specifiers, where vect.x
= 1.0, vect.y= 2.0, vect.z = 3.0. The output values of the VECTOR data items are also included in
the table. Double quotes are used in the table as delimiters to show leading blanks; however, double
quotes are not written by KAREL programs.

See Also: Section 7.7.2, ��Formatting REAL Data Items,�� for information on the default output
format and format specifiers used with REAL data items

Table 7�15. Examples of VECTOR Output Data Items

DATA ITEM OUTPUT

vect
" 1. 2. 3."

vect::6::2
" 1.00 2.00 3.00"

vect::12::-3
" 1.000E+00 2.000E+00 3.000E+00"

7.7.6 Formatting Positional Data Items

Positional data items cannot be read from text (ASCII) files. However, you can read six REAL values
and a STRING value and assign them to the elements of an XYZWPR variable or use the POS
built-in function to compose a POSITION. The CNV_STR_CONF built-in can be used to convert
a STRING to a CONFIG data type.

POSITION and XYZWPR data items in a WRITE statement are formatted in three lines of output.
The first line contains the location (x,y,z) component of the POSITION, the second line contains the
orientation (w,p,r), and the third line contains the configuration string.

The location and orientation components are formatted as six REAL values. The default format for
the REAL values in a POSITION is the default format for REAL(s). Refer to Section 7.7.2.

7�31

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

The configuration string is not terminated with a CR, meaning you can follow it with other data
on the same line.

Table 7�16 lists examples of POSITION output data items and their format specifiers, where p =
POS(2.0,-4.0,8.0,0.0,90.0,0.0,config_var). The output values of the POSITION data items are also
included in the table. Double quotes are used in the table as delimiters to show leading blanks;
however, double quotes are not written by KAREL programs.

Table 7�16. Examples of POSITION Output Data Items (p = POS(2.0,-4.0,8.0,0.0,90.0,0.0,config_var))

DATA ITEM OUTPUT

p
" 2. -4. 8."
" 0. 9. 0."
"N, 127, , -1"

p::7::2
" 2.00-4.00 8.00"
" 0.0090.00 0.00"
"N, 127, , -1"

JOINTPOS data items in a WRITE statement are formatted similarly to POSITION types with three
values on one line.

See Also: Section 7.7.2 , for information on format specifiers used with REAL data items

POS Built-In Function, Appendix A.

7.8 FORMATTING BINARY INPUT/OUTPUT

This section explains the format specifier used in READ and WRITE statements to read and write
binary (unformatted) data for each data item. Binary input/output operations are sometimes referred to
as unformatted, as opposed to text (ASCII) input/output operations that are referred to as formatted.

The built-in SET_FILE_ATR with the ATR_UF attribute is used to designate a file variable for binary
operations. If not specified, ASCII text operations will be used.

Data items in READ and WRITE statements can be any of the following data types for binary files:

INTEGER
REAL
BOOLEAN
STRING
VECTOR
POSITION
XYZWPR

7�32

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

XYZWPREXT
JOINTPOS

Vision and array variables cannot be read or written in unsubscripted form. The elements of an
ARRAY are read or written in the format that corresponds to the data type of the ARRAY.

Entire PATH variables can be read or written, or you can specify that only node[0] (containing the
PATH header), a specific node, or a range of nodes be read or written. Format specifiers have
no effect on PATH data. PATH data can be read or written only to a file and not to a serial port,
CRT/KB, or teach pendant.

Binary I/O is preferred to text I/O when creating files that are to be read only by KAREL programs for
the following reasons:

• Positional, VECTOR, and PATH variables cannot be read directly from text input.

• Some formats and data combinations are not read in the same manner as they were written in
text files or they become invalid if read with the same format.

• Binary data is generally more compact, reducing both the file size and the I/O time.

• There is some inevitable loss of precision when converting from REAL data to its ASCII
representation and back.

Generally, no format specifiers need to be used with binary I/O. If this rule is followed, all input data
can be read exactly as it was before it was written.

However, if large numbers of INTEGER values are to be written and their values are known to be
small, writing these with format specifiers reduces both storage space and I/O time.

For example, INTEGER values in the range of -128 to +127 require only one byte of storage space,
and INTEGER values in the range of -32768 to +32767 require two bytes of storage space. Writing
INTEGER values in these ranges with a first format specifier of 1 and 2, respectively, results in
reduced storage space and I/O time requirements, with no loss of significant digits.

Table 7�17 summarizes input and output format specifiers that can be used with the data items in
READ and WRITE statements. The default format of each data type is also included. Sections 7.8.1
through 7.8.6 explain the effects of format specifiers on each data type in more detail.

See Also: SET_FILE_ATR Built-In Routine, Appendix A.

7�33

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�17. Binary Input/Output Format Specifiers

DATA TYPE DEFAULT 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER

INTEGER Four bytes read or written Specified number of least
significant bytes read or
written, starting with most
significant (1-4)

Ignored

REAL Four bytes read or written Ignored Ignored

BOOLEAN Four bytes read or written Specified number of least
significant bytes read or
written, starting with most
significant (1-4)

Ignored

STRING Current length of string
(1 byte), followed by data
bytes

Number of bytes read or
written

Ignored

VECTOR Three 4-byte REAL
numbers read or written

Ignored Ignored

POSITION 56 bytes read or written Ignored Ignored

XYZWPR 32 bytes read or written Ignored Ignored

XYZWPREXT 44 bytes read or written Ignored Ignored

JOINTPOSn 4 + n*4 bytes read or
written

Ignored Ignored

PATH Depends on size of
structure

Ignored Ignored

7.8.1 Formatting INTEGER Data Items

INTEGER data items in a READ or WRITE statement are formatted as follows:

Default: Four bytes of data are read or written starting with the most significant byte.

7�34

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

First Format Specifier: Indicates the number of least significant bytes of the INTEGER to read or
write, with the most significant of these read or written first. The sign of the most significant byte read
is extended to unread bytes. The format specifier must be in the range from 1 to 4.

For example, if an INTEGER is written with a format specifier of 2, bytes 3 and 4 (where byte 1 is the
most significant byte) will be written. There is no check for loss of significant bytes when INTEGER
values are formatted in binary I/O operations.

Note Formatting of INTEGER values can result in undetected loss of high order digits.

Second Format Specifier: Ignored for INTEGER data items.

7.8.2 Formatting REAL Data Items

REAL data items in a READ or WRITE statement are formatted as follows:

Default: Four bytes of data are read or written starting with the most significant byte.

First Format Specifier: Ignored for REAL data items.

Second Format Specifier: Ignored for REAL data items.

7.8.3 Formatting BOOLEAN Data Items

BOOLEAN data items in a READ or WRITE statement are formatted as follows:

Default: Four bytes of data are read or written. In a read operation, the remainder of the word,
which is never used, is set to 0.

First Format Specifier: Indicates the number of least significant bytes of the BOOLEAN to read or
write, the most significant of these first. The format specifier must be in the range from 1 to 4. Since
BOOLEAN values are always 0 or 1, it is always safe to use a field width of 1.

Second Format Specifier: Ignored for BOOLEAN data items.

7.8.4 Formatting STRING Data Items

STRING data items in a READ or WRITE statement are formatted as follows:

Default: The current length of the STRING (not the declared length) is read or written as a single
byte, followed by the content of the STRING. STRING values written without format specifiers
have their lengths as part of the output, while STRING values written with format specifiers do not.

7�35

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Likewise, if a STRING is read without a format specifier, the length is expected in the data, while if a
STRING is read with a format specifier, the length is not expected.

This means that, if you write and then read STRING data, you must make sure your use of format
specifiers is consistent.

First Format Specifier: Indicates the number of bytes to be read or written.

Second Format Specifier: Ignored for STRING data items.

In a read operation, if the first format specifier is greater than the declared length of the STRING, the
data is truncated on the right. If it is less than the declared length of the STRING, the current length of
the STRING is set to the number of bytes read.

In a write operation, if the first format specifier indicates a shorter field than the current length of
the STRING, the STRING data is truncated on the right. If it is longer than the current length of the
STRING, the output is padded on the right with blanks.

Writing STRING values with format specifiers can cause truncation of the original STRING values or
padding blanks on the end of the STRING values when reread.

7.8.5 Formatting VECTOR Data Items

VECTOR data items in a READ or WRITE statement are formatted as follows:

Default: Data is read or written as three 4-byte binary REAL numbers.

First Format Specifier: Ignored for VECTOR data items.

Second Format Specifier: Ignored for VECTOR data items.

7.8.6 Formatting POSITION Data Items

POSITION data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 56 bytes long.

7.8.7 Formatting XYZWPR Data Items

XYZWPR data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 32 bytes long.

7�36

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

7.8.8 Formatting XYZWPREXT Data Items

XYZWPREXT data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 44 bytes long.

7.8.9 Formatting JOINTPOS Data Items

JOINTPOS data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 4 bytes plus 4 bytes for
each axis.

7.9 USER INTERFACE TIPS

Input and output to the teach pendant or CRT/KB is accomplished by executing "READ" and
"WRITE" statements within a KAREL program. If the USER menu is not the currently selected
menu, the input will remain pending until the USER menu is selected. The output will be written
to the "saved" windows that will be displayed when the USER menu is selected. You can have
up to eight saved windows.

7.9.1 USER Menu on the Teach Pendant

The screen that is activated when the USER menu is selected from the teach pendant is named "t_sc".
The windows listed in Table 7�18 are defined for "t_sc".

Table 7�18. Defined Windows for t_sc"

Window Name Lines Predefined FILE
Name

Scrolled Rows

"t_fu" 10 TPDISPLAY yes 5-14

"t_pr" 1 TPPROMPT no 15

"t_st" 3 TPSTATUS no 2-4

"t_fk" 1 TPFUNC no 16

7�37

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�18. Defined Windows for t_sc" (Cont�d)

Window Name Lines Predefined FILE
Name

Scrolled Rows

"err" 1 TPERROR no 1

"stat" 1 no 2

"full" 2 no 3-4

"motn" 1 no 3

By default, the USER menu will attach the "err", "stat", "full", "motn", "t_fu", "t_pr", and "t_fk"
windows to the "t_sc" screen. See Figure 7�1.

Figure 7�1. "t_sc" Screen

err (TPERROR)
stat
full motn
full
t_fu (TPDISPLAY)

t_pr (TPPROMPT)
t_fk (TPFUNC)

motn overlaps
full at
column 18

The following system variables affect the teach pendant USER menu:

• $TP_DEFPROG: STRING - Identifies the teach pendant default program. This is automatically
set when a program is selected from the teach pendant SELECT menu.

• $TP_INUSER: BOOLEAN - Set to TRUE when the USER menu is selected from the teach
pendant.

• $TP_LCKUSER: BOOLEAN - Locks the teach pendant in the USER menu while
$TP_DEFPROG is running and $TP_LCKUSER is TRUE.

• $TP_USESTAT: BOOLEAN - Causes the user status window "t_st" (TPSTATUS) to be attached
to the user screen while $TP_USESTAT is TRUE. While "t_st" is attached, the "stat", "motn", and
"full" windows will be detached. See Figure 7�2 .

7�38

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Figure 7�2. "t_sc" Screen with $TP_USESTAT = TRUE

err (TPERROR)
t_st (TPSTATUS)
t_st (TPSTATUS)
t_st (TPSTATUS)
t_fu (TPDISPLAY)

t_pr (TPPROMPT)
t_fk (TPFUNC)

7.9.2 USER Menu on the CRT/KB

The screen that is activated when the USER menu is selected from the CRT is named "c_sc". The
windows listed in Table 7�19 are defined for "c_sc".

Table 7�19. Defined Windows for c_sc"

Window Name Lines Predefined FILE
Name

Scrolled Rows

"c_fu" 17 INPUT and
OUTPUT

yes 5-21

"c_pr" 1 CRTPROMPT no 22

"c_st" 3 CRTSTATUS no 2-4

"c_fk" 2 CRTFUNC no 23-24

"err" 1 CRTERROR no 1

"ct01" 1 no 2

7�39

7. FILE INPUT/OUTPUT OPERATIONS MARAIKLRF06031E REV A

Table 7�19. Defined Windows for c_sc" (Cont�d)

"uful" 2 no 3-4

"motn" 1 no 3

By default, the USER menu will attach the "err", "ct01", "uful", "motn", "c_fu", "c_fk", and "uftn"
windows to the "c_sc" screen. The "c_fk" window will label the function keys an show FCTN and
MENUS for F9 and F10. See Figure 7�3 .

Figure 7�3. "c_sc" Screen

err (CRTERROR)
ct01
uful motn
uful
c_fu (INPUT and OUTPUT)

c_pr (CRTPROMPT)
c_fk (CRTFUNC)
c_fk

uful and motn
overlap; motn
starts at
column 18

The following system variables affect the CRT USER menu:

• $CRT_DEFPROG: STRING - This variable identifies the CRT default program. This is
automatically set when a program is selected from the CRT SELECT menu.

• $CRT_INUSER: BOOLEAN - This variable is set to TRUE when the USER menu is selected
from the CRT.

• $CRT_LCKUSER: BOOLEAN - This variable locks the CRT in the USER menu while
$CRT_DEFPROG is running and $CRT_LCKUSER is TRUE.

• $CRT_USERSTAT: BOOLEAN - This variable causes the user status window "c_st"
(CRTSTATUS) to be attached to the user screen while $CRT_USERSTAT is TRUE. While "c_st"
is attached, the "ct01", "motn", and "uful" windows will be detached. SeeFigure 7�4 .

7�40

MARAIKLRF06031E REV A 7. FILE INPUT/OUTPUT OPERATIONS

Figure 7�4. "c_sc" Screen with $CRT_USERSTAT = TRUE

err (CRTERROR)
c_st (CRTSTATUS)
c_st (CRTSTATUS)
c_st (CRTSTATUS)
c_fu (INPUT and OUTPUT)

c_pr (CRTPROMPT)
c_fk (CRTFUNC)
c_fk

7�41

Chapter 8
MOTION

Contents

Chapter 8 MOTION ... 8�1
8.1 POSITIONAL DATA .. 8�2
8.2 FRAMES OF REFERENCE ... 8�4

8.2.1 World Frame ... 8�5
8.2.2 User Frame (UFRAME) .. 8�5
8.2.3 Tool Definition (UTOOL) .. 8�5
8.2.4 Using Frames in the Teach Pendant Editor (TP) 8�6
8.3 JOG COORDINATE SYSTEMS ... 8�6
8.4 MOTION CONTROL ... 8�7

8.4.1 Motion Trajectory ... 8�10
8.4.2 Motion Trajectories with Extended Axes .. 8�18
8.4.3 Acceleration and Deceleration ... 8�19
8.4.4 Motion Speed ... 8�23
8.4.5 Motion Termination .. 8�28
8.4.6 Multiple Segment Motion ... 8�31
8.4.7 Path Motion .. 8�38
8.4.8 Motion Times ... 8�41
8.4.9 Correspondence Between Teach Pendant Program Motion and

KAREL Program Motion .. 8�45

8�1

8. MOTION MARAIKLRF06031E REV A

In robotic applications, single segment motion is the movement of the tool center point (TCP) from
an initial position to a desired destination position. The KAREL system represents positional data
in terms of location (x, y, z), orientation (w, p, r), and configuration. The location and orientation
are defined relative to a Cartesian coordinate system (user frame), making them independent of the
robot joint angles. Configuration represents the unique set of joint angles at a particular location
and orientation.

The KAREL system uses the motion environment to control motion. KAREL motion control
regulates the characteristics of the movement including trajectory, acceleration/deceleration , speed,
and termination.

In addition to single segment motion, KAREL can control multiple segment motion including path
motion and provides for the estimation of cycle times.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly,
personnel could be injured, and equipment could be damaged.

8.1 POSITIONAL DATA

The KAREL language uses the POSITION, XYZWPR, XYZWPREXT, JOINTPOS, and PATH data
types to represent positional data. The POSITION data type is composed of the following:

• Three REAL values representing an x, y, z location expressed in millimeters

• Three REAL values representing a w, p, r orientation expressed in degrees

• One CONFIG Data Type, consisting of 4 booleans and 3 integers, which represent the
configuration in terms of joint placement and turn number. Before you specify the config data
type, make sure it is valid for the robot being used. Valid joint placement values include:

� �R� or �L� (shoulder right or left)

� �U� or �D� (elbow up or down)

� �N� or �F� (wrist no-flip or flip)

� �T� or �B� (config front or back)

A turn number is the number of complete turns a multiple turn joint makes beyond the
required rotation to reach a position. Table 8�1 lists the valid turn number definitions.

8�2

MARAIKLRF06031E REV A 8. MOTION

Table 8�1. Turn Number Definitions

Turn Number Rotation (degrees)

-8 -2700 to -3059

-7 -2340 to -2699

-6 -1980 to -2339

-5 -1620 to -1979

-4 -1260 to -1619

-3 -900 to -1259

-2 -540 to -899

-1 -180 to -539

0 -179 to 179

1 180 to 539

2 540 to 899

3 900 to 1259

4 1260 to 1619

5 1620 to 1979

6 1980 to 2339

7 2340 to 2699

The PATH data type consists of a varying-length list of elements called path nodes.

See Also: The appropriate application-specific FANUC Robotics SYSTEM R-J3iB Controller
Setup and Operations Manual for configuration information on each supported robot model. The

8�3

8. MOTION MARAIKLRF06031E REV A

POSITION, XYZWPR, XYZWPREXT, JOINTPOS, and PATH Data Types, Appendix A, ��KAREL
Language Alphabetical Description.��

8.2 FRAMES OF REFERENCE

The KAREL system defines the location and orientation of positional data relative to a user-defined
frame of reference, called user frame, as shown in Figure 8�1 .

Figure 8�1. Referencing Positions in KAREL

FACEPLATE

$UTOOL

TCP

USER
FRAME

WORLD
COORDINATE
SYSTEM

ROBOT

$UFRAME

ROBOT = $UFRAME:POSITION:INV($UTOOL)

POSITION

Three frames of reference exist:

• WORLD - predefined

• UFRAME - determined by the user

• UTOOL - defined by the tool

Using kinematic equations, the controller computes its positional information based on the known
world frame and the data stored in the system variables $UFRAME (for user frame) and $UTOOL
(for tool frame).

8�4

MARAIKLRF06031E REV A 8. MOTION

8.2.1 World Frame

The world frame is predefined for each robot. It is used as the default frame of reference. The location
of world frame differs for each robot model.

8.2.2 User Frame (UFRAME)

The programmer defines user frame relative to the world frame by assigning a value to the system
variable $UFRAME.

Warning

Be sure $UFRAME is set to the same value whether you are teaching
positional data or running a program with that data, or damage to the
tool could occur.

The location of UFRAME represents distances along the x-axis, y-axis, and z-axis of the world
coordinate system; the orientation represents rotations around those axes.

By default, the system assigns a (0,0,0) location value and a (0,0,0) orientation value to $UFRAME,
meaning the user frame is identical to that of the world coordinate system. All positions are recorded
relative to UFRAME.

To use a teach pendant user frame in a KAREL program, set $GROUP[group_no].$UFRAME =
$MNUFRAME[group_no, $MNUFRAMENUM[group_no]] before executing any motion.

8.2.3 Tool Definition (UTOOL)

The tool center point (TCP) is the origin of the UTOOL frame of reference. The programmer defines
the position of the TCP relative to the faceplate of the robot by assigning a value to the system
variable $UTOOL. By default, the system assigns a (0,0,0) location and a (0,0,0) orientation to
$UTOOL, meaning $UTOOL is identical to the faceplate coordinate system. The positive z-axis of
UTOOL defines the approach vector of the tool.

Warning

Be sure $UTOOL correctly defines the position of the TCP for the tool you
are using, or damage to the tool could occur.

The faceplate coordinate system has its origin at the center of the faceplate surface. Its orientation
is defined with the plane of the x-axis and y-axis on the faceplate and the positive z-axis pointing
straight out from the faceplate.

8�5

8. MOTION MARAIKLRF06031E REV A

To use a teach pendant tool frame in a KAREL program, set $GROUP[group_no].$utool =
$MNUTOOL[group_no], $MNUTOOLNUM[group_no] before you execute any motion.

Note Do not use more than one motion group in a KAREL program. If you need to use more than
one motion group, you must use a teach pendant program.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly,
personnel could be injured, and equipment could be damaged.

8.2.4 Using Frames in the Teach Pendant Editor (TP)

The system variable $USEUFRAME defines whether the current value of
$MNUFRAMENUM[group_no] will be assigned to the position�s user frame when it is being
recorded or touched up.

• When $USEUFRAME = FALSE , the initial recording of positions and the touching
up of positions is done with the user frame number equal to 0, regardless of the value of
$MNUFRAMENUM[group_no].

• When $USEUFRAME = TRUE , the initial recording of positions is done with the position�s
user frame equal to the user frame defined by $MNUFRAMENUM[group_no]. The touching up
of positions must also be done with the position�s user frame equal to the user frame defined by
$MNUFRAMENUM[group_no].

When a position is recorded in the teach pendant editor, the value of the position�s tool frame will
always equal the value of $MNUTOOLNUM[group_no] at the time the position was recorded. When
a teach pendant program is executed, you must make sure that the user frame and the tool frame of
the position equal the values of $MNUFRAMENUM[group_no] and $MNUTOOLNUM[group_no];
otherwise, an error will occur. Set the values of $MNUFRAMENUM[1] and $MNUTOOLNUM[1]
using the UFRAME_NUM = n and UTOOL_NUM = n instructions in the teach pendant editor before
you record the position to guarantee that the user and tool frame numbers match during program
execution.

8.3 JOG COORDINATE SYSTEMS

The KAREL system provides five different jog coordinate systems:

• JOINT - a joint coordinate system in which individual robot axes move. The motion is joint
interpolated.

8�6

MARAIKLRF06031E REV A 8. MOTION

• WORLD - a Cartesian coordinate system in which the TCP moves parallel to, or rotates around,
the x, y, and z-axes of the predefined WORLD frame. The motion is linearly interpolated.

• TOOLFRAME - a Cartesian coordinate system in which the TCP moves parallel to, or
rotates around, the x, y, and z-axes of the currently selected tool frame. The motion is linearly
interpolated. The tool frame is normally selected using the SETUP Frames menu. To jog using
$GROUP[group_no].$utool, set $MNUTOOLNUM[group_no] = 14.

• JOGFRAME - a Cartesian coordinate system in which the TCP moves parallel to, or rotates
around, the x, y, and z-axes of the coordinate system defined by the $JOG_GROUP[group
_no].$jogframe system variable. The motion is linearly interpolated.

• USER FRAME - a Cartesian coordinate system in which the TCP moves parallel to, or
rotates around, the x, y, and z-axes of the currently selected user frame. The motion is linearly
interpolated. The user frame is normally selected using the SETUP Frames menu. To jog using
$GROUP[group_no].$uframe, set $MNUFRAMENUM[group_no] = 14.

The robot can be jogged in any one of these jog coordinate systems to reach a destination position.
Once that position is reached, however, the positional data is recorded with reference to the user
frame as discussed in Section 8.2 .

See Also: The application-specific FANUC Robotics SYSTEM R-J3iB Controller Setup and
Operations Manual for step-by-step explanations of how to jog and define frames.

8.4 MOTION CONTROL

A single segment motion is the simplest form of motion. This motion consists of accelerating from
the initial position, traveling along the desired trajectory at the programmed speed, and decelerating
to arrive at the destination position.

Motion control regulates the characteristics of the movement which includes:

• Trajectory

• Acceleration/Deceleration

• Speed

• Termination

These motion characteristics are explained in terms of single segment motion. In some applications,
motion control extends to the movement of extended axes as well.

In addition to single segment motion, the KAREL system can control multiple segment motion
(movement to a sequence of positions without stopping). Motion times can be estimated using the
tables and formulas included in this section. In the KAREL system, motion can be initiated in two
ways:

• Manually, by jogging the robot or issuing a KCL motion command.

8�7

8. MOTION MARAIKLRF06031E REV A

• By issuing KAREL program statements. All motion that is generated by a KAREL program is
program controlled motion.

The motion environment executes program controlled motion as follows:

• Program statements are executed by the KAREL interpreter.

• When the interpreter encounters a motion statement, it passes the information to the motion
environment, which carries out the motion.

• The motion environment runs in parallel with the interpreter so that, when necessary, motion can
be carried out simultaneously with the execution of other program statements.

The following terms, which are illustrated in Figure 8�2 , help clarify the relationship between a
motion statement and how it is carried out by the motion environment:

• Motion - The physical movement of the robot from the time it starts moving to the time it
stops. During continuous path motion, several motion statements executed sequentially can
compose a single motion.

• Motion Interval - The motion generated by a single motion statement, for example, a MOVE
TO or a MOVE ALONG statement.

• Taught Position - A position you teach or calculate in a program. It can be a destination for a
MOVE TO statement, an intermediate position for a MOVE ALONG statement, or any other
position that is used in a motion statement.

• Motion Segment - The part of a motion between two taught positions. A motion interval can
be composed of a single motion segment, or several motion segments can be combined into one
motion interval in which the robot moves near or through taught positions without stopping.

8�8

MARAIKLRF06031E REV A 8. MOTION

Figure 8�2. Motion Terms

Motion

Motion intervals

Motion interval

Where B, C, and the nodes [1] [4] in path D are taught positions

D[1]

D[2]

D[3] D[4]A B

C

initial position is A
MOVE TO B
MOVE TO C
MOVE ALONG D

Several characteristics of a motion are controlled by the motion environment and can be specified by
changing the appropriate system variables. They are illustrated in Figure 8�3 and can be categorized
as follows:

• Trajectory The path of the TCP as the robot moves from its initial to final position. The
trajectory includes orientation as well as location of the TCP.

• Acceleration/Deceleration Acceleration is the initial phase of a motion during which the speed
of the robot increases to the programmed speed. At the end of a motion, the robot decelerates
to a stop.

The programmed segment time specified in the KAREL program, which defines the time required
to finish the motion segment, does not include deceleration time.

During continuous path motion, which includes multiple segments, acceleration and deceleration
might occur at the taught positions as the robot changes speed and direction of motion.

• Programmed Speed The speed is designated in the KAREL program (or by the teach pendant
for manual motion). In between acceleration and deceleration the robot moves at the programmed
speed.

• Motion Interval Termination The criterion by which the motion environment determines
when a motion interval is complete. Motion interval termination is important in synchronizing
program statements with the actual motion.

8�9

8. MOTION MARAIKLRF06031E REV A

Figure 8�3. Motion Characteristics

initial
position

final
position

linear trajectory

velocity

time

accel

programmed speed

decel

8.4.1 Motion Trajectory

The motion trajectory between two taught positions is generated by interpolating various sets of
variables from their initial values at the start position to their final values at the destination position.

The two basic interpolation methods are joint interpolation and Cartesian interpolation.

• During joint interpolation , the joint angles of the robot are linearly interpolated from their
initial to final values.

• Cartesian interpolation is categorized into linear and circular interpolation of the location of the
TCP and, for each of these, there are several possible schemes for interpolating the orientation of
the TCP. See Figure 8�4 .

Both location and orientation are interpolated during all robot motions. The system variable,
$MOTYPE, governs the basic motion type or how the location of the TCP is interpolated during a
motion interval.

8�10

MARAIKLRF06031E REV A 8. MOTION

Figure 8�4. Interpolation Rates

single segment

taught postaught pos

joint interpolation period

Cartesian interpolation period

Location Interpolation

$MOTYPE has three possible enumerated values:

• JOINT (6)

• LINEAR (7)

• CIRCULAR (8)

The value of $MOTYPE can be assigned using the teach pendant, CRT/KB, or by issuing a KAREL
assignment statement. Each time a KAREL program is executed, $MOTYPE is initialized to JOINT.

Figure 8�5 shows the difference between the three values for $MOTYPE.

8�11

8. MOTION MARAIKLRF06031E REV A

Figure 8�5. Location Interpolation of the TCP

Each axis is
linearly interpolated

TCP moves
in a straight line

TCP moves
in a circular fashion
based on the value
of the via position

JOINT LINEAR CIRCULAR

A B
A B

A B

• JOINT Interpolated Motion

The following rules apply to joint interpolated motion:

� All axes start moving at the same time and reach the beginning of the deceleration at the
same time.

� The trajectory is not a simple geometric shape such as a straight line. However, the path
is repeatable.

� The motion is defined by computing the time for each axis to move from its current position
to its final position at the programmed speed. The longest time among all axes is used as the
segment time, and each axis begins and ends its motion in this amount of time.

The axis with the longest time, called the limiting axis, moves at its programmed speed.
While the other axes move slower than their programmed speeds, using the same segment
time for all axes allows them to arrive at the destination in the correct amount of time.

• LINEAR Interpolated Motion

The following rules apply to linear interpolated motion:

� The TCP moves in a straight line, from the initial position to the final position, at the
programmed speed.

� The orientation of the tool is changed smoothly from the orientation at the initial position to
the orientation at the destination.

8�12

MARAIKLRF06031E REV A 8. MOTION

See Also: ��Orientation Interpolation�� for more information on these methods

• CIRCULAR Interpolated Motion

The following rules apply to circular interpolated motion.

� The TCP follows a circular arc from the initial position to the destination.

� An additional position, called the VIA position, must be specified in order for the motion
environment to define the arc. See Figure 8�6 .

Figure 8�6. CIRCULAR Interpolated Motion

A

B

C

� The VIA position is specified with a VIA clause in a MOVE TO statement. If a VIA clause is
not included with a MOVE TO statement that uses CIRCULAR interpolation, an error occurs
and the program aborts.

For example, the following statements move the TCP from position A to position C, via
position B, as shown in Figure 8�6 :

$MOTYPE = CIRCULAR MOVE TO C VIA B -- A is the current position

� Using CIRCULAR interpolation in conjunction with a MOVE ALONG statement is not
supported.

� The three-angle method of orientation interpolation is always used. Refer to the section on
"Orientation Interpolation" below.

See Also: MOVE TO and MOVE ALONG Statements, Appendix A.

8�13

8. MOTION MARAIKLRF06031E REV A

Orientation Interpolation

The KAREL system supports three methods of orientation interpolation:

• Two-Angle Method (RSWORLD)

• Three-Angle Method (AESWORLD)

• Wrist-Joint Method (WRISTJOINT)

The system variable $ORIENT_TYPE uses the predefined constants RSWORLD, AESWORLD, and
WRISTJOINT to indicate the type of interpolation used to move from one orientation to another
during a LINEAR motion. By default, the two-angle method (RSWORLD) is used.

If the motion is CIRCULAR, the three-angle method or the wrist joint method can be used.

The three methods of orientation interpolation are described as follows:

• Two-Angle Method (RSWORLD)

For the two-angle method (RSWORLD), orientation interpolation is done by linearly interpolating
the values of two rotation angles, tool rotation and tool spin, which are defined for each LINEAR
motion segment.

The tool rotation angle is the angle about the common normal between the beginning tool
approach vector and the destination approach vector. The tool spin angle is the angle about the
approach vector from the beginning position to the destination position. See Figure 8�7 .

Figure 8�7. Two-Angle Orientation Control

Rotation
 angle

Spin
angle

destination
approach vector

beginning ap-
proach vector

• Three-Angle Method (AESWORLD)

8�14

MARAIKLRF06031E REV A 8. MOTION

For the three-angle method (AESWORLD), orientation interpolation is done by linearly
interpolating the values of three rotation angles: azimuth , elevation , and spin .

For LINEAR motions, elevation and azimuth are defined with respect to the world coordinate
horizontal plane. That is, elevation is the elevation angle of the tool approach vector above the
horizontal, and azimuth is the angle of the projected approach vector in the horizontal plane. Spin
is the rotation angle about the approach vector. See Figure 8�8 .

Figure 8�8. Three-Angle Orientation Control

approach vector

spin angle about
approach vector

Azimuth angle,
measured in plane Protection of

approach vector
onto plane

plane

Elevation angle
above plane

For CIRCULAR interpolation, elevation and azimuth are defined with respect to the plane of the
circle being interpolated.

• Wrist-Joint Method (WRISTJOINT)

For the WRISTJOINT method of orientation interpolation, the three wrist joints are joint
interpolated. The remaining joints are interpolated so that the TCP moves in a straight line.
Note that the starting and ending orientation will be used as taught, but because of the joint
interpolation, the orientation during the move is not predictable, although it is repeatable.

8�15

8. MOTION MARAIKLRF06031E REV A

Orientation Trajectory

Regardless of the orientation interpolation method used for Cartesian moves, there are usually at least
two possible orientation trajectories between two taught positions-one in a positive direction and
one in a negative direction.

For example, during a move in which the azimuth of the tool approach vector is 0° at the initial
position and 50° at the destination position and the TCP moves along a straight line, azimuth can
change in a negative direction by 310° or in a positive direction by 50°.

• For calculating LINEAR interpolation, the shortest distance for each interpolated variable is
always used. That is, for the two-angle method, the smallest change in both spin and rotation will
be used, and, for the three-angle method, the smallest change in all three angles will be used.

• For CIRCULAR interpolation, keeping the orientation of the TCP fixed with respect to the path is
often more important than the distance traveled while changing orientation.

For example, during a move in which the TCP follows a complete circle with the tool approach
vector pointing toward the center of the circle throughout the entire move, the azimuth angle
changes by 360°. If the shortest distance, 0°, is used for the move instead, the tool approach
vector will be pointing toward the inside of the circle sometimes and toward the outside at other
times during the move.

• In general, when the tool approach vector points from outside the circle toward the inside, the
tool approach vector is ��outside�� the circle, while ��inside�� the circle means that the approach
vector points from the inside toward the outside.

• The following rules are used to determine orientation trajectories for CIRCULAR interpolation:

� If all the initial, via, and final approach vectors are outside, then the approach vector will
remain outside for the entire segment.

� If all the initial, via, and final approach vectors are inside, then the approach vector will
remain inside for the entire segment.

� If the initial and final approach vectors are on opposite sides, then the shortest change in
azimuth will be executed.

In the following cases very small changes in the orientation of a taught position will make a
very large difference in the orientation trajectory:

� The approach vector at a taught position is tangent to the circle. This is the point between
��inside�� and ��outside.��

� The approach vector is perpendicular to the plane of the circle. In this case, the azimuth
angle is taken as 0°.

� The circle degenerates into a straight line. In this case, the reference frame for three-angle
control is computed as follows:

1. The x-axis is measured along the direction of the motion.

2. The y-axis is the cross-product of the x-axis and the world z-axis.

8�16

MARAIKLRF06031E REV A 8. MOTION

3. Elevation is computed with respect to the xy-plane.

4. Azimuth is computed with respect to the x-axis.

The VIA position is used to determine the location trajectory, and also for orientation
trajectory interpolation. The benefit of using a VIA position is that a circular motion
will go through the VIA position as it is taught or programmed. This allows the user
more control over the tool orientation throughout a circular motion.

It is important to maintain uniform speed along the location trajectory. Circular
interpolation maintains a uniform location speed throughout the starting arc (initial to
VIA position) and the ending arc (VIA to final position.) However, orientation speeds
for the two arcs might be different.

Typically, the location movement of a circular motion dominates that of the orientation
movement. The segment time is determined by the location movement and the location
speed. The same time will be used for orientation trajectory interpolation. However,
in cases where the orientation motion dominates that of the location motion, the
programmed location speed might not be maintained. In this case, the system posts the
following warning "Speed limits used."

Configuration

• In JOINT interpolated motion, the Boolean value of the system variable $USE_TURNS indicates
whether the turn numbers of the initial and destination positions are used in determining the
joint distance.

� If $USE_TURNS is TRUE, the turn numbers are used. In this case, it is possible for a single
segment to turn a joint through several revolutions if that is what the turn numbers specify.

� If $USE_TURNS is FALSE, the turn numbers are ignored. This means that the shortest
distance between the initial and destination joint positions will be used.

• In CARTESIAN interpolated motion, the robot cannot move along the interpolated location
trajectory, maintain control of orientation, and change the configuration. However, if orientation
control is not important to the application, the WRISTJOINT method of interpolation can be used.
WRISTJOINT is useful if changing configuration is required, while maintaining the location
trajectory. The use of the turn numbers of the wrist joints are determined as follows:

� If $USE_WJTURNS is TRUE, the turn numbers of the wrist joints are used in determining
the wrist joint distances.

� If $USE_WJTURNS is FALSE, the turn numbers are ignored and the shortest wrist joint
distances are used.

• The Boolean value of the system variable $USE_CONFIG indicates how this physical restriction
is handled if you are not using the WRISTJOINT method of orientation interpolation:

� If $USE_CONFIG is TRUE, different configurations are not allowed. An error condition that
pauses the program occurs if different configurations are specified.

8�17

8. MOTION MARAIKLRF06031E REV A

� If $USE_CONFIG is FALSE, the stored configuration for the destination position is ignored
and the initial configuration is maintained.

� The configuration contains both the configuration for joint placement (flip/noflip) and turn
number. If $USE_CONFIG is TRUE, the turn number from the taught position will be used
to check the joint limit. If $USE_CONFIG is FALSE, the turn number from the taught
point will be ignored.

• The physical requirements of executing a Cartesian path also limit the joint motions to±180° from
the starting position of that joint. This makes it necessary to ignore the destination turn numbers
specified in the taught data. Multiple turn joints, however, always can be returned to their taught
positions by executing joint interpolated motions with $USETURNS being TRUE.

8.4.2 Motion Trajectories with Extended Axes

Extended Axes are linear or rotary axes in addition to the robot axes. There are two kinds of extended
axes: integrated and non-integrated.

Integrated Extended Axes

• Extended axes are said to be integrated when the positions of the auxiliary axes are integrated into
the calculations of the robot TCP position. This includes trajectory calculations of the TCP for
Cartesian moves, as well as calculations of the TCP position displayed from the teach pendant or
the CRT/KB. In particular, the world coordinate system is moved from the base of the robot to the
zero position of the extended axis. Up to three auxiliary axes can be integrated.

For example, if a robot is mounted on top of an extended axis, such as a rail, you would want to
have the extended axis integrated with the robot axes. Once integrated, the world position of the
TCP changes as the rail moves, such as during joint jogging of the rail axis. This change occurs
even when the robot axes are not moving. You can observe the change in the current robot TCP
position in the world coordinate, from the teach pendant.

Non-Integrated Extended Axes

• Non-Integrated extended axes are also called auxiliary axes. The position of these auxiliary
axes has no effect on the robot TCP position.

Robot axis numbers begin at 1 and extended axis numbers begin at a number one more than
the last robot axis. The number of robot axes is indicated by the value of the system variable
$SCR_GRP[].$num_rob_axs. The highest extended axis number is indicated by the value of the
system variable $SCR_GRP[].$num_axes.

Regardless of whether the extended axes are integrated or not, the extended axes motion is always
joint interpolated. This is true even in integrated extended axes, when the TCP might be moving
simultaneously under Cartesian interpolation. For example, if a LINEAR motion is specified for
the TCP, the TCP will move along a straight line while the integrated extended axes are joint
interpolated from their initial to final locations.

8�18

MARAIKLRF06031E REV A 8. MOTION

For more information on setting up extended axes, refer to the FANUC Robotics SYSTEM R-J3iB
Controller Auxiliary Axis Connection and Maintenance Manual .

8.4.3 Acceleration and Deceleration

During a single segment motion, the robot accelerates from rest at the initial position and decelerates
to rest at the destination position.

For motions long enough to reach the programmed speed before deceleration must begin, the
acceleration time is always the same regardless of the programmed speed. Therefore, because the
acceleration time is fixed, the average acceleration value is proportional to the programmed speed.

Fast Acceleration

KAREL uses fixed acceleration times to generate the acceleration and deceleration profile regardless
of the program speed. However, you can reduce the acceleration time linearly based on the program
speed by setting the system variable $GROUP[].$usemaxaccel. If $GROUP[].$usemaxaccel is
TRUE, the required acceleration/deceleration time will be adjusted and it will improve corner
rounding and cycle time percentages.

• Setting the system variable $GROUP[].$usemaxaccel to TRUE causes the acceleration time
to be reduced based on the program speed. Therefore, the rate of acceleration is kept constant
and the acceleration time changes.

• For short motions, where the programmed speed cannot be reached, the acceleration time is
reduced to permit faster short motions.

• A two-stage acceleration/deceleration algorithm is used to produce a second order velocity profile
during acceleration and deceleration. This second order method produces smoother derivatives
than, for example, a first order method. Therefore, it induces less structural vibration on the
robot during acceleration and deceleration.

• For Cartesian motions, the acceleration times are the same for all axes, and are determined
by the system variables, $PARAM_GROUP[].$cart_accel1 and $PARAM_GROUP[
].$cart_accel2, which are integers representing the times in milliseconds of each stage of the
acceleration/deceleration algorithm.

• For joint interpolated motions, the acceleration times for each joint are permitted to be
different. These times are determined by two arrays, $PARAM_GROUP[].$accel_time1[] and
$PARAM_GROUP[].$accel_time2[], with each array having one element for each robot or
extended axis. The values of each array represents the lengths, in milliseconds, of each stage of
the acceleration/deceleration algorithm.

• By varying the ratio of the two stage lengths, various profiles can be achieved. A first order
profile is achieved when either of the two stages is zero length. A purely second order profile is
achieved when the two stages have the same length.

8�19

8. MOTION MARAIKLRF06031E REV A

• With any other ratio, a mixed profile is achieved, with a portion of the acceleration being first
order and the remainder, second order. This approach makes it possible to achieve profiles with
both low peak torque and smooth higher order derivatives.

Figure 8�9 , Figure 8�10 , and Figure 8�11 show the effect of varying the relative lengths of the
two stages.

See Also: ��Short Motions��

In Figure 8�9 both stages are the same length, producing a second order profile over the entire
acceleration profile. In Figure 8�10 , the second stage is zero length, producing a first order profile
over the entire acceleration period. The peak acceleration in Figure 8�9 is twice that in Figure 8�10
for a given total acceleration time.

Figure 8�9. Acceleration and Velocity Profile with Stage_1 = Stage_2

Programmed
Velocity

Acceleration
Profile

Velocity
Profile

Peak Acceleration/Motor Torque

8�20

MARAIKLRF06031E REV A 8. MOTION

Figure 8�10. Acceleration and Velocity Profile with Stage_2 = 0

Programmed
Velocity

Acceleration
Profile

Velocity
Profile

Peak Acceleration and Peak Torque

Figure 8�11 shows a desirable compromise between the profiles shown in Figure 8�9 and Figure 8�10
. The first stage is two times the length of the second stage, reducing the peak acceleration, while still
maintaining a second order profile over the beginning and end of the acceleration period.

Figure 8�11. Acceleration and Velocity Profile with Stage_1 = 2* Stage_2

Programmed
Velocity

STAGE_1 – STAGE_2

STAGE_1 + STAGE_2

Acceleration
Profile

MIN(STG_1,STG_1)

Velocity
Profile

For most FANUC Robotics robot models, the default values of the first and second stages of the
acceleration/deceleration algorithm are established so that the first stage is twice the second stage in
length, but this can vary from model to model. The sum of the two stages is determined so that the
maximum acceleration capability is achieved when maximum speed is programmed.

8�21

8. MOTION MARAIKLRF06031E REV A

See Also: FANUC Robotics SYSTEM R-J3iB Controller Software Reference Manual for system
variable descriptions

Acceleration and Deceleration Times

In Figure 8�10 , the velocity profile changes from second order to first order and back to second order
during the acceleration period. The time of the straight line portion is the absolute difference in the
lengths of the two stages. The times of the curved portions of the profile are each equal to the shorter
of the two stage lengths. Acceleration and deceleration times can be calculated using the following:

Total Time = (Stage_1 + Stage_2) (1)

Straight - part Time = (|Stage_1 - Stage_2|) (2)

Curved - part Time = MIN(Stage_1, Stage_2) (3)

(For Cartesian motion, the stage lengths are $GROUP_PARAM[].$cart_accel1 and
$GROUP_PARAM[].$cart_accel2. For joint interpolated motions, the stage lengths are
$GROUP_PARAM[].$accel_time1[i] and $GROUP_PARAM[].$accel_time2[i].)

Peak Acceleration Times

The example in Figure 8�10 , where Stage_2 = 0, is referred to as the constant acceleration case. This
also represents the average acceleration of the general case.

The value of the average acceleration is calculated by dividing programmed velocity by total
acceleration time:

(4) where A represents average acceleration.

XXXXXX

(Stage_1 + Stage_2)
$GROUP[].$speedA =

The average acceleration, ��A��, can then be multiplied by a ��peak constant��, Kp, to determine the
peak acceleration. Refer to Figure 8�4 .

peak acceleration = Kp * A (5)(6)

–XXXXXXX

MAX(Stage_1, Stage_2)
(Stage_1 + Stage_2)Kp =

8�22

MARAIKLRF06031E REV A 8. MOTION

For example, if Stage_1 = Stage_2 (Figure 8�9), peak acceleration is double the constant acceleration
value or twice the average acceleration. If Stage_1 is two times Stage_2 (Figure 8�11), then peak
acceleration is 3/2, or 1.5, times the average acceleration.

8.4.4 Motion Speed

System variables determine the speed of robot motion.

• Speed overrides are scaling constants that allow motion to be executed at slower than
programmed speeds.

• For manual motion, the speed is a percentage of a maximum value that is dependent on the
robot model.

• For programmed motion, the speed is generally specified in millimeters per second for Cartesian
motions and a scaled percent of maximum for joint interpolated motions.

• For Cartesian motion, additional variables are also used to impose limits on the rotational speed
for the tool. Rotational speed refers to how fast the TCP rotates and spins (in degrees per second)
in order to control the orientation.

Speed Override

For testing or fine tuning a process, speed overrides allow a motion to be executed at a slower speed
than the programmed speed without changing the program. Speed overrides are scaling constants that
scale all speed values by a percentage.

The system variables $MCR[],$genoverride (general override) and $MCR[],$prgoverride (program
override) are both speed overrides. $MCR[],$genoverride can be altered from the teach pendant and
from the CRT/KB, but affects both programmed and manual motion. $MCR[],$prgoverride can be
altered from a KAREL program, the teach pendant, and from the CRT, and only affects programmed
motion.

The two variables are multiplied together to achieve an overall override percentage for programmed
motion.

The path value of $CNSTNT_PATH can also affect the execution of a programmed path. When
$CNSTNT_PATH is FALSE the filter length is not adjusted meaning the path will vary with the speed
override value ($MCR[],$genoverride or $MCR[],$prgoverride.) If $CNSTNT_PATH is TRUE the
programmed motion will not be affect by the speed override value.

Manual Motion Speed

The formulas for calculating manual motion speed are different than those used for calculating
programmed motion speed.

• Manual motion speed is calculated by multiplying a maximum speed value by the scaling factor
$MCR[].$genoverride.

8�23

8. MOTION MARAIKLRF06031E REV A

• The maximum speed for each joint for joint interpolation is represented by the array
$PARAM_GROUP[].speedlimjnt, multiplied by a limiting factor $SCR_GRP[].$joglim_jnt.

• The maximum speed for Cartesian interpolation is represented by $PARAM_GROUP[].$speedlim
multiplied by $MCR[].$genoverride.

The following equations are used to calculate manual motion speed:

Joint Speed (in joint units) equals: (7)

TR–XXXXXXX 100
$SCR_GRP[i].$JOGLIM_JNT$PARAM_GROUP[i].$SPEEDLIMJNT *

$MCR[].$GENOVERRIDE
100*

Cartesian Translational Speed (in mm/sec) equals: (8)

TR–XXXXXXX
100

$SCR_GRP[i].$JOGLIM$PARAM_GROUP[i].SPEEDLIM
*

$MCR[].$GENOVERRIDE
100*

Cartesian Rotational Speed (in mm/sec) equals: (9)

TR–XXXXXXX
100

$SCR_GRP[i].$JOGLIMROT$PARAM_GROUP[i].ROTSPEEDLIM *
$MCR[].$GENOVERRIDE

100*

Programmed Motion Speed

The system variable $GROUP[].$speed governs the translational speed of all programmed motions.

• For Cartesian interpolation, the value of $GROUP[].$speed is the speed of the TCP in millimeters
per second. The system variable $PARAM_GROUP[].$speedlim determines the maximum value
that can be used for $GROUP[].$speed for Cartesian motions.

• For a single segment motion, the robot accelerates, moves at the programmed speed,
$GROUP.$speed, then decelerates to a stop. The average speed of the motion, therefore, is less
than the programmed speed.

• In some arm configurations, limits on joint and motor speeds will inhibit the robot from reaching
the programmed speed in a Cartesian move. This can also result in the TCP varying from the
expected path trajectory.

8�24

MARAIKLRF06031E REV A 8. MOTION

• For joint interpolation, the value of the system variable $GROUP[].$speed is converted by
a conversion constant to a fraction of maximum joint speeds. The conversion constant is
$PARAM_GROUP[].$speedlimjnt.

• $PARAM_GROUP[].$speedlimjnt is set so that the average speed of the TCP is approximately
the same as the Cartesian speed would be near the center of the working range of the major
axis. This conversion constant permits you to assign one value for $SPEED that can be used for
both Cartesian and joint motions.

• $PARAM_GROUP[].$speedlimjnt is also the maximum value of $GROUP[].$speed for joint
interpolated motions. That is, there is a different maximum value for Cartesian motions than
for joint interpolated motions for most robot models, ($PARAM_GROUP[].$speedlim <>
$PARAM_GROUP[].$speedlimjnt).

Consequently, if you always want to move the robot at maximum speeds regardless of motion
type, you need to use different values of $SPEED for different motion types.

For example, the KAREL statement, $GROUP[].$speed = $PARAM_GROUP[].$speedlim, causes
all Cartesian motions to run at maximum speed, and the KAREL statement, $GROUP[].$speed =
$PARAM_GROUP[].$speedlimjnt, causes all joint motions to run at maximum speed.

• $PARAM_GROUP[].$speedlimjnt can be changed when the robot is installed to be equal to
$PARAM_GROUP[].$speedlim so that one value for $SPEED may be used to achieve maximum
speed for either joint or Cartesian motions. ($PARAM_GROUP[].$speedlimjnt should not be
changed after programs have been written for the system.)

• $PARAM_GROUP[].$speedlimjnt is only a scale factor and consequently has no effect on
ultimate joint speed limits. These are determined by $PARAM_GROUP[].$jntvellim, which
should not be changed.

You might also want to change $PARAM_GROUP[].$speedlimjnt so that $GROUP[].$speed is
a percent of maximum. This can be achieved by setting $PARAM_GROUP[].$speedlimjnt to
100. However, you should be aware that this will cause drastically different motion speeds for
Cartesian and joint motions that use the same value for $GROUP[].$speed.

The following equations are used to calculate programmed motion speed:

Joint Speed equals: (10)

TR–XXXXXXX
100

$MCR.$GENOVERRIDE
$PARAM_GROUP.$SPEEDLIMJNT *

$MCR.$PRGOVERRIDE
100*

$GROUP.$SPEED PARAM_GROUP.
$JNTVELLIM[i]

*

Cartesian Translational Speed (in mm/sec) equals: (11)

8�25

8. MOTION MARAIKLRF06031E REV A

TR–XXXXXXX
100

$MCR.$GENOVERRIDE
*

$MCR.$PRGOVERRIDE
100*$GROUP.$SPEED

Rotational Speed

Normally you are interested in the translation speed of the TCP. However, some motions involve a
rotation of the TCP about some fixed point or line, and some motions involve both translation and
rotation.

• For Cartesian motion with rotation only, $GROUP[].$speed has little meaning. Because there is
no translation, it would theoretically take zero time to move the TCP zero distance regardless
of the programmed speed. With no other restrictions, the motion environment would attempt to
move the joints infinitely fast.

• For two-angle orientation control, system variable $GROUP[].$rotspeed is defined to limit the
��ROTation�� speed of the tool around the common normal between the beginning approach vector
and the destination approach vector and the ��SPIN�� speed of the tool around the approach
vector during interpolation.

• For three-angle orientation control, the system variable $GROUP[].$rotspeed is used for all
three angular speed limits.

• For a Cartesian motion, two speed variables are used, $GROUP[].$speed and
$GROUP[].$rotspeed. In the planning for each motion, a segment time is computed based on
each of these speeds. The longest time is used as the segment time.

• The system variable $PARAM_GROUP[].$rotspeedlim determines the maximum values that can
be used for $GROUP[].$rotspeed.

• If $GROUP[].$rotspeed is set to the same value as $PARAM_GROUP.$rotspeedlim, and if the
segment time is determined by this speed value, the following error message will be displayed,
"MOTN-056 Speed limits used."

• The two speed values, translational speed $GROUP.$speed and rotational speed,
$GROUP.$rotspeed, are both used for the calculation of segment time. The speed which
results in the longest segment time determines the dominant motion and that time will be used
for the final segment time. This can have the effect of causing one of the speeds ($SPEED or
$ROTSPEED) to not be attained. Also, the transitional speed will not be attained in the case of
dominant rotational motion.

• The warning "MOTN-056 Speed limits used" is displayed as an indication that the rotational
speed is dominant even though the command speed is at the maximum value. This warning is also
displayed independent of rotspeed values if time based motion (segtime) is used and the time value
would exceed the limit of $PARAM_GROUP.$speedlim or $PARAM_GROUP.$speedlimjnt.

8�26

MARAIKLRF06031E REV A 8. MOTION

Extended Axis Speed Control

In KAREL extended axes and robot axes move simultaneously, meaning they both start and end at the
same time for each motion segment.

The system variable $GROUP[].$ext_speed controls extended axis motion speed control.

• A non-zero value indicates the percentage of maximum extended axis speed to be used for
extended axes segment time computation. The default is 100.

• In order to achieve simultaneous motion, the robot motion time is compared with the extended
axis segment time during planning. The longer time is used, for both the robot and the extended
axis, so that they both reach the destination at the same time.

• If robot motion time is longer than extended axis motion time, the actual extended axes speed will
be lower than its programmed value so that robot motion speed is maintained.

• If extended axis motion time is longer than robot motion time, the actual robot speed will be
lower than its programmed speed in order to maintain simultaneous motion.

• If there is only extended axis motion but no robot motion, the programmed extended axis speed
will be used as specified, even if it could be the default maximum speed.

Other Speed Limits

In Cartesian motions, the TCP moves at a constant speed, meaning the individual joint speeds can
vary. During execution of a Cartesian motion, speed limits might be encountered if a particular
joint attempts to move too fast, exceeding its speed limits. For example, when moving in a straight
line through a singularity point, some axes of a robot move rapidly in an attempt to maintain the
straight line.

• Two types of speed limits can be encountered,

� Joint speed limits

� Motor speed limits

• The values of joint speed limits are stored in the system variable $PARAM_GROUP[].$jntvellim
and the values of motor speed limits are stored in $PARAM_GROUP[].$mot_spd_lim.

• The system variable $MCR[].$chk_jnt_spd determines whether or not joint speed limits are used.
By default, $MCR[].$chk_jnt_spd is set to TRUE, meaning the joint speeds are checked against
the value of $PARAM_GROUP[].$jntvellim.

• If a joint speed limit is encountered, the motion will be slowed down at the point where the limit
is reached. All joint speeds are scaled at this point so that the original trajectory is maintained, and
the warning message, ��JOINT SPEED LIMIT USED,�� is issued. The TCP will return to the
programmed speed after the joint rate has slowed to below its limit providing that the programmed
speed is not so high that the limit is encountered again.

• If a joint speed limit is encountered, the cycle time will be longer than expected, because the
motion is slowed down. For programs that are dependent on cycle time, reteaching positions
might allow you to avoid the joint speed limits.

8�27

8. MOTION MARAIKLRF06031E REV A

• If a motor speed limit is encountered, cycle time is not changed. The motion will be slowed
down and the warning message, ��MOTOR SPEED LIMIT USED,�� will be issued. However,
after the motor rate slows to below its limit, the motion speeds up faster than programmed speed
to maintain the original cycle time.

Fixed Segment Time

• The $GROUP[].$seg_time system variable can be used to specify a fixed segment time for any
motion instead of specifying a program speed. If the value is greater than 0, it will be used as
the segment time. If the value is less than or equal to zero, the value of the system variable
$GROUP[].$speed will be used to compute the segment time.

If the speed, that is computed based on the value of $GROUP[].$seg_time, exceeds the
maximum speed, a warning message, ��Segment time too short,�� is displayed and the maximum
speed is used. If $GROUP[].$seg_time is specified in a MOVE ALONG path statement,
$GROUP[].$speed will control the motion speed to the first node of the path. All subsequent
motion segments will be controlled by $GROUP[].$seg_time.

8.4.5 Motion Termination

• Motion termination involves two critical relationships:

� One between the motion interval and the actual motion of the robot

� One between the motion interval and the program statement that caused that interval

• The motion ��interval�� is defined to be that part of the motion generated by a single motion
statement. The interval, in the absence of any other motion statements, will correspond closely
to the actual motion. That is, the robot will start moving at the beginning of the interval, and it
will stop moving at or about the same time that the interval terminates. However, several motion
statements can be combined to produce one continuous motion. In that case, it is not obvious
where one interval ends and the next one begins.

• Interval termination is important to both the program environment and to the motion environment.

The program environment uses interval termination as the criterion to continue program
execution. That is, the interpreter normally will wait at each motion statement for the interval
generated by that statement to be completed before going on to the next statement.

• If the NOWAIT clause is used in a motion statement, the interpreter will continue program
execution at the beginning of the interval instead of at the end. The motion environment uses
interval termination as the criterion for beginning interpolation of the next interval.

• Normally the motion environment determines when a motion interval will be terminated based on
the proximity of the robot to its destination position. That is, termination of the actual motion will
cause termination of the interval. This is referred to as ��termination based on position.��

8�28

MARAIKLRF06031E REV A 8. MOTION

• In some cases, however, a signal from outside the motion environment will cause early or
abnormal interval termination. In these cases termination of the interval causes the motion to be
terminated. The termination in these cases is referred to as ��abnormal termination.��

See Also: Section 8.4.6 , ��Multiple Segment Motion��

Termination Based on Position

When position is used as the criterion for terminating motion, the system variable $TERMTYPE is
used to determine when the interval will be terminated based on how close the robot must be to
its destination.

• Values for $TERMTYPE are:

FINE - robot moves to path node and stops before beginning next motion

COARSE - robot moves to path node and stops before beginning next motion

NOSETTLE - robot moves close to path node but does not stop before beginning next motion

NODECEL - robot moves past the path node on its way to next path node without deceleration

VARDECEL - robot approaches the node and then, at the distance from the path node determined
by the value of the deceleration tolerance specified in $DECELTOL, the robot decelerates

• The value can be assigned at the CRT/KB or by executing a KAREL assignment statement. Each
time a KAREL program is executed, $TERMTYPE is initialized to COARSE. $TERMTYPE
has no effect on manual motions.

Each value for $TERMTYPE is described briefly in the following list.

� COARSE and FINE Tolerances

COARSE and FINE are specified as detector pulses in the system variable array
$PARAM_GROUP[].$stoptol. That is, when all axes are within the specified number of
detector pulses from the destination position, the motion environment signals motion interval
completion. The effect for both termination types is the same.

� NOSETTLE

NOSETTLE causes the motion environment to signal interval completion as soon as the
deceleration profile is complete. In this case, there is no settling time incurred waiting for the
robot to position itself precisely within the FINE or COARSE tolerance.

You can use this value for $TERMTYPE when it is not important that the robot be precisely
in position before subsequent actions are acted upon or motion statements are executed.

� NODECEL

8�29

8. MOTION MARAIKLRF06031E REV A

NODECEL is used to permit continuous motion near taught positions. In this case motion
interval termination is signaled to the interpreter as soon as the axes begin to decelerate.

� VARDECEL

VARDECEL is used to permit variable deceleration. When VARDECEL is specified, you
can select a value between NODECEL and NOSETTLE for a deceleration tolerance. When
the robot is within the selected deceleration tolerance of the taught position, acceleration
toward the next position can begin.

The $GROUP[].$deceltol system variable represents a percentage of the distance to the
destination position at the time deceleration begins. $DECELTOL percentages can be
set to values from 1 to 99. Any value outside of the range 1 to 99, uses the value in
$GROUP[].$deceltol.

Abnormal Interval Termination

A CANCEL operation might be issued to the motion environment when a local condition handler,
such as a MOVE statement with an UNTIL clause, is executed and the condition specified in
the handler occurs. In this case, the interval is considered completed immediately. The motion
environment immediately signals the interpreter and the MOVE statement is terminated.

At the same time, the robot begins to decelerate. Note that in this case the value of $TERMTYPE
has no effect on interval termination.

• Motions can be canceled by many conditions including error conditions and those governed by
local condition handlers and global condition handlers as well as by the CANCEL statement.

• Two types of CANCEL conditions can occur:

� Local CANCEL - caused by a local condition handler

� Global CANCEL - caused by a global condition handler or a CANCEL statement

• The difference between a local CANCEL operation and global CANCEL operation is that
pending motion intervals are also canceled by global CANCEL operations, while only the current
interval is canceled by a local CANCEL.

Stopping a Motion

STOP causes the motion of the axes to stop. However, it does not cause interval termination. For
example, a MOVE statement waiting for interval termination continues to wait. STOP causes the
robot to stop moving, but in this case the motion can be resumed. The interval will not terminate until
the motion has been resumed and terminated normally.

In this special case it is possible for intervals caused by an interrupt service routine to be processed
in the middle of a stopped interval.

A STOP operation can be caused by a STOP statement, STOP action, or an error with STOP or
SVAL severity.

8�30

MARAIKLRF06031E REV A 8. MOTION

8.4.6 Multiple Segment Motion

Multiple segment motion occurs when the robot continues moving as it passes near or through taught
positions, thus extending a motion through multiple segments.

For example, continuous path operations such as sealing, arc welding, and painting require this
multiple segment motion.

Two primary methods are used for multiple segment motion in the KAREL system:

• PATH Data Type and MOVE ALONG Statement

One method is by using the PATH data type in a MOVE ALONG path statement. In this case,
several taught positions can be stored in a single PATH variable. When the MOVE ALONG
statement is executed, the motion interval extends over the entire path, which is made up of
motion segments joining each of the taught positions.

See Also: Section 8.4.7 , ��Path Motion,�� for more information on this method

• MOVE TO Statements with NODECEL or VARDECEL

The second method is by using a sequence of MOVE TO statements with the NODECEL
or VARDECEL value for $TERMTYPE. In this case, the interval is terminated as the robot
decelerates to the destination position designated in a MOVE TO statement.

Because interval termination has been signaled to the interpreter, the next motion statement can
be immediately executed, and acceleration towards the next taught position begins. That is,
deceleration for one segment is overlapped with acceleration for the next segment.

• When multiple segment motion is used, the robot does not pass through the taught positions but
passes near them, rounding the corners near the taught positions. The amount by which the
taught position is missed depends on the angle between the trajectories of the connecting motion
segments and on the programmed speed, $GROUP[].$speed.

• If VARDECEL is used, this amount also depends on the deceleration tolerance specified by
$DECELTOL. The VARDECEL termination type is provided so that you can control the distance
by which a taught position is missed (at the expense of increased cycle time).

• It is important to remember that with either NODECEL or VARDECEL termination types, the
amount of corner rounding is dependent on programmed speed.

Effect of NOWAIT

Using the NOWAIT clause with a motion statement allows you to take advantage of the fact that the
motion environment and program interpreter run in parallel.

• If you do not use NOWAIT, which is the normal case for simple programs, the interpreter waits at
each motion statement for the motion interval for that statement to be completed.

8�31

8. MOTION MARAIKLRF06031E REV A

• If you use NOWAIT, the interpreter can continue program execution beyond the current motion
statement while the motion environment carries out the motion. The interpreter is permitted
to continue at the beginning of the interval instead of at the end of the interval. Because the
interpreter waits for each interval to begin, it can execute a motion ahead by at most one motion
statement.

• The NOWAIT clause has no effect on how a motion is executed by the motion environment.
However, because it has an effect on the timing of subsequent motion statements, NOWAIT can
affect the start of planning for succeeding motions and, thus, can have an indirect effect on
continuous path motions, as the following paragraphs explain.

• There is always a slight delay between the time the interval completion is signaled and the time
that the motion environment can plan and begin executing the next segment. There is also a
deceleration in this case before acceleration to the next segment begins.

• If the NOWAIT clause is used in conjunction with the NODECEL termination type, the next
motion statement will already have been executed and the next segment planned when the current
interval is terminated. Thus, motion along the next segment can begin with no deceleration
between intervals. See Figure 8�13 .

Effect of $TERMTYPE on Trajectory

Figure 8�12 shows a motion where the robot is initially stationary, accelerates up to the programmed
velocity, and decelerates to a stop. The times in this cycle at which the various termination types
($TERMTYPE) are satisfied are also indicated.

Figure 8�12. Effect of $TERMTYPE on Timing

VARDECEL (5)

NOWAIT

NODECEL (4)

NOSETTLE (3)

COARSE (2), FINE (1)

8�32

MARAIKLRF06031E REV A 8. MOTION

• NOWAIT is not a termination type but indicates the point in the segment at which the interpreter
is permitted to continue.

• The following is a section of a test program in which the termination type is set and two
consecutive LINEAR moves are made. The motion segments, from the initial position to B and
from B to C, are at 90 degrees to each other.

$TERMTYPE = ?
-- (FINE | COARSE | NOSETTLE | NODECEL | VARDECEL)
$MOTYPE = LINEAR
MOVE TO B -- add NOWAIT for NOWAIT case
MOVE TO C

• This section explains the different values for $TERMTYPE and the uses of the NOWAIT clauses
which are also shown in Figure 8�13 .

Figure 8�13. Effect of $TERMTYPE on Path

VARDECEL

FINE, COARSE
NOSETTLE

NOWAIT + NODECEL

NODECEL

Programmed Deceleration Time

A B

C

• For termination types of COARSE and FINE, not only has the deceleration profile been
completed but also all axes are within a specified number of detector pulse counts of their
destination. The distance corresponding to these pulse counts depends on the type of robot.

8�33

8. MOTION MARAIKLRF06031E REV A

• If the termination type is NOSETTLE, the complete deceleration profile will be generated by
the software but there still is some lag due to the servo system. The robot will be very close to
point B before the MOVE TO C is processed by the interpreter.

• In the case of NODECEL, the interpreter can process the MOVE TO C as soon as deceleration to
B starts. There will be a slight delay (from 30 ms to 100 ms depending on robot model) for the
next statement to be processed and the interval to begin, but this is small compared to the times
required for many FANUC robots to decelerate.

• Some deceleration will occur during this time. This small deceleration will be eliminated if the
NOWAIT clause is used with the MOVE TO B statement, as the succeeding statement will be
processed and the next segment planned before deceleration begins. The next segment would then
begin immediately.

Figure 8�13 shows that using NODECEL along with NOWAIT will produce maximum corner
rounding. Slightly less rounding results if NOWAIT is not used.

• If the termination type VARDECEL is used, corner rounding depends on the value of the
system variable $DECELTOL. If a value of 1 is used, the rounding will be nearly equivalent to
NODECEL. If a value of 99 is used, the rounding will be nearly equivalent to NOSETTLE.
Values in between will yield a trajectory in between those two cases, as indicated by the shaded
area in Figure 8�13 .

Program Synchronization

Figure 8�14 , Figure 8�15 and Figure 8�16 show how program synchronization, including digital I/O
signals, is affected by termination type, the NOWAIT clause, and local condition handlers.

• In Figure 8�14 , because NOWAIT is used, the digital output turns on at the beginning of the
motion, even though the digital output statement is placed after the motion statement.

Figure 8�14. NOWAIT Example

GUN ON

CORNER

DESTINATION

MOVE TO corner NOWAIT
DOUT[gun] = on
MOVE TO destination

• In Figure 8�15 , the interpreter waits until the interval is terminated before going ahead. With
NODECEL, the gun turns on at the beginning of the motion towards DESTINATION, which still
occurs well before the robot reaches CORNER.

8�34

MARAIKLRF06031E REV A 8. MOTION

Figure 8�15. NODECEL Example

GUN ON

CORNER

DESTINATION

$TERMTYPE = NODECEL
MOVE TO corner
DOUT[gun] = ON
MOVE TO destination

• If VARDECEL is used, the digital output turns on as soon as the deceleration tolerance specified
in $DECELTOL is satisfied-somewhere between the NODECEL case of Figure 8�15 and the
NOSETTLE case of Figure 8�16.

• For the NOSETTLE case, the digital output turns on as soon as the controller has finished
generating the deceleration profile, and the robot is only the ��servo lag�� distance from CORNER.

Figure 8�16. NOSETTLE Example

GUN ON

CORNER

DESTINATION

$TERMTYPE = NOSETTLE
MOVE TO corner
DOUT[gun] = ON
MOVE TO destination

• In Figure 8�17, the digital output turns on as soon as the controller has finished generating the
deceleration profile and all axes are within the COARSE tolerance of being in position.

8�35

8. MOTION MARAIKLRF06031E REV A

Figure 8�17. COARSE Example

GUN ON

CORNER

DESTINATION

$TERMTYPE = COARSE
MOVE TO corner
DOUT[gun] = ON
MOVE TO destination

• For the FINE case, all axes are within the FINE tolerance of being in position before the digital
output turns on (the closest possible control).

Figure 8�18 shows how to affect program synchronization using local condition handlers.

In Figure 8�18, the digital output turns on 50 milliseconds before node 2 is reached.

Figure 8�18. Local Condition Handler When Timer Before Example

MOVE ALONG PTH,
WHEN TIME 50 BEFORE NODE[2] DO
DOUT[GUN]=ON
ENDMOVE

NODE[1] NODE[2] NODE[3] NODE[4]

NODE[5]NODE[6]NODE[7]

GUN ON

Effect of Motion Speed and Overrides

The main concern with continuous path motion is not that the taught position is missed as a result of
the cornering, but that the path taken near the taught position will vary with the programmed speed.

This variation is because the time for acceleration and deceleration between the two segments is
constant while the total segment time of the two-segment motion varies with speed. See Figure 8�19 .

8�36

MARAIKLRF06031E REV A 8. MOTION

Figure 8�19. Effect of Speed on Path

A B

C

a b c d e

f

g

h

i

j

a – B
b – B
c – B
d – B
e – B

B – f
B – g
B – h
B – i
B – j

Deceleration
distance

Acceleration
distance

HIGH SPEED

LOW SPEED

• It is sometimes difficult to teach continuous path positions, because the path generated at
production speed is different than the one generated at low speed, making it impossible to see
the actual path.

• The speed override feature of KAREL makes this possible, because for speed override, the
acceleration times are changed to make acceleration distance constant. This allows you to see the
path that will be generated at production speed, while running the robot at reduced speed.

• For special applications, the constant path can be disabled by setting the system variable
$CNSTNT_PATH to FALSE.

• When the HOLD key is pressed during playback with speed override, the deceleration distance
again is kept constant, keeping the path the same as it would be at production speed. Therefore,
the time required to stop the robot is also extended.

• EMERGENCY STOP time is not affected by speed override.

8�37

8. MOTION MARAIKLRF06031E REV A

8.4.7 Path Motion

A PATH variable is a varying-length list of elements called path nodes. A path node consists of a
position, called NODEPOS, and any associated data.

There are two primary uses of PATH variables:

• As a bookkeeping aid in programming

• For improved performance in continuous path motions

You can define a single PATH variable to include several positions instead of teaching several
POSITION variables by name. Then, instead of using a separate MOVE TO statement for each
position, a single MOVE TO statement can be used in a loop that indexes through the path nodes.

The following KAREL program statements illustrate the use of a path variable as a bookkeeping aid:

VAR path1 : PATH...FOR i = 1 TO PATH_LEN(path1) MOVE TO path1[i] ENDFOR

• This use of PATH variables saves memory space both because programs can be made shorter and
because a single variable name is used instead of many. In addition, it enhances the separation of
code and data because positions can be inserted, deleted, and appended without modifying the
program.

• For improved performance in continuous path motions, a single PATH variable can be used to
create a multiple segment motion in a single MOVE ALONG statement. The motion environment
will plan several segments ahead of the current motion of the robot. Any delay between segments
is thus minimized and taught position throughput is maximized.

• The MOVE ALONG path statement causes the motion environment to generate a continuous
motion through (or near) all the positions in the path by creating a multiple segment motion
interval. The beginning of the interval is at the start of the first segment in the path, and the end of
the interval is determined by the termination of the last segment of the path.

• The motion type of each segment is controlled by the associated data for the path node. By
default, the motion type specified by $MOTYPE is used.

• The termination type for each segment is specified by the SEGTERMTYPE associated data field.
The termination type for the last segment is always determined by $TERMTYPE regardless
of the value of SEGTERMTYPE.

• A segment termination type, $SEGTERMTYPE, is also defined for paths. This system
variable can take on the same values as $TERMTYPE, namely FINE, COARSE, NOSETTLE,
NODECEL, and VARDECEL. However, unlike $TERMTYPE, $SEGTERMTYPE is used only
by the motion environment to determine when acceleration into the next segment should begin. It
has no effect on statement termination.

• With $SEGTERMTYPE set to its default, NODECEL, the path is executed in the same way
as one executed by a series of MOVE TO instructions with NOWAIT and NODECEL, with
the improvement that taught positions can be spaced more closely without any deceleration
near the taught positions.

8�38

MARAIKLRF06031E REV A 8. MOTION

This improvement is possible because the interpreter does not have to execute intermediate
motion statements and the motion environment can plan further ahead.

However, the same continuous path anomalies also exist. Changing program speed will change
the path near the taught positions. Circular interpolation with paths can be used to overcome some
of these anomalies, as discussed in the following section.

• In a MOVE ALONG statement, either the path name or the path name with an index value of
[n..m] can be specified. When the path name is specified, the motion environment executes the
entire path from node[1] to node[n]. If a range of nodes is specified, the robot will move along
the path from node[n] to node[m].

If n < m, the robot will move along the path in ascending order. The SEGTERMTYPE and
SEGMOTYPE associated data fields from node[i] is used (if other than the default value) for
the motion segment toward node[i].

Associated Data

A path node includes other information besides the taught position. This additional information is
called associated data and is intended to permit teaching additional information which might change
at each node without having to program such changes explicitly.

There are two kinds of associated data:

• Group

• Common

The following rules apply to associated data:

• All associated data fields are referenced by name.

• The teach pendant is used to define the names and types of user-defined fields.

• Each node of every path on the system must have the same field definitions. You can then
reference these fields by using built-in routines in a KAREL program, using the teach pendant, or
by KCL.

The names of the standard fields are listed below.

See Also: The application-specific FANUC Robotics SYSTEM R-J3iB Controller Setup and
Operations Manual for more information on setting standard and user-defined associated data

Group Associated Data

• Each path node contains a position and at least four fields of group associated data. These fields
are used by the motion environment to permit various motion characteristics to be changed at each
segment of a path. Each group associated data is group-based.

• These fields are used only during the execution of a path using the MOVE ALONG statement.
They are not used when using MOVE TO for individual path nodes.

8�39

8. MOTION MARAIKLRF06031E REV A

� SEGRELSPEED allows you to override the SPEED, both higher or lower.

The SEGRELSPEED field is an INTEGER field, representing percentage, with a range of 0
to 4000 (400.0%) that permits a relative multiplier to be applied to the programmed speed
for each segment.

For example, if $SPEED were set to 200 mm per second and SEGRELSPEED were set to 500
(50.0%) for node 3 of a path, then the robot would slow down to 50 percent of its set speed or
100 mm per second for the segment toward node 3. Likewise, if SEGRELSPEED were set
to 1500 (150.0%) for node 3 of a path, then the robot would speed up 150 percent of its set
speed or 300 mm per second for the segment toward node 3.

Even though a maximum of 4000 percent (400.0%) is permitted, the absolute maximums
discussed in Section 8.4.4 still apply. Thus if $SPEEDLIM is 1500 for a particular robot and
$SPEED is set to 1500, any value larger than 1000 (100.0%) used for SEGRELSPEED
will cause a planning error.

The default value of SEGRELSPEED is 0 which is interpreted to mean the same as a value
of 1000.

� SEGMOTYPE

The SEGMOTYPE field permits you to change the motion type at each node of a path. This
field can be set to the enumerated values JOINT (6), LINEAR (7), or CIRCULAR (8).

The default value will be the value of the system variable, $MOTYPE, which determines the
motion type for the overall motion.

See Also: Section 8.4.1.

� SEGORIENTYPE

The SEGORIENTYPE field indicates the type of orientation control to be used when the
LINEAR motion interpolation type is used between segments. It can be assigned the same
values that are used for $ORIENT_TYPE. By default, SEGORIENTYPE is set to RSWORLD.

This field can be set to the enumerated values: RSWORLD (1), AESWORLD (2),
WRISTJOINT (3).

See Also: Section 8.4.1.

� SEGBREAK The SEGBREAK field functionality is not yet implemented. If this field
is set, it will be ignored.

8�40

MARAIKLRF06031E REV A 8. MOTION

Warning

Do not run a KAREL program that performs motion if more than
one motion group is defined on your controller. If your controller is
set up for more than one motion group, all motion must be initiated
from a teach pendant program. Otherwise, the robot could move
unexpectedly, personnel could be injured, and equipment could
be damaged.

Common Associated Data

• In addition to group associated data, KAREL paths also support common associated data
fields. Two common associated data fields are supported. Each field of common associated
data applies to all groups.

� SEGTERMTYPE

The SEGTERMTYPE field permits you to change the termination condition for each segment
of a path. This field may be set to FINE (1), COARSE (2), NOSETTLE (3), NODECEL (4),
or VARDECEL (5), or it may be left uninitialized, which will cause a default value to be used.

The default value will be the value of the system variable, $SEGTERMTYPE, which
is normally NODECEL. The termination type for each segment is specified by the
SEGTERMTYPE associated data field. The termination type for the last segment is always
determined by $TERMTYPE regardless of the value of SEGTERMTYPE.

See Also: Section 8.4.5, ��Motion Termination��

� SEGDECELTOL

When the value of the SEGTERMTYPE field is VARDECEL, the SEGDECELTOL field
specifies a deceleration tolerance for the segment, within a range of 1 to 99. If it is set to 0,
which is the default value, the value of the system variable $DECELTOL is used.

� SEGRELACCEL The SEGRELACCEL field functionality is not yet implemented. If this
field is set, it will be ignored.

� SEGTIMESHFT The SEGTIMESHFT field functionality is not yet implemented. If this field
is set, it will be ignored.

8.4.8 Motion Times

To estimate the cycle time of a particular application before actual implementation, you can use the
following tables and formulas.

• The formulas can be used for either single or multiple segment motions. Generally, the cycle time
for a motion is the sum of all computed segment times plus the time to decelerate at the end of

8�41

8. MOTION MARAIKLRF06031E REV A

the motion, plus any settling time. (You can think of the time to accelerate at the beginning of a
motion as being part of the computed segment time.)

• The formulas assume that there is no deceleration between segments in multiple segment motions
and that FINE or COARSE is used at the end of the motion. If necessary, appropriate adjustments
can be made in the formulas.

For example, if you use NOSETTLE for $TERMTYPE, then there would be no settling time
between motions. If you use something other than NODECEL for $SEGTERMTYPE when using
paths, then treat each segment as a separate motion.

• The value to use for settling time at the end of a motion depends on many robot dependent
variables, but a worst case value of 100 ms would be a conservative estimate for large robots
under heavy load.

Table 8�2 defines the symbols that are used in the following formulas. For estimating motion times,
values of 100% are assumed for all override and relative speed variables.

Table 8�2. Motion Time Symbols

SYMBOL MEANING

Ts Calculated segment time

Tm Actual motion time

Taccdec Acceleration or deceleration time (accel + decel = 2 * Taccdec)

Tsettle Settling time after servo reference is stable

D Cartesian distance between initial and final position

ROT Rotation angle of approach vector (two-angle method); rotation
angle of all three angles (three-angle method)

SPIN Spin angle about approach vector

Ji Change in angle for ith axis from initial to final position

For Cartesian motion: (11)

8�42

MARAIKLRF06031E REV A 8. MOTION

$GROUP.$SPEED,
D

$GROUP.$ROTSPEED,
ROT

$GROUP.$ROTSPEED
SPIN

Ts = MAX ()

For Joint motion: (12)

($PARAM_GROUP.$JNTVELLIM[i]*
Ts = MAX (

$PARAM_GROUP.$SPEEDLIMJNT
$GROUP.$SPEED

Ji)
)

For all motions: Tm = SUM (Ts for all segments) + Taccdec + Tsettle (13)

Formula 13 indicates that regardless of the distance of a motion, the time to execute that motion is at
least Taccdec (not 2 * Taccdec which you might expect), which is normally determined by the times set
in the system variables $PARAM_GROUP[].$accel_time1 and $PARAM_GROUP[].$accel_time2.

If a fixed time algorithm were always used for acceleration and deceleration, the minimum motion
time would be the fixed acceleration/deceleration time plus the settling time. However, a different
algorithm is used for computing Taccdec for short motions.

Short Motions

A short motion is defined as one which is so short that the programmed speed cannot be reached
before deceleration must begin. That is, a constant speed is never reached because the robot
accelerates, then immediately decelerates.

With the normal constant time acceleration algorithm used in KAREL, as the planned segment time
approaches 0, the total motion time approaches a constant equal to that acceleration time. (Refer
to Formula 12.)

An ideal algorithm would permit the total motion time to approach 0 as the distance to move
approaches 0. This requires a different acceleration algorithm for short motions.

Figure 8�20 indicates the approach taken for short motions. Note that, for the sake of simplicity, the
diagrams show first order velocity profiles, when in actuality the second order approach is used
for short motions.

8�43

8. MOTION MARAIKLRF06031E REV A

Figure 8�20. Short Motions and Long Motions

VELOCITY
PROFILE

SHORT MOTIONS
LONG MOTIONS

Figure 8�20 indicates that as motions get shorter, the total time gets shorter, which is the general
objective.

However, as motion times get shorter, the reference wave forms that drive the robot begin to look
like sine waves of higher and higher frequencies. These short pulses begin to excite resonance in
the mechanical structure of the robot, in turn causing vibrations.

For this reason, a minimum motion time is imposed. That is, acceleration times get shorter with
shorter moves, as the diagram indicates, but only down to a limit. This limit is represented as a
minimum acceleration time, kept in the system variable $PARAM_GROUP[].$min_acctime[].

As the diagram indicates, the total actual motion time for short motions is twice the computed
acceleration time.

Another way of looking at it is that the acceleration and deceleration times are shortened from their
fixed time values to be the same as the computed segment time Ts. The short motion algorithm is
imposed when Ts is less than the fixed time acceleration/deceleration times.

The formulas for calculating Short Motion Times are as follows:

For short motion: Ts = (same computations as long motion) (14)

However, Ts is no shorter than dictated by $PARAM_GROUP[].$min_acctime[]

(Ts>$PARAM_GROUP[].$min_acctime[] (15)

Taccdec = Ts (16)

Tm = Ts+ Taccdec + Tsettle) (17)

(same formula as long motion) or

Tm = (2*Ts) + Tsettle (18)

8�44

MARAIKLRF06031E REV A 8. MOTION

Note that the value of $PARAM_GROUP[].$min_acctime[] is a ��total acceleration time.�� For
long motions, the total acceleration time is the sum of $PARAM_GROUP[].$accel_time1[]
and $PARAM_GROUP[].$accel_time2[], as discussed earlier. In general then, the value of
$PARAM_GROUP[].$min_acctime[] is less than the sum of $PARAM_GROUP[].$accel_time1[] and
$PARAM_GROUP[].$accel_time2[]. in no case should it ever be greater than the sum.

8.4.9 Correspondence Between Teach Pendant Program Motion and KAREL
Program Motion

The motion control functions that are supported both in the $GROUP system variable and in the teach
pendant motion instruction use the value that is specified in the teach pendant motion instruction.
Table 8�3 shows the relationship between the $GROUP system variables used for KAREL program
motion and the teach pendant motion instruction.

Table 8�3. Correspondence between $GROUP System Variables and Teach Pendant Motion Instructions

KAREL System Variable Teach Pendant Motion Instruction

$GROUP.$motype Motion type

$GROUP.$speed Speed - mm/sec, cm/min, inch/min

$GROUP.$rotspeed Speed - deg/sec

$GROUP.$seg_time Speed - sec

$GROUP.$termtype Termination type

$GROUP.$orient_type Wrist joint motion option

$GROUP.$accel_ovrd Acceleration override (ACC) motion option

$GROUP.$ext_indep Simultaneous/independent EV motion option

$GROUP.$ext_speed Simultaneous/independent EV motion option

$GROUP.$cnt_shortmo PTH motion option

The single value of the speed field in the teach pendant motion instruction can take on the function of
three system variables:

8�45

8. MOTION MARAIKLRF06031E REV A

• If translational speed (mm/sec, cm/min, inch/min) is specified, then the rotational speed
($GROUP.$rotspeed) is set to $PARAM_GROUP.$rotspeedlim. The resulting motion is limited
first by the command translational speed and second by the rotational speed limit.

• If rotational speed (deg/sec) is specified, then the translational speed ($GROUP.$speed) is set to
$PARAM_GROUP.$speedlim. The resulting motion is limited first by the command rotational
speed and second by the translational speed limit.

• If time-based motion (sec) is specified, then the translational speed limit uses
$PARAM_GROUP.$speedlim (or $PARAM_GROUP.$jntvellim for joint motion) and
$PARAM_GROUP.$rotspeedlim as speed limits. This is similar to how KAREL programs handle
time-based motion.

Refer to the SYSTEM R-J3iB Controller Software Reference Manual for more detailed information
on system variables.

8�46

Chapter 9
FILE SYSTEM

Contents

Chapter 9 FILE SYSTEM .. 9�1
9.1 FILE SPECIFICATION .. 9�3

9.1.1 Device Name ... 9�3
9.1.2 File Name.. 9�4
9.1.3 File Type ... 9�5
9.2 STORAGE DEVICE ACCESS ... 9�6

9.2.1 Memory File Devices ... 9�7
9.2.2 Virtual Devices .. 9�8
9.2.3 File Pipes .. 9�9
9.3 FILE ACCESS ... 9�14
9.4 MEMORY DEVICE .. 9�14

9�1

9. FILE SYSTEM MARAIKLRF06031E REV A

The file system provides a means of storing data on CMOS RAM, F-ROM, or external storage
devices. The data is grouped into units, with each unit representing a file. For example, a file can
contain the following:

• Source code statements for a KAREL program

• A sequence of KCL commands for a command procedure

• Variable data for a program

Files are identified by file specifications that include the following:

• The name of the device on which the file is stored

• The name of the file

• The type of data included in the file

The KAREL system includes five types of storage devices where files can be stored:

• RAM Disk

• F-ROM Disk

• Disks

• IBM PC

• Memory Card

RAM Disk is a portion of SRAM (formerly CMOS RAM) or DRAM memory that functions as a
separate storage device. Any file can be stored on the RAM Disk. RAM Disk files should be copied
to disks for permanent storage.

F-ROM Disk is a portion of F-ROM memory that functions as a separate storage device. Any file
can be stored on the F-ROM disk. However, the hardware supports a limited number of read and
write cycles. Therefore, if a file needs to store dynamically changing data, the RAM disk should
be used instead.

Disks store information and transfer files using disk drives. Three disk drives can be used:

• PS-100 disk drive

• PS-110 disk drive

• PS-200 disk drive

IBM PC or compatible computers can be used to store files off-line. You can use OLPC, the
FANUC Robotics off-line storage software for the PC, to store files on a magnetic (floppy) disk. The
files on these storage devices are accessible in the following ways:

• Through the FILE menu on the teach pendant and CRT/KB

• Through KAREL programs

9�2

MARAIKLRF06031E REV A 9. FILE SYSTEM

Memory Card refers to the ATA Flash File storage and SRAM memory cards. The memory card
interface is located on the controller operator panel.

For more information on storage devices and memory, refer to Section 1.4.1,�Memory.�

9.1 FILE SPECIFICATION

File specifications identify files. The specification indicates:

• The name of the device on which the file is stored, refer to Section 9.1.1 .

• The name of the file, refer to Section 9.1.2 .

• The type of data the file contains, refer to Section 9.1.3 .

The general form of a file specification is:

device_name:file_name.file_type

9.1.1 Device Name

A device name consists of at least two characters that indicate the device on which a file is stored.
Files can be stored on RAM disk, F-ROM disk, disk drive units, off-line on a PC, Memory Card, or
PATH Composite Device. The device name always ends with a colon (:). The following is a list of
valid storage devices.

• RD: (RAM Disk)

The RD: device name refers to files stored on the RAM Disk of the controller. RD: is used
as the default device name.

• FR: (F-ROM Disk)

The FR: device name refers to files stored on the F-ROM disk of the controller.

• MC: (Memory Card Device)

The memory card can be formatted and used as an MS-DOS file system. It can be read from and
written to on the controller and an IBM PC equipped with the proper hardware and software. If
the memory card is used as an MS-DOS file system, it should be formatted only on the R-J3iB
controller. Refer to the application-specific FANUC Robotics SYSTEM R-J3iB Controller Setup
and Operations Manual for information on formatting the memory card on the R-J3iB controller.

• MD: (Memory Device)

9�3

9. FILE SYSTEM MARAIKLRF06031E REV A

The memory device treats the controller�s program memory as if it were a file device. You can
access all teach pendant programs, KAREL programs, KAREL variables, system variables, and
error logs that are loaded in the controller. See Section 9.4 for further details.

• MDB: (Memory Device Backup)

The memory device backup device (MDB:) allows the user to copy the same files as provided by
the Backup function on the File Menu. This allows the user to back up the controller remotely.

• CONS: (Console Device)

The console device provides access to the console log text files CONSLOG.LS and
CONSTAIL.LS. It is used for diagnostic and debug purposes and not as a storage device.

• MF: (Memory File Device)

The MF: device name refers to files stored on both the RAM and F-ROM disks. Since a file
cannot be on both disks at the same time, there will be no duplicate file names.

• FLPY: (Disk Drive Unit)

The FLPY: device name refers to files stored on optional KAREL external diskette drive units
(models PS-100, PS-110, and PS-200) or on an optional off-line PC. The disk drive device is
connected to the P2 port on the controller.

• PATH: (Composite Device)

The PATH: device is a read-only device that searches the F-ROM disk (FD:), memory card
(MC:0, and floppy disk (FLPY:) in that order, for a specified file. The PATH: device eliminates
the user�s need to know on which storage device the specified file exists.

• PIP: (File Pipe Device)

The PIP: device provides a way to write data from one application and, at the same time, read it
from another application. The PIP: device also allows the last set of data written to be retained for
analysis. The PIP: device allows you to access any number of pipe files. This access is to files
that are in the controller�s memory. This means that the access to these files is very efficient. The
size of the files and number of files are limited by available controller memory. This means that
the best use of a file pipe is to buffer data or temporarily hold it.

9.1.2 File Name

A file name is an identifier that you choose to represent the contents of a file.

The following rules apply to file names:

• File names are limited to eight characters.

• Files should be named according to the rules defined in Section 2.1.4.

9�4

MARAIKLRF06031E REV A 9. FILE SYSTEM

9.1.3 File Type

A file type consists of two characters that indicate what type of data a file contains. A file type always
begins with a period (.). Table 9�1 is an alphabetical list of each available file type and its function.

Table 9�1. File Type Descriptions

File Type Description

.BMP Bit map files contain bit map images used in robot vision
systems.

.CF KCL command files are ASCII files that contain a sequence
of KCL commands for a command procedure.

.CH Condition handler files are used as part of the condition
monitor feature.

.DF Default file are binary files that contain the default motion
instructions for each teach pendant programming.

.DG Diagnostic files are ASCII files that provide status or
diagnostic information about various functions of the
controller.

.DT KAREL data file An ASCII or binary file that can contain any
data that is needed by the user.

.IO Binary files that contain I/O configuration data - generated
when an I/O screen is displayed and the data is saved.

.KL KAREL source code files are ASCII files that contain the
KAREL language statements for a KAREL program.

.LS KAREL listing files are ASCII files that contain the listing
of a KAREL language program and line number for each
KAREL statement.

.MN Mnemonic program files are supported in previous version
s of KAREL.

9�5

9. FILE SYSTEM MARAIKLRF06031E REV A

Table 9�1. File Type Descriptions (Cont�d)

File Type Description

.ML Part model files contain part model information used in
robot vision systems.

.PC KAREL p-code files are binary files that contain the p-code
produced by the translator upon translation of a .KL file.

.SV System files are binary files that contain data for system
variables (SYSVARS.SV), mastering (SYSMAST.SV),
servo parameters (SYSSERVO.SV), and macros
(SYSMACRO.SV).

.TP Teach pendant program files are binary files that contain
instructions for teach pendant programs.

.TX Text files are ASCII files that can contain system-defined
text or user-defined text.

.VR Program variable files are binary files that contain variable
data for a KAREL program.

.VA ASCII variable files are contain the listing of a variable file
with variable names, types, and contents.

.LS Listing files are teach pendant programs, error logs, and
description histories in ASCII format.

9.2 STORAGE DEVICE ACCESS

The KAREL system can access only those storage devices that have been formatted and mounted.
These procedures are performed when the devices are first installed on the KAREL system.

The following rules apply when accessing storage devices:

• Formatting a device

� Deletes any existing data on the device. For example, if you format RD2:, you will also
reformat any data existing on RD: thru RD7:.

� Records a directory on the device

9�6

MARAIKLRF06031E REV A 9. FILE SYSTEM

� Records other data required by the KAREL system

� Assigns a volume name to the device

• You can format diskettes for the disk drive unit, which is dismounted and mounted automatically.

For more information on formatting a device, refer to the FORMAT_DEV Built-in in Appendix A,
"KAREL Language Alphabetical Description" or the FORMAT Command in Appendix C, "KCL
Command Alphabetical Description."

9.2.1 Memory File Devices

The RAM and F-ROM disks allocate files using blocks. Each block is 512 bytes.

The system variable $FILE_MAXSEC specifies the number of blocks to allocate for the RAM disk. If
the specified number is less than zero, the RAM disk is allocated from DRAM. If it is greater than
zero, RAM disk is allocated from CMOS RAM. To change the number of blocks to allocate for the
RAM disk, perform the following steps from the KCL prompt:

1. Backup all files on the RAM disk. For more information on how to back up files, refer to
Chapter 8, "Program and File Manipulation" in the appropriate application-specific FANUC
Robotics SYSTEM R-J3iB Controller HandlingTool Setup and Operations Manual .

2. Enter DISMOUNT RD:
KCL>DISMOUNT RD:

3. Enter SET VAR $FILE_MAXSEC
KCL>SET VAR
$FILE_MAXSEC = <new value>

4. Enter FORMAT RD:
KCL>FORMAT RD:
All files will be removed from the RAM Disk when the format is performed.

5. Enter MOUNT RD:
KCL>MOUNT RD:

The RAM disk will be reformatted automatically on INIT start.

The F-ROM disk can only be formatted from the BootROM because the system software also resides
on F-ROM. The number of blocks available is set by the system. The hardware supports a limited
number of read and write cycles, so while the F-ROM disk will function similar to the RAM disk, it
does not erase files that have been deleted or overwritten.

After some use, the F-ROM disk will have used up all blocks. At that time, a purge is required to
erase the F-ROM blocks which are no longer needed. For more information on purging, refer to the
PURGE_DEV Built-in in Appendix A, "KAREL Language Alphabetical Descriptions" or the PURGE
Command in Appendix C, "KCL Command Alphabetical Description."

9�7

9. FILE SYSTEM MARAIKLRF06031E REV A

For more information on memory, refer to Section 1.4.1, "Memory."

9.2.2 Virtual Devices

KAREL Virtual Devices are similar to DOS subdirectories. For example

• In DOS, to access a file in a subdirectory, you would view FR:\FR1:\>test.kl .

• In KAREL, to access the same file in a virtual device, you would view FR1:test.kl .

The controller supports 7 virtual devices. A number, which identifies the virtual device, is appended
to the device name (FR1 :). Table 9�2 shows some of the valid virtual devices available.

Table 9�2. Virtual Devices

Device Name Actual Storage

RD: RAM disk

FR: F-ROM disk - compressed and uncompressed files

MF: Refers to files on both RD: and FR:

RD1: - RD7: RAM disk - compressed and uncompressed files

FR1: - FR7: F-ROM disk - compressed and uncompressed files

MF1: - MF7: Refers to files on both the RAM disk and F-ROM disk of the
respective virtual device

Rules for Virtual Devices

The following rules apply to virtual devices.

• A file name on a virtual device is unique. A file could exist on either the RAM or F-ROM disks,
but not both. For example: RD:test.kl and FR:test.kl could not both exist.

• A file name could be duplicated across virtual devices. For example: RD:test.kl, RD1:test.kl, and
FR2:test.kl could all exist.

• The MF: device name could be used in any file operation to find a file on a virtual device, when the
actual storage device is unknown. For example: MF:test.kl finds either RD:test.kl or FR:test.kl.

9�8

MARAIKLRF06031E REV A 9. FILE SYSTEM

• When you use the MF: device as a storage device, the RAM disk is used by default when RD:
is in CMOS and $FILE_MAXSEC > 0. The F-ROM disk is used by default when RD: is in
DRAM and $FILE_MAXSEC < 0. For example: KCL>COPY FILE FLPY:test.kl to MF2 :
The file will actually exist on RD2:

• When listing the MF: device directory, all files on the RAM and F-ROM disks are listed.
However, only the files in the specified virtual device are displayed.

• If the RD5: directory is specified instead of MF5:, only those files on the RAM disk in virtual
device 5 are listed. If the FR3: directory is specified, only those files on the F-ROM disk in virtual
device 3 are listed. For example: KCL>DIR RD5:

• A file could be copied from one virtual device to another virtual device. A file could also be
copied from the RAM disk to the F-ROM disk, and vice versa, if the virtual device is different.
For example: KCL>COPY RD1:test.kl to FR3:

• A file could be renamed only within a virtual device and only on the same device. For example:
KCL>RENAME FR2:test.kl FR2:example.kl

• A file could be moved within a virtual device from the RAM disk to the F-ROM disk and vice
versa, using a special command which is different from copy. For example: KCL>MOVE
MF1:test.kl moves test.kl from the F-ROM disk to the RAM disk. KCL>COPY FR1:test.kl TO
RD1:test.kl will also move the file from the F-ROM Disk to the RAM Disk. This is because
unique file names can only exist on one device. For more information on moving files, refer to
the MOVE_FILE Built-in in Appendix A, "KAREL Language Alphabetical Descriptions" or the
MOVE FILE Command inAppendix C, "KCL Command Alphabetical Description."

• Formatting the RAM disk, RD: or MF:, clears all the RAM disk files on all the virtual devices. The
files on the F-ROM disk remain intact. For example: KCL>FORMAT RD1: reformats all RAM
disk virtual devices (RD: through RD7:). Reformatting will cause existing data to be removed.

• Purge erases all blocks that are no longer needed for all the virtual devices. For more information
on purging, refer to the PURGE_DEV Built-in in Appendix A, "KAREL Language Alphabetical
Description" or the PURGE Command in Appendix C, "KCL Command Alphabetical
Description."

9.2.3 File Pipes

The PIP: device allows you to access any number of pipe files. This access is to files that are in the
controller�s memory. This means that the access to these files is very efficient. The size of the files
and number of files are limited by available controller memory. This means that the best use of a
file pipe is to buffer data or temporarily hold it.

The file resembles a water pipe where data is poured into one end by the writing task and the data
flows out the other end into the reading task. This is why the term used is a pipe. This concept is very
similar to pipe devices implemented on UNIX, Windows and Linux.

Files on the pipe device have a limited size but the data is arranged in a circular buffer. This is also
called a circular queue. This means that a file pipe of size 8kbytes (this is the default size) will contain

9�9

9. FILE SYSTEM MARAIKLRF06031E REV A

the last 8k of data written to the pipe. When the user writes the ninth kilobyte of data to the pipe,
the first kilobyte will be overwritten.

Since a pipe is really used to transfer data from one place to another some application will be
reading the data out of the pipe. In the default mode, the reader will WAIT until information has
been written. Once the data is available in the pipe the read will complete. A KAREL application
might use BYTES_AHEAD to query the pipe for the amount of data available to read. This is the
default read mode.

A second read mode is provided which is called "snapshot." In this mode the reader will read out the
current content of the pipe. Once the current content is read the reader receives an end of the file.
This can be applied in an application like a "flight recorder". This allows you to record information
leading up to an event (such as an error) and then retrieve the last set of debug information written
to the pipe. Snapshot mode is a read attribute. It is configured using SET_FILE_ATTR builtin. By
default, the read operation is not in snapshot mode.

Typical pipe applications involve one process writing data to a pipe. The data can debug information,
process parameters or robot positions. The data can then be read out of the pipe by another application.
The reading application can be a KAREL program which is analyzing the data coming out of the pipe
or it can be KCL or the web server reading the data out and displaying it to the user in ASCII form.

KAREL Examples

The following apply to KAREL examples.

• Two KAREL tasks can share data through a pipe. One KAREL task can write data to the pipe
while a second KAREL task reads from the pipe. In this case the file attribute ATR_PIPWAIT can
be used for the task that is reading from the pipe. In this case the reading KAREL task will wait
on the read function until the write task has finished writing the data. The default operation of the
pipe is to return an end of file when there is no data to be read from the pipe.

• A KAREL application might be executing condition handlers at a very fast data rate. In this case it
might not be feasible for the condition handler routine to write data out to the teach pendant display
screen because this would interfere with the performance of the condition handler. In this case
you could write the data to the PIP: device from the condition handler routine. Another KAREL
task might read the data from the PIP: device and display it to the teach pendant. In this case the
teach pendant display would not be strictly real time. The PIP: device acts as a buffer in this case
so that the condition handler can move on to its primary function without waiting for the display
to complete. You can also type the file from KCL at the same time the application is writing to it.

PIP: devices are similar to other devices in the following ways:

• The pipe device is similar in some ways to the RD: device. The RD: device also puts the file
content in the system memory. The PIP device is different primarily because the pipe file can
be opened simultaneously for read and write.

• Similarly to MC: and FR: devices, the PIP: device is used when you want to debug or diagnose
real time software. This allows you to output debug information that you can easily view without

9�10

MARAIKLRF06031E REV A 9. FILE SYSTEM

interfering with the operation that is writing the debug data. This also allows one task to write
information that another task can read.

• The function of the PIP: device is similar to all other devices on the controller. This means that all
file I/O operations are supported on this device. All I/O functions are supported and work the
same except the following: Chdir, Mkdir, and Rmdir.

• The PIP: device is similar to writing directly to a memory card. However, writing to a memory
card will delay the writing task while the delay to the PIP: device is much smaller. This means
that any code on the controller can use this device. It also has the ability to retain data through
a power cycle.

Rules for PIP: Devices

The following rules apply to PIP: devices:

• The PIP: device can be used by any application or you can specify an associated common option
such as KAREL.

• The device is configurable. You can configure how much memory it uses and whether that
memory is CMOS (retained) or DRAM (not retained). You are also able to configure the format
of the data in order to read out formatted ASCII type data. The device is configured via the
PIPE_CONFIG built-in.

Installation, Setup and Operation Sequence

In general the PIP: device operates like any other device. A typical operation sequence includes:
OPEN myfile (’PIP:/myfile.dat’, ’RW’,)
Write myfile (’Data that I am logging’, CR)
Close myfile

If you want to be able to access myfile.dat from the Web server, put a link to it on the diagnostic
Web page.

The files on the PIP: device are configurable. By default the pipe configuration is specified in the
$PIPE_CONFIG system variable. The fields listed in Table 9�3 have the following meanings:

Table 9�3. System Variable Field Descriptions

FIELD DEFAULT DEFINITION

$sectors 8
Number of 1024 byte sectors in the pipe.

$filedata
Pointer to the actual pipe data (not accessible).

$recordsize 0
Binary record size, zero means its not tracked.

9�11

9. FILE SYSTEM MARAIKLRF06031E REV A

Table 9�3. System Variable Field Descriptions (Cont�d)

$auxword 0
Dictionary element if dictionary format or type
checksum.

$memtyp 0
If non zero use CMOS.

$format Undefined
Formatting mode: undefined, function, format string
or KAREL type.

$formatter
Function pointer, "C" format specifier pointer or type
code depending on $format.

Each pipe file can be configured via the pipe_config built-in. The pipe_config built-in will be
called before the pipe file is opened for writing. Refer to Section A.16, "pipe_config built-in" for
more details.

Operational Examples

The following example writes data from one KAREL routine into a pipe and then reads it back from
another routine. These routines can be called from separate tasks so that one task was writing the data
and another task can read the data.

Program
program pipuform
%nolockgroup
var

pipe, in_file, mcfile, console:file
record: string[80]
status: integer
parm1, parm2: integer
msg: string[127]
cmos_flag: boolean
n_sectors: integer
record_size: integer
form_dict: string[4]
form_ele: integer

--
--initialize file attributes

routine file_init (att_file :FILE)

begin
set_file_atr(att_file, ATR_IA) --force reads to completion
set_file_atr(att_file, ATR_FIELD) --force write to completion

9�12

MARAIKLRF06031E REV A 9. FILE SYSTEM

set_file_atr(att_file, ATR_PASSALL) --ignore cr
set_file_atr(att_file, ATR_UF) --binary

end file_init

routine write_pipe
begin
--file is opened
file_init (pipe)
open file pipe (’rw’, ’pip:example.dat’)
status = io_status(pipe)
write console (’Open pipe status:’,status,cr)

-- write extra parameters to pipe
write pipe (msg::8)
status = io_status(pipe)

end write_pipe

routine read_pipe
var

record: string[128]
status: integer
entry: integer
num_bytes: integer

begin
file_init (in_file)
open file in_file (’ro’, ’pip:example.dat’)
BYTES_AHEAD(in_file, entry, status)
status = 0
read in_file (parm1::4)
status = IO_STATUS(in_file)
write console (’parm1 read’,status,cr)
write console (’parm1’,parm1,cr)
read in_file (parm2::4)
status = IO_STATUS(in_file)
write console (’parm2 read’,parm2,status,cr)

end read_pipe

begin
SET_FILE_ATR(console, atr_ia, 0) --ATR_IA is defined in flbt.ke
OPEN FILE console (’RW’,’CONS:’)
if(uninit(msg)) then

msg = ’Example’
endif
if(uninit(n_sectors)) then
cmos_flag = true
n_sectors = 16

9�13

9. FILE SYSTEM MARAIKLRF06031E REV A

record_size = 128
form_dict = ’test’
form_ele = 1

endif
-- [in] pipe_name: STRING;name of tag
-- [in] cmos_flag: boolean;
-- [in] n_sectors: integer;
-- [in] record_size: integer;
-- [in] form_dict: string;
-- [in] form_ele: integer;
-- [out] status: INTEGER
pipe_config(’pip:example.dat’,cmos_flag, n_sectors,

record_size,form_dict,form_ele,status)
write_pipe
read_pipe
close file pipe
close file in_file

end pipuform

9.3 FILE ACCESS

You can access files using the FILE and SELECT screens on the CRT/KB or teach pendant, or by
using KAREL language statements. During normal operations, files will be loaded automatically into
the controller. However, other functions could need to be performed.

9.4 MEMORY DEVICE

The Memory device (MD:) treats controller memory programs and variable memory as if it were a
file device. Teach pendant programs, KAREL programs, program variables, SYSTEM variables, and
error logs are treated as individual files. This provides expanded functions to communication devices,
as well as normal file devices. For example:

1. FTP can load a PC file by copying it to the MD: device.

2. The error log can be retrieved and analyzed remotely by copying from the MD: device.

3. An ASCII listing of teach pendant programs can be obtained by copying XXX.LS from the
MD: device.

4. An ASCII listing of system variables can be obtained by copying SYSVARS.VA from the
MD: device.

Refer to Table 9�4 for listings and descriptions of files available on the MD device.

9�14

MARAIKLRF06031E REV A 9. FILE SYSTEM

Table 9�4. File Listings for the MD Device

File Name Description

ACCNTG.DG This file shows the system accounting of Operating system tasks.

ACCOFF.DG This file shows the system accounting is turned off.

AXIS.DG This file shows the Axis and Servo Status.

CONFIG.DG This file shows a summary of system configuration

CONSLOG.DG This file is an ASCII listing of the system console log.

CONSTAIL.DG This file is an ASCII listing of the last lines of the system console log.

CURPOS.DG This file shows the current robot position.

*.DF This file contains the TP editor default setting.

DIOCFGSV.IO This file contains I/O configuration information in binary form.

DIOCFGSV.VA This file is an ASCII listing of DIOCFGSV.IO.

ERRACT.LS This file is an ASCII listing of active errors.

ERRALL.LS This file is an ASCII listing of error logs.

ERRAPP.LS This file is an ASCII listing of application errors.

ERRCOMM .LS This file shows communication errors.

ERRCURR.LS This file is an ASCII listing of system configuration.

ERRHIST.LS This file is an ASCII listing of system configuration.

ERRMOT.LS This file is an ASCII listing of motion errors.

ERRPWD.LS This file is an ASCII listing of password errors.

9�15

9. FILE SYSTEM MARAIKLRF06031E REV A

Table 9�4. File Listings for the MD Device (Cont�d)

File Name Description

ERRSYS.LS This file is an ASCII listing of system errors.

ETHERNET This file shows the Ethernet Configuration.

FRAME.DG This file shows Frame assignments.

FRAMEVAR.SV This file contains system frame and tool variable information in binary form.

FRAMEVAR.VA This file is an ASCII listing of FRAMEVAR.SV.

HIST.LS This file shows history register dumps.

HISTE.LS This file is an ASCII listing of general fault exceptions.

HISTP.LS This file is an ASCII listing of powerfail exceptions.

HISTS.LS This file is an ASCII listing of servo exceptions.

IOCONFIG.DG This file shows IO configuration and assignments.

IOSTATE.DG This file is an ASCII listing of the state of the I/O points.

LOG CONSTAIL.DG This file is the last line of Console Log.

NUMREG.VA This file is an ASCII listing of NUMREG.VR.

NUMREG.VR This file contains system numeric registers.

MACRO.DG This file shows the Macro Assignment.

MEMORY.DG This file shows current memory usage.

PORT.DG This file shows the Serial Port Configuration.

POSREG.VA This file is an ASCII listing of POSREG.VR.

9�16

MARAIKLRF06031E REV A 9. FILE SYSTEM

Table 9�4. File Listings for the MD Device (Cont�d)

File Name Description

POSREG.VR This file contains system position register information.

PRGSTATE.DG This file is an ASCII listing of the state of the programs.

SFTYSIG.DG This file is an ASCII listing of the state of the safety signals.

STATUS.DG This file shows a summary of system status

SUMMARY.DG This file shows diagnostic summaries

SYCLDINT.VA This file is an ASCII listing of system variables initialized at a Cold start.

SYMOTN.VA This file is an ASCII listing of motion system variables.

SYNOSAVE.VA This file is an ASCII listing of non-saved system variables.

SYSMACRO.SV This file is a listing of system macro definitions.

SYSMACRO.VA This file is an ASCII listing of SYSMACRO.SV.

SYSMAST.SV This file is a listing of system mastering information.

SYSMAST.VA This file is an ASCII listing of SYSMAST.SV.

SYSSERVO.SV This file is a listing of system servo parameters.

SYSSERVO.VA This file is an ASCII listing of SYSSERVO.SV.

SYSTEM.DG This file shows a summary of system information

SYSTEMIZE This file is an ASCII listing of non motion system variables.

SYSVARS.SV This file is a listing of system variables.

SYSVARS.VA This file is an ASCII listing of SYSVARS.SV.

9�17

9. FILE SYSTEM MARAIKLRF06031E REV A

Table 9�4. File Listings for the MD Device (Cont�d)

File Name Description

SYSXXXX.SV This file contains application specific system variables.

SYSXXXX.VA This file is an ASCII listing of SYSXXXX.VA.

TASKLIST.DG This file shows the system task information.

TESTRUN.DG This file shows the Testrun Status.

TIMERS.DG This file shows the System and Program Timer Status.

TPACCN.DG This file shows TP Accounting Status.

VERSION.DG This file shows System, Software, and Servo Version Information.

XXX.PC This file is a KAREL binary program.

XXX.VA This file is an ASCII listing of KAREL variables.

XXX.VR This file contains KAREL variables in binary form.

YYY.LS This file is an ASCII listing of a teach pendant program.

YYY.TP This file is a teach pendant binary program.

Refer to Table 9�5 for a listing of restrictions when using the MD: device.

Table 9�5. Testing Restrictions when Using the MD: Device

File Name or Type READ WRITE DELETE Comments

XXX.DG YES NO NO Diagnostic text file.

XXX.PC NO YES YES

XXX.VR YES YES YES With restriction of no references.

9�18

MARAIKLRF06031E REV A 9. FILE SYSTEM

Table 9�5. Testing Restrictions when Using the MD: Device (Cont�d)

File Name or Type READ WRITE DELETE Comments

XXX.LS YES NO NO

YYY.TP YES YES YES

YYY.LS YES NO NO

FFF.DF YES YES NO

SYSXXX.SV YES YES NO Write only at CTRL START.

SYSXXX.VA YES NO NO

ERRXXX.LS YES NO NO

HISTX.LS YES NO NO

XXXREG.VR YES YES NO

XXXREG.VA YES NO NO

DIOCFGSV.IO YES YES NO Write only at CTRL START.

DIOCFGSV.VA YES NO NO

9�19

Chapter 10
DICTIONARIES AND FORMS

Contents

Chapter 10 DICTIONARIES AND FORMS .. 10�1
10.1 CREATING USER DICTIONARIES .. 10�3

10.1.1 Dictionary Syntax .. 10�3
10.1.2 Dictionary Element Number ... 10�4
10.1.3 Dictionary Element Name .. 10�5
10.1.4 Dictionary Cursor Positioning ... 10�5
10.1.5 Dictionary Element Text ... 10�6
10.1.6 Dictionary Reserved Word Commands .. 10�9
10.1.7 Character Codes .. 10�10
10.1.8 Nesting Dictionary Elements ... 10�10
10.1.9 Dictionary Comment .. 10�11
10.1.10 Generating a KAREL Constant File .. 10�11
10.1.11 Compressing and Loading Dictionaries on the Controller 10�11
10.1.12 Accessing Dictionary Elements from a KAREL Program 10�12
10.2 CREATING USER FORMS .. 10�13

10.2.1 Form Syntax .. 10�14
10.2.2 Form Attributes .. 10�15
10.2.3 Form Title and Menu Label .. 10�16
10.2.4 Form Menu Text ... 10�17
10.2.5 Form Selectable Menu Item ... 10�17
10.2.6 Edit Data Item .. 10�18
10.2.7 Non-Selectable Text ... 10�24
10.2.8 Display Only Data Items ... 10�24
10.2.9 Cursor Position Attributes ... 10�25
10.2.10 Form Reserved Words and Character Codes ... 10�25
10.2.11 Form Function Key Element Name or Number 10�27
10.2.12 Form Help Element Name or Number .. 10�28
10.2.13 Teach Pendant Form Screen .. 10�28
10.2.14 CRT/KB Form Screen ... 10�29
10.2.15 Form File Naming Convention ... 10�30
10.2.16 Compressing and Loading Forms on the Controller 10�30

10�1

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

10.2.17 Displaying a Form .. 10�32

10�2

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

Dictionaries and forms are used to create operator interfaces on the teach pendant and CRT/KB
screens with KAREL programs.

This chapter includes information about

• Creating user dictionary files, refer to Section 10.1.

• Creating and using forms, refer to Section 10.2.

In both cases, the text and format of a screen exists outside of the KAREL program. This allows easy
modification of screens without altering KAREL programs.

10.1 CREATING USER DICTIONARIES

A dictionary file provides a method for customizing displayed text, including the text attributes
(blinking, underline, double wide, etc.), and the text location on the screen, without having to
re-translate the program.

The following are steps for using dictionaries.

1. Create a formatted ASCII dictionary text file with a .UTX file extension.

2. Compress the dictionary file using the KCL COMPRESS DICT command. This creates a
loadable dictionary file with a .TX extension. Once compressed, the .UTX file can be removed
from the system. Only the compressed dictionary (.TX) file is loaded.

3. Load the compressed dictionary file using the KCL LOAD DICT command or the KAREL
ADD_DICT built-in.

4. Use the KAREL dictionary built-ins to display the dictionary text. Refer to Section 10.1.12,
"Accessing Dictionary Elements from a KAREL Program," for more information.

Dictionary files are useful for running the same program on different robots, when the text displayed
on each robot is slightly different. For example, if a program runs on only one robot, using KAREL
WRITE statements is acceptable. However, using dictionary files simplifies the displaying of text on
many robots, by allowing the creation of multiple dictionary files which use the same program to
display the text.

Note Dictionary files are useful in multi-lingual programs.

10.1.1 Dictionary Syntax

The syntax for a user dictionary consists of one or more dictionary elements. Dictionary elements
have the following characteristics:

10�3

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

• A dictionary element can contain multiple lines of information, up to a full screen of
information. A user dictionary file has the following syntax:

<*comment>
$n<,ele_name><@cursor_pos><&res_word><#chr_code><"Ele_text"><&res_wor d>
<#chr_code><+nest_ele>
<*comment>
<$n+1>

� Items in brackets < > are optional.

� *comment is any item beginning with *. All text to the end of the line is ignored. Refer
to Section 10.1.9.

� $n specifies the element number. n is a positive integer 0 or greater. Refer to Section 10.1.2.

� ,ele_name specifies a comma followed by the element name. Refer to Section 10.1.3.

� @cursor_pos specifies a cursor position (two integers separated by a comma.) Cursor
positions begin at @1,1. Refer to Section 10.1.4.

� &res_word specifies a dictionary reserve word. Refer to Section 10.1.6 .

� "Ele_text" specifies the element text to be displayed. Refer to Section 10.1.5.

� +nest_ele specifies the next dictionary text. Refer to Section 10.1.8.

• A dictionary element does not have to reside all on one line . Insert a carriage return at
any place a space is allowed, except within quoted text. Quoted text must begin and end on
the same line.

• Dictionary elements can contain text, position, and display attribute information. Table
10�2 lists the attributes of a dictionary element.

10.1.2 Dictionary Element Number

A dictionary element number identifies a dictionary element. A dictionary element begins with a ��$��
followed by the element number. Element numbers have the following characteristics:

• Element numbers begin at 0 and continue in sequential order.

• If element numbers are skipped, the dictionary compressor will add an extra overhead of 5 bytes
for each number skipped. Therefore you should not skip a large amount of numbers.

• If you want the dictionary compressor to automatically generate the element numbers
sequentially, use a ��-�� in place of the number. In the following example, the "-�� is equated
to element number 7.

$1

$2

$3

10�4

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

$6

$-

10.1.3 Dictionary Element Name

Each dictionary element can have an optional element name. The name is separated from the element
number by a comma and zero or more spaces. Element names are case sensitive. Only the first 12
characters are used to distinguish element names.

The following are examples of element names:

$1, KCMN_SH_LANG

$2, KCMN_SH_DICT

Dictionary elements can reference other elements by their name instead of by number. Additionally,
element names can be generated as constants in a KAREL include file.

10.1.4 Dictionary Cursor Positioning

Dictionary elements are displayed in the specified window starting from the current position of the
cursor. In most cases, move the cursor to a particular position and begin displaying the dictionary
element there.

• The cursor position attribute "@�� is used to move the cursor on the screen within the window.

• The ��@�� sign is followed by two numbers separated by a comma. The first number is the
window row and the second number is the window column.

For example, on the teach pendant, the "t_fu" window begins at row 5 of the "t_sc" screen and
is 10 rows high and 40 columns wide.

� Cursor position ��@1,1�� is the upper left position of the "t_fu" window and is located at
the "t_sc" screen row 5 column 1.

� The lower right position of the "t_fu" window is "@10,40�� and is located at the "t_sc"
screen row 15 column 40.

Refer to Section 7.9.1 for more information on the teach pendant screens and windows.

For example, on the CRT/KB, the "c_fu" window begins at row 5 of the "c_sc" screen and is
17 rows high and 80 columns wide.

� Cursor position ��@1,1�� is the upper left position of the "c_fu" window and is located at
the "c_sc" screen row 5 column.

10�5

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

� The lower right position of the window is "@17,80�� and is located at the "c_sc" screen
row 21, column 80.

Refer to Section 7.9.2 for more information on the CRT/KB screens and windows.

The window size defines the display limits of the dictionary elements.

10.1.5 Dictionary Element Text

Element text, or quoted text, is the information (text) you want to be displayed on the screen.

• The element text must be enclosed in double quote characters �� ��.

• To insert a back-slash within the text, use \\ (double back-slash.)

• To insert a double-quote within the text, use \" (back-slash, quote.)

• More than one element text string can reside in a dictionary element, separated by reserve words.
Refer to Section 10.1.6 for more information.

• To include the values of KAREL variables in the element text, use the KAREL built-ins.
WRITE_DICT_V and READ_DICT_V, to pass the values of the variables.

• To identify the place where you want the KAREL variables to be inserted, use format specifiers
in the text.

• A format specifier is the character ��%�� followed by some optional fields and then a conversion
character. A format specifier has the following syntax:

%<-><+><width><.precision>conversion_character<^argument_numbe r>

Format Specifier

• Items enclosed in < > are optional.

• The - sign means left justify the displayed value.

• The + sign means always display the sign if the argument is a number.

• The width field is a number that indicates the minimum number of characters the field should
occupy.

• .precision is the . character followed by a number. It has a specific meaning depending upon
the conversion character:

• conversion_characters identify the data type of the argument that is being passed. They are
listed in Table 10�1.

• ^argument_number is the ^ (up-caret character) followed by a number.

10�6

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

Conversion Character

The conversion character is used to identify the data type of the KAREL variable that was passed.
Table 10�1 lists the conversion characters:

Table 10�1. Conversion Characters

Character Argument Type: Printed As

d INTEGER; decimal number.

o INTEGER; unsigned octal notation (without a leading zero).

x, X INTEGER; unsigned hexadecimal notation (without a leading 0x or 0X), using abcdef
or ABCDEF for 10, ..., 15.

u INTEGER; unsigned decimal notation.

s STRING; print characters from the string until end of string or the number of
characters given by the precision.

f REAL; decimal notation of the form <->mmm.dddddd, where the number of d�s is
given by the precision. The default precision is 6; a precision of 0 suppresses the
decimal point.

e, E REAL; decimal notation of the form <->mmm.dddddd, where the number of d�s is
given by the precision. The default precision is 6; a precision of 0 suppresses the
decimal point.

g, G REAL; %e or %E is used if the exponent is less than -4 or greater than or equal to
the precision; otherwise %f is used. Trailing zeros and a trailing decimal pointer
are not printed.

% No argument is converted; print a %.

• The characters d, o, x, X, and u , can be used with the INTEGER, SHORT, BYTE, and
BOOLEAN data types. A BOOLEAN data type is displayed as 0 for FALSE and 1 for TRUE.

• The f, e, E, g, and G characters can be used with the REAL data type.

• The character s is for a STRING data type.

10�7

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Caution

Make sure you use the correct conversion character for the type of argument
passed. If the conversion character and argument types do not match,
unexpected results could occur.

Width and Precision

The optional width field is used to fix the minimum number of characters the displayed variable
occupies. This is useful for displaying columns of numbers.

Setting a width longer than the largest number aligns the numbers.

• If the displayed number has fewer characters than the width, the number will be padded on the
left (or right if the "-" character is used) by spaces.

• If the width number begins with ��0��, the field is padded with zeros instead.

The precision has the following meaning for the specified conversion character

• d , o , x , X , and u - The minimum number of digits to be printed. If the displayed integer is
less than the precision, leading zeros are padded. This is the same as using a leading zero on
the field width.

• s - The maximum number of characters to be printed. If the string is longer than the precision, the
remaining characters are ignored.

• f , e , and E - The number of digits to be printed after the decimal point.

• g and G - The number of significant digits.

Argument Ordering

An element text string can contain more than one format specifier. When a dictionary element is
displayed, the first format specifier is applied against the first argument, the second specifier for
the second argument, and so on. In some instances, you may need to apply a format specifier out
of sequence. This can happen if you develop your program for one language, and then translate
the dictionary to another language.

To re-arrange the order of the format specifiers, follow the conversion character with the ��^��
character and the argument number. As an example,
$20, file_message "File %s^2 on device %s^1 not found" &new_line

means use the second argument for the first specifier and the first argument for the second specifier.

10�8

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

Caution

You cannot re-arrange arguments that are SHORT or BYTE type because these
argument are passed differently than other data types. Re-arranging SHORT or
BYTE type arguments could cause unexpected results.

10.1.6 Dictionary Reserved Word Commands

Reserve words begin with the ��&�� character and are used to control the screen. They effect how, and
in some cases where, the text is going to be displayed. They provide an easy and self-documenting
way of adding control information to the dictionary. Refer to Table 10�2 for a list of the available
reserved words.

Table 10�2. Reserved Words

Reserved Word Function

&clear_win Clear window (#128)

&clear_2_eol Clear to end of line (#129)

&clear_2_eow Clear to end of window (#130)

$cr Carriage return (#132)

$lf Line feed (#133)

&rev_lf Reverse line feed (#134)

&new_line New line (#135)

&bs Back space (#136)

&home Home cursor in window (#137)

&blink Blink video attribute (#138)

&reverse Reverse video attribute (#139)

&bold Bold video attribute (#140)

10�9

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Table 10�2. Reserved Words (Cont�d)

Reserved Word Function

&under_line Underline video attribute (#141)

&double_wide Wide video size (#142) (refer to description below for usage)

&standard All attributes normal (#143)

&graphics_on Turn on graphic characters (#146)

&ascii_on Turn on ASCII characters (#147)

&double_high High video size (#148) (refer to description below for usage)

&normal_size Normal video size (#153)

&multi_on Turn on multi-national characters (#154)

The attributes &normal_size, &double_high, and &double_wide are used to clear data from a line on a
screen. However, they are only effective for the line the cursor is currently on. To use these attributes,
first position the cursor on the line you want to resize. Then write the attribute, and the text.

• For the teach pendant, &double_high means both double high and double wide are active, and
&double_wide is the same as &normal_size.

• For the CRT/KB, &double_high means both double high and double wide are active, and
&double_wide means double wide but normal height.

10.1.7 Character Codes

A character code is the ��#�� character followed by a number between 0 and 255. It provides a
method of inserting special printable characters, that are not represented on your keyboard, into your
dictionary. Refer to Appendix D, "Character Codes," for a listing of the ASCII character codes.

10.1.8 Nesting Dictionary Elements

The plus ��+�� attribute allows a dictionary element to reference another dictionary element from the
same dictionary, up to a maximum of five levels. These nested elements can be referenced by element

10�10

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

name or element number and can be before or after the current element. When nested elements are
displayed, all the elements are displayed in their nesting order as if they are one single element.

10.1.9 Dictionary Comment

The asterisk character (*) indicates that all text, to the end of the line, is a comment. All comments
are ignored when the dictionary is compressed. A comment can be placed anywhere a space is
allowed, except within the element text.

10.1.10 Generating a KAREL Constant File

The element numbers that are assigned an element name in the dictionary can be generated into a
KAREL include file for KAREL programming. The include file will contain the CONST declarator
and a constant declaration for each named element.
element_name = element_number

Your KAREL program can include this file and reference each dictionary element by name instead
of number.

To generate a KAREL include file, specify ��.kl��, followed by the file name, on the first line of the
dictionary fie. The KAREL include file is automatically generated when the dictionary is compressed.

The following would create the file kcmn.kl when the dictionary is compressed.
.kl kcmn
$-, move_home, "press HOME to move home"

The kcmn.kl file would look as follows
-- WARNING: This include file generated by dictionary compressor.
--
-- Include File: kcmn.kl
-- Dictionary file: apkcmneg.utx
--CONST
move_home = 0

Note If you make a change to your dictionary that causes the element numbers to be re-ordered, you
must re-translate your KAREL program to insure that the proper element numbers are used.

10.1.11 Compressing and Loading Dictionaries on the Controller

The KAREL editor can be used to create and modify the user dictionary. When you have finished
editing the file, you compress it from the KCL command prompt.
KCL> COMPRESS DICT filename

10�11

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Do not include the .UTX file type with the file name. If the compressor detects any errors, it will
point to the offending word with a brief explanation of what is wrong. Edit the user dictionary and
correct the problem before continuing.

A loadable dictionary with the name filename but with a .TX file type will be created. If you used the
.kl symbol, a KAREL include file will also be created. Figure 10�1 illustrates the compression process.

Figure 10�1. Dictionary Compressor and User Dictionary File

.TX .KL

� �

�

.UTX file

Dictionary Compressor

Before the KAREL program can use a dictionary, the dictionary must be loaded into the controller and
given a dictionary name. The dictionary name is a one to four character word that is assigned to the
dictionary when it is loaded. Use the KCL LOAD DICT command to load the dictionary.
KCL> LOAD DICT filename dictname <lang_name>

The optional lang_name allows loading multiple dictionaries with the same dictionary name.
The actual dictionary that will be used by your program is determined by the current value of
$LANGUAGE. This system variable is set by the KCL SET LANGUAGE command or the
SET_LANG KAREL built-in. The allowed languages are ENGLISH, JAPANESE, FRENCH,
GERMAN, SPANISH, or DEFAULT.

The KAREL program can also load a dictionary. The KAREL built-in ADD_DICT is used to load a
dictionary into a specified language and assign a dictionary name.

10.1.12 Accessing Dictionary Elements from a KAREL Program

Your KAREL program uses either the dictionary name and an element number, or the element name to
access a dictionary element. The following KAREL built-ins are used to access dictionary elements:

10�12

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

• ADD_DICT - Add a dictionary to the specified language.

• REMOVE_DICT - Removes a dictionary from the specified language and closes the file or frees
the memory it resides in.

• WRITE_DICT - Write a dictionary element to a window.

• WRITE_DICT_V - Write a dictionary element that has format specifiers for a KAREL variable,
to a window.

• READ_DICT - Read a dictionary element into a KAREL STRING variable.

• READ_DICT_V - Read a dictionary element that has format specifiers into a STRING variable.

• CHECK_DICT - Check if a dictionary element exists.

10.2 CREATING USER FORMS

A form is a type of dictionary file necessary for creating menu interfaces that have the same "look
and feel" as the System R-J3iB menu interface.

The following are steps for using forms.

1. Create an ASCII form text file with the .FTX file extension.

2. Compress the form file using the KCL COMPRESS FORM command. This creates a loadable
dictionary file with a .TX extension and an associated variable file (.VR).

3. Load the form.

• From KCL , use the KCL LOAD FORM command. This will load the dictionary file
(.TX) and the associated variable file (.VR).

• From KAREL , use the ADD_DICT built-in to load the dictionary file (.TX), and the
LOAD built-in to load the association variable file (.VR) .

4. Use the KAREL DISCTRL_FORM built-in to display the form text. The DISCTRL_FORM
built-in handles all input operations including cursor position, scrolling, paging, input validation,
and choice selections. Refer to the DISCTRL_FORM built-in, Appendix A , "KAREL Language
Alphabetical Description."

Forms are useful for programs which require the user to enter data. For example, once the user enters
the data, the program must test this data to make sure that it is in an acceptable form. Numbers
must be entered with the correct character format and within a specified range, text strings must not
exceed a certain length and must be a valid selection. If an improper value is entered, the program
must notify the user and prompt for a new entry. Forms provide a way to automatically validate
entered data. Forms also allow the program to look as if it is integrated into the rest of the system
menus, by giving the operator a familiar interface.

Forms must have the USER2 menu selected. Forms use the "t_sc" and "c_sc" screens for teach pendant
and CRT/KB respectively. The windows that are predefined by the system are used for displaying the

10�13

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

form text. For both screens, this window is 10 rows high and 40 columns wide. This means that the
&double_high and &double_wide attributes are used on the CRT/KB and cannot be changed.

10.2.1 Form Syntax

A form defines an operator interface that appears on the teach pendant or CRT/KB screens. A form
is a special dictionary element. Many forms can reside in the same dictionary along with other
(non-form) dictionary elements.

Note If your program requires a form dictionary file (.FTX), you do not have to create a user
dictionary file (.UTX). You may place your user dictionary elements in the same file as your forms.

To distinguish a form from other elements in the dictionary, the symbol ��.form�� is placed before the
element and the symbol ��.endform�� is placed after the element. The symbols must reside on their
own lines. The form symbols are omitted from the compressed dictionary.

The following is the syntax for a form:

Form Syntax
.form <form_attributes>
$n, form_name<@cursor_pos><&res_word>"Menu_title"<&res_work>&new_line

<@cursor_pos><&res_word>"Menu_label"<&res_word>&new_line
<@cursor_pos><&res_word><"-Selectable_item"<&res_word>&new_line>
<@cursor_pos><&res_word><"-%Edit_item"<&res_word>&new_line>
<@cursor_pos><&res_word><"Non_selectable_text"<&res_word>&new_line>
<@cursor_pos><&res_word><"Display_only_item"<&res_word>&new_line>
<^function_key &new_line>
<?help_menu &new_line>

.endform

<$n,function_key
<"Key_name" &new_line>
<"Key_name" &new_line>
<"Key_name" &new_line>
<"Key_name" &new_line>
<"help_label" &new_line>
<"Key_name" &new_line>
<"Key_name" &new_line>
<"Key_name" &new_line>
<"Key_name" &new_line>
"Key_name"

>

<$n,help_menu
<"Help_text" &new_line>
<"Help_text" &new_line>

10�14

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

"Help_text">

Restrictions

• Items in brackets <> are optional.

• Symbols not defined here are standard user dictionary element symbols ($n, @cursor_pos,
&res_word, &new_line).

• form_attributes are the key words unnumber and unclear.

• form_name specifies the element name that identifies the form.

• "Menu_title" and "Menu_label" specify element text that fills the first two lines of the form
and are always displayed.

• "- Selectable_item" specifies element text that can be cursored to and selected.

• "-%Editable_item" specifies element text that can be cursored to and edited.

• "Non_selectable_text" specifies element text that is displayed in the form and cannot be cursored
to.

• "%Display_only_item" specifies element text using a format specifier. It cannot be cursored to.

• ^function_key defines the labels for the function keys using an element name.

• ?help_menu defines a page of help text that is associated with a form using an element name.

• "Key_name" specifies element text displayed over the function keys.

• "Help_label" is the special label for the function key 5. It can be any label or the special word
HELP.

• "Help_text" is element text up to 40 characters long.

10.2.2 Form Attributes

Normally, a form is displayed with line numbers in front of any item the cursor can move to. To keep
a form from generating and displaying line numbers, the symbol ��.form unnumber�� is used.

To keep a form from clearing any windows before being displayed, the symbol ��.form noclear�� is
used. The symbols ��noclear�� and ��unnumber�� can be used in any order.

In the following example, MH_TOOLDEFN is an unnumbered form that does not clear any windows.
MH_APPLIO is a numbered form.
.form unnumber noclear
$1, MH_TOOLDEFN
.endform
$2, MH_PORT
$3, MH_PORTFKEY
.form
$6, MH_APPLIO

10�15

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

.endform

10.2.3 Form Title and Menu Label

The menu title is the first element of text that follows the form name. The menu label follows the
menu title. Each consists of one row of text in a non-scrolling window.

• On the teach pendant the first row of the "full" window is used for the menu title. The second
row is used for the menu label.

• On the CRT/KB the first row of the "cr05" widow is used for the menu title. The second row
is used for the menu label.

• The menu title is positioned at row 3, column 1-21.

• The menu label is positioned at row 4, column 1-40.

Unless the "noclear" form attribute is specified both the menu title and menu label will be cleared.

The reserved word &home must be specified before the menu title to insure that the cursor is
positioned correctly. The reserved word &reverse should also be specified before the menu title
and the reserved word &standard should follow directly after the menu title. These are necessary
to insure the menu appears to be consistent with the R-J3iB menu interface. The reserved word
&new_line must be specified after both the menu title and menu label to indicate the end of the text.
The following is an example menu title and menu label definition.
.form
$1, mis_form
&home &reverse "Menu Title" &standard &new_line
"Menu Label" &new_line
.endform

If no menu label text is desired, the &new_line can be specified twice after the menu title as in
the following example.
.form
$1,misc_form
&home &reverse " Menu Title" &standard &new_line &new_line
.endform

If the cursor position attribute is specified, it is not necessary to specify the &new_line reserved
word. The following example sets the cursor position for the menu title to row 1, column 2, and
the menu label to row 2, column 5.
.form

$1,misc_form
@1,2 &reverse "Menu Title" &standard
@2,5 "Menu Label"
.endform

10�16

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

10.2.4 Form Menu Text

The form menu text follows the menu title and menu label. It consists of an unlimited number of lines
that will be displayed in a 10 line scrolling window named ��fscr�� on the teach pendant and ��ct06�� on
the CRT/KB. This window is positioned at rows 5-14 and columns 1-40. Unless the ��noclear�� option
is specified, all lines will be cleared before displaying the form.

Menu text can consist of the following:

• Selectable menu items

• Edit data items of the following types:

� INTEGER

� INTEGER port

� REAL

� SHORT (32768 to 32766)

� BYTE (0 to 255)

� BOOLEAN

� BOOLEAN port

� STRING

� Program name string

� Function key enumeration type

� Subwindow enumeration type

� Subwindow enumeration type using a variable

� Port simulation

• Non-selectable text

• Display only data items with format specifiers

• Cursor position attributes

• Reserve words or ASCII codes

• Function key element name or number

• Help element name or number

Each kind of menu text is explained in the following sections.

10.2.5 Form Selectable Menu Item

Selectable menu items have the following characteristics:

10�17

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

• A selectable menu item is entered in the dictionary as a string enclosed in double quotes.

• The first character in the string must be a dash, �-�. This character will not be printed to the
screen. For example,

"- Item 1 "

• The entire string will be highlighted when the selectable item is the default.

• If a selectable item spans multiple lines, the concatenation character �+� should be used as the
last character in the string. The concatenation character will not be printed to the screen. The
attribute &new_line is used to signal a new line. For example,

"- Item 1, line 1 +" &new_line
" Item 1, line 2 "

• The automatic numbering uses the first three columns and does not shift the form text. Therefore,
the text must allow for the three columns by either adding spaces or specifying cursor positions.
For example,

"- Item 1 " &new_line
"- Item 2 " &new_line
"- Item 3 "

or
@3,4"- Item 1 "
@4,4"- Item 2 "
@5,4"- Item 3 "

• The first line in the scrolling window is defined as row 3 of the form.

• Pressing enter on a selectable menu item will always cause the form processor to exit with the
termination character of ky_select, regardless of the termination mask setting. The item number
selected will be returned.

• Selecting the item by pressing the ITEM hardkey on the teach pendant will only highlight the
item. It does not cause an exit.

• Short-cut number selections are not handled automatically, although they can be specified as
a termination mask.

10.2.6 Edit Data Item

You can edit data items that have the following characteristics:

• Data item is entered in the dictionary as a string enclosed in double quotes.

• The first character in the string must be a dash, �-�. This character is not printed to the screen.

• The second character in the string must be a �%�. This character marks the beginning of a format
specifier.

• Each format specifier begins with a % and ends with a conversion character. All the characters
between these two characters have the same meaning as user dictionary elements.

10�18

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

Note You should provide a field width with each format specifier, otherwise a default will be
used. This default might cause your form to be mis-aligned.

Table 10�3 lists the conversion characters for an editable data item.

Table 10�3. Conversion Characters

Character Argument Type: Printed As

d INTEGER; decimal number.

o INTEGER; unsigned octal notation (without a leading zero).

x, X INTEGER; unsigned hexadecimal notation (without a leading 0x or 0X), using
abcdef or ABCDEF for 10, ..., 15.

u INTEGER; unsigned decimal notation.

pu INTEGER port; unsigned decimal notation.

px INTEGER port; unsigned hexadecimal notation (without a leading 0x or 0X),
using abcdef or ABCDEF for 10, ..., 15.

f REAL; decimal notation of the form <->mmm.dddddd, where the number of d�s is
given by the precision. The default precision is 6; a precision of 0 suppresses
the decimal point.

e, E REAL; decimal notation of the form <->m.dddddde+-xx or <->m.ddddddE+-xx,
where the number of d�s is given by the precision. The default precision is 6; a
precision of 0 suppresses the decimal point.

g, G REAL; %e or %E is used if the exponent is less than -4 or greater than or equal
to the precision; otherwise %f is used. Trailing zeros and a trailing decimal
pointer are not printed.

h SHORT; signed short.

b BYTE; unsigned byte.

B BOOLEAN; print characters from boolean enumeration string.

10�19

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Table 10�3. Conversion Characters (Cont�d)

Character Argument Type: Printed As

P BOOLEAN port; print characters from boolean port enumeration string.

S INTEGER or BOOLEAN port; print characters from port simulation enumeration
string.

k STRING; print characters from KAREL string until end of string or the number
of characters given by the precision.

pk STRING; print program name from KAREL string until end of string or the
number of characters given by the precision.

n INTEGER; print characters from function key enumeration string. Uses dictionary
elements to define the enumeration strings.

w INTEGER; print characters from subwindow enumeration string. Uses dictionary
elements to define the enumeration strings.

v INTEGER; print characters from subwindow enumeration string. Uses a variable
to define the enumeration strings.

% no argument is converted; print a %.

The following is an example of a format specifier:
"-%5d" or "-%-10s"

The form processor retrieves the values from the input value array and displays them sequentially. All
values are dynamically updated .

Edit Data Items: INTEGER, INTEGER Ports, REAL, SHORT, BYTE

• You can specify a range of acceptable values by giving each format specifier a minimum and
maximum value allowed "(min, max)." If you do not specify a minimum and maximum value,
any integer or floating point value will be accepted. For example,

"-%3d(1,255)" or "-%10.3f(0.,100000.)"

• When an edit data item is selected, the form processor calls the appropriate input routine.
The input routine reads the new value (with inverse video active) and uses the minimum and
maximum values specified in the dictionary element, to determine whether the new value is
within the valid range.

10�20

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

� If the new value is out of range, an error message will be written to the prompt line and the
current value will not be modified.

� If the new value is in the valid range, it will overwrite the current value.

Edit Data Item: BOOLEAN

• The format specifier %B is used for KAREL BOOLEAN values, to display and select menu
choice for the F4 and F5 function keys. The name of the dictionary element, that contains the
function key labels, is enclosed in parentheses and is specified after the %B. For example,

"-%4B(enum_bool)"

The dictionary element defining the function keys should define the FALSE value first (F5 label) and
the TRUE value second (F4 label). For example,
$2,enum_bool
" NO" &new_line
" YES"

YES NO

The form processor will label the function keys when the cursor is moved to the enumerated item. The
value shown in the field is the same as the function key label except all leading blanks are removed.

Edit Data Item: BOOLEAN Port

• The format specifier %P is used for KAREL BOOLEAN port values, to display and select menu
choices from the F4 and F5 function keys. The name of the dictionary element, that contains the
function key labels, is enclosed in parentheses and is specified after the %P. For example,

"-%3P(enum_bool)"

The dictionary element defining the function keys should define the 0 value first (F5 label) and the 1
value second (F4 label). For example,
$2,enum_bool

" OFF" &new_line
" ON"

YES NO

10�21

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

The form processor will label the function keys when the cursor is moved to the enumerated item. The
value shown in the field is the same as the function key label except all leading blanks are removed.

Edit Data Item: Port Simulation

• The format specifier %S is used for port simulation, to display and select menu choices from
the F4 and F5 function keys. The name of the dictionary element, that contains the function key
labels, is enclosed in parentheses and is specified after the %S. For example,

"-%1S(sim_fkey)"

The dictionary element defining the function keys should define the 0 value first (F5 label) and the 1
value second (F4 label). For example,
$-, sim_fkey
" UNSIM " &new_line * F5 key label, port will be unsimulated
"SIMULATE" &new_line * F4 key label, port will be simulated

The form processor will label the function keys when the cursor is moved to the enumerated item. The
value shown in the field is the same as the function key label except all leading blanks are removed
and the value will be truncated to fit in the field width.

Edit Data Item: STRING

• You can choose to clear the contents of a string before editing it. To do this follow the STRING
format specifier with the word "clear", enclosed in parentheses. If you do not specify "(clear)",
the default is to modify the existing string. For example,

"-%10k(clear)"

Edit Data Item: Program Name String

• You can use the %pk format specifier to display and select program names from the subwindow.
The program types to be displayed are enclosed in parenthesis and specified after %pk. For
example,

"-%12pk(1)" * specifies TP programs
"-%12pk(2)" * specifies PC programs
"-%12pk(6)" * specifies TP, PC, VR
"-%12pk(16)" * specifies TP & PC

All programs that match the specified type and are currently in memory, are displayed in the
subwindow. When a program is selected, the string value is copied to the associated variable.

Edit Data Item: Function Key Enumeration

• You can use the format specifier %n (for enumerated integer values) to display and select choices
from the function keys. The name of the dictionary element that contains the list of valid choices
is enclosed in parentheses and specified after %n. For example,

"-%6n(enum_fkey)"

10�22

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

The dictionary element defining the function keys should list one function key label per line. If
function keys to the left of those specified are not active, they should be set to "". A maximum
of 5 function keys can be used. For example,
$2,enum_fkey

"" &new_line *Specifies F1 is not active
"JOINT" &new_line *Specifies F2
"LINEAR" &new_line *Specifies F3
"CIRC" *Specifies F4

The form processor will label the appropriate function keys when the enumerated item is selected.
When a function key is selected, the value set in the integer is as follows:
User presses F1, value = 1

User presses F2, value = 2
User presses F3, value = 3
User presses F4, value = 4
User presses F5, value = 5

The value shown in the field is the same as the function key label except all leading blanks are
removed.

LINEAR CIRCJOINT

Edit Data Item: Subwindow Enumeration

• You can use the format specifier %w (for enumerated integer values) to display and select choices
from the subwindow. The name of the dictionary element, containing the list of valid choices, is
enclosed in parentheses and specified after %w. For example,

"-%8w(enum_sub)"

One dictionary element is needed to define each choice in the subwindow. 35 choices can be used.
If fewer than 35 choices are used, the last choice should be followed by a dictionary element that
contains "\a" . The choices will be displayed in 2 columns with 7 choices per page. If only 4 or less
choices are used, the choices will be displayed in 1 column with a 36 character width. For example,
$2,enum_sub "Option 1"
$3 "Option 2"
$4 "Option 3"
$5 "\a"

The form processor will label F4 as ��[CHOICE]�� when the cursor is moved to the enumerated item.
When the function key F4, [CHOICE] is selected, it will create the subwindow with the appropriate
display. When a choice is selected, the value set in the integer is the number selected. The value
shown in the field is the same as the dictionary label except all leading blanks are removed.

10�23

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Edit Data Item: Subwindow Enumeration using a Variable

• You can also use the format specifier %v (for enumerated integer values) to display and select
choices from the subwindow. However, instead of defining the choices in a dictionary they are
defined in a variable. The name of the dictionary element, which contains the program and
variable name, is enclosed in parentheses and specified after %v. For example,

"-%8v(enum_var)"
$-,enum_var

"RUNFORM" &new_line * program name of variable
"CHOICES" &new_line * variable name containing choices

[RUNFORM] CHOICES must be defined as a KAREL string array. Each element of the array should
define a choice in the subwindow. This format specifier is similar to %w. However, the first element
is related to the value 0 and is never used. Value 1 begins at the second element. The last value is
either the end of the array or the first uninitialized value.
[RUNFORM] CHOICES:ARRAY[6] OF STRING[12] =

[1] *uninit*
[2] ’Red’ <= value 1
[3] ’Blue’ <= value 2
[4] ’Green’ <= value 3
[5] *uninit*
[6] *uninit*

10.2.7 Non-Selectable Text

Non-selectable text can be specified in the form. These items have the following characteristics:

• Non-selectable text is entered in the dictionary as a string enclosed in double quotes.

• Non-selectable text can be defined anywhere in the form, but must not exceed the maximum
number of columns in the window.

10.2.8 Display Only Data Items

Display only data items can be specified in the form. These items have the following characteristics:

• Display only data items are entered in the dictionary as a string enclosed in double quotes.

• The first character in the string must be a �%�. This character marks the beginning of a format
specifier.

• The format specifiers are the same as defined in the previous section for an edit data item.

10�24

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

10.2.9 Cursor Position Attributes

Cursor positioning attributes can be used to define the row and column of any text. The row is
always specified first. The dictionary compressor will generate an error if the form tries to backtrack
to a previous row or column. The form title and label are on rows 1 and 2. The scrolling window
starts on row 3. For example,
@3,4 "- Item 1"
@4,4 "- Item 2"
@3,4 "- Item 3" <- backtracking to row 3 not allowed

Even though the scrolling window is only 10 lines, a long form can specify row positions that are
greater than 12. The form processor keeps track of the current row during scrolling.

10.2.10 Form Reserved Words and Character Codes

Reserved words or character codes can be used. Refer to Table 10�4 for a list of all available reserved
words. However, only the reserved words which do not move the cursor are allowed in a scrolling
window. Refer to Table 10�5 for a list of available reserved words for a scrolling window.

Table 10�4. Reserved Words

Reserved Word Function

&clear_win Clear window (#128)

&clear_2_eol Clear to end of line (#129)

&clear_2_eow Clear to end of window (#130)

$cr Carriage return (#132)

$lf Line feed (#133)

&rev_lf Reverse line feed (#134)

&new_line New line (#135)

&bs Back space (#136)

&home Home cursor in window (#137)

10�25

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Table 10�4. Reserved Words (Cont�d)

Reserved Word Function

&blink Blink video attribute (#138)

&reverse Reverse video attribute (#139)

&bold Bold video attribute (#140)

&under_line Underline video attribute (#141)

&double_wide Wide video size (#142) (refer to description below for usage)

&standard All attributes normal (#143)

&graphics_on Turn on graphic characters (#146)

&ascii_on Turn on ASCII characters (#147)

&double_high High video size (#148) (refer to description below for usage)

&normal_size Normal video size (#153)

&multi_on Turn on multi-national characters (#154)

Table 10�5 lists the reserved words that can be used for a scrolling window.

Table 10�5. Reserved Words for Scrolling Window

Reserved Word Function

&new_line New line (#135)

&blink Blink video attribute (#138)

&reverse Reverse video attribute (#139)

&bold Bold video attribute (#140)

10�26

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

Table 10�5. Reserved Words for Scrolling Window (Cont�d)

Reserved Word Function

&under_line Underline video attribute (#141)

&standard All attributes normal (#143)

&graphics_on Turn on graphic characters (#146)

&ascii_on Turn on ASCII characters (#147)

&multi_on Turn on multi-national characters (#154)

10.2.11 Form Function Key Element Name or Number

Each form can have one related function key menu. A function key menu has the following
characteristics:

• The function key menu is specified in the dictionary with a caret, ^, immediately followed by the
name or number of the function key dictionary element. For example,

^misc_fkey

• The dictionary element defining the function keys should list one function key label per line.
If function keys to the left of those specified are not active, then they should be set to "". A
maximum of 10 function keys can be used. For example,

$3,misc_fkey
" F1" &new_line
" F2" &new_line
" F3" &new_line
" F4" &new_line
" HELP >" &new_line
"" &new_line
"" &new_line
" F8" &new_line
" F9" &new_line

• The form processor will label the appropriate function keys and return from the routine if a valid
key is pressed. The termination character will be set to ky_f1 through ky_f10.

• The function keys will be temporarily inactive if an enumerated data item is using the same
function keys.

• If function key F5 is labeled HELP, it will automatically call the form�s help menu if one exists.

10�27

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

F1 F2 F3 F4 HELP >

F1 F2 F3 F4 HELP >

10.2.12 Form Help Element Name or Number

Each form can have one related help menu. The help menu has the following characteristics:

• A help element name or number is specified in the dictionary with a question mark, ?,
immediately followed by the name or number of the help dictionary element. For example,

?misc_help

• The dictionary element defining the help menu is limited to 48 lines of text.

• The form processor will respond to the help key by displaying the help dictionary element in a
predefined window. The predefined window is 40 columns wide and occupies rows 3 through 14.

• The help menu responds to the following inputs:

� Up or down arrows to scroll up or down 1 line.

� Shifted up or down arrows to scroll up or down 3/4 of a page.

� Previous, to exit help. The help menu restores the previous screen before returning.

10.2.13 Teach Pendant Form Screen

You can write to other active teach pendant windows while the form is displayed. The screen itself is
named "tpsc." Figure 10�2 shows all the windows attached to this screen. Unless the noclear option is
specified, ��full,�� ��fscr,�� ��prmp,�� and ��ftnk�� windows will be cleared before displaying the form.

10�28

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

Figure 10�2. Teach Pendant Form Screen

+––+
|err
|stat
|full
|full
|fscr

=
|prmp
|ftnk
+––+

|
|
|
|
|

|
|

=

<–full and motn overlap
 motn starts at col 18

10.2.14 CRT/KB Form Screen

You can write to other active CRT/KB windows while the form is displayed. The screen itself is
named ��ctsc.�� All lines in the screen are set to double high and double wide video size. Figure 10�3
shows all the windows attached to this screen. Unless the ��noclear�� option is specified, ��ct05,��
��ct06,�� ��ct03,�� and ��ct04�� windows will be cleared before displaying the form.

Figure 10�3. CRT/KB Form Screen

+––+
|err
|ct01
|ct05
|ct05
|ct06

=
|ct03
|ct04
+––+

|
|
|
|
|

|
|

=

<–ct05 and motn overlap
 motn starts at col 18

10�29

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

10.2.15 Form File Naming Convention

Uncompressed form dictionary files must use the following file name conventions:

• The first two letters in the dictionary file name can be an application prefix.

• If the file name is greater than four characters, the form processor will skip the first two letters
when trying to determine the dictionary name.

• The next four letters must be the dictionary name that you use to load the .TX file, otherwise
the form processor will not work.

• The last two letters are optional and should be used to identify the language;

� ��EG�� for ENGLISH

� ��JP�� for JAPANESE

� ��FR�� for FRENCH

� ��GR�� for GERMAN

� ��SP�� for SPANISH

• A dictionary file containing form text must have a .FTX file type, otherwise the dictionary
compressor will not work. After it is compressed, the same dictionary file will have a .TX file
type instead.

The following is an example of an uncompressed form dictionary file name:
MHPALTEG.FTX

MH stands for Material Handling, PALT is the dictionary name that is used to load the dictionary
on the controller, and EG stands for English.

10.2.16 Compressing and Loading Forms on the Controller

The form file can only be compressed on the RAM disk RD:. Compressing a form is similar to
compressing a user dictionary. From the KCL command prompt, enter:
KCL> COMPRESS FORM filename

Do not include the .FTX file type. If the compressor detects any errors, it will point to the offending
word with a brief explanation of what is wrong. Edit the form and correct the problem before
continuing.

Note The form file must be an uncompressed file in order for the errors to point to the correct line.

Two files will be created by the compressor. One is a loadable dictionary file with the name filename
but with a .TX file type. The other will be a variable file with a .VR file type but with the four
character dictionary name as the file name. The dictionary name is extracted from filename as

10�30

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

described previously. A third file may also be created if you used the ��.kl�� symbol to generate a
KAREL include file. Figure 10�4 illustrates compressing.

Figure 10�4. Dictionary Compressor and Form Dictionary File

Dictionary Compressor
Dictionary Compressor

.FTX file

.TX .VR .KL
� � �

�

Each form will generate three kinds of variables. These variables are used by the form processor.
They must be reloaded each time the form dictionary is recompressed. The variables are as follows:

1. Item array variable - The variable name will be the four-character dictionary name, concatenated
with the element number, concatenated with _IT.

2. Line array variable - The variable name will be the four-character dictionary name, concatenated
with the element number, concatenated with _LN.

3. Miscellaneous variable - The variable name will be the four-character dictionary name,
concatenated with the element number, concatenated with _MS.

The data defining the form is generated into KAREL variables. These variables are saved into the
variable file and loaded onto the controller. The name of the program is the dictionary name preceded
by an asterisk. For example, Dictionary MHPALTEG.FTX contains:
.form unnumber

$1, MH_TOOLDEFN
.endform
$2, MH_PORT
$3, MH_PORTFKEY
.form
$6, MH_APPLIO
.endform

As explained in the file naming conventions section, the dictionary name extracted from the file name
is ��PALT��. Dictionary elements 1 and 6 are forms. A variable file named PALT.VR is generated with
the program name ��*PALT.�� It contains the following variables:
PALT1_IT, PALT1_LN, and PALT1_MS

PALT6_IT, PALT6_LN, and PALT6_MS

10�31

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Note KCL CLEAR ALL will not clear these variables. To show or clear them, you can SET VAR
$CRT_DEFPROG = �*PALT� and use SHOW VARS and CLEAR VARS.

The form is loaded using the KCL LOAD FORM command.
KCL> LOAD FORM filename

The name filename is the name of the loadable dictionary file. After this file is loaded, the dictionary
name is extracted from filename and is used to load the variable file. This KCL command is
equivalent to
KCL> LOAD DICT filename dict_name DRAM

KCL> LOAD VARS dict_name

10.2.17 Displaying a Form

The DISCTRL_FORM built-in is used to display and control a form on the teach pendant or CRT/KB
screens. All input keys are handled within DISCTRL_FORM. This means that execution of your
KAREL program will be suspended until an input key causes DISCTRL_FORM to exit the form. Any
condition handlers will remain active while your KAREL program is suspended.

Note DISCTRL_FORM will only display the form if the USER2 menu is the selected menu.
Therefore, use FORCE_SPMENU(device_stat, SPI_TPUSER2, 1) before calling DISCTRL_FORM
to force the USER2 menu.

Figure 10�5 shows the first template in FORM.FTX as displayed on the teach pendant. This example
contains four selectable menu items.

Figure 10�5. Example of Selectable Menu Items

Title here JOINT 10%

F1 F2 F3 F4 HELP >

 label here 1/5
 1 Menu item 1
 2 Menu item 2
 3 Menu item 3
 4 Menu item 4 line 1
 Menu item 4 line 2
 5 Menu item 5

RUNFORM LINE 22 RUNNING

10�32

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

The dictionary elements in FORM.FTX, shown in Example Form Dictionary for Selectable Menu
Items , were used to create the form shown in Figure 10�5 .

Example Form Dictionary for Selectable Menu Items
* Dictionary Form File: form.ftx
*
* Generate form.kl which should be included in your KAREL program
.kl form
.form
$-,forml

&home &reverse "Title here" &standard $new_line
" label here " &new_line
@3,10 "- Menu item 1 "
@4,10 "- Menu item 2 "
@5,10 "- Menu item 3 "
@6,10 "- Menu item 4 line 1 +"
@7,10 " Menu item 4 line 2 "
@8,10 "- Menu item 5 "
* Add as many items as you wish.
* The form manager will scroll them.
^form1_fkey * specifies element which contains

* function key labels
?form1_help * element which contains help

.endform

$-,form1_fkey * function key labels
" F1" &new_line
" F2" &new_line
" F3" &new_line
" F4" &new_line
" HELP >" &new_line * help must be on F5
" F6" &new_line
" F7" &new_line
" F8" &new_line
" F9" &new_line
" F10 >"
* you can have a maximum of 10 function keys labeled

$-, form1_help * help text
"Help Line 1" &new_line
"Help Line 2" &new_line
"Help Line3" &new_line
* You can have a maximum of 48 help lines

The program shown in Example Program for Selectable Menu Items was used to display the form
shown in Figure 10�5.

10�33

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

Example Program for Selectable Menu Items
PROGRAM runform

%NOLOCKGROUP

%INCLUDE form -- allows you to access form element numbers
%INCLUDE klevccdf
%INCLUDE klevkeys
%INCLUDE klevkmsk

VAR
device_stat: INTEGER --tp_panel or crt_panel
value_array: ARRAY [1] OF STRING [1] --dummy variable for DISCTRL_FORM
inact_array: ARRAY [1] OF BOOLEAN --not used
change_array: ARRAY [1] OF BOOLEAN --not used
def_item: INTEGER
term_char: INTEGER
status: INTEGER

BEGIN
device_stat = tp_panel
FORCE_SPMENU (device_stat, SPI_TPUSER2, 1)--forces the TP USER2

menu
def_item = 1 -- start with menu item 1

--Displays form named FORM1
DISCTRL_FORM ("FORM", form1, value_array, inact_array,

change_array, kc_func_key, def_item, term_char, status)
WRITE TPERROR (CHR(cc_clear_win)) --clear the TP error

window
IF term_char = ky_select THEN

WRITE TPERROR ("Menu item", def_item: :1, ’was selected.’)
ELSE

WRITE TPERROR (’Func key’, term_char: :1, ’ was selected.’)
ENDIF

END runform

Figure 10�6 shows the second template in FORM.FTX as displayed on the CRT/KB (only 10
numbered lines are shown at one time). This example contains all the edit data types.

10�34

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

Figure 10�6. Example of Edit Data Items

Title here JOINT 10%

F1 F2 F3 F4 HELP >

 label here 1/5
 1 Menu item 1
 2 Menu item 2
 3 Menu item 3
 4 Menu item 4 line 1
 Menu item 4 line 2
 5 Menu item 5

RUNFORM LINE 22 RUNNING

The dictionary elements in FORM.FTX, shown in Example Dictionary for Edit Data Items , were
used to create the form shown in Figure 10�6.

Example Dictionary for Edit Data Items
* Dictionary Form File: form.ftx
*
* Generate form.kl which should be included in your KAREL program
.kl form
.form
$-,form2
&home &reverse " Title here" &standard &new_line
" label here " &new_line
" Integer: " "-%10d" &new_line
" Integer: " "-%10d(1,32767)" &new_line
" Real: " "-%12f" &new_line
" Bolean: " "-%10B(bool_fkey)" &new_line
" String: " "-%-20k" &new_line
" String: " "-%12k(clear)" &new_line
" Byte: " "-%10b" &new_line
" Short: " "-%10h" &new_line
" DIN[1]: " "-%10P(dout_fkey)" &new_line
" AIN[1]: " " "-%10pu" " " "-%1S(sim_fkey)" &new_line
" AOUT[2]: " " "-%10px" " " "-%1S(sim_fkey)" &new_line
" Enum Type: " "-%8n(enum_fkey)" &new_line
" Enum Type: " "-%6w(enum_subwin)" &new_line
" Enum Type: " "-%6V(ENUM_VAR)" &new_line
" Prog Type: " "-%12pk(1)" &new_line
" Prog Type: " "-%12pk(2)" &new_line

10�35

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

" Prog Type: " "-%12pk(6)" &new_line
" Prog Type: " "-%12pk(16)" &new_line

^form2_fkey
.endform

$-,form2_fkey
EXIT" &new_line

*Allows you to specify the labels for F4 and F5 function keys
$-,bool_fkey
"FALSE" &new_line * F5 key label, value will be set FALSE
"TRUE" &new_line * F4 key label, value will be set TRUE

* Allows you to specify the labels for F4 and F5 function keys
$-, dout_fkey
"OFF" &new_line * F5 key label, value will be set OFF
"ON" &new_line * F4 key label, value will be set
ON

*Allows you to specify the labels for F4 and F5 function keys
$-, sim_fkey
" UNSIM " &new_line * F5 key label, port will be unsimulated
"SIMULATE" &new_line * F4 key label, port will be simulated

*Allows you to specify the labels for 5 function keys
$-, enum_fkey
"FINE" &new_line * F1 key label, value will be set to 1

"COARSE" &new_line * F2 key label, value will be set to 2
"NOSETTL" &new_line * F3 key label, value will be set to 3
"NODECEL" &new_line * F4 key label, value will be set to 4
"VARDECEL" &new_line * F5 key label, value will be set to 5

*Allows you to specify a maximum of 35 choices in a subwindow
$-,enum_subwin
"Red" * value will be set to 1
$-
"Blue" * value will be set to 2
$-
"Green"
$-
"Yellow"
$-
"\a" * specifies end of subwindow list

* Allows you to specify the choices for the subwindow in a
* variable whose type is an ARRAY[m] of STRING[n].

10�36

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

$-,enum_var
"RUNFORM" &new_line * program name of variable
"CHOICES" &new_line * Variable name containing choices

The program shown in Example Program for Edit Data Items was used to display the form in Figure
10�6.

Example Program for Edit Data Items
PROGRAM runform

%NOLOCKGROUP

%INCLUDE form -- allows you to access form element numbers
%INCLUDE klevccdf
%INCLUDE klevkeys
%INCLUDE klevkmsk

TYPE
mystruc = STRUCTURE
byte_var1: BYTE
byte_var2: BYTE
short_var: SHORT

ENDSTRUCTURE

VAR
device_stat: INTEGER -- tp_panel or crt_panel
value_array: ARRAY [20] OF STRING [40]
inact_array: ARRAY [1] OF BOOLEAN
change_array: ARRAY[1] OF BOOLEAN
def_item: INTEGER
term_char: INTEGER
status: INTEGER

int_var1: INTEGER
int_var2: INTEGER
real_var: REAL
bool_var: BOOLEAN
str_var1: STRING[20]
str_var2: STRING[12]
struc_var: mystruc
color_sel1: INTEGER
color_sel2: INTEGER
prog_name1: INTEGER[12]
prog_name2: STRING[12]
Prog_name3: STRING[12]
prog_name4: STRING[12]
choices: ARRAY[5] OF STRING[12]

10�37

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

BEGIN
value_array [1] = ’int_var1’
value_array [2] = ’int_var2’
value_array [3] = ’real_var’
value_array [4] = ’bool_var’
value_array [5] = ’str_var1’
value_array [6] = ’str_var2’
value_array [7] = ’struc_var.byte_var1’
value_array [8] = ’struc_var.short_var’
value_array [9] = ’din[1]’
value_array [10] = ’ain[1]’
value_array [11] = ’ain[1]’
value_array [12] = ’aout[2]’
value_array [13] = ’aout[2]’
value_array [14] = ’[*system*]$group[1].$termtype’
value_array [15] = ’color_sel1’
value_array [16] = ’color_sel2’
value_array [17] = ’prog_name1’
value_array [18] = ’prog_name2’
value_array [19] = ’prog_name3’
value_array [20] = ’prog_name4’
choices [1] = ’’ --not used
choices [2] = ’Red’ --corresponds to color_sel12 = 1
choices [3] = ’Blue’ --corresponds to color_sel12 = 2
choices [4] = ’Green’ --corresponds to color_sel12 = 3
choices [5] = ’Yellow’ --corresponds to color_sel12 = 4

-- Initialize variables
int_var1 = 12345
-- int_var2 is purposely left uninitialized
real_var = 0
bool_var = TRUE
str_var1 = ’This is a test’
-- str_var = is purposely left uninitialized
struc_var.byte_var1 = 10
struc_var.short_var = 30
color_sel1 = 3 --corresponds to third item of enum_subwin
color_sel2 = 1

device_stat = crt_panel --specify the CRT/KB for displaying
form
FORCE_SPMENU(device_stat, SPI_TPUSER2,1)
def_item = 1 -- start with menu item 1
DISCTRL_FORM(’FORM’, form2, value_array, inact_array,

change_array, kc_func_key, def_item, term_char, status);

10�38

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

END runform

Figure 10�7 shows the third template in FORM.FTX as displayed on the teach pendant. This example
contains display only items. It shows how to automatically load the form dictionary file and the
variable data file, from a KAREL program.

Figure 10�7. Example of Display Only Data Items

Title here JOINT 10%

F1 F2 F3 F4 HELP >

 label here 1/5
 1 Menu item 1
 2 Menu item 2
 3 Menu item 3
 4 Menu item 4 line 1
 Menu item 4 line 2
 5 Menu item 5

RUNFORM LINE 22 RUNNING

The dictionary elements in FORM.FTX, shown in Example Dictionary for Display Only Data Items ,
were used to create the form shown in Figure 10�7 .

Example Dictionary for Display Only Data Items
* Dictionary Form File: form.ftx
*
* Generate form.kl which should be included in your KAREL program
.kl form
.form
$-,form3

&home &reverse "Title here" &standard &new_line
"label here" &new_line

&new_line
"Int: " "%-10d" " Bool: " "%-10B(bool_fkey)" &new_line
"Real: " "%-10f" " Enum: " "%-10n(enum_fkey)" &new_line

"DIN[""%1d""]: " "%-10P(dout_fkey)" "%-12S(sim2_fkey)"

*You can have as many columns as you wish without exceeding * 40 columns.
*You can specify blank lines too.
.endform
$-,sim2_fkey

10�39

10. DICTIONARIES AND FORMS MARAIKLRF06031E REV A

"UNSIMULATED" &new_line * F5 key label, port will be unsimulated
"SIMULATED" &new_line * F4 key label, port will be simulated

The program shown in Example Program for Display Only Data Items was used to display the form
shown in Figure 10�7.

Example Program for Display Only Data Items
PROGRAM runform

%NOLOCKGROUP

%INCLUDE form -- allows you to access form element numbers
%INCLUDE klevccdf
%INCLUDE klevkeys
%INCLUDE klevkmsk

device_stat: INTEGER -- tp_panel or crt_panel
value_array: ARRAY [20] OF STRING [40]
inact_array: ARRAY [1] OF BOOLEAN -- not used
change_array: ARRAY[1] OF BOOLEAN -- not used
def_item: INTEGER
term_char: INTEGER
status: INTEGER
loaded: BOOLEAN
initialized: BOOLEAN

int_var1: INTEGER
int_var2: INTEGER
real_var: REAL
bool_var: BOOLEAN

BEGIN
-- Make sure ’FORM’ dictionary is loaded.
CHECK_DICT(’FORM’, form3, status)

IF status <> 0 THEN
WRITE TPPROMPT(CR,’Loading form.....’)
KCL (’CD MF2:’,status) --Use the KCL CD command to

--change directory to MF2:
KCL (’LOAD FORM’, status) --Use the KCL load for command

--to load in the form
IF status <> 0 THEN

WRITE TPPROMPT(CR,’loading from failed, STATUS=’,status)
ABORT --Without the dictionary this program cannot continue.

ENDIF
ELSE

WRITE TPPROMPT (CR,’FORM already loaded.’)

10�40

MARAIKLRF06031E REV A 10. DICTIONARIES AND FORMS

ENDIF

value_array [1] = ’int_var1’
value_array [2] = ’bool_var’
value_array [3] = ’real_var’
value_array [4] = ’[*system*]$group[1].$termtype’
value_array [5] = ’int_var2’
value_array [6] = ’din[1]’
value_array [7] = ’din[1]’

int_var1 = 12345
bool_var = TRUE
real_var = 0
int_var2 = 1
device_stat = tp_panel
FORCE_SPMENU(device_stat, SPI_TPUSER2,1)
def_item = 1 -- start with menu item 1
DISCTRL_FORM(’FORM’, form3, value_array, inact_array,

change_array, kc_func_key, def_item, term_char, status);
END runform

10�41

Chapter 11
FULL SCREEN EDITOR

Contents

Chapter 11 FULL SCREEN EDITOR ... 11�1
11.1 SCREEN LAYOUT .. 11�2

11.1.1 Edit Windows ... 11�3
11.1.2 Function Key Line .. 11�5
11.2 EDITOR COMMAND SUMMARY ... 11�6

11.2.1 Cursor Manipulation .. 11�13
11.2.2 Text Scrolling ... 11�14
11.2.3 Text Insertion and Editing Modes .. 11�15
11.2.4 Text Deletion .. 11�16
11.2.5 Text Find and Replace .. 11�16
11.2.6 Text Block Manipulation ... 11�18
11.2.7 Window Manipulation .. 11�19
11.2.8 KAREL Program Translation .. 11�20
11.2.9 Miscellaneous Editor Commands .. 11�20
11.2.10 File Save and Exit .. 11�21

11�1

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

KAREL system software includes a full screen text editor that allows you to create new KAREL files
or modify existing ones. Selecting KAREL EDITOR from the MENUS menu invokes the KAREL
editor on the CRT/KB.

The editor can perform standard full screen manipulations on the following types of KAREL files:

• Source code files (.KL file type)

• Command files (.CF file type)

• Listing files (.LS file type)

• ASCII data files (.DT file type)

• Dictionary text files (.TX file type)

The editor can also invoke the KAREL language translator to produce KAREL p-code from KAREL
source programs that you are editing.

The KAREL Command Language (KCL) is integrated into the editor so that your edit session can be
preserved while you perform KCL functions. The KCL environment can be displayed on the CRT/KB
by pressing F10, MENUS, from within the editor, and then selecting KCL. For VT-220 compatible
CRT/KBs, pressing the DO key from within the editor displays KCL, pressing the SELECT key
from KCL returns you to the editor, and pressing the NEXT key from within the editor selects the
next edit window.

You direct the editor using editor commands selected from function key menus or by entering key
sequences.

Terminology

When you begin editing a file, the editor copies the contents of the file into an edit buffer . When the
editor screen appears, a section of the edit buffer is displayed in an edit window on the screen. You
modify the edit buffer through the edit window. The editor can have up to seven edit windows. Each
edit buffer can display through a single edit window, or through multiple edit windows.

A block is a section of the edit buffer. A block has a beginning and an end. It can be displayed
with no special markings or highlighted with reverse video. You can define, display, copy, delete,
move, and search for a block.

11.1 SCREEN LAYOUT

You invoke the editor by entering ��EDIT filename�� from KCL, or by selecting KAREL EDITOR
from MENUS, or by pressing the SELECT key on a VT-220 compatible CRT/KB. Invoking the editor
causes the editor screen to be displayed on the CRT/KB. The editor screen includes one or more
edit windows and a function key line.

11�2

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

11.1.1 Edit Windows

The editor can display from one to seven edit windows. Figure 11�1 shows the screen layout of an
editor screen with one edit window and Figure 11�2 shows the screen layout of an editor screen
with two edit windows.

Figure 11�1. KAREL Editor Screen, One Edit Window

== window [0], buffer RD:\KAREL.KL ================================

(Edit Window)

Function
Key
Line

HELP [FILE][DELETE][FIND][BLOCK][CURSOR] SCR UP SCR DN FCTN MENUS
| F1 || F2 || F3 || F4 || F5 || F6 || F7 || F8 || F9 || F10 |

Figure 11�2. KAREL Editor Screen, Two Edit Windows

== window [–1], buffer RD:\KAREL.KL =============================

(Second Edit Window)

(First Edit Window)

== window [0], buffer RD:\KAREL2.KL ============================

Function
Key
Line

HELP [FILE][DELETE][FIND][BLOCK][CURSOR] SCR UP SCR DN FCTN MENUS
| F1 || F2 || F3 || F4 || F5 || F6 || F7 || F8 || F9 || F10 |

The current edit window is always �[0]�.

11�3

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

Size

The size of the edit window depends on the number of edit windows you are using. For one edit
window, the size is 21 lines. For two windows, the size of the first edit window is 10 lines and the
size of the second edit window is 11 lines. Refer to Table 11�1 for the size of each edit window for
one- to seven-window screens.

Table 11�1. Size of Edit Windows

Number of Edit
Windows

Window
Number

Number of
Lines

Number of Edit
Windows

Window
Number

Number of
Lines

1 1 21 5 1

2

3

4

5

4

4

4

4

5

2 1

2

10

11

6 1

2

3

4

5

6

3

3

3

3

3

6

11�4

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

Table 11�1. Size of Edit Windows (Cont�d)

Number of Edit
Windows

Window
Number

Number of
Lines

Number of Edit
Windows

Window
Number

Number of
Lines

3 1

2

3

7

7

7

1

2

3

4

5

6

7

3

3

3

3

3

3

3

4 1

2

3

4

5

5

5

6

7

Naming

Edit windows are normally named as follows:

• The current edit window is 0 .

• The previous edit window is -1 .

• The next edit window is 1 .

11.1.2 Function Key Line

The function key line displays function keys that when pressed will display menus of editor
commands, except for F9 and F10, which are used for system menus. Refer to Section 11.2 for
information about editor commands.

11�5

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

11.2 EDITOR COMMAND SUMMARY

Table 11�3 lists the editor commands available from each of the editor function keys. This section
also contains a summary of editor commands for the following editor operations:

• Manipulating the cursor

• Scrolling text

• Inserting text and changing editing modes

• Deleting text

• Finding and replacing text

• Manipulating blocks of text

• Editing and manipulating multiple files

• Translating a KAREL program

• Using miscellaneous editor commands

• Saving a file and exiting the editor

Most editor commands can be issued by selecting items from function key menus. Some editor
commands are available only through key sequences. Editor commands available through function
key menus are also available through key sequences. Table 11�3 lists the editor commands associated
with function key menus, and their key sequences. The tables in Section 11.2.1 through Section
11.2.10 contain all editor commands.

The Edit Process

When you begin editing a KAREL program, the KAREL editor copies the contents of the program
file into an edit buffer . When the editor screen appears, a section of the edit buffer is displayed in the
edit window . The editor can have up to seven edit windows. Each edit buffer can be displayed in a
single edit window, or in multiple edit windows.

A block is a section of the edit buffer. A block has a beginning and an end. It can be displayed
with no special markings or highlighted with reverse video. You can define, display, copy, delete,
move, and search for a block.

During editing, the KAREL editor uses internal files. You will see the names of these internal files
periodically displayed on the screen when you use the KAREL editor. HELF.FI is the help file that is
created and displayed in a window when you select HELP. TEMP.FI is the backup file created when
closing a file. TRANS.FI contains translator output. AUTOSAVE.FI is written every approximately
20 minutes to save your file during the edit process. If your edit session is aborted prematurely,
AUTOSAVE.FI will be recovered the next time the editor is invoked. If your file contains tabs, you
will see the �expanding tabs...� message each time you open the file.

11�6

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

The amount of memory available during an edit session for all edit buffers combined is defined by the
system variable $ED_SIZE. By default, it is set to 30 KB. Refer to the FANUC Robotics SYSTEM
R–J3iB Controller Software Reference Manual for more information about $ED_SIZE.

Note If you edit a file that was created using another editor, it might contain control characters. A
control character is normally non-printable and has an ASCII value of less than 32 or greater than 127.
The KAREL editor is designed to work with ASCII files of printable characters, CR, LF, and tab.
Remove all other control characters prior to usage with the KAREL editor and translator.

Refer to Procedure 11-1 for information on using the KAREL editor.

Procedure 11-1 Using the KAREL Editor

Condition

• The RAM Disk has been set up.

• The RAM Disk is selected as the default device (for translation).

Step

1. At the CRT/KB, press MENUS.

2. If you are using KCL, start the editing session using KCL:

a. Select KCL>.

b. Type the following and press ENTER:
EDIT progname

Where program name is the name of the program you want to edit.

3. If you are using the menu, start the editing session using a menu item:

a. Select KAREL EDITOR.

b. Press ENTER.

See the following screen for an example.

11�7

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

== window [0], buffer RD:\KAREL.KL ======================

(Edit Window)

HELP [FILE][DELETE][FIND][BLOCK][CURSOR] SCR UP SCR DN FCTN MENUS

| F1 || F2 || F3 || F4 || F5 || F6 || F7 || F8 || F9 || F10|

Function Key Line

Key Sequences

A key sequence is a combination of keystrokes that issues an editor command. There are key
sequences for each item on a function key menu and for additional commands.

A key sequence is represented by a control symbol (^), which indicates that the CONTROL key
must be pressed, and followed by one or two letters, which indicate that specific letter keys on the
keyboard be pressed simultaneously with the CONTROL key. For example, ^C indicates that you
must simultaneously press the CONTROL and C keys; ^KQ indicates that you must simultaneously
press the CONTROL and K keys, release the keys, and then press the Q key.

In most cases, you must press and hold the CONTROL key and press the indicated keys. Some
CRT/KBs interpret control sequences beginning with ^Q, ^S, and ^W uniquely. Table 11�2 lists the
conversion of this sequence for DEC VT-220 terminals and the FANUC Industrialized Terminal.

11�8

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

Table 11�2. Alternate Key Sequences for ^Q, ^S, and ^W

Type of CRT/KB Alternate Key Sequence

DEC VT-220 or compatible For ^Q, press GOLD (PF1) and then press Q and any letters that follow ^Q.

For ^S, press GOLD (PF1) and then press S and any letters that follow ^S.

For ^W, press GOLD (PF1) and then press W and any letters that follow ^W.

FANUC Industrialized
Terminal

For ^Q, press the blank key to the right of F10 and then press Q and any letters
that follow ^Q.

For ^S, press the blank key to the right of F10 and then press S and any letters
that follow ^S.

For ^W, press the blank key to the right of F10 and then press W and any
letters that follow ^W.

The control symbol (^) will be used in all tables, even if the GOLD key is required for implementation.

Table 11�3. Editor Function Key Summary

Function Key Item Key Sequence Description

HELP, F1 - - Displays help information as follows:

� If no help is currently displayed, help is
displayed in a new window.

� If help is currently displayed, but not in the
current window, the window that contains
help becomes the current window.

� If help is currently displayed in the current
window, help is closed.

11�9

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

Table 11�3. Editor Function Key Summary (Cont�d)

Function Key Item Key Sequence Description

TRANS/BR ^KL Saves the file, invokes the KAREL translator to
process the file, and gives a brief report of the
result: success, or error listing if failure. Loads
p-code if translation is successful.

TRANS/FU ^KM Saves the file, invokes the KAREL translator to
process the file, and gives a full report of the
result, including line numbers and errors. Loads
p-code if translation is successful.

WINDOW ^OK Creates a new edit buffer or changes edit buffer.

NXT WIN ^O+ Selects the next edit window.*

PRV WIN ^O- Selects the previous edit window.

QUIT/EX ^KQ Does not save the contents of the edit buffer and
exits the edit buffer.

SAVE/CO ^KS Saves the contents of the edit buffer and continues
working in the edit buffer.

SAVE/FI ^KT Saves the contents of the edit buffer under a new
file name and continues editing. The edit buffer
name is unchanged.

FILE, F2

SAVE/EX Saves the contents of the edit buffer only if
changes have been made and exits the edit buffer.

11�10

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

Table 11�3. Editor Function Key Summary (Cont�d)

Function Key Item Key Sequence Description

DEL C ^G Deletes a character.

DEL L ^Y Deletes a line.

DEL EOL ^QY Deletes a line from current cursor position to end
of line.

DEL EOW ^T Deletes from current cursor position to end of
word.

DELETE, F3

UNDO L ^QL Restores a modified line to its original content.

FIND ^QF Finds a string.

REPLACE ^QA Finds a string and replaces it with another string.FIND, F4

REPEAT ^L Repeats the previous find or replace operation.

MRK STRT ^KB Marks the beginning of a block.

MRK END ^KK Marks the end of a block.

COPY ^KC Copies a marked block.

MOVE ^KV Moves a marked block to the current cursor
position.

DELETE ^KY Deletes a marked block.

READ/FI ^K@ Reads a file into a block at the current cursor
position.

WRITE/FI ^KW Writes a block to a file at the current cursor
position.

BLOCK, F5

HIDE/UN ^KH Hides/displays block markers.

11�11

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

Table 11�3. Editor Function Key Summary (Cont�d)

Function Key Item Key Sequence Description

LINE ^QI Moves the cursor to the beginning of the current
line specified. If no line number is specified, the
current line number is displayed.

LEFT W ^A Moves the cursor left one word.

RIGHT W ^F Moves the cursor right one word.

START L ^QS Moves the cursor to the beginning of the current
line.

END L ^QD Moves the cursor to the end of the current line.

START S ^QE Moves the cursor to the beginning of the current
edit window.

END S ^QX Moves the cursor to the end of the current edit
window.

START F ^QR Moves the cursor to the beginning of the current
edit buffer.

CURSOR, F6

END F ^QC Moves the cursor to the end of the current edit
buffer.

SCR UP, F7 - - Scrolls the screen up.

SCR DN, F8 - - Scrolls the screen down.

FCTN, F9 - - Displays the FUNCTIONS menu.

MENUS, F10 - - Displays the MENUS menu.

DO* - - Displays the KCL screen while in the editor.

11�12

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

Table 11�3. Editor Function Key Summary (Cont�d)

Function Key Item Key Sequence Description

SELECT* - - Displays the editor while in the KCL screen.

NEXT* - - Selects the next edit window.

* For VT-220 compatible CRT/KBs only.

NoteWhen all active edit buffers have been exited, the editor transfers control of the CRT/KB to KCL.

11.2.1 Cursor Manipulation

Table 11�4 contains a summary of commands that allow you to manipulate the cursor within the editor.

Table 11�4. Cursor Manipulation

Operation Function Key Menu Item Key Sequence

Move the cursor to the beginning of the specified line.
If no line number is specified, the current line number
is displayed.

F6, CURSOR LINE ^QI

Move the cursor left (backward) one word. F6, CURSOR LEFT W ^A

Move the cursor right (forward) one word. F6, CURSOR RIGHT W ^F

Move the cursor to the beginning of the current line. F6, CURSOR START L ^QS

Move the cursor to the end of the current line. F6, CURSOR END L ^QD

Move the cursor to the beginning of the current edit
window.

F6, CURSOR START S ^QE

Move the cursor to the end of the current edit window. F6, CURSOR END S ^QX

Move the cursor to the beginning of the current edit
buffer.

F6, CURSOR START F ^QR

11�13

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

Table 11�4. Cursor Manipulation (Cont�d)

Operation Function Key Menu Item Key Sequence

Move the cursor to the end of the current edit buffer. F6, CURSOR END F ^QC

Move the cursor down one line. ↓ - ^X

Move the cursor up one line. ↑ - ^E

Move the cursor right one character. ⇒ - ^D

Move the cursor left one character. ⇐ - ^S

Move the cursor down one screen. F8, SCR DN - ^C

Move the cursor up one screen. F7, SCR UP - ^R

Move the cursor to the beginning of a marked block. - - ^QB

Move the cursor to the end of a marked block. - - ^QK

Move the cursor to a marker, 0...9. - - ^Q0...^Q9

Move the cursor forward to the matched pair of (),
{}, [], ��, "", /**/, begin end.

- - ^Q), ^Q{, ^Q[, ^Q�,
^Q", ^Q/*, ^Qbegin

Move the cursor backward to the matched pair of (),
{}, [], ��, "", /**/, begin end.

- - ^Q), ^Q}, ^Q[, ^Q�,
^Q", ^Q*/, ^Qend

Move the cursor to its previous position. - - ^QP

11.2.2 Text Scrolling

Table 11�5 contains a summary of commands that allow you to scroll text within the editor.

11�14

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

Table 11�5. Text Scrolling

Operation Function Key Menu Item Key Sequence

Scroll down one line. - - ^Z

Scroll up one line. - - ^W

Scroll down one page. F8, SCR DN - ^C or F8, SCR
DN

Scroll up one page. F7, SCR UP - ^R or F7, SCR UP

11.2.3 Text Insertion and Editing Modes

Table 11�6 contains a summary of commands that allow you to insert text and change editing modes.

Table 11�6. Text Insertion and Editing Modes

Operation Function Key Menu Item Key Sequence

Insert a new line at the cursor, leave the
cursor on the current line.

- - ^N

Insert a new line at the cursor, the cursor
moves to the beginning of the new line.

- - RETURN or ENTER

Change insertion mode between inserting
a character in front of the cursor and
overwriting a character at the cursor
position.

- - ^V

Change editing mode between indenting a
new line to match the previous and starting
a new line at column 0.

- - ^OI

Change editing mode between matching
earlier indentation and deleting just one
character.

- - ^OU

<BACKSPACE>

11�15

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

11.2.4 Text Deletion

Table 11�7 contains a summary of commands that allow you to delete text.

Table 11�7. Text Deletion

Operation Function Key Menu Item Key Sequence

Delete a character to the left of the cursor
and move cursor left.

- - BACKSPACE

DEL

Delete the character in the current cursor
position.

F3, DELET DEL C ^G

Delete the current line. F3, DELET DEL L ^Y

Delete from the current cursor position to
the end of a line.

F3, DELET DEL EOL ^QY

Delete from the current cursor position to
the end of a word.

F3, DELET DEL EOW ^T

Restore a modified line to its original
content.

F3, DELET UNDO L ^QL

Delete a marked block of text. F5, BLOCK DELETE ^KY

Delete a window, do not save its contents. F2, FILE QUIT/EX ^KQ

Delete a window, save its contents. F2, FILE SAVE/EX ^KX

11.2.5 Text Find and Replace

Table 11�8 contains a summary of commands that allow you to find and replace text.

11�16

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

Table 11�8. Text Find and Replace

Operation Function Key Menu Item Key Sequence

Find a text string� F4, FIND FIND ^QF

Find a string and replace it with another
string�

F4, FIND REPLACE ^QA

Repeat the previous find or replace
operation.

F4, FIND REPEAT ^L

Search forward for the matched pair of (),
{}, [], ��, "", /* */, begin end.

- - ^Q(, ^Q{, ^Q[, ^Q�,
^Q", ^Q/*, ^Qbegin

Search backward for the matched pair of
(), {}, ��, "", /* */, begin end.

- - ^Q), ^Q}, ^Q], ^Q�,
^Q", ^Q*/, ^Qend

�Use the find/replace options and the search string editing options in Table 11�9 and Table 11�10.

Table 11�9. Find/Replace Options

Find/Replace Option Value

Match/do not match the case of the search string. M/U: Match/ Unmatch

Search backwards. B: Backwards

Scan entire file (global). G: Global

Scan marked block (local). L: Local

Replace without asking. N: No verify

Match entire words only. W: Word

Perform find/replace <n> times. <n>

11�17

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

Table 11�10. Editing Search Strings

Operation Key Sequence

Move cursor left. ^S or LEFT ARROW

Move cursor right. ^D or RIGHT ARROW

Move cursor to beginning of string. ^E

Move cursor to end of string. ^X

Delete all of string. ^Y

Restore original string. ^R

Delete character under cursor. ^G

Delete character to left of cursor, printable characters are
inserted at cursor.

BACKSPACE or DEL

11.2.6 Text Block Manipulation

Table 11�11 contains a summary of commands that allow you to manipulate blocks of text.

Table 11�11. Text Block Manipulation

Operation Function Key Menu Item Key Sequence

Mark the beginning of a block. F5, BLOCK MRK STRT ^KB

Mark the end of a block. F5, BLOCK MRK END ^KK

Copy a block of text. F5, BLOCK COPY ^KC

Move a block of text to the current cursor
position.

F5, BLOCK MOVE ^KV

Delete a block of text. F5, BLOCK DELETE ^KY

11�18

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

Table 11�11. Text Block Manipulation (Cont�d)

Operation Function Key Menu Item Key Sequence

Write a block of text to a file. F5, BLOCK WRITE/FI ^KW

Hide/display block markers. F5, BLOCK HIDE/UN ^KH

Read a file into a block of text at the
current cursor position, expanding tabs
and other formatting commands.

F5, BLOCK READ/FI ^K@

Read a file into a block of text at the
current cursor position.

- - ^KR

Indent a block by the current tab size. - - ^KI

Unindent a block by the current tab size. - - ^KU

11.2.7 Window Manipulation

Table 11�12 contains a summary of commands that allow you to manipulate edit windows.

Table 11�12. Window Manipulation

Operation Function Key Menu Item Key Sequence

Create a new edit window to a new or
existing edit buffer below the current edit
window.

F2, FILE WINDOW ^OK

Change to another window. F2, FILE WINDOW ^OK

Delete a window, do not save its
contents.

F2, FILE QUIT/EX ^KQ

Delete a window, save its contents. F2, FILE SAVE/EX ^KX

11�19

11. FULL SCREEN EDITOR MARAIKLRF06031E REV A

11.2.8 KAREL Program Translation

Table 11�13 contains a summary of the command that allows you to translate a KAREL program.

Table 11�13. KAREL Program Translation

Operation Function Key Menu Item Key Sequence

Saves the file, invokes the translator
for the edit buffer in the current edit
window, and reports brief information
about success or failure. If successful,
loads p-code.

F2, FILE TRANS/BR ^KL

Saves the file, invokes the translator
for the edit buffer in the current edit
window, and reports full information
about success or failure, including errors
and line numbers. If successful, loads
p-code.

F2, FILE TRANS/FU ^KM

11.2.9 Miscellaneous Editor Commands

Table 11�14 contains a summary of miscellaneous editor commands.

Table 11�14. Miscellaneous Editor Commands

Operation Function Key Menu Item Key Sequence

Abort the current command. - - ^U

Obtain on-screen help. F1 HELP ^J

Restore the current line. - - ^QL

Set the position marker 0...9. - - ^K0...K9

Redraw the entire display. - - ^\

Set a tab stop interval. - - ^OT

11�20

MARAIKLRF06031E REV A 11. FULL SCREEN EDITOR

11.2.10 File Save and Exit

Table 11�15 contains a summary of commands you can use to save a file and exit the editor.

Table 11�15. File Save and Exit

Operation Function Key Menu Item Key Sequence

Do not save the file and exit the edit
buffer.

F2, FILE QUIT/EX ^KQ

Save the file but continue editing the
file.

F2, FILE SAVE/CO ^KS

Save the file under a new name,
continue editing.

F2, FILE SAVE/FI ^KT

Save the file only if modified, then exit
the edit buffer.

F2, FILE SAVE/EX ^KX

Save the file and exit the edit buffer. - - ^KD

NoteWhen all active edit buffers have been exited, the editor transfers control of the CRT/KB to KCL.

11�21

Chapter 12
SYSTEM VARIABLES

Contents

Chapter 12 SYSTEM VARIABLES .. 12�1
12.1 ACCESS RIGHTS ... 12�2

12.1.1 System Variables Accessed by KAREL Programs 12�3
12.2 STORAGE .. 12�4

12�1

12. SYSTEM VARIABLES MARAIKLRF06031E REV A

System variables are variables that are declared as part of the KAREL system software. They have
permanently defined variable names that begin with a dollar sign ($). Many system variables are
structure variables , in which case each field also begins with a dollar sign ($). Many are robot
specific, meaning their values depend on the type of robot that is attached to the system.

System variables have the following characteristics:

• They have predefined data types that can be any one of the valid KAREL data types.

• The initial values of the system variables are either internal default values or variables stored in
the default system variable file, SYSDEF.SV.

• When loading and saving system variables from the FILE screen or KCL, the system variable
file name defaults to SYSVARS.SV.

• Access rights govern whether or not you can examine or change system variables.

• Modified system variables can be saved to reflect the current status of the system.

See Also: Chapter 2 LANGUAGE ELEMENTS for more information on the data types available
in KAREL

12.1 ACCESS RIGHTS

The following rules apply to system variables:

• If a system variable allows a KAREL program to read its value, you can use that value in the
same context as you use program variable values or constant values in KAREL programs.

For example, these system variables can be used on the right hand side of an assignment statement
or as a test condition in a control statement.

• If a system variable allows a KAREL program to write its value, you can use that system variable
in any context where you assign values to variables in KAREL programs.

The symbols for the program access rights are listed in Table 12�1 . These symbols are given for
each of the system variables in the FANUC Robotics SYSTEM R-J3iB Controller Software Reference
Manual .

12�2

MARAIKLRF06031E REV A 12. SYSTEM VARIABLES

Table 12�1. Access Rights for System Variables

Access Meaning

NO No access

RO Read only

RW Read and write

FP Field protection; if it is a structure variable, one of the first three access rights will apply.

See Also: FANUC Robotics SYSTEM R-J3iB Controller Software Reference Manual for system
variables

12.1.1 System Variables Accessed by KAREL Programs

Many system variables pertaining to motion are defined as an ARRAY[n] or a structure type where
�n� is the number of motion groups defined on the controller. The system variable $GROUP is defined
in this fashion. The KAREL language recognizes $GROUP as a special system variable and performs
a USING $GROUP[def_group] at the beginning of each routine. Therefore, if the $GROUP[n] prefix
is not specified, the group specified by the %DEFGROUP directive or 1 is assumed. See Specifying a
Motion Group with System Variables for an example.

Specifying a Motion Group with System Variables
$GROUP[1].$SPEED = 300
$SPEED = 300 -- same result as above
motion_time = motion_dist / $SPEED
$GROUP[1].$UFRAME = aux_frame_1

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up for
more than one motion group, all motion must be initiated from a teach
pendant program. Otherwise, the robot could move unexpectedly, and
injure personnel or damage equipment.

Table 12�2 is a list of the system variables that can be accessed by a KAREL program in the WITH
clause of a motion statement.

12�3

12. SYSTEM VARIABLES MARAIKLRF06031E REV A

Table 12�2. System Variables Accessed by Programs

$ACCEL_OVRD $SEG_TIME

$ACCU_NUM $SPEED

$CNSTNT_PATH $TERMTYPE

$CONTAXISVEL $TIME_SHIFT

$DECELTOL $UFRAME

$DYN_I_COMP $USE_CARTACC

$MOTYPE $USE_CONFIG

$ORIENT_TYPE $USEMAXACCEL

$REF_POS $USERELACCEL

$ROTSPEED $USETIMESHFT

$SEGTERMTYPE $UTOOL

12.2 STORAGE

System variables are assigned an initial value upon power up based on

• Internal default values

• Values stored in the default system variable file, SYSDEF.SV

12�4

Chapter 13
KAREL COMMAND LANGUAGE (KCL)

Contents

Chapter 13 KAREL COMMAND LANGUAGE (KCL) ... 13�1
13.1 COMMAND FORMAT .. 13�2

13.1.1 Default Program ... 13�2
13.1.2 Variables and Data Types ... 13�3
13.2 MOTION CONTROL COMMANDS ... 13�3
13.3 ENTERING COMMANDS .. 13�3

13.3.1 Abbreviations .. 13�4
13.3.2 Error Messages .. 13�4
13.3.3 Subdirectories ... 13�4
13.4 COMMAND PROCEDURES .. 13�4

13.4.1 Command Procedure Format ... 13�5
13.4.2 Creating Command Procedures ... 13�6
13.4.3 Error Processing .. 13�6
13.4.4 Executing Command Procedures .. 13�6

13�1

13. KAREL COMMAND LANGUAGE (KCL) MARAIKLRF06031E REV A

The KAREL command language (KCL) environment contains a group of commands that can be used
to direct the KAREL system. KCL commands allow you to develop and execute programs, work with
files, get information about the system, and perform many other daily operations.

The KCL environment can be displayed on the CRT/KB by pressing MENUS (F10) and selecting
KCL from the menu.

In addition to entering commands directly at the KCL prompt, KCL commands can be executed
from command files.

13.1 COMMAND FORMAT

A command entry consists of the command keyword and any arguments or parameters that are
associated with that command. Some commands also require identifiers specifying the object of the
command.

• KCL command keywords are action words such as LOAD, EDIT, and RUN. Command
arguments, or parameters, help to define on what object the keyword is supposed to act.

• Many KCL commands have default arguments associated with them. For these commands, you
need to enter only the keyword and the system will supply the default arguments.

• KCL supports the use of an asterisk (*) as a wildcard, which allows you to specify a group of
objects as a command argument for the following KCL commands:

� COPY

� DELETE FILE

� DIRECTORY

• KCL identifiers follow the same rules as the identifiers in the KAREL programming language.

• All of the data types supported by the KAREL programming language are supported in KCL.
Therefore, you can create and set variables in KCL.

See Also: Chapter 2 LANGUAGE ELEMENTS , and Chapter 9 FILE SYSTEM ,

13.1.1 Default Program

Setting a program name as a default for program name arguments and file name arguments allows you
to issue a KCL command without typing the name.

The KCL default program can be set by doing one of the following:

• Using the SET DEFAULT KCL command

• Selecting a program name at the SELECT menu on the CRT/KB

13�2

MARAIKLRF06031E REV A 13. KAREL COMMAND LANGUAGE (KCL)

13.1.2 Variables and Data Types

The KCL> CREATE VARIABLE command allows you to declare variables. The KCL> SET
VARIABLE command permits you to assign values to declared variables. Assigned values can
be INTEGER, REAL, BOOLEAN, and STRING data types. Values can be assigned to particular
ARRAY elements or specified PATH nodes. VECTOR variables are assigned as three REAL values,
and POSITION variables are assigned as six REAL values.

See Also: CREATE VARIABLE and SET VARIABLE KCL commands in Appendix C , �KCL
Command Alphabetical Description�

13.2 MOTION CONTROL COMMANDS

KCL commands can also cause motion, provided the device from which the command is issued has
motion control. Refer to the $RMT_MASTER description in the FANUC Robotics SYSTEM R-J3iB
Controller Software Reference Manual for more information about assigning motion control to a
remote device.

Motion commands:

• Immediately cause robot and/or auxiliary axis motion, or have the potential to cause motion

• Can be executed only if a number of conditions are met

The following commands are motion commands:

• CONTINUE

• RUN

Warning

Be sure that the robot work envelope is clear of personnel before
issuing a motion command or starting a robot that automatically
executes a program at power up. Otherwise, you could injure
personnel or damage equipment.

13.3 ENTERING COMMANDS

You can enter KCL commands only from the CRT/KB.

To enter KCL commands:

1. Press MENUS (F10) at the CRT/KB.

13�3

13. KAREL COMMAND LANGUAGE (KCL) MARAIKLRF06031E REV A

2. Select KCL.

3. Enter commands at the KCL prompt.

By entering the first keyword of a KCL command that requires more than one keyword, and by
pressing ENTER, a list of all additional KCL keywords will be displayed.

For example, entering DELETE at the KCL prompt will display the following list of possible
commands: �FILE, NODE, or VARIABLE.�

Note The up arrow key can be used to recall any of the last ten commands entered.

13.3.1 Abbreviations

Any KCL command can be abbreviated as long as the abbreviations are unique in KCL. For example,
TRAN is unique to TRANSLATE and ED , to EDIT.

13.3.2 Error Messages

If you enter a KCL command incorrectly, KCL displays the appropriate error message and returns
the KCL> prompt, allowing you to reenter the command. An up arrow (^) indicates the offending
character or the beginning of the offending word.

13.3.3 Subdirectories

Subdirectories are available on the memory card device. Subdirectories allow both memory cards and
Flash disk cards to be formatted on any MS-DOS file system. You can perform all KCL file related
commands on subdirectories. You can nest subdirectories up to many levels. However, FANUC
Robotics does not recommend nesting subdirectories greater than eight levels.

13.4 COMMAND PROCEDURES

Command procedures are a sequence of KCL commands that are stored in a command file (.CF file
type) and can be executed automatically in sequence.

• Command procedures allow you to use a sequence of KCL commands without typing them
over and over.

• Command procedures are executed using the RUNCF command.

13�4

MARAIKLRF06031E REV A 13. KAREL COMMAND LANGUAGE (KCL)

13.4.1 Command Procedure Format

All KCL commands except RUNCF can be used inside a command procedure. For commands that
require confirmation, you can enter either the command and confirmation on one line or KCL will
prompt for the confirmation on the input line. Confirmation in a Command Procedure displays
CLEAR ALL as the KCL command and YES as the confirmation.

Confirmation in a Command Procedure
Enter command and confirmation on one line:
CLEAR ALL YES

Nesting Command Procedures

Use the following guidelines when nesting command procedures:

• Command procedures can be nested by using %INCLUDE filename inside a command procedure.

• Nesting of command procedures is restricted to four levels.

If nesting of more than four command procedures is attempted, KCL will detect the error and take
the appropriate action based on the system variable $STOP_ON_ERR. Refer to Section 13.4.3
for more information on $STOP_ON_ERR.

See Also: Section 13.4.3 , �Error Processing�

Continuation Character

The KCL continuation character, ampersand (&), allows you to continue a command entry across
more than one line in a command procedure.

You can break up KCL commands between keywords or between special characters.

For example, use the ampersand (&) to continue a command across two lines:
CREATE VAR [TESTING_PROG.]PICK_UP_PNT &

:POSITION

Comments

Comment lines can be used to document command procedures. The following rules apply to using
comments in command procedures:

• Precede comments with two consecutive hyphens (--).

• Comments can be placed on a line by themselves or at the end of a command line.

13�5

13. KAREL COMMAND LANGUAGE (KCL) MARAIKLRF06031E REV A

13.4.2 Creating Command Procedures

A command procedure can be created by typing in the list of commands into a command file and
saving the file. This can be done using the full screen editor.

See Also: EDIT KCL commands, Appendix C, �KCL Command Alphabetical Description�

13.4.3 Error Processing

If the system detects a KCL error while a command procedure is being executed, the system handles
the error in one of two ways, depending on the value of the system variable $STOP_ON_ERR:

• If $STOP_ON_ERR is TRUE when a KCL error is detected, the command procedure terminates
and the KCL> prompt returns.

• If $STOP_ON_ERR is FALSE, the system ignores KCL errors and the command procedure
runs to completion.

13.4.4 Executing Command Procedures

Each command in a command procedure is displayed as it is executed unless the SET VERIFY OFF
command is used. Each command is preceded with the line number from the command file. However,
if the file is not on the RD: device, the entire command file is read into memory before execution and
line numbers will be omitted from the display.

Command procedures can be executed using the KCL RUNCF command.

13�6

Chapter 14
INPUT/OUTPUT SYSTEM

Contents

Chapter 14 INPUT/OUTPUT SYSTEM .. 14�1
14.1 USER-DEFINED SIGNALS .. 14�2

14.1.1 DIN and DOUT Signals ... 14�2
14.1.2 GIN and GOUT Signals ... 14�3
14.1.3 AIN and AOUT Signals ... 14�3
14.1.4 Hand Signals .. 14�6
14.2 SYSTEM-DEFINED SIGNALS ... 14�7

14.2.1 Robot Digital Input and Output Signals (RDI/RDO) 14�7
14.2.2 Operator Panel Input and Output Signals (OPIN/OPOUT) 14�7
14.2.3 Teach Pendant Input and Output Signals (TPIN/TPOUT) 14�19
14.3 HARDWARE CONFIGURATIONS .. 14�26

14.3.1 Modular I/O .. 14�27
14.3.2 PROCESS I/O ... 14�31
14.3.3 External Operator Panel Signals .. 14�33
14.3.4 Serial Input/Output ... 14�37

14�1

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

The Input/Output (I/O) system provides user access with KAREL to user-defined I/O signals,
system-defined I/O signals and communication ports. The user-defined I/O signals are controlled in a
KAREL program and allow you to communicate with peripheral devices and the robot end-of-arm
tooling. System-defined I/O signals are those that are designated by the KAREL system for specific
purposes. Standard and optional communications port configurations also exist.

The number of user-defined I/O signals is dependent on the controller hardware and on the types and
number of modules selected. The controller can use modular I/O and process I/O.

14.1 USER-DEFINED SIGNALS

User-defined signals are those input and output signals whose meaning is defined by a KAREL
program. You have access to user-defined signals through the following predefined port arrays:

• DIN (digital input) and DOUT (digital output)

• GIN (group input) and GOUT (group output)

• AIN (analog input) and AOUT (analog output)

In addition to the port arrays, you have access to robot hand control signals through KAREL OPEN
and CLOSE HAND statements.

14.1.1 DIN and DOUT Signals

The DIN and DOUT signals provide access to data on a single input or output line in a KAREL
program.

The program treats the data as a BOOLEAN data type. The value is either ON (active) or OFF
(inactive). You can define the polarity of the signal as either active-high (ON when voltage is applied)
or active-low (ON when voltage is not applied).

Input signals are accessed in a KAREL program by the name DIN[n], where ��n�� is the signal number.

Evaluating DIN signals causes the system to perform read operations of the input port. Assigning a
value to a DIN signal is an invalid operation unless the DIN signal has been simulated. These can
never be set in a KAREL program, unless the DIN signal has been simulated.

Evaluating DOUT signals causes the system to return the currently output value from the specified
output signal. Assigning a value to a DOUT signal causes the system to set the output signal to
ON or OFF.

To turn on a DOUT:
DOUT[n] = TRUE or
DOUT[n] = ON

14�2

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

To turn off a DOUT:
DOUT[n] = FALSE or
DOUT[n] = OFF

You assign digital signals to the ports on process I/O board outputs and/or ports on digital output
modules using teach pendant I/O menus or the KAREL built-in routine SET_PORT_ASG.

14.1.2 GIN and GOUT Signals

The GIN and GOUT signals provide access to DINs and DOUTs as a group of input or output signals
in a KAREL program. A group can have a size of 1 to 16 bits, with each bit corresponding to an input
or output signal. You define the group size and the DINs or DOUTs associated with a specific group.
The first (lowest numbered) port is the least significant bit of the group value.

The program treats the data as an INTEGER data type. The unused bits are interpreted as zeros.

Input signals are accessed in KAREL programs by the name GIN[n], where�n� is the group number.

Evaluating GIN signals causes the system to perform read operations of the input ports. Assigning a
value to a GIN signal is an invalid operation unless the GIN signal has been simulated. These can
never be set in a KAREL program, unless the GIN signal has been simulated.

Setting GOUT signals causes the system to return the currently output value from the specified output
port. Assigning a value to a GOUT signal causes the system to perform an output operation.

To control a group output, the integer value equivalent to the desired binary output is used. For
example the command GOUT[n] = 25 will have the following binary result �0000000000011001�
where 1 = output on and 0 = output off, least significant bit (LSB) being the first bit on the right.

You assign group signals using teach pendant I/O menus or the KAREL built-in routine
SET_PORT_ASG.

14.1.3 AIN and AOUT Signals

The AIN and AOUT signals provide access to analog electrical signals in a KAREL program. For
input signals, the analog data is digitized by the system and passed to the KAREL program as a
16 bit binary number, of which 14 bits, 12 bits, or 8 bits are significant depending on the analog
module. The program treats the data as an INTEGER data type. For output signals, an analog voltage
corresponding to a programmed INTEGER value is output.

Table 14�1 and Table 14�2 shows the correspondence between the actual signal voltage and the
value assigned to the AIN or AOUT.

Input signals are accessed in KAREL programs by the name AIN[n], where�n� is the signal number.

14�3

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Evaluating AIN signals causes the system to perform read operations of the input port. Setting an
AIN signal at the Teach Pendant is an invalid operation unless the AIN signal has been simulated.
These can never be set in a KAREL program.

The value displayed on the TP or read by a program from an analog input port are dependent on the
voltage supplied to the port and the number of bits of significant data supplied by the analog-to-digital
conversion. For positive input voltages, the values read will be in the range from 0 to 2**(N-1)
-1, where N is the number of bits of significant data. For 12 bit devices (most FANUC modules),
this is 2**11, or 2047.

For negative input voltages, the value will be in the range 2**N - 1 to 2**(N-1) as the voltage varies
from the smallest detectable negative voltage to the largest negative voltage handled by the device.
For 12 bit devices, this is from 4095 to 2048.

An example of the KAREL logic for converting this input to a real value representing the voltage,
where the device is a 12 bit device which handles a range from +10v to -10v would be as follows:

Figure 14�1. KAREL Logic for Converting Input to a Real Value Representing the Voltage
V: REAL
AINP: INTEGER

AINP = AIN[1]

IF (AINP <= 2047) THEN
V = AINP * 10.0 /2047.0
ELSE
V = (AINP - 4096) * 10.0 / 2047
ENDIF

In TPP, the following logic would be used:
R[1] = AI[1]
IF (R[1] > 2047) JMP LBL[1]
R[2] = R[1] * 10
R[2] = R[2] / 2047
JMP LBL[2]
LBL[1]:
R[2] = R[1] - 4096
R[2] = R[2] * 10
R[2] = R[2] / 2047
LBL[2]

R[2] has the desired voltage.

Evaluating AOUT signals causes the system to return the currently output value from the specified
output signal. Assigning a value to an AOUT signal causes the system to perform an output operation.

An AOUT can be turned on in a KAREL program with AOUT[n] = (an integer value). The result
will be the output voltage on the AOUT signal line[n] of the integer value specified. For example,

14�4

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

AOUT[1] = 1000 will output a +5 V signal on Analog Output line 1 (using an output module with 12
significant bits). Refer to Table 14�1 and Table 14�2 .

Table 14�1. Analog Input Module Configuration

Item Specification

Name AAD04A

Input channels 4 channels per module

Analog input -10 VDC ~ + 10 VDC (input resistance 4.7MΩ)

-20 mADC ~ + 20 mADC (input resistance 250Ω) selectable

Digital output 12 bit binary (complementary representation of 2)

Input/output
correspondence

Analog Input

+10 V

+5 V or 20 mA

0 V or 0 mA

-5 V or -20 mA

-10 V

Digital Output

+2000

+1000

0

-1000

-2000

Table 14�2. Analog Output Module Configuration

Name Specification

Name ADA02A

Output channels 2 channels per module

Digital input 12 bit binary (complementary representation of 2)

14�5

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�2. Analog Output Module Configuration (Cont�d)

Name Specification

Analog output -10 VDC ~ + 10 VDC (input resistance 10KΩ or more)

-20 mADC ~ + 20 mADC (input resistance 400Ω or less)

Input/output
correspondence

Digital Output V

+2000

+1000

0

-1000

-2000

Analog Input

+10

+5 V or 20 mA

0 V or 0 mA

-5 V or -20 mA

-10 V

You assign analog signals using teach pendant I/O menus or the KAREL built-in routine
SET_PORT_ASG.

14.1.4 Hand Signals

You have access to a special set of robot hand control signals used to control end-of-arm tooling
through the KAREL language HAND statements, rather than through port arrays. HAND signals
provide a KAREL program with access to two output signals that work in a coordinated manner to
control the tool. The signals are designated as the open line and the close line. The system can
support up to two HAND signals.

HAND[1] uses the same physical outputs as RDO[1] and RDO[2].

HAND[2] uses the same physical outputs as RDO[3] and RDO[4].

The following KAREL language statements are provided for controlling the signal, where �n� is the
signal number.

OPEN HAND n activates open line, and deactivates close line

CLOSE HAND n deactivates open line, and activates close line

RELAX HAND n deactivates both lines

14�6

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

14.2 SYSTEM-DEFINED SIGNALS

System-defined I/O signals are signals designated by the KAREL system for a specific purpose.
Except for certain UOP signals, system-defined I/O cannot be reassigned.

You have access to system-defined I/O signals through the following port arrays:

• Robot digital input (RDI) and robot digital output (RDO)

• Operator panel input (OPIN) and operator panel output (OPOUT)

• Teach pendant input (TPIN) and teach pendant output (TPOUT)

14.2.1 Robot Digital Input and Output Signals (RDI/RDO)

Robot I/O is the input and output signals between the controller and the robot. These signals are sent
to the EE (End Effector) connector located on the robot. The number of robot input and output
signals (RDI and RDO) varies depending on the number of axes in the system. For more information
on configuring Robot I/O, refer to the appropriate application-specific FANUC Robotics SYSTEM
R-J3iB Controller HandlingTool Setup and Operations Manual.

RDI[1] through RDI[8] are available for tool inputs. All or some of these signals can be used,
depending on the robot model. Refer to the Maintenance Manual specific to your robot model,
for more information.

RDO[1] through RDO[8] are available for tool control. All or some of these signals can be used,
depending on the robot model. Refer to the Maintenance Manual specific to your robot model,
for more information.

RDO[1] through RDO[4] are the same signals set using OPEN, CLOSE, and RELAX hand. See
Section 14.1.4 .

14.2.2 Operator Panel Input and Output Signals (OPIN/OPOUT)

Operator panel input and output signals are the input and output signals for the standard operator panel
(SOP) and for the user operator panel (UOP).

Operator panel input signals are assigned as follows:

• The first 16 signals, OPIN[0] - OPIN[15], are assigned to the standard operator panel.

• The next 17 signals, OPIN[16] - OPIN[33], are assigned to the user operator panel (UOP). If
you have a process I/O board, these 17 UOP signals are mapped to the first 17 input ports on
the process I/O board.

14�7

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Operator panel output signals are assigned as follows:

• The first 16 signals, OPOUT[0] - OPOUT[15], are assigned to the standard operator panel.

• The next 19 signals, OPOUT[16] - OPOUT[35], are assigned to the user operator panel (UOP).
If you have a process I/O board, these 19 UOP signals are mapped to the first 19 output ports
on the process I/O board.

Standard Operator Panel Input and Output Signals

Standard operator panel input and output signals are recognized by the KAREL system as OPIN[0] -
OPIN[15] and OPOUT[0] - OPOUT[15] and by the screens on the teach pendant as SI[0] - SI[15] and
SO[0] - SO[15]. Table 14�3 lists each standard operator panel input signal. Table 14�4 lists each
standard operator panel output signal.

Table 14�3. Standard Operator Panel Input Signals

OPIN[n] SI[n] Function Description

OPIN[0] SI[0] NOT USED -

OPIN[1] SI[1] FAULT RESET This signal is normally turned OFF, indicating that
the FAULT RESET button is not being pressed.

OPIN[2] SI[2] REMOTE This signal is normally turned OFF, indicating that
the controller is not set to remote.

OPIN[3] SI[3] HOLD This signal is normally turned ON, indicating that
the HOLD button is not being pressed.

OPIN[4] SI[4] USER PB#1 (PURGE
ENABLE for P-series
robots)

This signal is normally turned OFF, indicating that
USER PB#1 is not being pressed.

OPIN[5] SI[5] USER PB#2 This signal is normally turned OFF, indicating that
USER PB#2 is not being pressed.

OPIN[6] SI[6] CYCLE START This signal is normally turned OFF, indicating that
the CYCLE START button is not being pressed.

OPIN[7] -
OPIN[15]

SI[7] - SI[15] NOT USED -

14�8

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�4. Standard Operator Panel Output Signals

OPOUT[n] SOI[n] Function Description

OPOUT[0] SO[0] REMOTE LED This signal indicates that the controller is set
to remote.

OPOUT[1] SO[1] CYCLE START This signal indicates that the CYCLE START
button has been pressed or that a program is
running.

OPOUT[2] SO[2] HOLD This signal indicates that the HOLD button has
been pressed or that a hold condition exists.

OPOUT[3] SO[3] FAULT LED This signal indicates that a fault has occurred.

OPOUT[4] SO[4] BATTERY ALARM This signal indicates that the CMOS battery
voltage is low.

OPOUT[5] SO[5] USER LED#1
(PURGE
COMPLETE for
P-series robots)

This signal is user-definable.

OPOUT[6] SO[6] USER LED#2 This signal is user-definable.

OPOUT[7] SO[7] TEACH PENDANT
ENABLED

This signal indicates that the teach pendant is
enabled.

OPOUT[8] -
OPOUT[15]

SO[8] -
SO[15]

NOT USED -

User Operator Panel Input and Output Signals

User operator panel input and output signals are recognized by the KAREL system as OPIN[16]-
OPIN[33] and OPOUT[16]-OPOUT[35] and by the screens on the teach pendant as UI[1]-UI[18]
and UO[1]-UO[20]. On the process I/O board, UOP input signals are mapped to the first 18 digital
input signals and UOP output signals are mapped to the first 20 digital output signals. Table 14�5 lists
and describes each user operator panel input signal. Table 14�6 lists each user operator panel output
signal. Figure 14�2 and Figure 14�3 illustrate the timing of the UOP signals.

14�9

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�5. User Operator Panel Input Signals

OPIN[n] UI[n] Process I/O
Number

Function Description

OPIN[16] UI[1] 1 *IMSTP

Always active

*IMSTP is the immediate stop software signal. *IMSTP is a
normally OFF signal held ON that when set to OFF will

� Pause a program if running.

� Shut off power to the servos.

� Immediately stop the robot and applies robot brakes.

Error code SRVO-037 *IMSTP Input (Group:i) will be
displayed when this signal is lost. This signal is always
active.

Warning

*IMSTP is a software controlled
input and cannot be used for safety
purposes. Use *IMSTP with EMG1,
EMG2, and EMGCOM to use this signal
with a hardware controller emergency
stop. Refer to the Maintenance Manual,
specific to your robot model, for
connection information of EMG1, EMG2,
and EMGCOM.

OPIN[17] UI[2] 2 *HOLD

Always active

*HOLD is the external hold signal. *HOLD is a normally OFF
signal held ON that when set to OFF will

� Pause program execution.

� Slow motion to a controlled stop and hold.

� Optional Brake on Hold shuts off servo power after the
robot stops.

14�10

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�5. User Operator Panel Input Signals (Cont�d)

OPIN[n] UI[n] Process I/O
Number

Function Description

OPIN[18] UI[3] 3 *SFSPD

Always active

*SFSPD is the safety speed input signal. This signal is
usually connected to the safety fence.*SFSPD is a normally
OFF signal held ON that when set OFF will

� Pause program execution.

� Reduce the speed override value to that defined in a
system variable. This value cannot be increased while
*SFSPD is OFF.

� Display error code message MF-0004 Fence Open.

� Not allow a REMOTE start condition. Start inputs from
UOP or SOP are disabled when *SFSPD is set to OFF.

14�11

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�5. User Operator Panel Input Signals (Cont�d)

OPIN[n] UI[n] Process I/O
Number

Function Description

OPIN[19] UI[4] 4 CSTOPI

Always active

CSTOPI is the cycle stop input. When CSTOPI
becomes TRUE, the system variable $CSTOP is
set to TRUE. In addition, if the system variable
$SHELL_CONFIG.$shell_name is not TRUE or is uninitialized
at power up, CSTOPI functions as follows, depending on the
system variable $SHELL_CFG.$USE_ABORT. If the system
variable $SHELL_CFG.$USE_ABORT is set to FALSE ,
the CSTOPI input

� Clears the queue of programs to be executed that were
sent by RSR signals.

Warning

When $SHELL_CFG.USE_ABORT is
FALSE, CSTOPI does not immediately
stop automatic program execution.

� Automatic execution will be stopped after the current
program has finished executing.

If the system variable $SHELL_CFG.$USE_ABORT
is set to TRUE, the CSTOPI input

� Clears the queue of programs to be executed that were
sent by RSR signals.

� Immediately aborts the currently executing program for
programs that were sent to be executed by either RSR
or PNS.

OPIN[20] UI[5] 5 FAULT_RESET

Always active

FAULT_RESET is the external fault reset signal. When this
signal is received

� Error status is cleared.

� Servo power is turned ON.

� A paused program will not be resumed.

14�12

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�5. User Operator Panel Input Signals (Cont�d)

OPIN[n] UI[n] Process I/O
Number

Function Description

OPIN[21] UI[6] 6 START

Active when the
robot is in a
remote condition
(CMDENBL =
ON)

START is the remote start input. How this
signal functions depends on the system variable
$SHELL_CFG.$CONT_ONLY.If the system variable
$SHELL_CFG.$CONT_ONLY is set to FALSE , the START
input signal will

� Resume a paused program.

� If a program is not paused, the currently selected
program starts from the position of the cursor.

If the system variable $SHELL_CFG.$CONT_ONLY is
set to TRUE, the START input signal will

� Resume a paused program only. The PROD_START
input must be used to start a program from the beginning.

OPIN[22] UI[7] 7 HOME

Active when the
robot is in a
remote condition

HOME is the home input. When this signal is received the
robot moves to the defined home position.

OPIN[23] UI[8] 8 ENBL

Always active

ENBL is the enable input. This signal must be ON to have
motion control ability. When this signal is OFF, robot motion
can be done. When ENBL is ON and the REMOTE switch on
the operator panel is in the REMOTE position, the robot is in
a remote operating condition.

14�13

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�5. User Operator Panel Input Signals (Cont�d)

OPIN[n] UI[n] Process I/O
Number

Function Description

OPIN[24]-
OPIN[27]

UI[9]-
UI[12]

9- 12 RSR1/PNS1,
RSR2/PNS2,
RSR3/PNS3,
RSR4/PNS4

Active when the
robot is in a
remote condition
(CMDENBL =
ON)

RSR1-4 are the robot service request input signals. When
one of these signals is received, the corresponding RSR
program is executing or, or a program is running currently,
stored in a queue for later execution. RSR signals are used
for production operation and can be received while an ACK
output is being pulsed. See Figure 14�2 . PNS 1-8 are
program number select input signals. PNS selects programs
for execution, but does not execute programs . Programs
that are selected by PNS are executed using the START
input or the PROD_START input depending on the value
of the system variable $SHELL_CFG.$CONT_ONLY.The
PNS number is output by pulsing the SNO signal (selected
number output) and the SNACK signal (selected number
acknowledge). See Figure 14�3 .

OPIN[28]-
OPIN[31]

UI[13]-
UI[16]

13- 16 PNS5, PNS6,
PNS7,
PNS8Active
when the
robot is in a
remote condition
(CMDENBL =
ON)

PNS 1-8 are program number select input signals. PNS
selects programs for execution, but does not execute
programs . Programs that are selected by PNS are
executed using the START input or the PROD_START
input depending on the value of the system variable
$SHELL_CFG.$CONT_ONLY.The PNS number is output by
pulsing the SNO signal (selected number output) and the
SNACK signal (selected number acknowledge). See Figure
14�3 .

OPIN[32] UI[17] 17 PNSTROBE
Active when
the robot is in a
remote condition
(CMDENBL =
ON)

The PNSTROBE input is the program number select strobe
input signal. See Figure 14�3 .

OPIN[33] UI[18] 18 PROD_START
Active when the
robot is in a
remote condition
(CMDENBL =
ON)

The PROD_START input, when used with PNS, will initiate
execution of the selected program from the PNS lines. When
used without PNS, PROD_START executes the selected
program from the current cursor position. See Figure 14�3 .

14�14

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�6. User Operator Panel Output Signals

OPOUT[n] UO[n] Process I/O
Number

Function Description

OPOUT[16] UO[1] 1 CMDENBL CMDENBL is the command enable
output. This output indicates that the
robot is in a remote condition. This
signal goes ON when the REMOTE
switch is turned to ON or when the
ENBL input is received. This output
only stays on when the robot is not
in a fault condition. See Figure 14�2
and Figure 14�3 .

OPOUT[17] UO[2] 2 SYSRDY SYSRDY is the system ready output.
This output indicates that servos are
turned ON.

OPOUT[18] UO[3] 3 PROGRUN PROGRUN is the program run output.
This output turns on when a program
is running. See Figure 14�3 .

OPOUT[19] UO[4] 4 PAUSED PAUSED is the paused program
output. This output turns on when a
program is paused.

OPOUT[20] UO[5] 5 HELD HELD is the hold output. This output
turns on when the SOP HOLD button
has been pressed, or the UOP
*HOLD input is OFF.

OPOUT[21] UO[6] 6 FAULT FAULT is the error output. This output
turns on when a program is in an
error condition.

OPOUT[22] UO[7] 7 ATPERCH Not supported. Refer to the
appropriate application-specific
FANUC Robotics SYSTEM R-J3iB
Controller Setup and Operations
Manual , �Reference Position Utility�
section.

14�15

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�6. User Operator Panel Output Signals (Cont�d)

OPOUT[n] UO[n] Process I/O
Number

Function Description

OPOUT[23] UO[8] 8 TPENBL TPENBL is the teach pendant enable
output. This output turns on when the
teach pendant is on.

OPOUT[24] UO[9] 9 BATALM BATALM is the battery alarm output.
This output turns on when the CMOS
RAM battery voltage goes below 3.6
volts.

OPOUT[25] UO[10] 10 BUSYE BUSYE is the processor busy output.
This signal turns on when the robot
is executing a program or when the
processor is busy.

OPOUT[26]
OPOUT[29]

UO[11]-
UO[14]

11- 14 ACK1/SNO1,
ACK2/SNO2,
ACK3/SNO3,
ACK4/SNO4

ACK 1-4 are the acknowledge signals
output 1 through 4. These signals
turn on when the corresponding RSR
signal is received. See Figure 14�2
. SNO 1-8 are the signal number
outputs. These signals carry the 8-bit
representation of the corresponding
PNS selected program number. If the
program cannot be represented by
an 8-bit number, the signal is set to
all zeroes or off. See Figure 14�3.

OPOUT[30]
OPOUT[33]

UO[15]-
UO[18]

15- 18 SNO5, SNO6,
SNO7, SNO8

SNO 1-8 are the signal number
outputs. These signals carry the 8-bit
representation of the corresponding
PNS selected program number. If the
program cannot be represented by
an 8-bit number, the signal is set to
all zeroes or off. See Figure 14�3 .

OPOUT[34] UO[19] 19 SNACK SNACK is the signal number
acknowledge output. This output is
pulsed if the program is selected by
PNS input. See Figure 14�3 .

14�16

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�6. User Operator Panel Output Signals (Cont�d)

OPOUT[n] UO[n] Process I/O
Number

Function Description

OPOUT[35] UO[20] 20 RESERVED -

OPOUT[36] UO[21] 21 UNCAL (option) UNCAL is the uncalibrated output.
This output turns on when the
robot is not calibrated. The robot
is uncalibrated when the controller
loses the feedback signals from
one or all of the motors. Set
$OPWORK.$OPT_OUT = 1 to use
this signal.

OPOUT[37] UO[22] 22 UPENBL
(option)

UPENBL is the user panel enable
output. This output indicates that
the robot is in a remote condition.
This signal goes on when the remote
switch is turned to ON or when
the ENBL input is received. This
output will stay on even if the
robot is in a fault condition. Set
$OPWORK.$OPT_OUT = 1 to use
this signal.

OPOUT[38] UO[23] 23 LOCKED
(option)

-

OPOUT[39] UO[24] 24 CSTOPO
(option)

CSTOPO is the cycle stop output.
This output turns on when the
CSTOPI input has been received.
Set $OPWORK.$OPT_OUT = 1 to
use this signal.

14�17

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Figure 14�2. RSR Timing Diagram

CMDENBL
OUTPUT

Remote Condition

RSR1
INPUT

ACK1
OUTPUT

RSR2
INPUT

ACK2
OUTPUT

RSR3
INPUT

ACK3
OUTPUT

RSR4
INPUT

ACK4
OUTPUT

$SCR.$cond_time milliseconds maximum delay

Pulse width is specified in RSR Setup screen

Another RSR signal can be received while an ACK is being pulsed

14�18

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Figure 14�3. PNS Timing Diagram

CMDENBL
OUTPUT

Remote Condition

PNS 1–8
INPUT

PNSTROBE
INPUT

PNSTROBE
DETECTION

SNO1–8
OUTPUT

SNACK
OUTPUT

PROD_START
INPUT

PROGRUN
OUTPUT

Program Number is Selected

While PNSTROBE is ON, program selection modification is not allowed

Pulse width is specified
in PNS Setup screen.

PNS selected program is read within 32 ms from PNSTROBE rising edge

Program is run within 32
ms from PROD_START
falling edge.

14.2.3 Teach Pendant Input and Output Signals (TPIN/TPOUT)

The teach pendant input signals (TPIN) provide read access to input signals generated by the teach
pendant keys. Teach pendant inputs can be accessed through the TPIN port arrays. A KAREL
program treats teach pendant input data as a BOOLEAN data type. The value is either ON (active--the
key is pressed) or OFF (inactive--the key is not pressed). TPIN signals are accessed in KAREL
programs by the name TPIN[n], where �n� is the signal number, which is assigned internally. Refer to
Table 14�7 for teach pendant input signal assignments.

14�19

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�7. Teach Pendant Input Signal Assignments

TPIN[n] Teach Pendant Key

EMERGENCY STOP AND DEADMAN

TPIN[250]

TPIN[249]

TPIN[247]

TPIN[248]

EMERGENCY STOP

ON/OFF switch

Right DEADMAN switch

Left DEADMAN switch

Arrow Keys

TPIN[212]

TPIN[213]

TPIN[208]

TPIN[209]

TPIN[0]

TPIN[204]

TPIN[205]

TPIN[206]

TPIN[207]

Up arrow

Down arrow

Right arrow

Left arrow

Left and/or right shift

Shifted Up arrow

Shifted Down arrow

Shifted Right arrow

Shifted Left arrow

Keypad Keys (shifted or unshifted)

14�20

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�7. Teach Pendant Input Signal Assignments (Cont�d)

TPIN[n] Teach Pendant Key

TPIN[13]

TPIN[8]

TPIN[48]

TPIN[49]

TPIN[50]

TPIN[51]

TPIN[52]

TPIN[53]

TPIN[54]

TPIN[55]

TPIN[56]

TPIN[57]

ENTER

BACK SPACE

0

1

2

3

4

5

6

7

8

9

Function Keys

14�21

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�7. Teach Pendant Input Signal Assignments (Cont�d)

TPIN[n] Teach Pendant Key

TPIN[128]

TPIN[129]

TPIN[131]

TPIN[132]

TPIN[133]

TPIN[134]

TPIN[135]

TPIN[136]

TPIN[137]

TPIN[138]

TPIN[139]

TPIN[140]

TPIN[141]

TPIN[142]

PREV

F1

F2

F3

F4

F5

NEXT

Shifted PREV

Shifted F1

Shifted F2

Shifted F3

Shifted F4

Shifted F5

Shifted NEXT

Menu Keys

14�22

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�7. Teach Pendant Input Signal Assignments (Cont�d)

TPIN[n] Teach Pendant Key

TPIN[143]

TPIN[144]

TPIN[145]

TPIN[146]

TPIN[147]

TPIN[148]

TPIN[149]

TPIN[150]

TPIN[151]

TPIN[152]

TPIN[153]

TPIN[240]

TPIN[203]

TPIN[154]

TPIN[155]

TPIN[156]

TPIN[157]

TPIN[158]

TPIN[159]

TPIN[227]

TPIN[239]

SELECT

MENUS

EDIT

DATA

FCTN

ITEM

+%

-%

HOLD

STEP

RESET

DISP

HELP

Shifted ITEM

Shifted +%

Shifted -%

Shifted STEP

Shifted HOLD

Shifted RESET

Shifted DISP

Shifted HELP

14�23

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�7. Teach Pendant Input Signal Assignments (Cont�d)

TPIN[n] Teach Pendant Key

User Function Keys

TPIN[173]

TPIN[174]

TPIN[175]

TPIN[176]

TPIN[177]

TPIN[178]

TPIN[210]

TPIN[179]

TPIN[180]

TPIN[181]

TPIN[182]

TPIN[183]

TPIN[184]

TPIN[211]

USER KEY 1

USER KEY 2

USER KEY 3

USER KEY 4

USER KEY 5

USER KEY 6

USER KEY 7

Shifted USER KEY 1

Shifted USER KEY 2

Shifted USER KEY 3

Shifted USER KEY 4

Shifted USER KEY 5

Shifted USER KEY 6

Shifted USER KEY 7

Motion Keys

14�24

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�7. Teach Pendant Input Signal Assignments (Cont�d)

TPIN[n] Teach Pendant Key

TPIN[185]

TPIN[186]

TPIN[187]

TPIN[188]

TPIN[189]

TPIN[190]

TPIN[191]

TPIN[192]

TPIN[193]

TPIN[194]

TPIN[195]

TPIN[196]

TPIN[197]

TPIN[198]

TPIN[199]

TPIN[226]

TPIN[207]

TPIN[202]

FWD

BWD

COORD

+X

+Y

+Z

+X rotation

+Y rotation

+Z rotation

-X

-Y

-Z

-X rotation

-Y rotation

-Z rotation

Shifted FWD

Shifted BWD

Shifted COORD

14�25

P.Schammel

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�7. Teach Pendant Input Signal Assignments (Cont�d)

TPIN[n] Teach Pendant Key

Motion Keys Cont�d

TPIN[214]

TPIN[215]

TPIN[216]

TPIN[217]

TPIN[218]

TPIN[219]

TPIN[220]

TPIN[221]

TPIN[222]

TPIN[223]

TPIN[224]

TPIN[225]

Shifted +X

Shifted +Y

Shifted +Z

Shifted +X rotation

Shifted +Y rotation

Shifted +Z rotation

Shifted -X

Shifted -Y

Shifted -Z

Shifted -X rotation

Shifted -Y rotation

Shifted -Z rotation

Three teach pendant output signals are available for use:

• TPOUT[6] - controls teach pendant USER LED #1

• TPOUT[7] - controls teach pendant USER LED #2

• TPOUT[8] - controls teach pendant USER LED #3

14.3 HARDWARE CONFIGURATIONS

The I/O system consists of modular I/O hardware, process I/O hardware, and remote I/O hardware. In
addition, your system might contain an optional weld control interface, which is a special type of
process I/O hardware.

14�26

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

14.3.1 Modular I/O

Modular I/O are I/O units that fit into a slot on a rack within the controller. Each module contains one
type of I/O. There are five-slot and ten-slot racks available. Your system can contain multiple racks.
Each modular I/O signal is assigned to a rack, a slot in the rack, and the starting point or channel, if
the module is analog. You can change the configuration of the rack, slot, and start point through the
teach pendant I/O screen or through the SET_PORT_ASG KAREL built-in routine. See Figure 14�4 .

Figure 14�4. Modular (Model A) I/O Hardware Layout For Digital I/O

STARTING POINT

RACK

SLOT

B-Size Controller

i-Size Controller
(Operator box

Type B)

• Rack is the physical location on which the input or output board is mounted. Your system can
contain multiple racks. The rack mounted closest to the main CPU board is considered rack 1.
Rack 0 is reserved for system modules and process I/O boards.

• Slot is the space on the rack where the board is connected. The slots number from left to right,
starting at 0. Slot 0 is not used.

• Start point for digital and group signals, and channel for analog signals is the physical position
of the I/O port in the I/O module.

Modular I/O can be one of following types of I/O:

• Digital inputs and outputs

• Analog inputs and outputs

14�27

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Modular I/O boards contain a specific number of inputs and outputs. Table 14�8 through Table 14�11
describe the types of modular I/O boards available.

Table 14�8. Digital Input Modules

Module Name Points Polarity Rated Voltage Rated
Current

Response Time
(maximum)

AID32A 32 Both 24 VDC 7.5 mA 20 ms

AID32B 32 Both 24 VDC 7.5 mA 2 ms

AID16C 16 Negative 24 VDC 7.5 mA 20 ms

AIA16D 16 Positive 24 VDC 7.5 mA 20 ms

AID32E 32 Both 24 VDC 7.5 mA 20 ms

AID32F 3 Both 24 VDC 7.5 mA 2 ms

AIA16G 16 - 100∼ 120 VAC 10.5 mA ON 35 ms

OFF 45 ms

Table 14�9. Digital Output Modules

Module Name Points Polarity Rated Voltage Rated
Current

Output Type

AOD32A 32 Negative 5∼ 24 V 0.3 A DC Non-insolated

AOD08C 8 Negative 12∼ 24 V 2 A DC insolated

AOD08D 8 Positive 12∼ 24 V 2 A DC insolated

AOD16C 16 Negative 12∼ 24 V 0.5 A DC insolated

AOD16D 16 Positive 12∼ 24 V 0.5 A DC insolated

AOD32C 32 Negative 12∼ 24 V 0.3 A DC insolated

14�28

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�9. Digital Output Modules (Cont�d)

Module Name Points Polarity Rated Voltage Rated
Current

Output Type

AOD32D 32 Positive 12∼ 24 V 0.3 A DC insolated

AOA05E 5 - 100∼ 240 VA 2 A AC output

AOA08E 8 - 100∼ 240 VA 1 A AC output

AOA12F 12 - 100∼ 120 VA 0.5 A AC output

AOR080 8 - 250 VAC / 30
VDC

4 A Relay output

AOR160 16 - 250 VAC / 30
VDC

2 A Relay output

Table 14�10. Analog Input Module Configuration

Item Specification

Name AAD04A

Input channels 4 channels per module

Analog input -10 VDC ∼ +10 VDC (input resistance 4.7M Ω)

-20 mADC ∼ +20 mADC (input resistance 250 Ω) selectable

Digital output 12 bit binary (complementary representation of 2)

14�29

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�10. Analog Input Module Configuration (Cont�d)

Item Specification

Input/output
correspondence

Analog Input

+10 V

+5 V or 20 mA

0 V or 0 mA

-5 V or -20 mA

-10 V

Digital Output

+2000

+10000 V

0

-1000

-2000

Required input 64 points

Table 14�11. Analog Output Module Configuration

Item Specification

Name ADA02A

Input channels 2 channels per module

Digital input 12 bit binary (complementary representation of 2)

Analog output -10 VDC ∼ +10 VDC (input resistance 10K Ω or more)

-20 mADC ∼ +20 mADC (input resistance 400 Ω or less) selectable

14�30

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Table 14�11. Analog Output Module Configuration (Cont�d)

Item Specification

Input/output
correspondence

Digital Input

+2000

+1000

0

-1000

-2000

Analog Output

+10 V

+5 V or 20 mA

0 V or 0 mA

-5 V or -20 mA

-10 V

Required output 82 points

14.3.2 PROCESS I/O

A process I/O board is a board that can contain different types of I/O signals, including analog,
digital, and welding. Process I/O boards contain specific numbers of inputs and outputs. The types
of I/O vary according to the process I/O board.

Each process I/O signal is assigned to a rack (0), a slot in the rack, and the starting point for
numbering. You can change the configuration of the slot and start point through the teach pendant
I/O screen or through the SET_PORT_ASG KAREL built-in routine. Process I/O boards are always
in rack 0. See Figure 14�5 .

14�31

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Figure 14�5. Process I/O Board Hardware Layout for Group I/O

PROCESS I/O BOARD

B-Size

CRM2B

CRM2A

Controller
i-Size Controller
(Operator box

Type B)

i-Size Controller
(Operator box

Type A)

CRM2B

CRM2A

Group I/O is
accessed through
the CRM2B and
CRM2A ports

• Rack - Process I/O boards are always assigned rack 0.

• Slot refers to the process I/O board number. The slots number starting at 1. The slot closest to the
main CPU board is slot 1.

• Start point for digital and group signals, and channel for analog signals is the physical position
of the I/O port on the I/O board.

Process I/O boards contain a specific number and type of inputs and outputs. Table 14�12 describes
the types process I/O boards available.

Table 14�12. Process I/O Board Configurations

Board Number Mounted On DI DO WI WO AI AO

A16B-2201-0470 Backplane 40 40 8 8 6 2

A16B-2200-0472 Backplane 40 40 - - - -

A16B-2201-0480 Backplane 96 96 - - - -

14�32

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

14.3.3 External Operator Panel Signals

System control can be achieved from locations other than the controller operator panel through the use
of a dedicated terminal block on which switches or buttons can be connected. These terminals, located
on the operator panel interface board, allow you to connect the following:

• External ON and External OFF buttons

• External EMERGENCY STOP

• EMERGENCY STOP output

• EMERGENCY STOP through a safety fence

External ON/OFF

External ON and OFF buttons can be connected to the controller. The connections are made between
EON and COM for the ON button and EOF and COM for the OFF button. See Figure 14�6 .

14�33

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Figure 14�6. External ON/OFF Buttons

Power ON Power OFF

External power supply ON/OFF switch

Remove the shorting jumper between
OFF1 OFF2 between 3 and 4 of
TBOP when the external ON/OFF
switch is used.

Panel board

N.O. N.C.

External Emergency Stop

External emergency stop buttons can be connected to terminals EMGIN1 and EMGIN2. See Figure
14�7 . Both place the robot in an emergency stop condition; however, the effects of the emergency
stop outputs differ. (Refer to Emergency Stop Outputs.)

14�34

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Figure 14�7. External Emergency Stop

External emergency stop input

External emergency stop switch

Panel board

Emergency Stop Output

EMGOUT is the relay contact to output the emergency stop status of a controller. The polarity
of the signal is as follows:

EMGOUT ON: Normal (closed)

OFF: ESTOP condition (opened)

The emergency stop output is activated by any hardwired ESTOP input. This includes the
EMERGENCY STOP button on the operator panel, EMERGENCY STOP button on the teach
pendant, DEADMAN switch, hand break detection, fence input, or robot overtravel. See Figure 14�8 .

14�35

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Figure 14�8. Emergency Stop Outputs

Panel board

External emergency stop output

ESTOP1 ESTOP2

Emergency Stop Through a Safety Fence

Emergency stop of the robot through a safety fence input can be connected to terminals
FENCE1-FENCE2. This emergency stop differs from the EMERGENCY STOP button on the
operator panel only in the error message. A normally open contact held closed by a gate on a safety
fence should be connected across the terminals FENCE1 and FENCE2 on TBOP1 of the operator
panel interface board. See Figure 14�9 .

Warning

The fence input is disabled if the teach pendant is enabled and the
DEADMAN is pressed. Do not open the fence while the servo power stays
on.

14�36

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Figure 14�9. Emergency Stop Through a Safety Fence

External emergency stop input

Safety fence switch

Panel board

Warning

Do not apply any circuitry with a voltage potential to the terminals. This
input is monitoring an open or closed switch contact (continuity).

14.3.4 Serial Input/Output

The serial I/O system allows you to communicate with peripheral serial devices connected to
the KAREL system. For example, you could use serial I/O to write messages from one of the
communications ports to a remote terminal across a cable that connects to the R-J3iB controller.

To use serial I/O you must provide a serial device and the appropriate cable. Refer to the Maintenance
Manual, specific to your robot model, for electrical specifications.

The communications ports that you use to read and write serial data are defined in the system
software. Each software port is associated with physical connectors on the R-J3iB controller to which
you attach the communications cable.

14�37

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Ports

Up to five ports are available, P1-P5. Figure 14�10 shows the location of the ports on the R-J3iB
Controller.

14�38

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

Figure 14�10. Location of Ports on the Controller

P2

P3

P4 or P5

Several different types of devices can be connected to these ports. You can set up ports P2 through P5
if you have them, but you cannot set up the teach pendant port, P1. You set up ports on the SETUP
Port Init screen. Table 14�13 lists the ports.

14�39

14. INPUT/OUTPUT SYSTEM MARAIKLRF06031E REV A

Table 14�13. Ports P1, P2, P3, and P4

Port Item Name on
Screen

Type of Port Use Default Device

P1 Teach Pendant
NOTE This is
a dedicated
port and cannot
change.

RS-422 Teach pendant Teach pendant

P2 RS-232-C RS-232-C Debug Console

P3 PORT 2 RS�232�C KCL/CRT

P4 JD17 on operator
panel board

RS�232�C No use

P5 JD17 on operator
panel board

RS-422

Any RS-232-C device,
such as a printer or
disk drive, or CRT/KB

No use

Port Configuration

You can use the SETUP Port Init screen on the teach pendant to configure the software ports. Table
14�14 lists the default settings for each type of device you can connect to a port.

Table 14�14. Default Communications Settings for Devices

Device Speed (baud) Parity Bit Stop Bit Timeout Value
(sec)

Handy file* 9600 None 2 bit 0

FANUC floppy* 9600 None 2 bit 0

PS-100/200 floppy disk 9600 None 1 bit 0

Printer** 4800 None 1 bit 0

Sensor* 4800 Odd 1 bit 0

Host Comm.* 4800 Odd 1 bit 0

KCL/CRT 9600 None 1 bit 0

Debug console 9600 None 1 bit 0

TP Demo Device 9600 None 1 bit 0

No Use 9600 None 1 bit 0

Current Position For FANUC Robotics Use Only

Development For FANUC Robotics Use Only

CIMPLICITY For FANUC Robotics Use Only

14�40

MARAIKLRF06031E REV A 14. INPUT/OUTPUT SYSTEM

* You can adjust these settings; however, if you do, they might not function as intended because they
are connected to an external device.

** You can use only a serial printer.

After the hardware has been connected and the appropriate port is configured and the external
port is connected, you can use KAREL language OPEN FILE, READ, and WRITE statements to
communicate with the peripheral device.

Higher levels of communication protocol are supported as an optional feature.

See Also: Appendix A for more information on the statements and built-ins available in KAREL

14�41

Chapter 15
MULTI-TASKING

Contents

Chapter 15 MULTI-TASKING .. 15�1
15.1 MULTI-TASKING TERMINOLOGY ... 15�2
15.2 INTERPRETER ASSIGNMENT .. 15�3
15.3 MOTION CONTROL .. 15�3
15.4 TASK SCHEDULING ... 15�4

15.4.1 Priority Scheduling .. 15�5
15.4.2 Time Slicing ... 15�6
15.5 STARTING TASKS .. 15�6

15.5.1 Running Programs from the User Operator Panel (UOP) PNS
Signal .. 15�7

15.5.2 Child Tasks .. 15�7
15.6 TASK CONTROL AND MONITORING .. 15�8

15.6.1 From TPP Programs .. 15�8
15.6.2 From KAREL Programs ... 15�8
15.6.3 From KCL ... 15�9
15.7 USING SEMAPHORES AND TASK SYNCHRONIZATION 15�9
15.8 USING QUEUES FOR TASK COMMUNICATIONS 15�15

15�1

15. MULTI-TASKING MARAIKLRF06031E REV A

Multi-tasking allows more than one program to run on the controller on a time-sharing basis, so that
multiple programs appear to run simultaneously.

Multi-tasking is especially useful when you are executing several sequences of operations which
can generally operate independently of one another, even though there is some interaction between
them. For example:

• A process of monitoring input signals and setting output signals.

• A process of generating and transmitting log information to a cell controller and receiving
commands or other input data from a cell controller.

It is important to be aware that although multiple tasks seem to operate at the same time, they are
sharing use of the same processor, so that at any instant only one task is really being executed. With
the exception of interruptible statements, once execution of a statement is started, it must complete
before statements from another task can be executed. The following statements are interruptible:

• MOVE

• READ

• DELAY

• WAIT

• WAIT FOR

Refer to Section 15.4, �Task Scheduling� for information on how the system decides which task
to execute first.

15.1 MULTI-TASKING TERMINOLOGY

The following terminology and expressions are used in this chapter.

• Task or User task

A task, or user task, is a user program that is running or paused. A task is executed by an
"interpreter." A task is created when the program is started and eliminated when the interpreter it
is assigned to, becomes assigned to another task.

• Interpreter

An interpreter is a system component that executes user programs. At a cold or controlled start,
($MAXNUMTASKS + 2) interpreters are created. These interpreters are capable of concurrently
executing tasks.

• Task name

Task name is the program name specified when the task is created. When you create a task,
specify the name of the program to be executed as the task name.

15�2

MARAIKLRF06031E REV A 15. MULTI-TASKING

Note The task name does not change once the task is created. Therefore, when an external routine
is executing, the current executing program name is not the same as the task name. When you
send any requests to the task, use the task name, not the current program name.

• Motion control

Motion control is defined by a bit mask that specifies the motion groups of which a task has
control. Only one task at a time can control a motion group. However, different tasks can
control different motion groups simultaneously. Refer to Section 15.3 , �Motion Control,� for
more information.

15.2 INTERPRETER ASSIGNMENT

When a task is started, it is assigned to an interpreter. The interpreter it is assigned to (1, 2, 3, ...)
determines its task number. The task number is used in PAUSE PROGRAM, ABORT PROGRAM
and CONTINUE PROGRAM condition handler actions. The task number for a task can be determined
using the GET_TSK_INFO built-in.

The following are rules for assigning a task to an interpreter:

• If the task is already assigned to an interpreter, it uses the same interpreter.

• A task is assigned to the first available interpreter that currently has no tasks assigned to it.

• If all interpreters are assigned to tasks, a new task will be assigned to the first interpreter that
has an aborted task.

• If none of the above can be done, the task cannot be started.

15.3 MOTION CONTROL

An important restriction in multi-tasking is in the control of the various motion groups. Only one
task can have control, or use of, a group of axes. A task requires control of the group(s) in the
following situations:

• When the task starts, if the controller directive %NOLOCKGROUP is not used. If the
%LOCKGROUP directive is not used, the task requires control of all groups by default. If
%LOCKGROUP is used, control of the specified groups is required.

For teach pendant programs, motion control is required when the program starts, unless the
DETAIL page from the SELECT screen is used to set the Group Mask to [*,*,*,*,*].

• When a task executes the LOCK_GROUP built-in, it requires the groups specified by the group
mask.

• When a task executes a MOVE statement, it requires control of the group.

15�3

15. MULTI-TASKING MARAIKLRF06031E REV A

• When a task calls a ROUTINE or teach pendant program, it requires control of those group(s).
The group(s) required by a ROUTINE or TPP+ program are those specified, or implied, by
controller directives or in the teach pendant DETAIL setup.

A task will be given control of the required group(s), assuming:

• No other task has control of the group.

• The teach pendant is not enabled, with the exception that motion control can be given to a program
when it is started using shift-FWD at the teach pendant or if it has the %TPMOTION directive.

• There are no emergency stops active.

• The servos are ready.

• The UOP signal IMSTP is not asserted.

A task will be paused if it is not able to get control of the required group(s).

After a task gets control of a group, it keeps it until one of the following:

• The task ends (aborts).

• The task executes the UNLOCK_GROUP built-in.

• The task passes control of the group(s) in a RUN_TASK built-in.

• The ROUTINE or teach pendant program returns, and groups were required by a ROUTINE or
teach pendant program, but not by the calling program.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is
set up for more than one motion group, all motion must be initiated
from a teach pendant program. Otherwise, the robot could move
unexpectedly, personnel could be injured, and equipment could be
damaged.

15.4 TASK SCHEDULING

A task that is currently running (not aborted or paused) will execute statements until one of the
following:

• A hold condition occurs.

• A higher priority program becomes ready to run.

• The task time slice expires.

• The program aborts or pauses.

15�4

MARAIKLRF06031E REV A 15. MULTI-TASKING

The following are examples of hold conditions:

• Waiting for a read operation to complete.

• Waiting for a motion to complete.

• Waiting for a WAIT, WAIT FOR, or DELAY statement to complete.

A task is ready to run when it is in running state and has no hold conditions. Only one task is
actually executed at a time. There are two rules for determining which task will be executed when
more than one task is ready to run:

• Priority - If two or more tasks of different priority are ready to run, the task with higher priority is
executed first. Refer to Section 15.4.1 , �Priority Scheduling,� for more information.

• Time-slicing - If two tasks of the same priority are ready to run, execution of the tasks is
time-sliced. Refer to Section 15.4.2 , �Time Slicing,� for more information.

15.4.1 Priority Scheduling

If two or more tasks with different priorities are ready to run, the task with the highest priority will run
first. The priority of a task is determined by its priority number. Priority numbers must be in the range
from -8 to 143. The lower the priority number, the higher the task priority.

For example: if TASK_A has a priority number of 50 and TASK_B has a priority number of 60, and
both are ready to run, TASK_A will execute first, as long as it is ready to run.

A task priority can be set in one of the following ways:

• By default, each user task is assigned a priority of 50.

• KAREL programs may contain the %PRIORITY translator directive.

• The SET_TSK_ATTR built-in can be used to set the current priority of any task.

In addition to affecting other user tasks, task priority also affects the priority of the interpreter
executing it, relative to that of other system functions. If the user task has a higher priority (lower
priority number) than the system function, as long as the user task is ready to run, the system function
will be not be executed. The range of user task priorities is restricted at the high priority end. This is
done so that the user program cannot interfere with motion interpolation. Motion interpolation refers
to the updates required to cause a motion, or path segment, to complete.

The following table indicates the priority of some other system functions.

15�5

15. MULTI-TASKING MARAIKLRF06031E REV A

Table 15�1. System Function Priority Table

Priority System Function Effect of Delaying Function

-8 Maximum priority New motions, or continuation nodes of a MOVE ALONG
path statement delayed.

-1 Motion Planner New motions, or continuation nodes of a MOVE ALONG
path statement delayed.

4 TP Jog Jogging from the Teach Pendant delayed.

54 Error Logger Update of system error log delayed.

73 KCL Execution of KCL commands delayed.

82 CRT manager Processing of CRT soft-keys delayed.

88 TP manager General teach pendant activity delayed.

143 Lowest priority Does not delay any of the above.

15.4.2 Time Slicing

If two or more tasks of the same priority are ready to run, they will share the system resources by
time-slicing, or alternating use of the system.

A time-slice permits other tasks of the same priority to execute, but not lower priority tasks.

The default time-slice for a task is 256 msec. Other values can be set using the %TIMESLICE
directive or the SET_TSK_ATTR built-in.

15.5 STARTING TASKS

There are a number ways to start a task.

• KCL RUN command. Refer to Appendix C ,�KCL Command Alphabetic Descriptions.�

• Operator Panel start key. Refer to the appropriate application- specific FANUC Robotics SYSTEM
R-J3iB Controller HandlingTool Setup and Operations Manual.

15�6

MARAIKLRF06031E REV A 15. MULTI-TASKING

• User operator panel start signal. Refer to the appropriate application-specific FANUC Robotics
SYSTEM R-J3iB Controller HandlingTool Setup and Operations Manual.

• User operator panel PNS signal. Refer to Section 15.5.1,�Running Programs from the User
Operator Panel (UOP) PNS Signal,� for more information.

• Teach pendant shift-FWD key. Refer to the appropriate application-specific FANUC Robotics
SYSTEM R-J3iB Controller HandlingTool Setup and Operations Manual , Chapter on �Testing a
Program and Running Production,� for more information.

• Teach pendant program executes a RUN instruction. Refer to Section 15.5.2 , �Child Tasks,�
for more information.

• KAREL program executes the RUN_TASK built-in. Refer to Section 15.5.2 , �Child Tasks,�
for more information.

In each case, the task will not start running if it requires motion control that is not available.

15.5.1 Running Programs from the User Operator Panel (UOP) PNS Signal

A program is executed:

• If the binary value of the UOP PNS signals is non-zero and the UOP PROGSTART signal
is asserted

• If there is currently a program with the name �PNSnnnn,� where nnnn is the decimal value of the
PNS signals plus the current value of $SHELLCFG.$jobbase.

A program is not executed:

• If the binary value of the PNS signals is zero.

Multiple programs can be started in this way, as long as there is no motion group overlap.

If the task name determined from the PNS is in a paused state, the PROGSTART signal is interpreted
as a CONTINUE signal. If $SHELLCFG.$contonly is TRUE, this is the only function of the
PNS/PROGSTART signals.

If $SHELLCFG.$useabort is TRUE, the PNS signals can be used to abort a running task. The name of
the task to be aborted is the same as that used with the PROGSTART signal. In this case, abort is
triggered by the UOP CSTOPI signal

15.5.2 Child Tasks

A running task can create new tasks. This new task is called a child task. The task requesting creation
of the child task is called the parent task. In teach pendant programs, a new task is created by executing
a RUN instruction. In KAREL programs a new task can be created using the RUN_TASK built-in.

15�7

15. MULTI-TASKING MARAIKLRF06031E REV A

The parent and child task may not require the same motion group. In the case of RUN_TASK,
however, it is possible to release control of motion groups for use by the child task.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up for
more than one motion group, all motion must be initiated from a teach
pendant program. Otherwise, the robot could move unexpectedly, and
could injure personnel or damage equipment.

Once a child task is created, it runs independently of its parent task, with the following exception:

• If a parent task is continued and its child task is paused, the child task is also continued.

• If a parent task is put in STEP mode, the child task is also put in STEP mode.

If you want the child task to be completely independent of the parent, a KAREL program can initiate
another task using the KCL or KCL_NOWAIT built-ins to issue a KCL>RUN command.

15.6 TASK CONTROL AND MONITORING

There are three environments from which you can control and monitor tasks:

1. Teach Pendant Programs (TPP) - Section 15.6.1

2. KAREL Programs - Section 15.6.2

3. KCL commands - Section 15.6.3

15.6.1 From TPP Programs

The TPP instruction RESUME_PROG can be used to continue a PAUSEd task.

15.6.2 From KAREL Programs

There are a number of built-ins used to control and monitor other tasks. See the description of these
built-ins in Appendix A.

• RUN_TASK executes a task.

• CONT_TASK resumes execution of a PAUSEd task.

• PAUSE_TASK pauses a task.

15�8

MARAIKLRF06031E REV A 15. MULTI-TASKING

• ABORT_TASK aborts a task.

• CONTINUE condition handler action causes execution of a task.

• ABORT condition handler action causes a task to be aborted.

• PAUSE condition handler action causes a task to be paused.

• GET_TSK_INFO determines whether a specified task is running, paused, or aborted. Also
determines what program and line number is being executed, and what, if anything, the task
is waiting for.

15.6.3 From KCL

The following KCL commands can be used to control and monitor the status of tasks. Refer to
Appendix C , "KCL Command Alphabetic Descriptions,� for more information.

• RUN <task_name> starts or continues a task.

• CONT <task_name> continues a task.

• PAUSE <task_name> pauses a task.

• ABORT <task_name> aborts a task.

• SHOW TASK <task_name> displays the status of a task.

• SHOW TASKS displays the status of all tasks.

15.7 USING SEMAPHORES AND TASK SYNCHRONIZATION

Good design dictates that separate tasks be able to operate somewhat independently. However, they
should also be able to interact.

The KAREL controller supports counting semaphores. The following operations are permitted on
semaphores:

• Clear a semaphore (KAREL: CLEAR_SEMA built-in; TPP: SEMAPHORE = OFF instruction):
sets the semaphore count to zero.

All semaphores are cleared at cold start. It is good practice to clear a semaphore prior to using
it. Before several tasks begin sharing a semaphore, one and only one of these task, should clear
the semaphore.

• Post to a semaphore (KAREL: POST_SEMA built-in, TPP: SEMAPHORE[n] = ON): adds
one to the semaphore count.

15�9

15. MULTI-TASKING MARAIKLRF06031E REV A

If the semaphore count is zero or greater, when the post semaphore is issued, the semaphore
count will be incremented by one. The next task waiting on the semaphore will decrement the
semaphore count and continue execution. Refer to Figure 15�1.

If the semaphore count is negative, when the post semaphore is issued, the semaphore count will
be incremented by one. The task which has been waiting on the semaphore the longest will
then continue execution. Refer to Figure 15�1.

• Read a semaphore (KAREL: SEMA_COUNT built-in): returns the current semaphore count.

• Wait for a semaphore (KAREL: PEND_SEMA built-in, SIGNAL SEMAPHORE Action;
TPP : WAIT SEMAPHORE[n] instruction):

If the semaphore count is greater than zero when the wait semaphore is issued, the semaphore
count will be decremented and the task will continue execution. Refer to Figure 15�1.

If the semaphore count is less than or equal to zero (negative), the wait semaphore will decrement
the semaphore count and the task will wait to be released by a post semaphore. Tasks are released
on a first-in/first-out basis. For example, if task A waits on semaphore 1, then task B waits on
semaphore 1. When task D posts semaphore 1, only task A will be released. Refer to Figure 15�1.

Figure 15�1. Task Synchronization Using a Semaphore

T0 T1 T2 T3 T4 T5 T6 T7 Tn

Task

A

B

D

W - Wait Semaphore
P - Post Semaphore
C - Clear Semaphore

Task executing
Task waiting

T0 - semaphore count = indeterminate
T1 - semaphore count = 0
T2 - semaphore count = –1
T3 - semaphore count = –2
T4 - semaphore count = –1
T5 - semaphore count = 0
T6 - semaphore count = 1
T7 - semaphore count = 0

P P P

C W W

W

Example: Semaphores can be used to implement a task that acts as a request server. In the
following example, the main task waits for the server to complete its operation. Semaphore[4]

15�10

MARAIKLRF06031E REV A 15. MULTI-TASKING

is used to control access to rqst_param or R[5]. Semaphore[5] is used to signal the server task
that service is being requested; semaphore[6] is used by the server to signal that the operation is
complete.

The main task would contain the following KAREL or TPP code:

Main Task
--KAREL --TPP

CLEAR_SEMA(4) SEMAPHORE[4]=OFF
CLEAR_SEMA(5) SEMAPHORE[5]=OFF
CLEAR_SEMA(6) SEMAPHORE[6]=OFF
RUN TASK(‘server’,0,TRUE,TRUE,1,STATUS) RUN SERVER

PEND_SEMA(4,max_time,time_out) WAIT SEMAPHORE[4]
rqst_param=10 R[5]=10
POST_SEMA(5) SEMAPHORE[5]=ON
PEND_SEMA(6,max_time,time_out) WAIT SEMAPHORE[6]

The server task would contain the following KAREL or TPP code:

Server Task
--KAREL --TPP

POST_SEMA (4) SEMAPHORE[4]=ON
WHILE TRUE DO LBL[100]

PEND_SEMA(5,max_time,time_out) WAIT SEMAPHORE[5]
IF rqst_param=10 THEN IF R[5]=10, CALL do_something

do_something
ENDIF
POST_SEMA(4) SEMAPHORE[4]=ON
POST_SEMA(6) SEMAPHORE[6]=ON

ENDWHILE GOTO LBL[100]

Example: The program example in Semaphore and Task Synchronization Program Example - MAIN
TASK thru Semaphore and Task Synchronization Program Example - TASK B shows how semaphores
and tasks can be used together for synchronization. MAIN_TASK.KL is used to initialize the semaphore
(MOTION_CTRL) and then runs both TASK_A.KL and TASK_B.KL. MAIN_TASK.KL then waits for
TASK_A and TASK_B to abort before completing. TASK_A waits until you press F1 and then moves the
robot to the HOME position. TASK_B waits until you press F2 and then moves the robot along a path.

Semaphore and Task Synchronization Program Example - MAIN TASK
PROGRAM main_task
%nolockgroup

VAR
motion_ctrl: INTEGER

15�11

15. MULTI-TASKING MARAIKLRF06031E REV A

tsk_a_done : BOOLEAN
tsk_b_done : BOOLEAN
tmr : INTEGER
status : INTEGER

--
-- --
-- INIT_LOCK: Initialize the semaphore --
-- to make sure its count is at --
-- zero before using it. Then --
-- post this semaphore which will--
-- allow the first pend to the --
-- semaphore to continue --
-- execution. --
--
ROUTINE init_lock
BEGIN
CLEAR_SEMA (motion_ctrl) -- makes sure semaphore is zero before using it.
POST_SEMA (motion_ctrl) -- makes motion_ctrl available immediately

END init_lock
--
-- --
-- IS_TSK_DONE : Find out if the specified --
-- task is running or not. --
-- If the task is aborted then --
-- return TRUE otherwise FALSE.--
--
ROUTINE is_tsk_done (task_name:STRING): BOOLEAN
VAR
status : INTEGER -- The status of the operation of GET_TSK_INFO
task_no : INTEGER -- Receives the current task number for task_name
attr_out: INTEGER -- Receives the TSK_STATUS output
dummy : STRING[2] -- Does not receive any information

BEGIN

GET_TSK_INFO (task_name, task_no, TSK_STATUS, attr_out, dummy, status)
IF (attr_out = PG_ABORTED) THEN

RETURN (TRUE) -- If task is aborted then return TRUE
ENDIF

RETURN(FALSE) -- otherwise task is not aborted and return
FALSE

END is_tsk_done

BEGIN
motion_ctrl = 1 -- Semaphore to allow motion control

15�12

MARAIKLRF06031E REV A 15. MULTI-TASKING

init_lock -- Make sure this is done just once

FORCE_SPMENU (tp_panel, spi_tpuser, 1) -- Force the Teach Pendant
-- user screen to be seen

RUN_TASK(’task_a’, 1, FALSE, FALSE, 1, status) -- Run task_a

RUN_TASK(’task_b’, 1, FALSE, FALSE, 1, status) -- Run task_b

REPEAT
tsk_a_done = is_tsk_done (’task_a’)
tsk_b_done = is_tsk_done (’task_b’)
delay (100)

UNTIL (tsk_a_done and tsk_b_done) -- Repeat until both task_a
END main_task -- and task_b are aborted

Semaphore and Task Synchronization Program Example - TASK A
PROGRAM task_a
%nolockgroup
VAR

motion_ctrl FROM main_task: INTEGER
home_pos : POSITION
status : INTEGER

--
-- --
-- RUN_HOME : Lock the robot motion --
-- control. This task is --
-- moving the robot and must --
-- have control. --
-- --
--

ROUTINE run_home
VAR

time_out: BOOLEAN

BEGIN
PEND_SEMA(motion_ctrl,-1,time_out)-- lock motion_ctrl from other tasks

-- keep other tasks from moving robot

LOCK_GROUP (1, status)
MOVE TO home_pos -- move to the home position
UNLOCK_GROUP (1, status)

POST_SEMA(motion_ctrl) -- unlock motion_ctrl
-- allow other task to move robot

15�13

15. MULTI-TASKING MARAIKLRF06031E REV A

END run_home

BEGIN
set_cursor (tpfunc, 1, 4, status)
write tpfunc (’HOME’,CR)
wait for TPIN[129]+ -- wait for F1 to be pressed
run_home

END task_a

Semaphore and Task Synchronization Program Example - TASK B
PROGRAM task_b
%nolockgroup

VAR
motion_ctrl FROM main_task : INTEGER
work_path : PATH
status : INTEGER

--
-- --
-- do_work : Lock the robot from other --
-- tasks and do work. This --
-- task is doing motion and --
-- must lock motion control so --
-- that another task does not --
-- try to do motion at the --
-- same time. --
--

ROUTINE do_work
VAR

time_out: BOOLEAN
BEGIN

PEND_SEMA (motion_ctrl,-1,time_out) -- lock motion_ctrl from other
-- tasks keep other tasks from

-- moving robot
LOCK_GROUP (1, status)
MOVE ALONG work_path -- move along the work path
UNLOCK_GROUP (1, status)

POST_SEMA(motion_ctrl) -- unlock motion_ctrl allow
-- other task to move robot

END do_work

BEGIN

15�14

MARAIKLRF06031E REV A 15. MULTI-TASKING

set_cursor(tpfunc, 1, 10, status)
write tpfunc(’WORK’,CR)
wait for TPIN[131]+ -- wait until F2 is pressed
do_work

END task_b

15.8 USING QUEUES FOR TASK COMMUNICATIONS

Queues are supported only in KAREL. A queue is a first-in/first-out list of integers. They are
used to pass information to another task sequentially. A queue consists of a user variable of type
QUEUE_TYPE and an ARRAY OF INTEGER. The maximum number of entries in the queue is
determined by the size of the array.

The following operations are supported on queues:

• INIT_QUEUE initializes a queue and sets it to empty.

• APPEND_QUEUE adds an integer to the list of entries in the queue.

• GET_QUEUE: reads the oldest (top) entry from the queue and deletes it.

These, and other built-ins related to queues (DELETE_QUEUE, INSERT_QUEUE, COPY_QUEUE)
are described in Appendix A.

A QUEUE_TYPE Data Type has one user accessible element, n_entries . This is the number of
entries that have been added to the queue and not read out. The array of integer used with a queue, is
used by the queue built-ins and should not be referenced by the KAREL program.

Example: The following example illustrates a more powerful request server, in which more than one
task is posting requests and the requester does not wait for completion of the request.

The requester would contain the following code:

Requester
--declarations
VAR

rqst_queue FROM server: QUEUE_TYPE
rqst_data FROM server: ARRAY[100] OF INTEGER
status: INTEGER
seq_no: INTEGER
-- posting to the queue --

APPEND_QUEUE (req_code, rqst_queue, rqst_data, seq_no, status)

The server task would contain the following code:

15�15

15. MULTI-TASKING MARAIKLRF06031E REV A

Server
PROGRAM server
VAR

rqst_queue: QUEUE_TYPE
rqst_data : ARRAY[100] OF INTEGER
status : INTEGER
seq_no : INTEGER
rqst_code : INTEGER

BEGIN
INIT_QUEUE(rqst_queue) --initialization
WHILE TRUE DO --serving loop

WAIT FOR rqst_code.n_entries > 0
GET_QUEUE (rqst_queue, rqst_data, rqst_code, seq_no, status)
SELECT rqst_code OF

CASE (1): do_something
ENDSELECT

ENDWHILE
END server

15�16

Appendix A
KAREL LANGUAGE ALPHABETICAL
DESCRIPTION

Contents

Appendix A KAREL LANGUAGE ALPHABETICAL DESCRIPTION ... A�1

A 3 2 CALL PROGLIN B ilt I P d A 46

A�1

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A�2

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A�3

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A�4

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

This appendix describes, in alphabetical order, each standard KAREL language element, including:

• Data types

• Executable statements and clauses

• Condition handler conditions and actions

• Built-in routines

• Translator directives

A brief example of a typical use of each element is included in each description.

Note If, during program execution, any uninitialized variables are encountered as arguments for
built-in routines, the program pauses and an error is displayed. Either initialize the variable, KCL>
SET VARIABLE command, or abort the program, using the KCL> ABORT command.

Conventions

This section describes each standard element of the KAREL language in alphabetical order. Each
description includes the following information:

• Purpose: Indicates the specific purpose the element serves in the language

• Syntax: Describes the proper syntax needed to access the element in KAREL. Table A-1
describes the syntax notation that is used.

Table A�1. Syntax Notation

Syntax Meaning Example Result

< > Enclosed words are
optional

AAA <BBB> AAA

AAA BBB

{ } Enclosed words are
optional and can be
repeated

AAA {BBB} AAA

AAA BBB

AAA BBB BBB

AAA BBB BBB BBB

| Separates alternatives AAA | BBB AAA

BBB

A�5

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�1. Syntax Notation (Cont�d)

Syntax Meaning Example Result

< | > Separates an alternative
if only one or none can be
used

AAA <BBB | CCC> AAA

AAA BBB

AAA CCC

|| Exactly one alternative
must be used

AAA || BBB | CCC || AAA BBB

AAA CCC

{ | } Any combination of
alternatives can be used

AAA {BBB | CCC} AAA

AAA BBB

AAA CCC

AAA BBB CCC

AAA CCC BBB

AAA BBB CCC BBB BBB

< < | > > Nesting of symbols is
allowed. Look at the
innermost notation first
to see what it describes,
then look at the next
innermost layer to see
what it describes, and so
forth.

AAA <BBB <CCC |
DDD>

AAA

AAA BBB

AAA BBB CCC

AAA BBB DDD

If the built-in is a function, the following notation is used to identify the data type of the value
returned by the function:
Function Return Type: data_typ

Input and output parameter data types for functions and procedures are identified as:

[in] param_name: data_type

[out] param_name: data_type

where :

A�6

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] specifies the data type of parameters which are passed into the routine

[out] specifies the data type of parameters which are passed back into the program from the routine

%ENVIRONMENT Group specifies the %ENVIRONMENT group for built-in functions and
procedures, which is used by the off-line translator. Valid values are: BYNAM, CTDEF, ERRS,
FDEV, FLBT, IOSETUP, KCL, MEMO, MIR, MOTN, MULTI, PATHOP, PBQMGR, REGOPE,
STRNG, SYSDEF, TIM, TPE, TRANS, UIF, VECTR. The SYSTEM group is automatically used by
the off-line translator.

• Details: Lists specific rules that apply to the language element. An italics-type font is used to
denote keywords input by the user within the syntax of the element.

• See Also: Refers the reader to places in the document where more information can be found.

• Example: Displays a brief example and explanation of the element. Table A�2 through Table
A�8 list the KAREL language elements, described in this appendix, by the type of element. Table
A�9 lists these elements in alphabetical order.

Table A�2. Actions

ABORT Action
Assignment Action
CANCEL Action
CONTINUE Action
DISABLE Action
ENABLE Action
HOLD Action
NOABORT Action
NOMESSAGE Action
NOPAUSE Action
PAUSE Action
Port_Id Action
PULSE Action
RESUME Action
SIGNAL EVENT Action
SIGNAL SEMAPHORE Action
STOP Action
UNHOLD Action
UNPAUSE Action

A�7

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�3. Clauses

EVAL Clause
FROM Clause
IN Clause
NOWAIT Clause
UNTIL Clause
VIA Clause
WHEN Clause
WITH Clause

Table A�4. Conditions

ABORT Condition
AT NODE Condition
CONTINUE Condition
ERROR Condition
EVENT Condition
PAUSE Condition
Port_Id Condition
Relational Condition
SEMAPHORE Condition
TIME Condition

A�8

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�5. Data Types

ARRAY Data Type
BOOLEAN Data Type
BYTE Data Type
COMMON_ASSOC Data Type
CONFIG Data Type
DISP_DAT_T Data Type
FILE Data Type
GROUP_ASSOC Data Type
INTEGER Data Type
JOINTPOS Data Type
PATH Data Type
POSITION Data Type
QUEUE_TYPE Data Type
REAL Data Type
SHORT Data Type
STD_PTH_NODE Data Type
STRING Data Type
VECTOR Data Type
XYZWPR Data Type
XYZWPREXT Data Type

Table A�6. Directives

%ALPHABETIZE
%CMOSVARS
%COMMENT
%CRTDEVICE
%DEFGROUP
%DELAY
%ENVIRONMENT
%INCLUDE
%LOCKGROUP
%NOABORT
%NOBUSYLAMP
%NOLOCKGROUP
%NOPAUSE
%NOPAUSESHFT
%PRIORITY
%STACKSIZE
%TIMESLICE
%TPMOTION

A�9

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�7. BuiltIn Functions and Procedures

Category Identifier

Byname CALL_PROG

CALL_PROGLIN

CURR_PROG

FILE_LIST

PROG_LIST

VAR_INFO

VAR_LIST

Error Code
Handling

ERR_DATA POST_ERR

File and Device
Operation

CHECK_NAME

COPY_FILE

DELETE_FILE

DISMOUNT_DEV

FORMAT_DEV

MOUNT_DEV

MOVE_FILE

PRINT_FILE

PURGE_DEV

RENAME_FILE

Serial I/O, File
Usage

BYTES_AHEAD

BYTES_LEFT

CLR_IO_STAT

GET_FILE_POS

GET_PORT_ATR

IO_STATUS

MSG_CONNECT

MSG_DISCO

MSG_PING

PIPE_CONFIG

SET_FILE_ATR

SET_FILE_POS

SET_PORT_ATR

VOL_SPACE

Process I/O
Setup

CLR_PORT_SIM

GET_PORT_ASG

GET_PORT_CMT

GET_PORT_MOD

GET_PORT_SIM

GET_PORT_VAL

IO_MOD_TYPE

SET_PORT_ASG

SET_PORT_CMT

SET_PORT_MOD

SET_PORT_SIM

SET_PORT_VAL

A�10

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�7. BuiltIn Functions and Procedures (Cont�d)

Category Identifier

KCL Operation KCL KCL_NO_WAIT KCL_STATUS

Memory
Operation

CLEAR

CREATE_VAR

LOAD

LOAD_STATUS

RENAME_VAR

RENAME_VARS

SAVE

MIRROR MIRROR

Program and
Motion Control

CNCL_STP_MTN MOTION_CTL RESET

Multi-programming ABORT_TASK

CLEAR_SEMA

CONT_TASK

GET_TSK_INFO

LOCK_GROUP

PAUSE_TASK

PEND_SEMA

POST_SEMA

RUN_TASK

SEMA_COUNT

SET_TSK_ATTR

SET_TSK_NAME

UNLOCK_GROUP

Path Operation APPEND_NODE

COPY_PATH

DELETE_NODE

INSERT_NODE

NODE_SIZE

PATH_LEN

Personal
Computer
Communications

ADD_BYNAMEPC

ADD_INTPC

ADD_REALPC

ADD_STRINGPC

SEND_DATAPC

SEND_EVENTPC

Queue Manager APPEND_QUEUE

COPY_QUEUE

DELETE_QUEUE

GET_QUEUE

INIT_QUEUE

INSERT_QUEUE

MODIFY_QUEUE

A�11

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�7. BuiltIn Functions and Procedures (Cont�d)

Category Identifier

Register
Operation

CLR_POS_REG

GET_JPOS_REG

GET_POS_REG

GET_REG

POS_REG_TYPE

SET_EPOS_REG

SET_INT_REG

SET_JPOS_REG

SET_POS_REG

SET_REAL_REG

String Operation CNV_CONF_STR

CNV_INT_STR

CNV_REAL_STR

CNV_STR_CONF

CNV_STR_INT

CNV_STR_REAL

System ABS

ACOS

ARRAY_LEN

ASIN

ATAN2

BYNAME

CHECK_EPOS

CHR

CNV_JPOS_REL

CNV_REL_JPOS

COS

CURJPOS

CURPOS

EXP

FRAME

GET_VAR

IN_RANGE

INDEX

INV

J_IN_RANGE

LN

ORD

POS

ROUND

SET_PERCH

SET_VAR

SIN

SQRT

STR_LEN

SUB_STR

TAN

TRUNC

UNINIT

UNPOS

Time-of-Day
Operation

CNV_STR_TIME

CNV_TIME_STR

GET_TIME

SET_TIME

A�12

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�7. BuiltIn Functions and Procedures (Cont�d)

Category Identifier

TPE Program AVL_POS_NUM

CLOSE_TPE

COPY_TPE

CREATE_TPE

DEL_INST_TPE

GET_ATTR_PRG

GET_JPOS_TPE

GET_POS_FRM

GET_POS_TPE

GET_POS_TYP

GET_TPE_CMT

GET_TPE_PRM

OPEN_TPE

SELECT_TPE

SET_ATTR_PRG

SET_EPOS_TPE

SET_JPOS_TPE

SET_POS_TPE

SET_TPE_CMT

SET_TRNS_TPE

Translate TRANSLATE

A�13

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�7. BuiltIn Functions and Procedures (Cont�d)

Category Identifier

User Interface ACT_SCREEN

ADD_DICT

ATT_WINDOW_D

ATT_WINDOW_S

CHECK_DICT

CNC_DYN_DISB

CNC_DYN_DISE

CNC_DYN_DISI

CNC_DYN_DISP

CNC_DYN_DISR

CNC_DYN_DISS

DEF_SCREEN

DEF_WINDOW

DET_WINDOW

DISCTRL_ALPH

DISCTRL_FORM

DISCTRL_LIST

DISCTRL_PLMN

DISCTRL_SBMN

DISCTRL_TBL

FORCE_SPMENU

INI_DYN_DISB

INI_DYN_DISE

INI_DYN_DISI

INI_DYN_DISP

INI_DYN_DISR

INI_DYN_DISS

INIT_TBL

POP_KEY_RD

PUSH_KEY_RD

READ_DICT

READ_DICT_V

READ_KB

REMOVE_DICT

SET_CURSOR

SET_LANG

WRITE_DICT

WRITE_DICT_V

Vector APPROACH ORIENT

A�14

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�8. Items

CR Input/Output Item

Table A�9. Statements

ABORT Statement
Assignment Statement
ATTACH Statement
CANCEL Statement
CANCEL FILE Statement
CLOSE FILE Statement
CLOSE HAND Statement
CONDITION..ENDCONDITION Statement
CONNECT TIMER Statement
DELAY Statement
DISABLE CONDITION Statement
DISCONNECT TIMER Statement
ENABLE CONDITION Statement
FOR..ENDFOR Statement
GO TO Statement
HOLD Statement
IF..ENDIF Statement
MOVE ABOUT Statement
MOVE ALONG Statement
MOVE AWAY Statement
MOVE AXIS Statement
MOVE NEAR Statement
MOVE RELATIVE Statement
MOVE TO Statement
OPEN FILE Statement
OPEN HAND Statement
PAUSE Statement
PROGRAM Statement
PULSE Statement
PURGE Statement
READ Statement
RELAX HAND Statement
RELEASE Statement
REPEAT...UNTIL Statement
RESUME Statement
RETURN Statement
ROUTINE Statement
SELECT..ENDSELECT Statement
SIGNAL EVENT Statement
STOP Statement
UNHOLD Statement
USING..ENDUSING Statement
WAIT FOR Statement
WHILE..ENDWHILE Statement
WRITE Statement

A�15

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.1 - A - KAREL LANGUAGE DESCRIPTION

A.1.1 ABORT Action

Purpose: Aborts execution of a running or paused task

Syntax : ABORT <PROGRAM[n]>

Details:

• If task execution is running or paused, the ABORT action will abort task execution.

• The ABORT action can be followed by the clause PROGRAM[n], where n is the task number
to be aborted. Use GET_TASK_INFO to get a task number.

• If PROGRAM[n] is not specified, the current task execution is aborted.

See Also: GET_TSK_INFO Built-in

Chapter 6 CONDITION HANDLERS

Example: Refer to Section B.6, "Path Variables and Condition Handlers Program (PTH_MOVE.KL),"
for a detailed program example.

A.1.2 ABORT Condition

Purpose: Monitors the aborting of task execution

Syntax : ABORT <PROGRAM[n]>

• The ABORT condition is satisfied when the task is aborted. The actions specified by the condition
handler will be performed.

• If PROGRAM [n] is not specified, the current task number is used.

• Actions that are routine calls will not be executed if task execution is aborted.

• The ABORT condition can be followed by the clause PROGRAM[n], where n is the task number
to be monitored. Use GET_TSK_INFO to get a task number.

See Also: CONDITION ... ENDCONDITION Statement, GET_TSK_INFO Built-in, Chapter 6
CONDITION HANDLERS , Appendix E, �Syntax Diagrams,� for additional syntax information

Example: Refer to the following sections for detailed program examples:

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

A�16

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

A.1.3 ABORT Statement

Purpose: Terminates task execution and cancels any motion in progress (or pending)

Syntax : ABORT <PROGRAM[n]>

• After an ABORT, the program cannot be resumed. It must be restarted.

• The statement can be followed by the clause PROGRAM[n], where n is the task number to
be aborted.

See Also: , �Syntax Diagrams,� for additional syntax information

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.1.4 ABORT_TASK Built-In Procedure

Purpose: Aborts the specified running or paused task

Syntax : ABORT_TASK(task_name, force_sw, cancel_mtn_sw, status)

Input/Output Parameters:

[in] task_name :STRING

[in] force_sw :BOOLEAN

[in] cancel_mtn_sw :BOOLEAN

[out] status :INTEGER

%ENVIRONMENT Group :MULTI

Details:

A�17

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• task_name is the name of the task to be aborted. If task name is �*ALL*�, all executing or paused
tasks are aborted except the tasks that have the ��ignore abort request�� attribute set.

• force_sw , if true, specifies to abort a task even if the task has the ��ignore abort request�� set.
force_sw is ignored if task_name is �*ALL*�.

• cancel_mtn_sw specifies whether motion is canceled for all groups belonging to the specified task.

Note Do not use more than one motion group in a KAREL program. If you need to use more
than one motion group, you must use a teach pendant program.

Warning

Do not run a KAREL program that includes more than one motion
group. Otherwise, the robot could move unexpectedly and injure
personnel or damage equipment.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CONT_TASK, RUN_TASK, PAUSE_TASK Built-In Procedures, NO_ABORT Action,
%NO_ABORT Translator Directive, Chapter 15 MULTI-TASKING

Example: Refer to Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.1.5 ABS Built-In Function

Purpose: Returns the absolute value of the argument x, which can be an INTEGER or REAL
expression

Syntax : ABS(x)

Function Return Type :INTEGER or REAL

Input/Output Parameters :

[in] x :INTEGER or REAL expression

%ENVIRONMENT Group :SYSTEM

Details:

• Returns the absolute value of x, with the same data type as x.

Example: Refer to Section B.7, "Listing Files and Programs and Manipulating Strings
(LIST_EX.KL)," for a detailed program example.

A�18

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.1.6 ACOS Built-In Function

Purpose: Returns the arc cosine (cos-1) in degrees of the specified argument

Syntax : ACOS(x)

Function Return Type :REAL

Input/Output Parameters :

[in] x :REAL

%ENVIRONMENT Group :SYSTEM

Details:

• x must be between -1.0 and 1.0; otherwise the program will abort with an error.

• Returns the arccosine of x.

Example: The following example sets ans_r to the arccosine of -1 and writes this value to the screen.
The output for the following example is 180 degrees.

ACOS Built-In Function
routine take_acos
var

ans_r: real
begin

ans_r = acos (-1)
WRITE (’acos -1 ’, ans_r, CR)

END take_acos

The second example causes the program to abort since the input value is less than -1 and not within
the valid range.

ACOS Built-In Function
routine take_acos
var

ans_r: real
begin

ans_r = acos (-1.5) -- causes program to abort
WRITE (’acos -1.5 ’, ans_r, CR)

END take_acos

A�19

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.1.7 ACT_SCREEN Built-In Procedure

Purpose: Activates a screen

Syntax : ACT_SCREEN

Input/Output Parameters :

[in] screen_name :STRING

[out] old_screen_n :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Causes the display device associated with the screen to be cleared and all windows attached to
the screen to be displayed.

• screen_name must be a string containing the name of a previously defined screen, see
DEF_SCREEN Built-in.

• The name of the screen that this replaces is returned in old_screen_n .

• Requires the USER or USER2 menu to be selected before activating the new screen, otherwise
the status will be set to 9093.

� To force the selection of the teach pendant user menu before activating the screen, use
FORCE_SPMENU (tp_panel, SPI_TPUSER, 1).

� To force the selection of the CRT/KB user menu before activating the screen, use
FORCE_SPMENU (crt_panel, SPI_TPUSER, 1).

• If the USER menu is exited and re-entered, your screen will be reactivated as long as the KAREL
task which called ACT_SCREEN continues to run. When the KAREL task is aborted, the system�s
user screen will be re-activated. Refer to Section 7.9 for details on the system�s user screen.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: DEF_SCREEN Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL)

A.1.8 ADD_BYNAMEPC Built-In Procedure

Purpose: To add an integer, real, or string value into a KAREL byte given a data buffer.

A�20

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Syntax : ADD_BYNAMEPC(dat_buffer, dat_index, prog_name, var_name, status)

Input/Output Parameters :

[in] dat_buffer :ARRAY OF BYTE

[in,out] dat_index :INTEGER

[in] prog_name :STRING

[in] var_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PC

Details:

• dat_buffer - an array of up to 244 bytes.

• dat_index - the starting byte number to place the string value.

• prog_name - specifies the name of the program that contains the specified variable.

• var_name - refers to a static program variable. This is only supported by an integer, real, or string
variable (arrays and structures are not supported).

• status - the status of the attempted operation. If not 0, then an error occurred and data was
not placed into the buffer.

The ADD_BYNAMEPC built-in adds integer, real, and string values to the data buffer in the same
manner as the KAREL built-ins ADD_INTPC, ADD_REALPC, and ADD_STRINGPC.

See Also: ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, ADD_STRINGPC

Example: See the following for an example of the ADD_BYNAMEPC built-in.

ADD_BYNAMEPC Built-In Procedure
PROGRAM TESTBYNM
%ENVIRONMENT PC
CONST

er_abort = 2
VAR

dat_buffer: ARRAY[100] OF BYTE
index: INTEGER
status: INTEGER

BEGIN
index = 1
ADD_BYNAMEPC(dat_buffer,index, ’TESTDATA’,’INDEX’,status)
IF status<>0 THEN

A�21

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

POST_ERR(status,’’,0,er_abort)
ENDIF

END testbynm

A.1.9 ADD_DICT Built-In Procedure

Purpose: Adds the specified dictionary to the specified language.

Syntax : ADD_DICT(file_name, dict_name, lang_name, add_option, status)

Input/Output Parameters :

[in] file_name :STRING

[in] dict_name :STRING

[in] lang_name :STRING

[in] add_option :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• file_name specifies the device, path, and file name of the dictionary file to add. The file type
is assumed to be �.TX� (text file).

• dict_name specifies the name of the dictionary to use when reading and writing dictionary
elements. Only 4 characters are used.

• lang_name specifies to which language the dictionary will be added. One of the following
pre-defined constants should be used:

dp_default

dp_english

dp_japanese

dp_french

dp_german

dp_spanish

• The default language should be used unless more than one language is required.

A�22

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• add_option should be the following:

dp_dram Dictionary will be loaded to DRAM memory and retained until the next INIT START.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred
adding the dictionary file.

See Also: READ_DICT, WRITE_DICT, REMOVE_DICT Built-In Procedures, Chapter 10
DICTIONARIES AND FORMS

Example: Refer to the following sections for detailed program examples:

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.12, "Dictionary Files" (DCALPHEG.UTX)

A.1.10 ADD_INTPC Built-In Procedure

Purpose: To add an INTEGER value (type 16 - 10 HEX) into a KAREL byte data buffer.

Syntax : ADD_INTPC(dat_buffer, dat_index, number, status)

Input/Output Parameters :

[in] dat_buffer :ARRAY OF BYTE

[in,out] dat_index :INTEGER

[in] number :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PC

Details:

• dat_buffer - an array of up to 244 bytes.

• dat_index - the starting byte number to place the integer value.

• number - the integer value to place into the buffer.

• status - the status of the attempted operation. If not 0, then an error occurred and data was
not put into the buffer.

The KAREL built-ins ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, and ADD_STRINGPC
can be used to format a KAREL byte buffer in the following way: INTEGER data is added to the
buffer as follows (buffer bytes are displayed in HEX):

A�23

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

beginning index = dat_index

2 bytes - variable type

4 bytes - the number

2 bytes of zero (0) - end of buffer marker

The following is an example of an INTEGER placed into a KAREL array of bytes starting at index = 1:

0 10 0 0 0 5 0 0

where:

0 10 = INTEGER variable type

0 0 0 5 = integer number 5

0 0 = end of data in the buffer

On return from the built-in, index = 7.

See Also: ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, ADD_STRINGPC

Example: Refer to the TESTDATA example in the built-in function SEND_DATAPC.

A.1.11 ADD_REALPC Built-In Procedure

Purpose: To add a REAL value (type 17 - 11 HEX) into a KAREL byte data buffer.

Syntax : ADD_REALPC(dat_buffer, dat_index, number, status)

Input/Output Parameters :

[in] dat_buffer :ARRAY OF BYTE

[in,out] dat_index :INTEGER

[in] number :REAL

[out] status :INTEGER

%ENVIRONMENT Group :PC

Details:

• dat_buffer - an array of up to 244 bytes.

A�24

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• dat_index - the starting byte number to place the real value.

• number - the real value to place into the buffer.

• status - the status of the attempted operation. If not 0, then an error occurred and data was
not placed into the buffer.

The KAREL built-ins ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, and ADD_STRINGPC
can be used to format a KAREL byte buffer in the following way:

REAL data is added to the buffer as follows (buffer bytes are displayed in HEX):

beginning index = dat_index

2 bytes - variable type

4 bytes - the number

2 bytes of zero (0) - end of buffer marker

The following is an example of an REAL placed into a KAREL array of bytes starting at index = 1:

0 11 43 AC CC CD 0 0

where:

0 11 = REAL variable type

43 AC CC CD = real number 345.600006

0 0 = end of data in the buffer

On return from the built-in, index = 7.

See Also: ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, ADD_STRINGPC

Example: Refer to the TESTDATA example in the built-in function SEND_DATAPC.

A.1.12 ADD_STRINGPC Built-In Procedure

Purpose: To add a string value (type 209 - D1 HEX) into a KAREL byte data buffer.

Syntax : ADD_STRINGPC(dat_buffer, dat_index, item, status)

Input/Output Parameters :

[in] dat_buffer :ARRAY OF BYTE

A�25

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in,out] dat_index :INTEGER

[in] item :string

[out] status :INTEGER

%ENVIRONMENT Group :PC

Details:

• dat_buffer - an array of up to 244 bytes.

• dat_index - the starting byte number to place the string value.

• item - the string value to place into the buffer.

• status - the status of the attempted operation. If not 0, then an error occurred and data was
not placed into the buffer.

The KAREL built-ins ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, and ADD_STRINGPC
can be used to format a KAREL byte buffer in the following way:

STRING data is added to the buffer as follows:

beginning index = dat_index

2 bytes - variable type

1 byte - length of text string

text bytes

2 bytes of zero (0) - end of buffer marker

The following is an example of an STRING placed into a KAREL array of bytes starting at index = 1:

0 D1 7 4D 48 53 48 45 4C 4C 0 0 0

where:

0 D1 = STRING variable type

7 = there are 7 characters in string �MHSHELL�

4D 48 53 48 45 4C 4C 0 = �MHSHELL� with end of string 0

0 0 = end of data in the buffer

On return from the built-in, index = 12.

A�26

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

See Also: ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, ADD_STRINGPC

Example: Refer to the TESTDATA example in the built-in function SEND_DATAPC.

A.1.13 %ALPHABETIZE Translator Directive

Purpose: Specifies that static variables will be created in alphabetical order when p-code is loaded.

Syntax : %ALPHABETIZE

Details:

• Static variables can be declared in any order in a KAREL program and %ALPHABETIZE
will cause them to be displayed in alphabetical order in the DATA menu or KCL> SHOW
VARS listing.

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

A.1.14 APPEND_NODE Built-In Procedure

Purpose: Adds an uninitialized node to the end of the PATH argument

Syntax : APPEND_NODE(path_var, status)

Input/Output Parameters :

[in] path_ var :PATH

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• path_var is the path variable to which the node is appended.

A�27

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• The appended PATH node is uninitialized. The node can be assigned values by directly
referencing its NODEDATA structure.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: DELETE_NODE, INSERT_NODE Built-In Procedures

Example: Refer to Section B.2, "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.1.15 APPEND_QUEUE Built-In Procedure

Purpose: Appends an entry to a queue if the queue is not full

Syntax : APPEND_QUEUE(value, queue, queue_data, sequence_no, status)

Input/Output Parameters :

[in] value :INTEGER

[in,out] queue :QUEUE_TYPE

[in,out] queue_data :ARRAY OF INTEGER

[out] sequence_no :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBQMGR

Details:

• value specifies the value to be appended to the queue.

• queue specifies the queue variable for the queue.

• queue_data specifies the array used to hold the data in the queue. The length of this array
determines the maximum number of entries in the queue.

• sequence_no is returned with the sequence number of the entry just appended.

• status is returned with the zero if an entry can be appended to the queue. Otherwise it is returned
with 61001, ��Queue is full.��

See Also: DELETE_QUEUE, INSERT_QUEUE Built-In Procedures. Refer to Section 15.8, "Using
Queues for Task Communication," for more information and an example.

A�28

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.1.16 APPROACH Built-In Function

Purpose: Returns a unit VECTOR representing the z-axis of a POSITION argument

Syntax : APPROACH(posn)

Function Return Type :VECTOR

Input/Output Parameters :

[in] posn :POSITION

%ENVIRONMENT Group :VECTR

Details:

• Returns a VECTOR consisting of the approach vector (positive z-axis) of the argument posn.

Example: This program allows you to move the TCP to a position that is 500 mm away from another
position along the z-axis.

APPROACH Function
PROGRAM p_approach
VAR

start_pos : POSITION
app_vector : VECTOR

BEGIN
MOVE TO start_pos

app_vector = APPROACH (start_pos) --sets app_vector equal to the
--z-axis of start_pos

start_pos.location = start_pos.location + app_vector *500
--moves start_pos + 500 mm
--in z direction

WITH $MOTYPE = LINEAR, MOVE TO start_pos

END p_approach

Note Approach has been left in for older versions of KAREL. You should now directly access the
vectors of a POSITION (i.e., posn. approach.)

A.1.17 ARRAY Data Type

Purpose: Defines a variable, function return type, or routine parameter as ARRAY data type

A�29

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Syntax : ARRAY<[size{,size}]> OF data_type

where:

size : an INTEGER literal or constant

data_type : any type except PATH

Details:

• size indicates the number of elements in an ARRAY variable.

• size must be in the range 1 through 32767 and must be specified in a normal ARRAY variable
declaration. The amount of available memory in your controller might restrict the maximum
size of an ARRAY.

• Individual elements are referenced by the ARRAY name and the subscript size . For example,
table[1] refers to the first element in the ARRAY table.

• An entire ARRAY can be used only in assignment statements or as an argument in routine calls.
In an assignment statement, both ARRAY variables must be of the same size and data_type . If
size is different, the program will be translated successfully but will be aborted during execution,
with error 12304, "Array Length Mismatch."

• size is not specified when declaring ARRAY routine parameters; an ARRAY of any size can be
passed as an ARRAY parameter to a routine.

• size is not used when declaring an ARRAY return type for a function. However, the returned
ARRAY must be of the same size as the ARRAY to which it is assigned in the function call.

• Each element is of the same type designated by data_type .

• Valid ARRAY operators correspond to the valid operators of the individual elements in the
ARRAY.

• Individual elements of an array can be read or written only in the format that corresponds to the
data type of the ARRAY.

• Arrays of multiple dimensions can be defined. Refer to Chapter 2 for more information.

• Variable-sized arrays can be defined. Refer to Chapter 2 for more information.

See Also: ARRAY_LEN Built-In Function, Chapter 5 ROUTINES , for information on passing
ARRAY variables as arguments in routine calls Chapter 7 FILE INPUT/OUTPUT OPERATIONS

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL)

A�30

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.1.18 ARRAY_LEN Built-In Function

Purpose: Returns the number of elements contained in the specified array argument

Syntax : ARRAY_LEN(ary_var)

Function Return Type :INTEGER

Input/Output Parameters :

[in] ary_var :ARRAY

%ENVIRONMENT Group :SYSTEM

• The returned value is the number of elements declared for ary_var , not the number of elements
that have been initialized in ary_var .

Example: Refer to Section B.7, "Listing Files and Programs and Manipulating Strings"
(LIST_EX.KL), for a detailed program example.

A.1.19 ASIN Built-In Function

Purpose: Returns arcsine (sin-1) in degrees of the specified argument

Syntax : ASIN(x)

Function Return Type :REAL

Input/Output Parameters :

[in] x :REAL

%ENVIRONMENT Group :SYSTEM

Details:

• Returns the arcsine of x.

• x must be between -1 and 1, otherwise the program will abort with an error.

A�31

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: The following example sets ans_r to the arcsine of -1 and writes this value to the screen.
The output for the following example is -90 degrees.

ASIN Built-In Function
ROUTINE take_asin
VAR

ans_r: REAL
BEGIN

ans_r = ASIN (-1)
WRITE (’asin -1 ’, ans_r, CR)

END take_asin

The second example causes the program to abort since the input value is less than -1 and not within
the valid range.

ASIN Built-In Function
ROUTINE take_asin
VAR

ans_r: REAL
BEGIN

ans_r = ASIN (-1.5) -- causes program to abort
WRITE (’asin -1.5 ’, ans_r, CR)

END take_asin

A.1.20 Assignment Action

Purpose: Sets the value of a variable to the result of an evaluated expression

Syntax : variable {[subscript{,subscript}]| . field} = expn

where:

variable : any KAREL variable

subscript : an INTEGER expression

expn : a valid KAREL expression

field : any field from a structured variable

Details:

• variable can be any user-defined variable, system variable with write access, or output port
array with write access.

A�32

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• subscript is used to access elements of an array.

• field is used to access fields in a structure.

• expn must be of the same type as the variable or element of variable .

• An exception is that an INTEGER expression can be assigned to a REAL. Any positional types
can be assigned to each other.

• Only system variables with write access (listed as RW in Table 11-3, �System Variables
Summary�) can be used on the left side of an assignment statement. System variables with read
only (RO) or read write (RW) access can be used on the right side.

• Input port arrays cannot be used on the left side of an assignment statement.

See Also: Chapter 3 USE OF OPERATORS , for detailed information about expressions and their
evaluationChapter 6 CONDITION HANDLERS , for more information about using assignment actions.

Example: The following example uses the assignment action to turn DOUT[1] off and set port_var
equal to DOUT[2] when EVENT[1] turns on.

Assignment Action
CONDITION[1]:

WHEN EVENT[1] DO
DOUT[1] = OFF
port_var = DOUT[2]

ENDCONDITION

A.1.21 Assignment Statement

Purpose: Sets the value of a variable to the result of an evaluated expression

Syntax : variable {[subscript{,subscript}]| . field} = expn

where:

variable : any KAREL variable

subscript : an INTEGER expression

expn : a valid KAREL expression

field : any field from a structured variable

Details:

• variable can be any user-defined variable, system variable with write access, or output port
array with write access.

A�33

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• subscript is used to access elements of an array.

• field is used to access fields in a structure.

• expn must be of the same type as the variable or element of variable .

• An exception is that an INTEGER expression can be assigned to a REAL. Any positional types
can be assigned to each other. INTEGER, SHORT, and BYTE can be assigned to each other.

• If variable is of type ARRAY, and no subscript is supplied, the expression must be an ARRAY of
the same type and size. A type mismatch will be detected during translation. A size mismatch
will be detected during execution and causes the program to abort with error 12304, "Array
Length Mismatch."

• If variable is a user-defined structure, and no field is supplied, the expression must be a structure
of the same type.

• Only system variables with write access (listed as RW in Table 11-3, ��System Variables
Summary��) can be used on the left side of an assignment statement. System variables with read
only (RO) or read write (RW) access can be used on the right side.

If read only system variables are passed as parameters to a routine, they are passed by value,
so any attempt to modify them (with an assignment statement) through the parameter in the
routine has no effect.

• Input port arrays cannot be used on the left side of an assignment statement.

See Also: Chapter 3 USE OF OPERATORS , for detailed information about expressions and
their evaluation, Chapter 2 LANGUAGE ELEMENTS . Refer to Appendix B, "KAREL Example
Programs," for more detailed program examples.

Example: The following example assigns an INTEGER literal to an INTEGER variable and then
increments that variable by a literal and value.

Assignment Statement
int_var = 5

int_var = 5 + int_var

Example: The next example multiplies the system variable $SPEED by a REAL value. It is then
used to assign the ARRAY variable array_1 , element loop_count to the new value of the system
variable $SPEED.

Assignment Statement
$SPEED = $SPEED * .25

array_1[loop_count] = $SPEED

Example: The last example assigns all the elements of the ARRAY array_1 to those of ARRAY
array_2 , and all the fields of structure struc_var_1 to those of struc_var_2 .

Assignment Statement
array_2 = array_1

A�34

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

struc_var_2 = struc_var_1

A.1.22 AT NODE Condition

Purpose: Condition is satisfied when a specified PATH node or position has been reached

Syntax : AT NODE[n]

where:

n :an INTEGER expression or * (asterisk)

Details:

• The AT NODE condition can be used only in local condition handlers.

• If the move is along a PATH or to a path node, n specifies the path node. If n is a wildcard (*) or
negative one (-1), any node will satisfy the AT NODE condition.

• If the move is to a position, n = 1 (node 1) can be used to indicate the destination.

• If n is greater than the length of the path (or greater than 1 if the move is to a position), the
condition is never satisfied.

• If n is less than zero or greater than 1000, the program is aborted with an error.

See Also: Chapter 6 CONDITION HANDLERS , for more information on synchronizing local
condition handlers with the motion environment. PATH_LEN Built-In Function

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.1.23 ATAN2 Built-In Function

Purpose: Returns a REAL angle, measured counterclockwise in degrees, from the positive x-axis to
a line connecting the origin and a point whose x- and y- coordinates are specified as the x- and y-
arguments

Syntax : ATAN2(x1, y1)

Function Return Type :REAL

Input/Output Parameters :

[in] x1 :REAL

[in] y1 :REAL

A�35

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

%ENVIRONMENT Group :SYSTEM

Details:

• x1 and y1 specify the x and y coordinates of the point.

• If x1 and y1 are both zero, the interpreter will abort the program.

Example: The following example uses the values 100, 200, and 300 respectively for x, y, and z to
compute the orientation component direction . The position, p1 is then defined to be a position with
direction as its orientation component.

ATAN2 Built-In Function
PROGRAM p_atan2

VAR
p1 : POSITION
x, y, z, direction : REAL

BEGIN
x = 100 -- use appropriate values
y = 200 -- for x,y,z on
z = 300 -- your robot
direction = ATAN2(x, y)
p1 = POS(x, y, z, 0, 0, direction, ’n’) --r orientation component
MOVE TO p1 --of POS equals angle

END p_atan2 --returned by ATAN2(100,200)

A.1.24 ATTACH Statement

Purpose: Gives the KAREL program control of motion for the robot arm and auxiliary and extended
axes

Syntax : ATTACH

Details:

• Used with the RELEASE statement. If motion control is not currently released from program
control, the ATTACH statement has no effect.

• If the teach pendant is still enabled, execution of the KAREL program is delayed until the teach
pendant is disabled. The task status will show a hold of "attach done."

• Stopped motions can only be resumed following execution of the ATTACH statement.

See Also: RELEASE Statement, Chapter 8 MOTION , for more information on motion control,
Appendix E, �Syntax Diagrams,�� for additional syntax information.

A�36

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.1.25 ATT_WINDOW_D Built-In Procedure

Purpose: Attach a window to the screen on a display device

Syntax : ATT_WINDOW_D(window_name, disp_dev_nam, row, col, screen_name, status)

Input/Output Parameters :

[in] window_name :STRING

[in] disp_dev_nam :STRING

[in] row :INTEGER

[in] col :INTEGER

[out] screen_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Causes data in the specified window to be displayed or attached to the screen currently active on
the specified display device.

• window_name must be a previously defined window.

• disp_dev_nam must be one of the display devices already defined:

�CRT� CRT Device

�TP� Teach Pendant Device

• row and col indicate the position in the screen. Row 1 indicates the top row; col 1 indicates
the left-most column. The entire window must be visible in the screen where positioned. For
example, if the screen is 24 rows by 80 columns (as defined by its associated display device) and
the window is 2 rows by 80 columns, row must be in the range 1-23; col must be 1.

• The name of the active screen is returned in screen_name . This can be used to detach the
window later.

• It is an error if the window is already attached to the screen.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

A�37

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.1.26 ATT_WINDOW_S Built-In Procedure

Purpose: Attach a window to a screen

Syntax : ATT_WINDOW_S(window_name, screen_name, row, col, status)

Input/Output Parameters :

[in] window_name :STRING

[in] screen_name :STRING

[in] row :INTEGER

[in] col :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Causes data in the specified window to be displayed or attached to the specified screen at a
specified row and column.

• window_name and screen_name must be previously defined window and screen names.

• row and col indicate the position in the screen. Row 1 indicates the top row; col 1 indicates the
left-most column. The entire window must be visible in the screen as positioned. For example, if
the screen is 24 rows by 80 columns (as defined by its associated display device) and the window
is 2 rows by 80 columns, row must be in the range 1-23; col must be 1.

• If the screen is currently active, the data will immediately be displayed on the device. Otherwise,
there is no change in the displayed data.

• It is an error if the window is already attached to the screen.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: Section 7.9, "User Interface Tips," DET_WINDOW Built-In

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.1.27 AVL_POS_NUM Built-In Procedure

Purpose: Returns the first available position number in a teach pendant program

Syntax : AVL_POS_NUM(open_id, pos_num, status)

A�38

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Input/Output Parameters :

[in] open_id :INTEGER

[out] pos_num : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :TPE

Details:

• open_id specifies the opened teach pendant program. A program must be opened before calling
this built-in.

• pos_num is set to the first available position number.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

Example: Refer to Section B.14, "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A.2 - B - KAREL LANGUAGE DESCRIPTION

A.2.1 BOOLEAN Data Type

Purpose: Defines a variable, function return type, or routine parameter as a BOOLEAN data type

Syntax : BOOLEAN

Details:

• The BOOLEAN data type represents the BOOLEAN predefined constants TRUE, FALSE,
ON, and OFF.

Table A�10 lists some examples of valid and invalid BOOLEAN values used to represent the
Boolean predefined constants.

A�39

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�10. Valid and Invalid BOOLEAN Values

VALID INVALID REASON

TRUE T Must use entire word

ON 1 Cannot use INTEGER values

• TRUE and FALSE typically represent logical flags, and ON and OFF typically represent signal
states. TRUE and ON are equivalent, as are FALSE and OFF.

• Valid BOOLEAN operators are

� AND, OR, and NOT

� Relational operators (>, >=, =, <>, <, and <=)

• The following have BOOLEAN values:

� BOOLEAN constants, whether predefined or user-defined (for example, ON is a predefined
constant)

� BOOLEAN variables and BOOLEAN fields in a structure

� ARRAY OF BOOLEAN elements

� Values returned by BOOLEAN functions, whether user-defined or built-in (for example,
IN_RANGE(pos_var))

� Values resulting from expressions that use relational or BOOLEAN operators (for example,
x > 5.0)

� Values of digital ports (for example, DIN[2])

• Only BOOLEAN expressions can be assigned to BOOLEAN variables, returned from BOOLEAN
function routines, or passed as arguments to BOOLEAN parameters.

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.3, "Saving Data to the Default Device" (SAVE_VR.KL)

Section B.5, "Using Register Built-ins" (REG_EX.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.9 , "Using the File and Device Built-ins" (FILE_EX.KL)

Section B.10 , "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL)

A�40

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.14 , "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.2.2 BYNAME Built-In Function

Purpose: Allows a KAREL program to pass a variable, whose name is contained in a STRING, as a
parameter to a KAREL routine. This means the programmer does not have to determine the variable
name during program creation and translation.

Syntax : BYNAME (prog_name, var_name, entry)

Input/Output Parameters :

[in] prog_name :STRING

[in] var_name :STRING

[in,out] entry :INTEGER

%ENVIRONMENT Group :system

Details:

• This built-in can be used only to pass a parameter to a KAREL routine.

• entry returns the entry number in the variable data table where var_name is located. This variable
does not need to be initialized and should not be modified.

• prog_name specifies the name of the program that contains the specified variable. If prog_name
is equal to �� (double quotes), then the routine defaults to the task name being executed.

• var_name must refer to a static, program variable.

• If var_name does not contain a valid variable name or if the variable is not of the type expected as
a routine parameter, the program is aborted.

• System variables cannot be passed using BYNAME.

• The PATH data type cannot be passed using BYNAME. However, a user-defined type that is a
PATH can be used instead.

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.2.3 BYTE Data Type

Purpose: Defines a variable as a BYTE data type

A�41

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Syntax : BYTE

Details:

• BYTE has a range of (0 ≤n ≥255). No uninitialized checking is done on bytes.

• BYTEs are allowed only within an array or within a structure.

• BYTEs can be assigned to SHORTs and INTEGERs, and SHORTs and INTEGERs can be
assigned to BYTEs. An assigned value outside the BYTE range will be detected during execution
and cause the program to abort.

Example: The following example defines an array of BYTE and a structure containing BYTEs.

BYTE Data Type
PROGRAM byte_ex
%NOLOCKGROUP

TYPE
mystruct = STRUCTURE

param1: BYTE
param2: BYTE
param3: SHORT

ENDSTRUCTURE
VAR

array_byte: ARRAY[10] OF BYTE
myvar: mystruct

BEGIN
array_byte[1] = 254
myvar.param1 = array_byte[1]

END byte_ex

A.2.4 BYTES_AHEAD Built-In Procedure

Purpose: Returns the number of bytes of input data presently in the read-ahead buffer for a KAREL
file. Allows KAREL programs to check instantly if data has been received from a serial port and
is available to be read by the program. BYTES_AHEAD is also supported on socket messaging
and pipes.

Syntax : BYTES_AHEAD(file_id, n_bytes, status)

Input/Output Parameters :

[in] file_id :FILE

[out] n_bytes :INTEGER

[out] status :INTEGER

A�42

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

%ENVIRONMENT Group :FLBT

Details:

• file_id specifies the file that was opened.

• The file_id must be opened with the ATR_READAHD attribute set greater than zero.

• n_byte is the number of bytes in the read_ahead buffer.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

• A non-zero status will be returned for non-serial devices such as files.

See Also: Section 7.2.1 , �File Attributes�

Example: The following example will clear Port 2 (FLPY:) from any bytes still remaining to be read.

BYTES_AHEAD Built-In Procedure
ROUTINE purge_port
VAR

s1 : STRING[1]
n_try : INTEGER
n_bytes : INTEGER
stat : INTEGER

BEGIN
stat=SET_PORT_ATR (port_2, ATR_READAHD, 1) -- sets FLPY: to have a read

-- ahead buffer of 128 bytes
OPEN FILE fi(’RO’, ’rdahd.tst’)
REPEAT

BYTES_AHEAD (fi, n_bytes, stat)
--Get number of bytes ready
--to be read

if (n_bytes = 0) then --if there are no bytes then set stat
stat = 282

endif
if (n_bytes >= 1_) then --there are bytes to be read

read fi(s1::1) --read in one byte at a time
stat=io_status (fi) --get the status of the read operation

endif
UNTIL stat <> 0 --continue until no more bytes are left

END purge_port
BEGIN
-- main program text here
END bytes_ahd

A�43

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.2.5 BYTES_LEFT Built-In Function

Purpose: Returns the number of bytes remaining in the current input data record

Syntax : BYTES_LEFT(file_id)

Function Return Type :INTEGER

Input/Output Parameters :

[in] file_id :FILE

%ENVIRONMENT Group :FLBT

Details:

• file_id specifies the file that was opened.

• If no read or write operations have been done or the last operation was a READ file_id (CR), a
zero is returned.

• If file_id does not correspond to an opened file or one of the pre-defined ��files�� opened to the
respective CRT/KB, teach pendant, and vision windows, the program is aborted.

Note An infeed character (LF) is created when the ENTER key is pressed, and is counted by
BYTES_LEFT.

• This function will return a non-zero value only when data is input from a keyboard (teach pendant
or CRT/KB), not from files or ports.

Warning

This function is used exclusively for reading from a window to
determine if more data has been entered. Do not use this function
with any other file device. Otherwise, you could injure personnel or
damage equipment.

See Also: Section 7.9.1 , "User Menu on the Teach Pendant,"Section 7.9.2 , "User Menu on the
CRT/KB"

Example: The following example reads the first number, qd_field , and then uses BYTES_LEFT to
determine if the user entered any additional numbers. If so, these numbers are then read.

BYTES_LEFT Built-In Function
PROGRAM p_bytesleft
%NOLOCKGROUP
%ENVIRONMENT flbt
CONST

A�44

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

default_1 = 0
default_2 = -1

VAR rqd_field, opt_field_1, opt_field_2: INTEGER
BEGIN

WRITE(’Enter integer field(s): ’)
READ(rqd_field)
IF BYTES_LEFT(TPDISPLAY) > 0 THEN

READ(opt_field_1)
ELSE

opt_field_1 = default_1
ENDIF

IF BYTES_LEFT(TPDISPLAY) > 0 THEN
READ(opt_field_2)

ELSE
opt_field_2 = default_2

ENDIF
END p_bytesleft

A.3 - C - KAREL LANGUAGE DESCRIPTION

A.3.1 CALL_PROG Built-In Procedure

Purpose: Allows a KAREL program to call an external KAREL or teach pendant program. This
means that the programmer does not have to determine the program to be called until run time.

Syntax : CALL_PROG(prog_name, prog_index)

Input/Output Parameters :

[in] prog_name :STRING

[in,out] prog_index :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• prog_name is the name of the program to be executed, in the current calling task.

• prog_index returns the entry number in the program table where prog_name is located. This
variable does not need to be initialized and should not be modified.

• CALL_PROG cannot be used to run internal or external routines.

See Also: CURR_PROG and CALL_PROGLIN Built-In Functions

A�45

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.3.2 CALL_PROGLIN Built-In Procedure

Purpose: Allows a KAREL program to call an external KAREL or teach pendant program, beginning
at a specified line. This means that the programmer does not need to know, at creation and translation,
what program will be called. The programmer can decide this at run time.

Syntax : CALL_PROGLIN(prog_name, prog_line, prog_index, pause_entry)

Input/Output Parameters :

[in] prog_name :STRING

[in] prog_line :INTEGER

[in,out] prog_index :INTEGER

[in] pause_entry :BOOLEAN

%ENVIRONMENT Group :BYNAM

Details:

• prog_name is the name of the program to be executed, in the current calling task.

• prog_line specifies the line at which to begin execution for a teach pendant program. 0 or 1 is
used for the beginning of the program.

• KAREL programs always execute at the beginning of the program.

• prog_index returns the entry number in the program table where prog_name is located. This
variable does not need to be initialized and should not be modified.

• pause_entry specifies whether to pause program execution upon entry of the program.

• CALL_PROGLIN cannot be used to run internal or external routines.

See Also: CURR_PROG and CALL_PROG Built-In Function

Example: Refer to Section B.5 ,"Using Register Built-ins" (REG_EX.KL), for a detailed program
example.

A.3.3 CANCEL Action

Purpose: Terminates any motion in progress

A�46

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Syntax : CANCEL <GROUP[n{,n}]>

Details:

• Cancels a motion currently in progress or pending (but not stopped) for one or more groups.

• CANCEL does not cancel motions that are already stopped. To cancel a motion that is already
stopped, use the CNCL_STP_MTN built-in routine.

• If the group clause is not present, all groups for which the task has control (when the condition is
defined) will be canceled. In particular, if the program containing the condition handler definition
contains the %NOLOCKGROUP directive, the CANCEL action will not cancel motion in any
group.

• If a motion that is canceled and is part of a SIMULTANEOUS or COORDINATED motion with
other groups, the motions for all groups are canceled.

• The robot and auxiliary or extended axes decelerate smoothly to a stop. The remainder of the
motion is canceled.

• Canceled motions are treated as completed and cannot be resumed.

• The CANCEL action in a global condition handler also cancels any pending motions.

• The CANCEL action in a local condition handler cancels only the motion in progress, permitting
any pending motions to start.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

Example: The following example uses a local condition handler to cancel only the current motion
in progress.

CANCEL Action
MOVE ALONG some_path,

WHEN AT NODE[n] DO
CANCEL

ENDMOVE

A.3.4 CANCEL Statement

Purpose: Terminates any motion in progress.

Syntax : CANCEL <GROUP[n{,n}]>

A�47

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Details:

• Cancels a motion currently in progress or pending (but not stopped) for one or more groups.

• CANCEL does not cancel motions that are already stopped. To cancel a motion that is already
stopped, use the CNCL_STP_MTN built-in routine.

• If the group clause is not present, all groups for which the task has control will be canceled.
In particular, if the program using the CANCEL statement contains the %NOLOCKGROUP
directive, the CANCEL statement will not cancel motion in any group.

• If a motion that is canceled is part of a SIMULTANEOUS or COORDINATED motion with other
groups, the motions for all groups are canceled.

• The robot and auxiliary axes decelerate smoothly to a stop. The remainder of the motion is
canceled.

• Canceled motions are treated as completed and cannot be resumed.

• CANCEL does not affect stopped motions. Stopped motions can be resumed.

• If an interrupt routine executes a CANCEL statement and the interrupted statement was a motion
statement, when the interrupted program resumes, execution normally resumes with the statement
following the motion statement.

• CANCEL might not work as expected if it is used in a routine called by a condition handler. The
motion might already be put on the stopped motion queue before the routine is called. Use a
CANCEL action directly in the condition handler to be sure the motion is canceled.

• Motion cannot be cancelled for a different task.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Appendix E , ��Syntax Diagrams,�� for additional syntax information

Example: The following example cancels the current motion if DIN[1] is ON.

CANCEL Statement
MOVE ALONG some_path NOWAIT

IF DIN[1] THEN
WRITE (’Motion canceled’,CR)
CANCEL

ENDIF

A�48

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.3.5 CANCEL FILE Statement

Purpose: Cancels a READ or WRITE statement that is in progress.

Syntax : CANCEL FILE [file_var]

where:

file_var :a FILE variable

Details:

• Used to cancel input or output on a specified file

• The built-in function IO_STATUS can be used to determine if a CANCEL FILE operation was
successful or, if it failed to determine the reason for the failure.

See Also: IO_STATUS Built-In Function, Chapter 7 FILE INPUT/OUTPUT OPERATIONS ,
Appendix E, ��Syntax Diagrams,�� for additional syntax information

Example: The following example reads an integer, but cancels the read if the F1 key is pressed.

CANCEL FILE Statement
PROGRAM can_file_ex

%ENVIRONMENT FLBT
%ENVIRONMENT UIF
%NOLOCKGROUP

VAR
int_var: INTEGER

ROUTINE cancel_read
BEGIN

CANCEL FILE TPDISPLAY
END cancel_read

BEGIN
CONDITION[1]:

WHEN TPIN[ky_f1]+ DO
cancel_read

ENABLE CONDITION[1]
ENDCONDITION

ENABLE CONDITION[1]
REPEAT

-- Read an integer, but cancel if F1 pressed
CLR_IO_STAT(TPDISPLAY)

A�49

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

WRITE(CR, ’Enter an integer: ’)
READ(int_var)

UNTIL FALSE

end can_file_ex

A.3.6 CHECK_DICT Built-In Procedure

Purpose: Checks the specified dictionary for a specified element

Syntax : CHECK_DICT(dict_name, element_no, status)

Input/Output Parameters :

[in] dict_name :STRING

[in] element_no :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• dict_name is the name of the dictionary to check.

• element_no is the element number within the dictionary.

• status explains the status of the attempted operation. If not equal to 0, then the element could not
be found.

See Also: ADD_DICT, READ_DICT, WRITE_DICT, REMOVE_DICT Built-In Procedures. Refer
to the program example for the DISCTRL_LIST Built-In Procedure and Chapter 10 DICTIONARIES
AND FORMS

Example: Refer to Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.3.7 CHECK_EPOS Built-In Procedure

Purpose: Checks that the specified position is valid and that no motion errors will be generated
when moving to this position

Syntax : CHECK_EPOS (eposn, uframe, utool, status <, group_no>)

Input/Output Parameters :

A�50

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] eposn :XYZWPREXT

[in] uframe :POSITION

[in] utool :POSITION

[out] status :INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• eposn is the XYZWPREXT position to be checked.

• uframe specifies the uframe position to use with eposn.

• utool specifies the utool position to use with eposn.

• status explains the status of the check. If the position is reachable, the status will be 0.

• group_no is optional, but if specified will be the group number for eposn . If not specified the
default group of the program is used.

See Also: GET_POS_FRM

Example: Refer to Section B.7 "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

A.3.8 CHECK_NAME Built-In Procedure

Purpose: Checks a specified file or program name for illegal characters.

Syntax : CHECK_NAME (name_spec, status)

Input/Output Parameters :

[in] name_spec :STRING

[out] status :INTEGER

%ENVIRONMENT Group :FDEV

Details:

• Name_spec specifies the string to check for illegal characters. The string can be the file name or
program name. It should not include the extension of the file or the program. This built-in does
not handle special system names such as *SYSTEM*.

A�51

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.3.9 CHR Built-In Function

Purpose: Returns the character that corresponds to a numeric code

Syntax : CHR (code)

Function Return Type :STRING

Input/Output Parameters :

[in] code :INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• code represents the numeric code of the character for either the ASCII, Graphic, or Multinational
character set.

• Returns a single character string that is assigned the value of code .

See Also: Appendix D,�ASCII Character Codes�

Example: Refer to the following sections for detailed program examples:

Section B.4,"Standard Routines" (ROUT_EX.KL)

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.3.10 CLEAR Built-In Procedure

Purpose: Clears the specified program and/or variables from memory

Syntax : CLEAR(file_spec, status)

Input/Output Parameters :

[in] file_spec :STRING

A�52

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• file_spec specifies the program name and type of data to clear. The following types are valid:

no ext :KAREL or Teach Pendant program and variables.TP :Teach Pendant program.PC :KAREL
program.VR :KAREL variables

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: The following example clears a KAREL program, clears the variables for a program,
and clears a teach pendant program.

CLEAR Built-In Procedure
-- Clear KAREL program

CLEAR(’test1.pc’, status)

-- Clear KAREL variables
CLEAR(’testvars.vr’, status)

-- Clear Teach Pendant program
CLEAR(’prg1.tp’, status)

A.3.11 CLEAR_SEMA Built-In Procedure

Purpose: Clear the indicated semaphore by setting the count to zero

Syntax : CLEAR_SEMA(semaphore_no)

Input/Output Parameters :

[in] semaphore_no :INTEGER

%ENVIRONMENT Group :MULTI

Details:

• The semaphore indicated by semaphore_no is cleared.

• semaphore_no must be in the range of 1 to the number of semaphores defined on the controller.

• All semaphores are cleared at COLD start. It is good practice to clear a semaphore prior to
using it. Before several tasks begin sharing a semaphore, one and only one of these task, should
clear the semaphore.

A�53

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: POST_SEMA, PEND_SEMA Built-In Procedures, SEMA_COUNT Built-In Function,
examples in Chapter 14, "Multi-Tasking"

A.3.12 CLOSE FILE Statement

Purpose: Breaks the association between a FILE variable and a data file or communication port

Syntax : CLOSE FILE file_var

where:

file_var :a FILE variable

Details:

• file_var must be a static variable that was used in the OPEN FILE statement.

• Any buffered data associated with the file_var is written to the file or port.

• The built-in function IO_STATUS will always return zero.

See Also: IO_STATUS Built-In Function, Chapter 7 FILE INPUT/OUTPUT OPERATIONS ,
Appendix E , ��Syntax Diagrams,�� for additional syntax information

Example: Refer to Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.3.13 CLOSE HAND Statement

Purpose: Causes the specified hand to close

Syntax : CLOSE HAND hand_num

where:

hand_num :an INTEGER expression

Details:

• The actual effect of the statement depends on how the HAND signals are set up in I/O system.

• The valid range of values for hand_num is 1-2. Otherwise, the program is aborted with an error.

• The statement has no effect if the value of hand_num is in range but the hand is not connected.

• The program is aborted with an error if the value of hand_num is in range but the HAND signal
represented by that value has not been assigned.

A�54

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

See Also: Chapter 14 INPUT/OUTPUT SYSTEM , for more information on hand signals, Appendix E,
��Syntax Diagrams,�� for additional syntax information

Example: The following example moves the robot to the first position and closes the hand specified
by hand_num .

CLOSE HAND Statement
MOVE TO p1

CLOSE HAND hand_num

A.3.14 CLOSE_TPE Built-In Procedure

Purpose: Closes the specified teach pendant program

Syntax : CLOSE_TPE(open_id, status)

Input/Output Parameters :

[in] open_id :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id indicates the teach pendant program to close. All teach pendant programs that are opened
must be closed before they can be executed. Any unclosed programs remain opened until the
KAREL program which opened it is aborted or runs to completion.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

See Also: OPEN_TPE Built-In Procedure

Example: Refer to Section B.14 , "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A.3.15 CLR_IO_STAT Built-In Procedure

Purpose: Clear the results of the last operation on the file argument

Syntax : CLR_IO_STAT(file_id)

Input/Output Parameters :

A�55

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] file_id :FILE

%ENVIRONMENT Group :PBCORE

Details:

• Causes the last operation result on file_id , which is returned by IO_STATUS, to be cleared to zero.

See Also: I/O-STATUS Built-In Function

Example: Refer to Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.3.16 CLR_PORT_SIM Built-In Procedure

Purpose: Sets the specified port to be unsimulated

Syntax : CLR_PORT_SIM(port_type, port_no, status)

Input/Output Parameters :

[in] port_type :INTEGER

[in] port_no :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :iosetup

Details:

• port_type specifies the code for the type of port to unsimulate. Codes are defined in
FR:KLIOTYPS.KL.

• port_no specifies the port number to unsimulate.

• status is returned with zero if parameters are valid and the simulation of the specified port
is cleared.

See Also: GET_PORT_SIM, SET_PORT_SIM Built-In Procedures

A.3.17 CLR_POS_REG Built-In Procedure

Purpose: Removes all data for the specified group in the specified position register

Syntax : CLR_POS_REG(register_no, group_no, status)

A�56

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Input/Output Parameters :

[in] register_no :INTEGER

[in] group_no :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :REGOPE

Details:

• register_no specifies the register number whose data should be cleared.

• If group_no is zero, data for all groups is cleared.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: SET_POS_REG Built-In Procedure, GET_POS_REG Built-In Function

Example: The following example clears the first 100 position registers.

CLR_POS_REG Built-In Procedure
FOR register_no = 1 to 100 DO

CLR_POS_REG(register_no, 0, status)
ENDFOR

A.3.18 %CMOSVARS Translator Directive

Purpose: Specifies the default storage for KAREL variables is permanent memory

Syntax : %CMOSVARS

Details:

• If %CMOSVARS is specified in the program, then all static variables by default will be created in
permanent memory.

• If %CMOSVARS is not specified, then all static variables by default will be created in temporary
memory.

• If a program specifies %CMOSVARS, but not all static variables need to be created in permanent
memory, the IN DRAM clause can be used on selected variables.

See Also: Chapter 1.3.1, "Memory,� IN DRAM Clause

Example: Refer to the following sections for detailed program examples:

Section B.10 , "Using Dynamic Display Built-ins" (DCLST_EX.KL)

A�57

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.3.19 CNC_DYN_DISB Built-In Procedure

Purpose: Cancels the dynamic display based on the value of a BOOLEAN variable in a specified
window.

Syntax : CNC_DYN_DISB (b_var, window_name, status)

Input/Output Parameters :

[in] b_var :BOOLEAN

[in] window_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• b_var is the boolean variable whose dynamic display is to be canceled.

• window_name must be a previously defined window name. See Section 7.9.1. and Section
7.9.2 for predefined window names.

• If there is more than one display active for this variable in this window, all the displays are
canceled.

• status returns an error if there is no dynamic display active specifying this variable and window.
If not equal to 0, then an error occurred.

See Also: INI_DYN_DISB Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

A.3.20 CNC_DYN_DISE Built-In Procedure

Purpose: Cancels the dynamic display based on the value of an INTEGER variable in a specified
window.

Syntax : CNC_DYN_DISe (e_var, window_name, status)

A�58

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Input/Output Parameters :

[in] e_var :INTEGER

[in] window_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• e_var is the integer variable whose dynamic display is to be canceled.

• Refer to the CNC_DYN_DISB built-in procedure for a description of the other parameters
listed above.

See Also: INI_DYN_DISE Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11 , "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

A.3.21 CNC_DYN_DISI Built-In Procedure

Purpose: Cancels the dynamic display of an INTEGER variable in a specified window.

Syntax : CNC_DYN_DISI(int_var, window_name, status)

Input/Output Parameters :

[in] int_var :INTEGER

[in] window_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• int_var is the integer variable whose dynamic display is to be canceled.

• Refer to the CNC_DYN_DISB built-in procedure for a description of the other parameters
listed above.

A�59

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: INI_DYN_DISI Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

A.3.22 CNC_DYN_DISP Built-In Procedure

Purpose: Cancels the dynamic display based on the value of a port in a specified window.

Syntax : CNC_DYN_DISP(port_type, port_no, window_name, status)

Input/Output Parameters :

[in] port_type :INTEGER

[in] port_no :INTEGER

[in] window_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• port_type and port_no are integer values specifying the port whose dynamic display is to be
canceled.

• Refer to the CNC_DYN_DISB built-in procedure for a description of the other parameters
listed above.

See Also: INI_DYN_DISP Built-In Procedure for information on port_type codes.

Example: Refer to the following sections for detailed program examples:

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

A.3.23 CNC_DYN_DISR Built-In Procedure

Purpose: Cancels the dynamic display of a REAL number variable in a specified window.

A�60

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Syntax : CNC_DYN_DISR(real_var, window_name, status)

Input/Output Parameters :

[in] real_var :REAL

[in] window_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• real_var is the REAL variable whose dynamic display is to be canceled.

• Refer to the CNC_DYN_DISB built-in procedure for a description of the other parameters
listed above.

See Also: INI_DYN_DISR Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

A.3.24 CNC_DYN_DISS Built-In Procedure

Purpose: Cancels the dynamic display of a STRING variable in a specified window.

Syntax : CNC_DYN_DISS(str_var, window_name, status)

Input/Output Parameters :

[in] str_var :STRING

[in] window_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• str_var is the STRING variable whose dynamic display is to be canceled.

A�61

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• Refer to the CNC_DYN_DISB built-in procedure for a description of the other parameters
listed above.

See Also: INI_DYN_DISS Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

A.3.25 CNCL_STP_MTN Built-In Procedure

Purpose: Cancels all stopped motions

Syntax : CNCL_STP_MTN

%ENVIRONMENT Group :motn

• All stopped motions will be canceled for all groups that the program controls.

• The statements following the motion statements will be executed.

• CNCL_STP_MTN will have no effect if no motions are currently stopped.

• Motion cannot be cancelled for a different task.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

Example: The following example will cancel all stopped motions for all groups that the program
controls after an emergency stop has occurred.

CNCL_STP_MTN Built-In Procedure
ROUTINE e_stop_hndlr

BEGIN
CNCL_STP_MTN

END e_stop_hndlr

CONDITION[100]:
WHEN ERROR[estop] DO

UNPAUSE

A�62

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

ENABLE CONDITION[100]
e_stop_hndlr

END CONDITION
ENABLE CONDITION[100]

A.3.26 CNV_CONF_STR Built-In Procedure

Purpose: Converts the specified CONFIG into a STRING

Syntax : CNV_CONF_STR(source, target)

Input/Output Parameters :

[in] source :CONFIG

[out] target :STRING

%ENVIRONMENT Group :STRNG

Details:

• target receives the STRING form of the configuration specified by source .

• target must be long enough to accept a valid configuration string for the robot arm attached to the
controller. Otherwise, the program will be aborted with an error.

Using a length of 25 is generally adequate because the longest configuration string of any robot is
25 characters long.

See Also: CNV_STR_CONF Built-In Procedure

Example: The following example converts the configuration from position posn into a STRING and
puts it into config_string . The string is then displayed on the screen.

CNV_CONF_STR Built-In Procedure
CNV_CONF_STR(posn.pos_config, config_string)
WRITE(’Configuration of posn: ’, config_string, cr)

A.3.27 CNV_INT_STR Built-In Procedure

Purpose: Formats the specified INTEGER into a STRING

Syntax : CNV_INT_STR(source, length, base, target)

Input/Output Parameters :

A�63

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] source :INTEGER expression

[in] length :INTEGER expression

[in] base :INTEGER expression

[out] target :STRING expression

%ENVIRONMENT Group :PBCORE

Details:

• source is the INTEGER to be formatted into a STRING.

• length specifies the minimum length of the target . The actual length of target may be greater if
required to contain the contents of source and at least one leading blank.

• base indicates the number system in which the number is to be represented. base must be in
the range 2-16 or 0 (zero) indicating base 10.

• If the values of length or base are invalid, target is returned uninitialized.

• If target is not declared long enough to contain source and at least one leading blank, it is returned
with one blank and the rest of its declared length filled with ��*".

See Also: CNV_STR_INT Built-In Procedure

Example: Refer to the following section for detailed program examples:

Section B.7 , "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

A.3.28 CNV_JPOS_REL Built-In Procedure

Purpose: Allows a KAREL program to examine individual joint angles as REAL values

Syntax : CNV_JPOS_REL(jointpos, real_array, status)

Input/Output Parameters :

[in] joint_pos :JOINTPOS

[out] real_array :ARRAY [num_joints] OF REAL

[out] status :INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

A�64

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• joint_pos is one of the KAREL joint position data types: JOINTPOS, or JOINTPOS1 through
JOINTPOS9.

• num_joints can be smaller than the number of joints in the system. A value of nine can be used if
the actual number of joints is unknown. Joint number one will be stored in real_array element
number one, etc. Excess array elements will be ignored.

• The measurement of the real_array elements is in degrees.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CNV_REL_JPOS Built-In Procedure

Example: Refer to Section B.14 , "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A.3.29 CNV_REAL_STR Built-In Procedure

Purpose: Formats the specified REAL value into a STRING

Syntax : CNV_REAL_STR(source, length, num_digits, target)

Input/Output Parameters :

[in] source :REAL expression

[in] length :INTEGER expression

[in] num_digits :INTEGER expression

[out] target :STRING

%ENVIRONMENT Group :STRNG

Details:

• source is the REAL value to be formatted.

• length specifies the minimum length of the target . The actual length of target may be greater if
required to contain the contents of source and at least one leading blank.

• num_digits specifies the number of digits displayed to the right of the decimal point. If
num_digits is a negative number, source will be formatted in scientific notation (where the ABS(
num_digits) represents the number of digits to the right of the decimal point.) If num_digits is
0, the decimal point is suppressed.

• If length or num_digits are invalid, target is returned uninitialized.

• If the declared length of target is not large enough to contain source with one leading blank, target
is returned with one leading blank and the rest of its declared length filled with ��*��s (asterisks).

A�65

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: CNV_STR_REAL Built-In Procedure

Example: The following example converts the REAL number in cur_volts into a STRING and puts
it into volt_string . The minimum length of cur_volts is specified to be seven characters with two
characters after the decimal point. The contents of volt_string is then displayed on the screen.

CNV_REAL_STR Built-In Procedure
cur_volts = AIN[2]
CNV_REAL_STR(cur_volts, 7, 2, volt_string)
WRITE(’Voltage=’,volt_string,CR)

A.3.30 CNV_REL_JPOS Built-In Procedure

Purpose: Allows a KAREL program to manipulate individual angles of a joint position

Syntax : CNV_REL_JPOS(real_array, joint_pos, status)

Input/Output Parameters :

[in] real_array :ARRAY [num_joints] OF REAL

[out] joint_pos :JOINTPOS

[out] status :INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• real_array must have a declared size, equal to or greater than, the number of joints in the system.
A value of nine can be used for num_joints, if the actual number of joints is unknown. Array
element number one will be stored in joint number one, and so forth. Excess array elements will
be ignored. If the array is not large enough the program will abort with an invalid argument error.

• If any of the elements of real_array that correspond to a joint angle are uninitialized, the program
will be paused with an uninitialized variable error.

• The measurement of the real_array elements is degrees.

• joint_pos is one of the KAREL joint position types: JOINTPOS, or JOINTPOS1 through
JOINTPOS9.

• joint_pos receives the joint position form of real_array.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: Refer to the following sections for detailed program examples:

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

A�66

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.3.31 CNV_STR_CONF Built-In Procedure

Purpose: Converts the specified configuration string into a CONFIG data type

Syntax : CNV_STR_CONF(source, target, status)

Input/Output Parameters :

[in] source :STRING

[out] target :CONFIG

[out] status :INTEGER

%ENVIRONMENT Group :STRNG

Details:

• target receives the CONFIG form of the configuration string specified by source .

• source must be a valid configuration string for the robot arm attached to the controller.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CNV_CONF_STR Built-In Procedure

Example: The following example sets the configuration of position posn to the configuration
specified by config_string and then moves the TCP to that position.

CNV_STR_CONF Built-In Procedure
CNV_STR_CONF(config_string, posn.pos_config, status)
MOVE TO posn

A.3.32 CNV_STR_INT Built-In Procedure

Purpose: Converts the specified STRING into an INTEGER

Syntax : CNV_STR_INT(source, target)

Input/Output Parameters :

[in] source :STRING

A�67

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[out] target :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• source is converted into an INTEGER and stored in target .

• If source does not contain a valid representation of an INTEGER, target is set uninitialized.

See Also: CNV_INT_STR Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.2 , "Copying Path Variables" (CPY_PTH.KL)

Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL)

A.3.33 CNV_STR_REAL Built-In Procedure

Purpose: Converts the specified STRING into a REAL

Syntax : CNV_STR_REAL(source, target)

Input/Output Parameters :

[in] source :STRING

[out] target :REAL

%ENVIRONMENT Group :PBCORE

Details:

• Converts source to a REAL number and stores the result in target .

• If source is not a valid decimal representation of a REAL number, target will be set uninitialized.
source may contain scientific notation of the form nn.nnEsnn where s is a + or - sign.

See Also: CNV_REAL_STR Built-In Procedure

Example: The following example converts the STRING str into a REAL and puts it into rate .

CNV_STR_REAL Built-In Procedure
REPEAT
WRITE(’Enter rate:’)
READ(str)
CNV_STR_REAL(str, rate)

A�68

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

UNTIL NOT UNINIT(rate)

A.3.34 CNV_STR_TIME Built-In Procedure

Purpose: Converts a string representation of time to an integer representation of time.

Syntax : CNV_STR_TIME(source, target)

Input/Output Parameters :

[in] source :STRING

[out] target :INTEGER

%ENVIRONMENT Group :TIM

Details:

• The size of the string parameter, source , is STRING[20].

• source must be entered using ��DD-MMM-YYY HH:MM:SS�� format. The seconds specifier,
��SS,�� is optional. A value of zero (0) is used if seconds is not specified. If source is invalid,
target will be set to 0.

• target can be used with the SET_TIME Built-In Procedure to reset the time on the system. If
target is 0, the time on the system will not be changed.

See Also: SET_TIME Built-In Procedure

Example: The following example converts the STRING variable str_time , input by the user in
��DD-MMM-YYY HH:MM:SS�� format, to the INTEGER representation of time int_time using the
CNV_STR_TIME procedure. SET_TIME is then used to set the time within the KAREL system to
the time specified by int_time .

CNV_STR_TIME Built-In Procedure
WRITE(’Enter the new time : ’)
READ(str_time)
CNV_STR_TIME(str_time,int_time)
SET_TIME(int_time)

A.3.35 CNV_TIME_STR Built-In Procedure

Purpose: Converts an INTEGER representation of time to a STRING

Syntax : CNV_TIME_STR(source, target)

A�69

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Input/Output Parameters :

[in] source :INTEGER

[out] target :STRING

%ENVIRONMENT Group :TIM

Details:

• The GET_TIME Built-In Procedure is used to determine the INTEGER representation of
time. CNV_TIME_STR is used to convert source to target , which will be displayed in
��DD-MMM-YYY HH:MM:�� format.

See Also: GET_TIME Built-In Procedure

Example: Refer to Section B.9 , "Using the File and Device Built-ins" (FILE_EX.KL), for a detailed
program example.

A.3.36 %COMMENT Translator Directive

Purpose: Specifies a comment of up to 16 characters

Syntax : %COMMENT = �ssssssssssssssss�

where ssssssssssssssss = space

Details:

• The comment can be up to 16 characters long.

• During load time, the comment will be stored as a program attribute and can be displayed on the
teach pendant or CRT/KB.

• %COMMENT must be used after the PROGRAM statement, but before any CONST, TYPE, or
VAR sections.

See Also: SET_ATTR_PRG and GET_ATTR_PRG Built-In Procedures

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.3,"Saving Data to the Default Device" (SAVE_VR.KL)

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

A�70

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.3.37 COMMON_ASSOC Data Type

Purpose: Defines a variable or structure field as a COMMON_ASSOC data type

Syntax : COMMON_ASSOC

Details:

• COMMON_ASSOC consists of a record containing standard associated data common for all
motion groups. It contains the following predefined fields, all INTEGERs:

� SEGTERMTYPE :termination type

� SEGDECELTOL :deceleration tolerance

� SEGRELACCEL :not implemented

� SEGTIMESHFT :not implemented

• Variables and fields of structures can be declared as COMMON_ASSOC.

• Subfields of this structure can be accessed and set using the usual structure field notation.

• Variables and fields declared COMMON_ASSOC can be:

� Passed as parameters.

� Written to and read from unformatted files.

� Assigned to one another.

• Each subfield of a COMMON_ASSOC variable or structure field can be passed as a parameter
to a routine, but is always passed by value.

See Also: Section 8.4.7 , "Path Motion," for default values, Section 2.1.6 , "Predefined Identifiers"

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A�71

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.3.38 CONDITION...ENDCONDITION Statement

Purpose: Defines a global condition handler

Syntax : CONDITION[cond_hand_no]: [with_list]

WHEN cond_list DO action_list

{WHEN cond_list DO action_list}

ENDCONDITION

Details:

• cond_hand_no specifies the number associated with the condition handler and must be in the
range of 1-1000. The program is aborted with an error if it is outside this range.

• If a condition handler with the specified number already exists, the old one is replaced with the
new one.

• The optional [with_list] can be used to specify condition handler qualifiers. See the WITH
clause for more information.

• All of the conditions listed in a single WHEN clause must be satisfied simultaneously for the
condition handler to be triggered.

• Multiple conditions must all be separated by the AND operator or the OR operator. Mixing of
AND and OR is not allowed.

• The actions listed after DO are to be taken when the corresponding conditions of a WHEN
clause are satisfied simultaneously.

• Multiple actions are separated by a comma or on a new line.

• Calls to function routines are not allowed in a CONDITION statement.

• The condition handler is initially disabled and is disabled again whenever it is triggered. Use the
ENABLE statement or action, specifying the condition handler number, to enable it.

• Use the DISABLE statement or action to deactivate a condition handler.

• The condition handler remains defined and can subsequently be reactivated by the ENABLE
statement or action.

• The PURGE statement can be used to delete the definition of a condition handler.

• Condition handlers are known only to the task which defines them. Two different tasks can use
the same cond_hand_no even though they specify different conditions.

See Also: Chapter 6 CONDITION HANDLERS , Appendix E, ��Syntax Diagrams,�� for additional
syntax information

Example: Refer to the following sections for detailed program examples:

A�72

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.6 , "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.3.39 CONFIG Data Type

Purpose: Defines a variable or structure field as a CONFIG data type

Syntax : CONFIG

Details:

• CONFIG defines a variable or structure field as a highly compact structure consisting of fields
defining a robot configuration.

• CONFIG contains the following predefined fields:

� CFG_TURN_NO1 :INTEGER

� CFG_TURN_NO2 :INTEGER

� CFG_TURN_NO3 :INTEGER

� CFG_FLIP :BOOLEAN

� CFG_LEFT :BOOLEAN

� CFG_UP :BOOLEAN

� CFG_FRONT :BOOLEAN

• Variables and fields of structures can be declared as CONFIG.

• Subfields of CONFIG data type can be accessed and set using the usual structure field notation.

• Variables and fields declared as CONFIG can be

� Assigned to one another.

� Passed as parameters.

� Written to and read from unformatted files.

• Each subfield of a CONFIG variable or structure field can be passed as a parameter to a routine,
but is always passed by value.

• A CONFIG field is part of every POSITION and XYZWPR variable and field.

• An attempt to assign a value to a CONFIG subfield that is too large for the field results in an
abort error.

Example: The following example shows how subfields of the CONFIG structure can be accessed
and set using the usual structure.field notation.

A�73

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

CONFIG Data Type
VAR
config_var1 config_var2: CONFIG
pos_var: POSITION
seam_path: PATH
i: INTEGER

BEGIN
config_var1 = pos_var.config_data
config_var1 = config_var2
config_var1.cfg_turn_no1 = 0
IF pos_var.pos_config_data.cfg_flip THEN...
FOR i = 1 TO PATH_LEN(seam_path) DO
seam_path[i].node_pos.pos_config = config_ar1
ENDFOR

A.3.40 CONNECT TIMER Statement

Purpose: Causes an INTEGER variable to start being updated as a millisecond clock

Syntax : CONNECT TIMER TO clock_var

where:

clock_var :a static, user-defined INTEGER variable

Details:

• clock_var is presently incremented by the value of the system variable $SCR.$COND_TIME
every $SCR.$COND_TIME milliseconds as long as the program is running or paused
and continues until the program disconnects the timer, ends, or aborts. For example, if
$SCR.$COND_TIM E=32 then clock_var will be incremented by 32 every 32 milliseconds.

• You should initialize clock_var before using the CONNECT TIMER statement to ensure a
proper starting value.

• If the variable is uninitialized, it will remain so for a short period of time (up to 32 milliseconds)
and then it will be set to a very large negative value (-2.0E31 + 32 milliseconds) and incremented
from that value.

• The program can reset the clock_var to any value while it is connected.

• A clock_var initialized at zero wraps around from approximately two billion to approximately
minus two billion after about 23 days.

• If clock_var is a system variable or a local variable in a routine, the program cannot be translated.

A�74

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Note If two CONNECT TIMER statements using the same variable, are executed in two different
tasks, the timer will advance twice as fast. For example, the timer will be incremented by 2 *
$SCR.$COND_TIME every $SCR.$COND_TIME ms. However, this does not occur if two or
more CONNECT TIMER statements using the same variable, are executed in the same task.

See Also: Appendix D, ��Syntax Diagrams,�� for additional syntax information, DISCONNECT
TIMER Statement

Example: Refer to the following sections for detailed program examples:

Section B.8 , "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.3.41 CONTINUE Action

Purpose: Continues execution of a paused task

Syntax : CONTINUE <PROGRAM[n]>

Details:

• The CONTINUE action will not resume stopped motions.

• If program execution is paused, the CONTINUE action will continue program execution.

• The CONTINUE action can be followed by the clause PROGRAM[n], where n is the task number
to be continued. Use GET_TSK_INFO to get a task number for a specified task name.

• A task can be in an interrupt routine when CONTINUE is executed. However, you should be
aware of the following circumstances because CONTINUE only affects the current interrupt level,
and interrupt levels of a task might be independently paused or running.

� If the interrupt routine and the task are both paused, CONTINUE will continue the interrupt
routine but the task will remain paused.

� If the interrupt routine is running and the task is paused, CONTINUE will appear to have no
effect because it will try to continue the running interrupt routine.

� If the interrupt routine is paused and the task is running, CONTINUE will continue the
interrupt routine.

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A�75

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.3.42 CONTINUE Condition

Purpose: Condition that is satisfied when program execution is continued

Syntax : CONTINUE <PROGRAM[n]>

Details:

• The CONTINUE condition monitors program execution.

If program execution is paused, the CONTINUE action, issuing CONTINUE from the CRT/KB
or a CYCLE START from the operator panel, will continue program execution and satisfy the
CONTINUE condition.

• The CONTINUE condition can be followed by the clause PROGRAM[n], where n is the task
number to be continued. Use GET_TSK_INFO to get the task number of a specified task name.

Example: In the following example, program execution is being monitored. When the program is
continued, a digital output will be turned on.

CONTINUE Condition
CONDITION[1]:

WHEN CONTINUE DO DOUT[1] = ON
ENDCONDITION

A.3.43 CONT_TASK Built-In Procedure

Purpose: Continues the specified task

Syntax : CONT_TASK(task_name, status)

Input/Output Parameters :

[in] task_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :MULTI

Details:

• task_name is the name of the task to be continued. If the task was not paused, an error is returned
in status.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

A�76

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• A task can be in an interrupt routine when CONT_TASK is executed. However, you should be
aware of the following circumstances because CONT_TASK only affects the current interrupt
level, and interrupt levels of a task might be independently paused or running.

� If the interrupt routine and the task are both paused, CONT_TASK will continue the interrupt
routine but the task will remain paused.

� If the interrupt routine is running and the task is paused, CONT_TASK will appear to have no
effect because it will try to continue the running interrupt routine.

� If the interrupt routine is paused and the task is running, CONT_TASK will continue the
interrupt routine.

See Also: RUN_TASK, ABORT_TASK, PAUSE_TASK Built-In Procedures, Chapter 15
MULTI-TASKING

Example: The following example prompts the user for the task name and continues the task
execution. Refer to Chapter 15 MULTI-TASKING , for more examples.

CONT_TASK Built-In Procedure
PROGRAM cont_task_ex

%ENVIRONMENT MULTI
VAR

task_str: STRING[12]
status: INTEGER

BEGIN
WRITE(’Enter task name to continue:’)
READ(task_str)
CONT_TASK(task_str, status)

END cont_task_ex

A.3.44 COPY_FILE Built-In Procedure

Purpose: Copies the contents of one file to another with the overwrite option

Syntax : COPY_FILE(from_file, to_file, overwrite_sw, nowait_sw, status)

Input/Output Parameters :

[in] from_file :STRING

[in] to_file :STRING

[in] overwrite_sw :BOOLEAN

[in] nowait_sw :BOOLEAN

[out] status :INTEGER

A�77

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

%ENVIRONMENT Group :FDEV

Details:

• from_file specifies the device, name, and type of the file from which to copy. from_file can be
specified using the wildcard (*) character. If no device is specified, the default device is used.
You must specify both a name and type. However, these can be a wildcard (*) character.

• to_file specifies the device, name, and type of the file to which to copy. to_file can be specified
using the wildcard (*) character. If no device is specified, the default device is used.

• overwrite_sw specifies that the file(s) should be overwritten if they exist.

• If nowait_sw is TRUE, execution of the program continues while the command is executing. If
it is FALSE, the program stops, including condition handlers, until the operation is complete.
If you have time critical condition handlers in the program, put them in another program that
executes as a separate task.

• If the program is aborted during the copy, the copy will completed before aborting.

• If the device you are copying to becomes full during the copy, an error will be returned.

Note nowait_sw is not available in this release and should be set to FALSE.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: RENAME_FILE, DELETE_FILE Built-In Procedures

Example: Refer to Section B.9 , "Using the File and Device Built-ins" (FILE_EX.KL), for a detailed
program example.

A.3.45 COPY_PATH Built-In Procedure

Purpose: Copies a complete path, part of a path, or a path in reverse node order (including associated
data), to another identical type path variable.

Syntax : COPY_PATH (source_path, start_node, end_node, dest_path, status)

Input/Output Parameters :

[in] source_path :PATH

[in] start_node :INTEGER

[in] end_node :INTEGER

[in] dest_path :PATH

[out] status :INTEGER

A�78

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

%ENVIRONMENT Group :pathop

Details:

• source_path specifies the source path to copy from. This path can be a standard path or a user
defined path.

• start_node specifies the number of the first node to copy. A value of 0 will copy the complete
path, including header information. The start_node number must be between 0 and the highest
node number in the source path. Otherwise, error status will be returned.

• end_node specifies the number of the last node to copy. A value of 0 will copy the complete path,
including header information. The end_node number must be between 0 and the highest node
number of the source path. Otherwise, error status will be returned.

• dest_path specifies the destination path to copy to. This path can be a standard path or a user
defined path. However, the dest_path type must be identical to the source_path type. If they are
not identical, an error status will be returned.

• status of 0 is returned if the parameters are valid and the COPY_PATH operation was successful.
Non-zero status indicates the COPY_PATH operation was unsuccessful.

Note To copy a complete path from one path variable to another identical path variable, set the
start_node and end_node parameters to 0 (zero).

An example of a partial path copy to a destination path.

Executing the COPY_PATH(P1, 2, 5, P2) command will copy node 2 through node 5 (inclusive) of
path P1 to node 1 through 4 of Path P2, provided the path length of P1 is greater than or equal to 5. The
destination path P2 will become a 4 node path. The original destination path is completely overwritten.

An example of a source path copy in reverse order to a destination path.

Executing the COPY_PATH(P1, 5, 2, P2) command will copy node 5 through node 2 (inclusive) of
path P1 to node 1 through 4 of Path P2, provided the path length of P1 is greater than or equal to 5. The
destination path P2 will become a 4 node path. The original destination path is completely overwritten.

Specifically, the above command will copy node 5 of P1 to node 1 of P2, node 4 of P1 to node 2 of P2,
and so forth (including the common and group associated data for each node). Because of the reverse
node-to-node copy of associated data, the trajectory of the destination path might not represent the
expected reverse trajectory of the source path. This is caused by the change in relative position of
the segmotype and segtermtype contained in the associated data.

A�79

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Warning

When you execute a reverse node copy operation, the associated data
of the source path can cause an unexpected reverse path trajectory in
the destination path. Be sure personnel and equipment are out of the
way before you test the destination path. Otherwise, you could damage
equipment or injure personnel.

Example: Refer to Section B.2 , "Copying Path Variables " (CPY_PTH.KL), for a detailed program
example.

A.3.46 COPY_QUEUE Built-In Procedure

Purpose: Copies one or more consecutive entries from a queue into an array of integers. The entries
are not removed but are copied, starting with the oldest and proceeding to the newest, or until the
output array, or integers, are full. A parameter specifies the number of entries at the head of the list
(oldest entries) to be skipped.

Syntax : COPY_QUEUE(queue, queue_data, sequence_no, n_skip, out_data, n_got, status)

Input/Output Parameters :

[in] queue_t :QUEUE_TYPE

[in] queue_data :ARRAY OF INTEGER

[in] n_skip :INTEGER

[in] sequence_no :integer

[out] out_data :ARRAY OF INTEGER

[out] n_got :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBQMGR

Details:

• queue_t specifies the queue variable for the queue from which the values are to be read.

• queue_data specifies the array variable for the queue from which the values are to be read.

• sequence_no specifies the sequence number of the oldest entry to be copied. If the sequence_no
is zero, the starting point for the copy is determined by the n_skip parameter.

A�80

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• n_skip specifies the number of oldest entries to be skipped. A value of zero indicates to return the
oldest entries.

• out_data is an integer array into which the values are to be copied; the size of the array is the
maximum number of values returned.

• n_got is returned with the number of entries returned. This will be one of the following:

� Zero if there are n_skip or fewer entries in the queue.

� (queue_to n_entries_skip) if this is less than ARRAY_LEN(out_data)

� ARRAY_LEN(out_data) if this is less than or equal to queue.n_entries - n_skip

• status is returned with zero

See Also: APPEND_QUEUE, DELETE_QUEUE, INSERT_QUEUE Built-In Procedures, Section
15.8 , "Using Queues for Task Communication"

Example: The following example gets one ��page�� of a job queue and calls a routine, disp_queue, to
display this. If there are no entries for the page, the routine returns FALSE; otherwise the routine
returns TRUE.

COPY_QUEUE Built-In Procedure
PROGRAM copy_queue_x
%environment PBQMGR
VAR

job_queue FROM global_vars: QUEUE_TYPE
job_data FROM global_vars: ARRAY[100] OF INTEGER

ROUTINE disp_queue(data: ARRAY OF INTEGER;
n_disp: INTEGER) FROM disp_prog

ROUTINE disp_page(data_array: ARRAY OF INTEGER;
page_no: INTEGER): BOOLEAN

VAR
status: INTEGER
n_got: INTEGER

BEGIN
COPY_QUEUE(job_queue, job_data,

(page_no - 1) * ARRAY_LEN(data_array), 0,
data_array, n_got, status)

IF (n_got = 0) THEN
RETURN (FALSE)

ELSE
disp_queue(data_array, n_got)
RETURN (TRUE)

ENDIF

A�81

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

END disp_page

BEGIN

END copy_queue_x

A.3.47 COPY_TPE Built-In Procedure

Purpose: Copies one teach pendant program to another teach pendant program.

Syntax : COPY_TPE(from_prog, to_prog, overwrite_sw, status)

Input/Output Parameters :

[in] from_prog :STRING

[in] to_prog :STRING

[in] overwrite_sw :BOOLEAN

[out] status :INTEGER

%ENVIRONMENT Group :TPE

Details:

• from_prog specifies the teach pendant program name, without the .tp extension, to be copied.

• to_prog specifies the new teach pendant program name, without the .tp extension, that from_prog
will be copied to.

• overwrite_sw , if set to TRUE, will automatically overwrite the to_prog if it already exists and it
is not currently selected. If set to FALSE, the to_prog will not be overwritten if it already exists.

• status explains the status of the attempted operation. If not equal to 0, the copy did not occur.

See Also: CREATE_TPE Built-in Procedure

Example: Refer to Section B.14, "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A.3.48 COS Built-In Function

Purpose: Returns the REAL cosine of the REAL angle argument, specified in degrees

Syntax : COS(angle) Function Return Type :REAL

A�82

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Input/Output Parameters :

[in] angle :REAL expression

%ENVIRONMENT Group :SYSTEM

Details:

• angle is an angle specified in the range of ±18000 degrees. Otherwise, the program will be
aborted with an error.

Example: Refer to Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL),
for a detailed program example.

A.3.49 CR Input/Output Item

Purpose: Can be used as a data item in a READ or WRITE statement to specify a carriage return

Syntax : CR

Details:

• When CR is used as a data item in a READ statement, it specifies that any remaining data in the
current input line is to be ignored.

The next data item will be read from the start of the next input line.

• When CR is used as a data item in a WRITE statement, it specifies that subsequent output to the
same file will appear on a new line.

See Also: Appendix E , ��Syntax Diagrams,�� for additional syntax information

Example: Refer to the following sections for detailed program examples:

Section B.3 ,"Saving Data to the Default Device" (SAVE_VR.KL)

Section B.4 ,"Standard Routines" (ROUT_EX.KL)

Section B.5 ,"Using Register Built-ins" (REG_EX.KL)

Section B.6 , "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.7 , "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.8 , "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.9 , "Using the File and Device Built-ins" (FILE_EX.KL)

A�83

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Section B.10 , "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.13 , "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

Section B.14 , "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.3.50 CREATE_TPE Built-In Procedure

Purpose: Creates a teach pendant program of the specified name

Syntax : CREATE_TPE(prog_name, prog_type, status)

Input/Output Parameters :

[in] prog_name :STRING

[in] prog_type :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :TPE

Details:

• prog_name specifies the name of the program to be created.

• prog_type specifies the type of the program to be created. The following constants are valid for
program type: PT_MNE_UNDEF :TPE program of undefined sub type PT_MNE_JOB :TPE job
PT_MNE_PROC :TPE process PT_MNE_MACRO :TPE macro

• status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.
Some of the possible errors are as follows:

7015 Specified program exist

9030 Program name is NULL

9031 Remove num from top of Program name

9032 Remove space from Program name

9036 Memory is not enough

9038 Invalid character in program name

A�84

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• The program is created to reference all motion groups on the system. The program is
created without any comment or any other program attributes. Once the program is created,
SET_ATTR_PRG can be used to specify program attributes.

See Also: SET_ATTR_PRG Built-In Procedure

A.3.51 CREATE_VAR Built-In Procedure

Purpose: Creates the specified KAREL variable

Syntax : CREATE_VAR(var_prog_nam, var_nam, typ_prog_nam, type_nam, group_num,
inner_dim, mid_dim, outer_dim, status, <mem_pool>)

Input/Output Parameters :

[in] var_prog_nam :STRING

[in] var_nam :STRING

[in] typ_prog_nam :STRING

[in] type_nam :STRING

[in] group_num :INTEGER

[in] inner_dim :INTEGER

[in] mid_dim :INTEGER

[in] outer_dim :INTEGER

[out] status :INTEGER

[in] mem_pool :INTEGER

%ENVIRONMENT Group :MEMO

Details:

• var_prog_nam specifies the program name that the variable should be created in. If var_prog_nam
is � �, the default, which is the name of the program currently executing, is used.

• var_nam specifies the variable name that will be created.

• If a variable is to be created as a user-defined type, the user-defined type must already be
created in the system. typ_prog_nam specifies the program name of the user-defined type. If
typ_prog_nam is � �, the default, which is the name of the program currently executing, is used.

A�85

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• type_nam specifies the type name of the variable to be created. The following type names are
valid:

�ARRAY OF BYTE�

�ARRAY OF SHORT�

�BOOLEAN�

�CAM_SETUP�

�COMMON_ASSOC�

�CONFIG�

�FILE�

�GROUP_ASSOC�

�INTEGER�

�JOINTPOS�

�JOINTPOS1�

�JOINTPOS2�

�JOINTPOS3�

�JOINTPOS4�

�JOINTPOS5�

�JOINTPOS6�

�JOINTPOS7�

�JOINTPOS8�

�JOINTPOS9�

�MODEL�

�POSITION�

�REAL�

�STRING[n]�, where n is the string length; the default is 12 if not specified.

A�86

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

�VECTOR�

�VIS_PROCESS�

�XYZWPR�

�XYZWPREXT�

Any other type names are considered user-defined types.

• group_num specifies the group number to be used for positional data types.

• inner_dim specifies the dimensions of the innermost array. For example, inner_dim = 30 for
ARRAY[10,20,30] OF INTEGER. inner_dim should be set to 0 if the variable is not an array.

• mid_dim specifies the dimensions of the middle array. For example, mid_dim = 20 for
ARRAY[10,20,30] OF INTEGER. mid_dim should be set to 0 if the variable is not a 2-D array.

• outer_dim specifies the dimensions of the outermost array. For example, outer_dim = 10 for
ARRAY[10,20,30] OF INTEGER. outer_dim should be set to 0 if the variable is not a 3-D array.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

• mem_pool is an optional parameter that specifies the memory pool from which the variable is
created. If not specified, then the variable is created in DRAM which is temporary memory. The
DRAM variable must be recreated at every power up and the value is always reset to uninitialized.

• If mem_pool = -1, then the variable is created in CMOS RAM which is permanent memory.

See Also: CLEAR, RENAME_VAR Built-In Procedures

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.3.52 %CRTDEVICE

Purpose: Specifies that the CRT/KB device is the default device

Syntax : %CRTDEVICE

Details:

• Specifies that the INPUT/OUTPUT window will be the default in the READ and WRITE
statements instead of the TPDISPLAY window.

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example showing how to use this device.

A�87

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.3.53 CURJPOS Built-In Function

Purpose: Returns the current joint position of the tool center point (TCP) for the specified group of
axes, even if one of the axes is in an overtravel

Syntax : CURJPOS(axs_lim_mask, ovr_trv_mask <,group_no>)

Function Return Type :JOINTPOS

Input/Output Parameters :

[out] axs_lim_mask :INTEGER

[out] ovr_trv_mask :INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• If group_no is omitted, the default group for the program is assumed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

• axs_lim_mask specifies which axes are outside the axis limits.

• ovr_trv_mask specifies which axes are in overtravel.

Note axis_limit_mask and ovr_trv_mask are not available in this release and can be set to 0.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: CURPOS Built-In Function, Chapter 8 MOTION

Example: The following example gets the current joint position of the robot.

CURJPOS Built-In Function
PROGRAM getpos
VAR
jnt: JOINTPOS

A�88

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

BEGIN
jnt=CURJPOS(0,0)

END getpos

A.3.54 CURPOS Built-In Function

Purpose: Returns the current Cartesian position of the tool center point (TCP) for the specified group
of axes even if one of the axes is in an overtravel

Syntax : CURPOS(axis_limit_mask, ovr_trv_mask <,group_no>)

Function Return Type :XYZWPREXT

Input/Output Parameters :

[out] axis_limit_mask :INTEGER

[out] ovr_trv_mask :INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• If group_no is omitted, the default group for the program is assumed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

• The group must be kinematic.

• Returns the current position of the tool center point (TCP) relative to the current value of the
system variable $UFRAME for the specified group.

• axis_limit_mask specifies which axes are outside the axis limits.

• ovr_trv_mask specifies which axes are in overtravel.

Note axis_limit_mask and ovr_trv_mask are not available in this release and will be ignored if set.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

A�89

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: Chapter 8 MOTION

Example: Refer to Section B.5 ,"Using Register Built-ins," for a detailed program example.

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.3.55 CURR_PROG Built-In Function

Purpose: Returns the name of the program currently being executed

Syntax : CURR_PROG

Function Return Type :STRING[12]

%ENVIRONMENT Group :BYNAM

Details:

• The variable assigned to CURR_PROG must be declared with a string variable length ≥12

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.4 - D - KAREL LANGUAGE DESCRIPTION

A.4.1 DAQ_CHECKP Built-In Procedure

Purpose: To check the status of a pipe and the number of bytes available to be read from the pipe.

Syntax : DAQ_CHECKP(pipe_num, pipe_stat, bytes_avail)

Input/Output Parameters :

[in] pipe_num :INTEGER

[out] pipe_stat :INTEGER

[out] bytes_avail :INTEGER

Details:

• pipe_num is the number of the pipe (1 - 5) to check.

A�90

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• pipe_stat is the status of the pipe returned. The status is a combination of the following flags:

� DAQ_PIPREG is when the pipe is registered (value = 1).

� DAQ_ACTIVE is when the pipe is active, i.e., has been started (value = 2).

� DAQ_CREATD is when the pipe is created (value = 4).

� DAQ_SNAPSH is when the pipe is in snapshot mode (value = 8).

� DAQ_1STRD is when the pipe has been read for the first time (value = 16).

� DAQ_OVFLOW is when the pipe is overflowed (value = 32).

� DAQ_FLUSH is when the pipe is being flushed (value = 64).

• bytes_avail is the number of bytes that are available to be read from the pipe.

DAQ_CHECKP Built-In Procedure
The pipe_stat returned parameter can be AND’ed with the
above flag constants to determine whether the pipe is
registered, is active, and so forth. For example, you must check
to see if the pipe is active before writing to it.

DAQ_CHECKP Built-In Procedure
The DAQ_OVFLOW flag will never be set for the task that
writes to the pipe when it calls DAQ_CHECKP. This
flag applies only to tasks that read from the pipe.

See Also: DAQ_WRITE Built-In.

Example: Refer to the DAQWRITE example in the built-in function DAQ_WRITE.

Note This built-in is only available when DAQ or data monitor options are loaded.

A.4.2 DAQ_REGPIPE Built-In Procedure

Purpose: To register a pipe for use in KAREL.

Syntax : DAQ_REGPIPE(pipe_num, mem_type, pipe_size, prog_name, var_name, pipe_name,
stream_size, and status)

Input/Output Parameters :

[in] pipe_num :INTEGER

[in] mem_type :INTEGER

A�91

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] pipe_size :INTEGER

[in] prog_name :STRING

[in] var_name :STRING

[in] pipe_name :STRING

[in] stream_size :INTEGER

[out] status :INTEGER

Details:

• pipe_num is the number of the pipe (1-5) to be registered.

• mem_type allows you to allocate the memory to be used for the pipe. The following constants
can be used:

� DAQ_DRAM allows you to allocate DRAM memory.

� DAQ_CMOS allows you to allocate CMOS memory.

• pipe_size is the size of the pipe, is expressed as the number of data records that it can hold. The
data record size itself is determined by the data type of var_name.

• prog_name is the name of the program containing the variable to be used for writing to the pipe.
If passed as an empty string, the name of the current program is used.

• var_name is the name of the variable that defines the data type to be used for writing to the pipe.
Once registered, you can write any variable of this data type to the pipe.

• pipe_name is the name of the pipe file. For example, if the pipe name is passed as �foo.dat�, the
pipe will be accessible using the file string �PIP:FOO.DAT�. A unique file name with an extension
is required even if the pipe is being used only for sending to the PC.

• stream_size is the number of records to automatically stream to an output file, if the pipe is
started as a streamed pipe. A single write of the specified variable constitutes a single record in
the pipe. If stream size is set to zero, the pipe will not automatically stream records to a file
device; all data will be kept in the pipe until the pipe is read. Use stream_size to help optimize
network loading when the pipe is used to send data to the PC. If it is zero or one, the monitoring
task will send each data record as soon as it is seen in the pipe. If the number is two or more, the
monitor will wait until there are that many data records in the pipe before sending them all to
the PC. In this manner, the overhead of sending network packets can be minimized. Data will
not stay in the pipe longer than the time specified by the FlushTime argument supplied with
the FRCPipe.StartMonitor Method.

• status is the status of the attempted operation. If not 0, then an error occurred and the pipe
was not registered.

See Also: DAQ_UNREG Built-In.

A�92

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

DAQ_REGPIPE Built-In Procedure
Pipes must be registered before they can be started and to which data
is written. The registration operation tells
the system how to configure the pipe when it is to be used. After
it is registered, a pipe is configured to accept the
writing of a certain amount of data per record, as governed by the
size of the specified variable. In order to
change the configuration of a pipe, the pipe must first be unregistered
using DAQ_UNREG, and then
re-registered.

Example: The following example registers KAREL pipe 1 to write a variable in the program.

DAQ_REGPIPE Built-In Procedure
PROGRAM DAQREG
%ENVIRONMENT DAQ
CONST

er_abort = 2
VAR

status: INTEGER
datavar: INTEGER

BEGIN
-- Register pipe 1 DRAM as kldaq.dat
-- It can hold 100 copies of the datavar variable
-- before the pipe overflows
DAQ_REGPIPE(1, DAQ_DRAM, 100, ’’, ’datavar’, &

’kldaq.dat’, 0, status)
IF status<>0 THEN

POST_ERR(status,’ ’,0,er_abort)
ENDIF

END DAQREG

Note This built-in is only available when DAQ or data monitor options are loaded.

A.4.3 DAQ_START Built-In Procedure

Purpose: To activate a KAREL pipe for writing.

Syntax : DAQ_START(pipe_num, pipe_mode, stream_dev, status)

Input/Output Parameters :

[in] pipe_num :INTEGER

[in] pipe_mode :INTEGER

A�93

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] stream_dev :STRING

[out] status :INTEGER

Details:

• pipe_num is the number of the pipe (1 - 5) to be started. The pipe must have been previously
registered

• pipe_mode is the output mode to be used for the pipe. The following constants are used:

� DAQ_SNAPSHT is the snapshot mode (each read of the pipe will result in all of the pipe�s
contents).

� DAQ_STREAM is the stream mode (each read from the same pipe file will result in data
written since the previous read).

• stream_dev is the device to which records will be automatically streamed. This parameter is
ignored if the stream size was set to 0 during registration.

• status is the status of the attempted operation. If not 0, then an error occurred and the pipe
was not unregistered.

See Also: DAQ_REGPIPE Built-In and DAQ_STOP Built-In,

DAQ_START Built-In Procedure
This built-in call can be made either from the same task/program as
the writing task, or from a separate
activate/deactivate task. The writing task can lie dormant until
the pipe is started, at which point it begins to write
data.

DAQ_START Built-In Procedure
A pipe is automatically started when a PC application issues the FRCPipe.
StartMonitor method. In this case,
there is no need for the KAREL application to call DAQ_START to activate
the pipe..

DAQ_START Built-In Procedure
Starting and stopping a pipe is tracked using a reference counting
scheme. That is, any combination of two
DAQ_START and FRCPipe.StartMonitor calls requires any comb

Example: The following example starts KAREL pipe 1 in streaming mode.

DAQ_START Built-In Procedure
PROGRAM PIPONOFF
%ENVIRONMENT DAQ
CONST

er_abort = 2

A�94

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

VAR
status: INTEGER
tpinput: STRING[1]

BEGIN
-- prompt to turn on pipe
WRITE(’Press 1 to start pipe’)
READ (tpinput)
IF tpinput = ’1’ THEN

-- start pipe 1
DAQ_START(1, DAQ_STREAM, ’RD:’, status)
IF status<>0 THEN

POST_ERR(status,’ ’,0,er_abort)
ELSE

-- prompt to turn off pipe
WRITE(’Press any key to stop pipe’)
READ (tpinput)
-- stop pipe 1
DAQ_STOP(1, FALSE, status)
IF status<>0 THEN

POST_ERR(status,’ ’,0,er_abort)
ENDIF

ENDIF
ENDIF

END PIPONOFF

Note This built-in is only available when DAQ or data monitor options are loaded.

A.4.4 DAQ_STOP Built-In Procedure

Purpose: To stop a KAREL pipe for writing.

Syntax : DAQ_STOP(pipe_num, force_off, status)

Input/Output Parameters :

[in] pipe_num :INTEGER

[in] force_off :BOOLEAN

[out] status :INTEGER

Details:

• pipe_num is the number of the pipe (1 - 5) to be stopped.

A�95

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• force_off occurs if TRUE force the pipe to be turned off, even if another application made a
start request on the pipe. If set FALSE, if all start requests have been accounted for with stop
requests, the pipe is turned off, else it remains on.

• status is the status of the attempted operation. If not 0, then an error occurred and the pipe
was not stopped.

See Also: DAQ_START Built-In.

DAQ_STOP Built-In Procedure
The start/stop mechanism on each pipe works on a reference count.
The pipe is started on the first start request,
and each subsequent start request is counted. If a stop request is
received for the pipe, the count is decremented.

DAQ_STOP Built-In Procedure
If the pipe is not forced off, and the count is not zero, the pipe
stays on. By setting the force_off flag to TRUE,
the pipe is turned off regardless of the count. The count is reset.

DAQ_STOP Built-In Procedure
FRCPipe.StopMonitor method issued by a PC application is equivalent
to a call to DAQ_STOP.

Example: Refer to the PIPONOFF example in the built-in function DAQ_START.

Note This built-in is only available when DAQ or data monitor options are loaded.

A.4.5 DAQ_UNREG Built-In Procedure

Purpose: To unregister a previously-registered KAREL pipe, so that it may be used for other data.

Syntax : DAQ_UNREG(pipe_num, status)

Input/Output Parameters :

[in] pipe_num :INTEGER

[out] status :INTEGER

Details:

• pipe_num is the number of the pipe (1 - 5) to be unregistered.

• status is the status of the attempted operation. If not 0, then an error occurred and the pipe
was not unregistered.

A�96

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

See Also: DAQ_REGPIPE Built-In.

DAQ_UNREG Built-In Procedure
Unregistering a pipe allows the pipe to be re-configured for a different
data size, pipe size, pipe name, and so
forth. You must un-register the pipe before re-registering using
DAQ_REGPIPE.

Example: The following example unregisters KAREL pipe 1.

DAQ_UNREG Built-In Procedure
PROGRAM DAQUNREG
%ENVIRONMENT DAQ
CONST

er_abort = 2
VAR

status: INTEGER
BEGIN

-- unregister pipe 1
DAQ_UNREG(1, status)
IF status<>0 THEN

POST_ERR(status,’ ’,0,er_abort)
ENDIF

END DAQUNREG

Note This built-in is only available when DAQ or data monitor options are loaded.

A.4.6 DAQ_WRITE Built-In Procedure

Purpose: To write data to a KAREL pipe.

Syntax : DAQ_WRITE(pipe_num, prog_name, var_name, status)

Input/Output Parameters :

[in] pipe_num :INTEGER

[in] prog_name :STRING

[in] var_name :STRING

[out] status :INTEGER

Details:

• pipe_num is the number of the pipe (1 - 5) to which data is written.

A�97

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• prog_name is the name of the program containing the variable to be written. If passed as an
empty string, the name of the current program is used.

• var_name is the name of the variable to be written.

• status is the status of the attempted operation. If not 0, then an error occurred and the data
was not written.

See Also: DAQ_REGPIPE and DAQ_CHECKP.

DAQ_WRITE Built-In Procedure
You do not have to use the same variable for writing data to the pipe
that was used to register the pipe. The only
requirement is that the data type of the variable written matches
the type of the variable used to register the pipe.

DAQ_WRITE Built-In Procedure
If a PC application is monitoring the pipe, each call to DAQ_WRITE
will result in an FRCPipe_Receive Event.

Example: The following example registers KAREL pipe 2 and writes to it when the pipe is active.

DAQ_WRITE Built-In Procedure
PROGRAM DAQWRITE
%ENVIRONMENT DAQ
%ENVIRONMENT SYSDEF
CONST

er_abort = 2
TYPE

daq_data_t = STRUCTURE
count: INTEGER
dataval: INTEGER

ENDSTRUCTURE
VAR

status: INTEGER
pipestat: INTEGER
numbytes: INTEGER
datavar: daq_data_t

BEGIN
-- register 10KB pipe 2 in DRAM as kldaq.dat
DAQ_REGPIPE(2, DAQ_DRAM, 100, ’’, ’datavar’, &

’kldaq.dat’, 1, status)
IF status<>0 THEN

POST_ERR(status,’ ’,0,er_abort)
ENDIF

-- use DAQ_CHECKP to monitor status of pipe
DAQ_CHECKP(2, pipestat, numbytes)

A�98

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

datavar.count = 0
WHILE (pipestat AND DAQ_PIPREG) > 0 DO -- do while registered

-- update data variable
datavar.count = datavar.count + 1
datavar.dataval = $FAST_CLOCK
-- check if pipe is active
IF (pipestat AND DAQ_ACTIVE) > 0 THEN

-- write to pipe
DAQ_WRITE(2, ’’, datavar, status)
IF status<>0 THEN

POST_ERR(status,’ ’,0,er_abort)
ENDIF

ENDIF
-- put in delay to reduce loading
DELAY(200)
DAQ_CHECKP(2, pipestat, numbytes)

ENDWHILE
END DAQWRITE

Note This built-in is only available when DAQ or data monitor options are loaded.

A.4.7 %DEFGROUP Translator Directive

Purpose: Specifies the default motion group to be used by the translator

Syntax : %DEFGROUP = n

Details:

• n is the number of the motion group.

• The range is 1 to the number of groups on the controller.

• If %DEFGROUP is not specified, group 1 is used.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

A�99

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.4.8 DEF_SCREEN Built-In Procedure

Purpose: Defines a screen

Syntax : DEF_SCREEN(screen_name, disp_dev_name, status)

Input/Output Parameters :

[in] screen_name :STRING

[in] disp_dev_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• Define a screen, associated with a specified display device, to which windows could be attached
and be activated (displayed).

• screen_name must be a unique, valid name (string), one to four characters long.

• disp_dev_name must be one of the display devices already defined, otherwise an error is returned.
The following are the predefined display devices:

�TP� Teach Pendant Device�CRT� CRT/KB Device

• status explains the status of the attempted operation. (If not equal to 0, then an error occurred.)

See Also: ACT_SCREEN Built-In Procedure

Example: Refer to Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.4.9 DEF_WINDOW Built-In Procedure

Purpose: Define a window

Syntax : DEF_WINDOW(window_name, n_rows, n_cols, options, status)

Input/Output Parameters :

[in] window_name :STRING

[in] n_rows :INTEGER

[in] n_cols :INTEGER

A�100

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] options :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Define a window that can be attached subsequently to a screen, have files opened to it, be written
or have input echoed to it, and have information dynamically displayed in it.

• window_name must be a valid name string, one to four characters long, and must not duplicate a
window with the same name.

• n_rows and n_cols specify the size of the window in standard-sized characters. Any line
containing double-wide or double-wide-double-high characters will contain only half this many
characters. The first row and column begin at 1.

• options must be one of the following:

0 :No option

wd_com_cursr :Common cursor

wd_scrolled :Vertical scrolling

wd_com_cursr + wd_scrolled :Common cursor + Vertical scrolling

• If common cursor is specified, wherever a write leaves the cursor is where the next write will
go, regardless of the file variable used. Also, any display attributes set for any file variable
associated with this window will apply to all file variables associated with the window. If this is
not specified, the cursor position and display attributes (except character size attributes, which
always apply to the current line of a window) are maintained separately for each file variable open
to the window. The common-cursor attribute is useful for windows that can be written to by more
than one task and where these writes are to appear end-to-end. An example might be a log display.

• If vertical scrolling is specified and a line-feed, new-line, or index-down character is received
and the cursor is in the bottom line of the window, all lines except the top line are moved up and
the bottom line is cleared. If an index-up character is written, all lines except the bottom line
are moved down and the top line is cleared. If this is not specified, the bottom or top line is
cleared, but the rest of the window is unaffected.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: ATT _WINDOW_D, ATT_WINDOW_S Built-In Procedures

A�101

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.4.10 %DELAY Translator Directive

Purpose: Sets the amount of time program execution will be delayed every 250 milliseconds. Each
program is delayed 8ms every 250ms by default. This allows the CPU to perform other functions such
as servicing the CRT/KB and Teach Pendant user interfaces. %DELAY provides a way to change
from the default and allow more CPU for system tasks such as user interface.

Syntax : %DELAY = n

Details:

• n is the delay time in milliseconds.

• The default delay time is 8 ms, if no DELAY is specified

• If n is set to 0, the program will attempt to use 100% of the available CPU time. This could result
in the teach pendant and CRT/KB becoming inoperative since their priority is lower. A delay of 0
is acceptable if the program will be waiting for motion or I/O.

• While one program is being displayed, other programs are prohibited from executing. Interrupt
routines (routines called from condition handlers) will also be delayed.

• Very large delay values will severely inhibit the running of all programs.

• To delay one program in favor of another, use the DELAY Statement instead of %DELAY.

A.4.11 DELAY Statement

Purpose: Causes execution of the program to be suspended for a specified number of milliseconds

Syntax : DELAY time_in_ms

where:

time_in_ms :an INTEGER expression

Details:

• If motion is active at the time of the delay, the motion continues.

• time_in_ms is the time in milliseconds. The actual delay will be from zero to $SCR.$cond_time
milliseconds less than the rounded time.

• A time specification of zero has no effect.

• If a program is paused while a delay is in progress, the delay will continue to be timed.

• If the delay time in a paused program expires while the program is still paused, the program, upon
resuming and with no further delay, will continue execution with the statement following the delay.
Otherwise, upon resumption, the program will finish the delay time before continuing execution.

A�102

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• Aborting a program, or issuing RUN from the CRT/KB when a program is paused, terminates
any delays in progress.

• While a program is awaiting expiration of a delay, the KCL> SHOW TASK command will
show a hold of DELAY.

• A time value greater than one day or less than zero will cause the program to be aborted with an
error.

See Also: Appendix E , ��Syntax Diagrams,�� for additional syntax information

Example: Refer to the following sections for detailed program examples:

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.4.12 DELETE_FILE Built-In Procedure

Purpose: Deletes the specified file

Syntax : DELETE_FILE(file_spec, nowait_sw, status)

Input/Output Parameters :

[in] file_spec :STRING

[in] nowait_sw :BOOLEAN

[out] status :INTEGER

%ENVIRONMENT Group :FDEV

Details:

• file_spec specifies the device, name, and type of the file to delete. file_spec can be specified using
the wildcard (*) character. If no device name is specified, the default device is used.

• If nowait_sw is TRUE, execution of the program continues while the command is executing. If
it is FALSE, the program stops, including condition handlers, until the operation is complete.
If you have time critical condition handlers in the program, put them in another program that
executes as a separate task.

Note nowait_sw is not available in this release and should be set to FALSE.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: COPY_FILE, RENAME_FILE Built-In Procedures

A�103

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: Refer to Section B.3 ,"Saving Data to the Default Device" (SAVE_VRS.KL), for a
detailed program example.

A.4.13 DELETE_NODE Built-In Procedure

Purpose: Deletes a path node from a PATH

Syntax : DELETE_NODE(path_var, node_num, status)

Input/Output Parameters :

[in] path_var :PATH

[in] node_num :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PATHOP

Details:

• node_num specifies the node to be deleted from the PATH specified by path_var .

• All nodes past the deleted node will be renumbered.

• node_num must be in the range from one to PATH_LEN(path_var). If it is outside this range,
the status is returned with an error.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: APPEND_NODE, INSERT_NODE Built-In Procedures

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.4.14 DELETE_QUEUE Built-In Procedure

Purpose: Deletes an entry from a queue

Syntax : DELETE_QUEUE(sequence_no, queue, queue_data, status)

Input/Output Parameters :

[in] sequence_no :INTEGER

[in,out] queue_t :QUEUE_TYPE

A�104

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in,out] queue_data :ARRAY OF INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBQMGR

Details:

• Use COPY_QUEUE to get a list of the sequence numbers.

• sequence_no specifies the sequence number of the entry to be deleted. Use COPY_QUEUE to
get a list of the sequence numbers.

• queue_t specifies the queue variable for the queue.

• queue_data specifies the array used to hold the data in the queue. The length of this array
determines the maximum number of entries in the queue.

• status returns 61003, ��Bad sequence no,�� if the specified sequence number is not in the queue.

See Also: APPEND_QUEUE, COPY_QUEUE, INSERT_QUEUE Built-In Procedures, Section
15.8 , "Using Queues for Task Communication"

A.4.15 DEL_INST_TPE Built-In Procedure

Purpose: Deletes the specified instruction in the specified teach pendant program

Syntax : DEL_INST_TPE(open_id, lin_num, status)

Input/Output Parameters :

[in] open_id :INTEGER

[in] lin_num :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :TPE

Details:

• open_id specifies the opened teach pendant program. A program must be opened with read/write
access, using the OPEN_TPE built-in, before calling the DEL_INST_TPE built-in.

• lin_num specifies the line number of the instruction to be deleted.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

See Also: CREATE_TPE, CLOSE_TPE, COPY_TPE, OPEN_TPE, SELECT_TPE Built-In
Procedures

A�105

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.4.16 DET_WINDOW Built-In Procedure

Purpose: Detach a window from a screen

Syntax : DET_WINDOW(window_name, screen_name, status)

Input/Output Parameters :

[in] window_name :STRING

[in] screen_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Removes the specified window from the specified screen.

• window_name and screen_name must be valid and already defined.

• The areas of other window(s) hidden by this window are redisplayed. Any area occupied by this
window and not by any other window is cleared.

• An error occurs if the window is not attached to the screen.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: DEF_WINDOW, ATT_WINDOW_S, ATT_WINDOW_D Built-In Procedures

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.4.17 DISABLE CONDITION Action

Purpose: Used within a condition handler to disable the specified condition handler

Syntax : DISABLE CONDITION [cond_hand_no]

where:

cond_hand_no :an INTEGER expression

Details:

• If the condition handler is not defined, DISABLE CONDITION has no effect.

A�106

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• If the condition handler is defined but not currently enabled, DISABLE CONDITION has no
effect.

• When a condition handler is disabled, its conditions are not tested. Thus, if it is activated again,
the conditions must be satisfied after the activation.

• Use the ENABLE CONDITION statement or action to reactivate a condition handler that has
been disabled.

• cond_hand_no must be in the range of 1-1000. Otherwise, the program will be aborted with an
error.

See Also: Chapter 6, ��Condition Handlers,�� for more information on using DISABLE CONDITION
in condition handlers

Example: The following example disables condition handler number 2 when condition number 1 is
triggered.

DISABLE CONDITION Action
CONDITION[1]:

WHEN EVENT[1] DO
DISABLE CONDITION[2]

ENDCONDITION

A.4.18 DISABLE CONDITION Statement

Purpose: Disables the specified condition handler

Syntax : DISABLE CONDITION [cond_hand_no]

where:

cond_hand_no :an INTEGER expression

Details:

• If the condition handler is not defined, DISABLE CONDITION has no effect.

• If the condition handler is defined but not currently enabled, DISABLE CONDITION has no
effect.

• When a condition handler is disabled, its conditions are not tested. Thus, if it is activated again,
the conditions must be satisfied after the activation.

• Use the ENABLE CONDITION statement or action to reactivate a condition handler that has
been disabled.

• cond_hand_no must be in the range of 1-1000. Otherwise, the program will be aborted with an
error.

A�107

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: Chapter 6 CONDITION HANDLERS , for more information on using DISABLE
CONDITION in condition handlers, Appendix E, ��Syntax Diagrams,�� for additional syntax
information

Example: The following example allows the operator to choose whether or not to see count .

DISABLE CONDITION Statement
PROGRAM p_disable
VAR

count : INTEGER
answer : STRING[1]

ROUTINE showcount
BEGIN

WRITE (’count = ’,count::10,CR)
END showcount

BEGIN
CONDITION[1]:

WHEN EVENT[1] DO -- Condition[1] shows count
showcount

ENABLE CONDITION[1]
ENDCONDITION

ENABLE CONDITION[1]
count = 0
WRITE (’do you want to see count?’)
READ (answer,CR)

IF answer = ’n’
THEN DISABLE CONDITION[1] -- Disables condition[1]

ENDIF -- Count will not be shown

FOR count = 1 TO 13 DO
SIGNAL EVENT[1]

ENDFOR

END p_disable

A.4.19 DISCONNECT TIMER Statement

Purpose: Stops updating a clock variable previously connected as a timer

Syntax : DISCONNECT TIMER timer_var

where:

A�108

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

timer_var :a static, user-defined INTEGER variable

Details:

• If timer_var is not currently connected as a timer, the DISCONNECT TIMER statement has
no effect.

• If timer_var is a system or local variable, the program will not be translated.

See Also: Appendix E, ��Syntax Diagrams,�� for additional syntax information, CONNECT TIMER
Statement

Example: The following example moves the TCP to the initial POSITION variable p1 , sets the
INTEGER variable timevar to 0 and connects the timer. After moving to the destination position p2
, the timer is disconnected.

DISCONNECT TIMER Statement
MOVE TO p1

timevar = 0
CONNECT TIMER TO timevar

MOVE TO p2
DISCONNECT TIMER timevar

A.4.20 DISCTRL_ALPH Built_In Procedure

Purpose: Displays and controls alphanumeric string entry in a specified window.

Syntax : DISCTRL_ALPH(window_name, row, col, str, dict_name, dict_ele, term_char, status)

Input/Output Parameters :

[in] window_name :STRING

[in] row :INTEGER

[in] col :INTEGER

[in,out] str :STRING

[in] dict_name :STRING

[in] dict_ele :INTEGER

[out] term_char :INTEGER

[out] status :INTEGER

A�109

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

%ENVIRONMENT Group :UIF

Details:

• window_name identifies the window where the str is currently displayed. See also Section
7.9.1, "USER Menu on the Teach Pendant", or Section 7.9.2, "USER Menu on the CRT/KB,"
for a listing of windows that may be used for window_name.

• row specifies the row number where the str is displayed.

• col specifies the column number where the str is displayed.

• str specifies the KAREL string to be modified, which is currently displayed on the window_name
at position row and col.

• dict_name specifies the dictionary that contains the words that can be entered. dict_name can also
be set to one of the following predefined values.

�PROG� :program name entry

�COMM� :comment entry

• dict_ele specifies the dictionary element number for the words. dict_ele can contain a maximum
of 5 lines with no "&new_line" accepted on the last line. See the example below.

• If a predefined value for dict_name is used, then dict_ele is ignored.

• term_char receives a code indicating the character that terminated the menu. The code for
key terminating conditions are defined in the include file FR:KLEVKEYS.KL. The following
predefined constants are keys that are normally returned:

ky_enter

ky_prev

ky_new_menu

• DISCTRL_ALPH will display and control string entry from the teach pendant device. To display
and control string entry from the CRT/KB device, you must create an INTEGER variable,
device_stat, and set it to crt_panel. To set control to the teach pendant device, set device_stat to
tp_panel. Refer to the example below.

• status explains the status of an attempted operation. If not equal to 0, then an error occurred.

Note DISCTRL_ALPH will only display and control string entry if the USER or USER2 menu
is the selected menu. Therefore, use FORCE_SPMENU(device_stat, SPI_TPUSER, 1) before
calling DISCTRL_ALPH to force the USER menu.

See Also: ACT_SCREEN, DISCTRL_LIST Built-In Procedures

Example: Refer to Section B.13 , "Using the DISCTRL_ALPHA Built-in" (DCLAP_EX.KL), for a
detailed program example.

A�110

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.4.21 DISCTRL_FORM Built_In Procedure

Purpose: Displays and controls a form on the teach pendant or CRT/KB screen

Syntax : DISCTRL_FORM(dict_name, ele_number, value_array, inact_array, change_array,
term_mask, def_item, term_char, status)

Input/Output Parameters :

[in] dict_name : STRING

[in] ele_number : INTEGER

[in] value_array : ARRAY OF STRING

[in] inactive_array : ARRAY OF BOOLEAN

[out] change_array : ARRAY OF BOOLEAN

[in] term_mask : INTEGER

[in,out] def_item : INTEGER

[out] term_char : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :PBcore

Details:

• dict_name is the four-character name of the dictionary containing the form.

• ele_number is the element number of the form.

• value_array is an array of variable names that corresponds to each edit or display only data item
in the form. Each variable name can be specified as a �[prog_name]var_name�.

� [prog_name] is the name of the program that contains the specified variable. If [prog_name]
is not specified, the current program being executed is used. �[*SYSTEM*]� should be
used for system variables.

� var_name must refer to a static, global program variable.

� var_name can contain node numbers, field names, and/or subscripts.

� var_name can also specify a port variable with index. For example, �DIN[1]�.

• inactive_array is an array of booleans that corresponds to each item in the form.

� Each boolean defaults to FALSE, indicating it is active.

A�111

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

� You can set any boolean to TRUE which will make that item inactive and non-selectable.

� The array size can be greater than or less than the number of items in the form.

� If an inactive_array is not used, then an array size of 1 can be used. The array does not
need to be initialized.

• change_array is an array of booleans that corresponds to each edit or display only data item in
the form.

� If the corresponding value is set, then the boolean will be set to TRUE, otherwise it is set to
FALSE. You do not need to initialize the array.

� The array size can be greater than or less than the number of data items in the form.

� If change_array is not used, an array size of 1 can be used.

• term_mask is a bit-wise mask indicating conditions that will terminate the form. This should be
an OR of the constants defined in the include file klevkmsk.kl.

kc_func_key � Function keys

kc_enter_key � Enter and Return keys

kc_prev_key � PREV key

If either a selectable item or a new menu is selected, the form will always terminate, regardless
of term_mask.

• For version 6.20 and 6.21, def_item receives the item you want to be highlighted when the
form is entered. def_item returns the item that was currently highlighted when the termination
character was pressed.

• For version 6.22 and later, def_item receives the item you want to be highlighted when the form is
entered. def_item is continuously updated while the form is displayed and contains the number of
the item that is currently highlighted

• term_char receives a code indicating the character or other condition that terminated the form.
The codes for key terminating conditions are defined in the include file klevkeys.kl. Keys
normally returned are pre-defined constants as follows:

ky_undef � No termination character was pressed

ky_select � A selectable item was selected

ky_new_menu � A new menu was selected

ky_f1 � Function key 1 was selected

ky_f2 � Function key 2 was selected

ky_f3 � Function key 3 was selected

A�112

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

ky_f4 � Function key 4 was selected

ky_f5 � Function key 5 was selected

ky_f6 � Function key 6 was selected

ky_f7 � Function key 7 was selected

ky_f8 � Function key 8 was selected

ky_f9 � Function key 9 was selected

ky_f10 � Function key 10 was selected

• DISCTRL_FORM will display the form on the teach pendant device. To display the form on the
CRT/KB device, you must create an INTEGER variable, device_stat , and set it to crt_panel . To
set control to the teach pendant device, set device_stat to tp_panel.

• status explains the status of the attempted operation. If status returns a value other than 0, an
error has occurred.

Note DISCTRL_FORM will only display the form if the USER2 menu is the selected
menu. Therefore, use FORCE_SPMENU(device_stat, SPI_TPUSER2, 1) before calling
DISCTRL_FORM to force the USER2 menu.

See Also: Chapter 10 DICTIONARIES AND FORMS , for more details and examples.

A.4.22 DISCTRL_LIST Built-In Procedure

Purpose: Displays and controls cursor movement and selection in a list in a specified window

Syntax : DISCTRL_LIST(file_var, display_data, list_data, action, status)

Input/Output Parameters :

[in] file_ var :FILE

[in,out] display_data :DISP_DAT_T

[in] list_data :ARRAY OF STRING

[in] action :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

A�113

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Details:

• file_var must be opened to the window where the list data is to appear.

• display_data is used to display the list. Refer to the DISP_DAT_T data type for details.

• list_data contains the list of data to display.

• action must be one of the following:

dc_disp : Positions cursor as defined in display_data

dc_up : Moves cursor up one row

dc_dn : Moves cursor down one row

dc_lf : Moves cursor left one field

dc_rt : Moves cursor right one field

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

• Using DISCTRL_FORM is the preferred method for displaying and controlling information in a
window.

See Also: DISCTRL_FORM Built-In Procedure, Section 7.9.1 , "User Menu on the Teach Pendant,"
Section 7.9.2 , "User Menu on the CRT/KB," Chapter 10 DICTIONARIES AND FORMS

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

Caution

The input parameters are not checked for validity. You must make sure the input
parameters are valid; otherwise, the built-in might not work properly.

A.4.23 DISCTRL_PLMN Built-In Procedure

Purpose: Creates and controls cursor movement and selection in a pull-up menu

Syntax : DISCTRL_PLMN(dict_name, element_no, ftn_key_no, def_item, term_char, status)

Input/Output Parameters :

[in] dict_name :STRING

[in] element_no :INTEGER

A�114

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] ftn_key_num :INTEGER

[in,out] def_item :INTEGER

[out] term_char :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group : UIF

Details:

• The menu data in the dictionary consists of a list of enumerated values that are displayed and
selected from a pull-up menu on the teach pendant device. A maximum of 9 values should be
used. Each value is a string of up to 12 characters.

A sequence of consecutive dictionary elements, starting with element_no , define the values. Each
value must be put in a separate element, and must not end with &new_line. The characters are
assigned the numeric values 1..9 in sequence. The last dictionary element must be "".

• dict_name specifies the name of the dictionary that contains the menu data.

• element_no is the element number of the first menu item within the dictionary.

• ftn_key_num is the function key where the pull-up menu should be displayed.

• def_item is the item that should be highlighted when the menu is entered. 1 specifies the first
item. On return, def_item is the item that was currently highlighted when the termination
character was pressed.

• term_char receives a code indicating the character that terminated the menu. The codes for key
terminating conditions are defined in the include file FROM:KLEVKEYS.KL. Keys normally
returned are pre-defined constants as follows:

ky_enter � A menu item was selected

ky_prev � A menu item was not selected

ky_new_menu � A new menu was selected

ky_f1

ky_f2

ky_f3

ky_f4

ky_f5

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

A�115

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: In this example, dictionary file TPEXAMEG.TX is loaded as ’EXAM’ on the controller.
TPPLMN.KL calls DISCTRL_PLMN to display and process the pull-up menu above function key 3.

DISCTRL_PLMN Built-In Procedure
--
TPEXAMEG.TX
--

$subwin_menu
"Option 1"
$
"Option 2"
$
"Option 3"
$
"Option 4"
$
"Option 5"
$
"......"

--
TPPLMN.KL
--

PROGRAM tpplmn

%ENVIRONMENT uif

VAR
def_item: INTEGER
term_char: INTEGER
status: INTEGER

BEGIN
def_item = 1
DISCTRL_PLMN(’EXAM’, 0, 3, def_item, term_char, status)
IF term_char = ky_enter THEN

WRITE (CR, def_item, ’ was selected’)
ENDIF

END tpplmn

A.4.24 DISCTRL_SBMN Built-In Procedure

Purpose: Creates and controls cursor movement and selection in a sub-window menu

A�116

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Syntax : DISCTRL_SBMN(dict_name, element_no, def_item, term_char, status)

Input/Output Parameters :

[in] dict_name :STRING

[in] element_no :INTEGER

[in,out] def_item :INTEGER

[out] term_char :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group : UIF

Details:

• The menu data in the dictionary consists of a list of enumerated values that are displayed
and selected from the �subm� subwindow on the Teach Pendant device. There can be up to 5
subwindow pages, for a maximum of 35 values. Each value is a string of up to 16 characters. If 4
or less enumerated values are used, then each string can be up to 40 characters.

A sequence of consecutive dictionary elements, starting with element_no , define the values. Each
value must be put in a separate element, and must not end with &new_line. The characters are
assigned the numeric values 1..35 in sequence. The last dictionary element must be "".

• dict_name specifies the name of the dictionary that contains the menu data.

• element_no is the element number of the first menu item within the dictionary.

• def_item is the item that should be highlighted when the menu is entered. 1 specifies the first
item. On return, def_item is the item that was currently highlighted when the termination
character was pressed.

• term_char receives a code indicating the character that terminated the menu. The codes for key
terminating conditions are defined in the include file FROM:KLEVKEYS.KL. Keys normally
returned are pre-defined constants as follows:

ky_enter � A menu item was selected

ky_prev � A menu item was not selected

ky_new_menu � A new menu was selected

ky_f1

ky_f2

ky_f3

A�117

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

ky_f4

ky_f5

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: In this example, dictionary file TPEXAMEG.TX is loaded as ’EXAM’ on the controller.
TPSBMN.KL calls DISCTRL_SBMN to display and process the subwindow menu.

DISCTRL_SBMN Built-In Procedure
--
TPEXAMEG.TX
--
$subwin_menu
"Red"
$
"Blue"
$
"Green"
$
"Yellow"
$
"Brown"
$
"Pink"
$
"Mauve"
$
"Black"
$
"Lime"
$
"Lemon"
$
"Beige"
$
"Blue"
$
"Green"
$
"Yellow"
$
"Brown"
$
"\a"
--
TPSBMN.KL
--

A�118

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

PROGRAM tpsbmn
%ENVIRONMENT uif

VAR
def_item: INTEGER
term_char: INTEGER
status: INTEGER

BEGIN
def_item = 1
DISCTRL_SBMN(’EXAM’, 0, def_item, term_char, status)
IF term_char = ky_enter THEN

WRITE (CR, def_item, ’ was selected’)
ENDIF

END tpsbmn

A.4.25 DISCTRL_TBL Built-In Procedure

Purpose: Displays and controls a table on the teach pendant

Syntax : DISCTRL_TBL(dict_name, ele_number, num_rows, num_columns, col_data, inact_array,
change_array, def_item, term_char, term_mask, value_array, attach_wind, status)

Input/Output Parameters :

[in] dict_name :STRING

[in] ele_number :INTEGER

[in] num_rows :INTEGER

[in] num_columns :INTEGER

[in] col_data :ARRAY OF COL_DESC_T

[in] inact_array :ARRAY OF BOOLEAN

[out] change_array :ARRAY OF BOOLEAN

[in,out] def_item :INTEGER

[out] term_char :INTEGER

[in] term_mask :INTEGER

[in] value_array :ARRAY OF STRING

A�119

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] attach_wind :BOOLEAN

[out] status :INTEGER

%ENVIRONMENT Group : UIF

Details:

• DISCTRL_TBL is similar to the INIT_TBL and ACT_TBL Built-In routines and should be used
if no special processing needs to be done with each keystroke.

• dict_name is the four-character name of the dictionary containing the table header.

• ele_number is the element number of the table header.

• num_rows is the number of rows in the table.

• num_columns is the number of columns in the table.

• col_data is an array of column descriptor structures, one for each column in the table. For a
complete description, refer to the INIT_TBL Built-In routine in this appendix.

• inact_array is an array of booleans that corresponds to each column in the table.

� You can set each boolean to TRUE which will make that column inactive. This means the
you cannot move the cursor to this column.

� The array size can be less than or greater than the number of items in the table.

� If inact_array is not used, then an array size of 1 can be used, and the array does not need to
be initialized.

• change_array is a two dimensional array of BOOLEANs that corresponds to formatted data
items in the table.

� If the corresponding value is set, then the boolean will be set to TRUE, otherwise it is set to
FALSE. You do not need to initialize the array.

� The array size can be less than or greater than the number of data items in the table.

� If change_array is not used, then an array size of 1 can be used.

• def_item is the row containing the item you want to be highlighted when the table is entered.
On return, def_item is the row containing the item that was currently highlighted when the
termination character was pressed.

• term_char receives a code indicating the character or other condition that terminated the table.
The codes for key terminating conditions are defined in the include file FROM:KLEVKEYS.KL.
Keys normally returned are pre-defined constants as follows:

ky_undef � No termination character was pressed

ky_select � A selectable item as selected

ky_new_menu � A new menu was selected

A�120

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

ky_f1 � Function key 1 was selected

ky_f2 � Function key 2 was selected

ky_f3 � Function key 3 was selected

ky_f4 � Function key 4 was selected

ky_f5 � Function key 5 was selected

ky_f6 � Function key 6 was selected

ky_f7 � Function key 7 was selected

ky_f8 � Function key 8 was selected

ky_f9 � Function key 9 was selected

ky_f10 � Function key 10 was selected

• term_mask is a bit-wise mask indicating conditions that will terminate the request. This should be
an OR of the constants defined in the include file FROM:KLEVKMSK.KL.

kc_display � Displayable keys

kc_func_key � Function keys

kc_keypad � Key-pad and Edit keys

kc_enter_key � Enter and Return keys

kc_delete � Delete and Backspace keys

kc_lr_arw � Left and Right Arrow keys

kc_ud_arw � Up and Down Arrow keys

kc_other � Other keys (such as Prev)

• value_array is an array of variable names that corresponds to each column of data item in the
table. Each variable name can be specified as �[prog_name]var_name�.

� [prog_name] specifies the name of the program that contains the specified variable. If
[prog_name] is not specified, then the current program being executed is used.

� var_name must refer to a static, global program variable.

� var_name can contain node numbers, field names, and/or subscripts.

• attach_wind should be set to 1 if the table manager window needs to be attached to the display
device. If it is already attached, this parameter can be set to 0.

A�121

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: Refer to the INIT_TBL Built-In routine for an example of setting up the dictionary text and
initializing the parameters.

A.4.26 DISMOUNT_DEV Built-In Procedure

Purpose: Dismounts the specified device.

Syntax : DISMOUNT_DEV (device, status)

Input/Output Parameters :

[in] device :STRING

[out] status :INTEGER

%ENVIRONMENT Group :FDEV

Details:

• device specifies the device to be dismounted.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: MOUNT_DEV, FORMAT_DEV Built-In Procedures

Example: Refer to Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL), for a detailed
program example.

A.4.27 DISP_DAT_T Data Type

Purpose: Defines data type for use in DISCTRL_LIST Built-In

Syntax :

disp_dat_t = STRUCTURE

win_start : ARRAY [4] OF SHORT

win_end : ARRAY [4] OF SHORT

curr_win : SHORT

cursor_row : SHORT

A�122

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

lins_per_pg : SHORT

curs_st_col : ARRAY [10] OF SHORT

curs_en_col : ARRAY [10] OF SHORT

curr_field : SHORT

last_field : SHORT

curr_it_num : SHORT

sob_it_num : SHORT

eob_it_num : SHORT

last_it_num : SHORT

menu_id : SHORT

ENDSTRUCTURE

Details:

• disp_dat_t can be used to display a list in four different windows. The list can contain up to 10
fields. Left and right arrows move between fields. Up and down arrows move within a field.

• win_start is the starting row for each window.

• win_end is the ending row for each window.

• curr_win defines the window to display. The count begins at zero (0 will display the first window).

• cursor_row is the current cursor row.

• lins_per_pg is the number of lines per page for paging up and down.

• curs_st_col is the cursor starting column for each field. The range is 0-39 for the teach pendant.

• curs_en_col is the cursor ending column for each field. The range is 0-39 for the teach pendant.

• curr_field is the current field in which the cursor is located. The count begins at zero (0 will set
the cursor to the first field).

• last_field is the last field in the list.

• curr_it_num is the item number the cursor is on.

• sob_it_num is the item number of the first item in the array.

• eob_it_num is the item number of the last item in the array.

• last_it_num is the item number of the last item in the list.

• menu_id is the current menu identifier. Not implemented. May be left uninitialized.

A�123

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLIST_EX.KL), for a
detailed program example.

A.5 - E - KAREL LANGUAGE DESCRIPTION

A.5.1 ENABLE CONDITION Action

Purpose: Enables the specified condition handler

Syntax : ENABLE CONDITION [cond_hand_no]

where:

cond_hand_no :an INTEGER expression

Details:

• ENABLE CONDITION has no effect when

� The condition handler is not defined

� The condition handler is defined but is already enabled

• cond_hand_no must be in the range of 1-1000. Otherwise, the program will be aborted with an
error.

• When a condition handler is enabled, its conditions are tested each time the condition handler is
scanned. If the conditions are satisfied, the corresponding actions are performed and the condition
handler is deactivated. Issue an ENABLE CONDITION statement or action to reactivate it.

• Use the DISABLE CONDITION statement or action to deactivate a condition handler that has
been enabled.

• Condition handlers are known only to the task which defines them. One task cannot enable
another tasks condition.

See Also: DISABLE CONDITION Action, Chapter 6 CONDITION HANDLERS

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.5.2 ENABLE CONDITION Statement

Purpose: Enables the specified condition handler

Syntax : ENABLE CONDITION [cond_hand_no]

A�124

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

where:

cond_hand_no :an INTEGER expression

Details:

• ENABLE CONDITION has no effect when

� The condition handler is not defined

� The condition handler is defined but is already enabled

• cond_hand_no must be in the range of 1-1000. Otherwise, the program will be aborted with an
error.

• When a condition handler is enabled, its conditions are tested each time the condition handler is
scanned. If the conditions are satisfied, the corresponding actions are performed and the condition
handler is deactivated. Issue an ENABLE CONDITION statement or action to reactivate it.

• Use the DISABLE CONDITION statement or action to deactivate a condition handler that has
been enabled.

• Condition handlers are known only to the task which defines them. One task cannot enable
another tasks condition.

See Also: DISABLE CONDITION Statement, Chapter 6 CONDITION HANDLERS , Appendix E,
��Syntax Diagrams,�� for additional syntax information

Example: Refer to the following sections for detailed program examples.

Section B.6 , "Path Variables and Condition Handlers Program" (PTH_MOV.KL)

Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.5.3 %ENVIRONMENT Translator Directive

Purpose: Loads environment file.

Syntax : %ENVIRONMENT path_name

• Used by the off-line translator to specify that the binary file, path_name.ev, should be loaded.
Environment files contain definitions for predefined constants, ports, types, system variables, and
built-ins.

• All .EV files are loaded upon installation of the controller software. Therefore, the controller�s
translator will ignore %ENVIRONMENT statements since it already has the .EV files loaded.

• path_name can be one of the following:

� BYNAM

A�125

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

� CTDEF (allows program access to CRT/KB system variables)

� ERRS

� FDEV

� FLBT

� IOSETUP

� KCLOP

� MEMO

� MIR

� MOTN

� MULTI

� PATHOP

� PBCORE

� PBQMGR

� REGOPE

� STRNG

� SYSDEF (allows program access to most system variables)

� SYSTEM

� TIM

� TPE

� TRANS

� UIF

� VECTR

• If no %ENVIRONMENT statements are specified in your KAREL program, the off-line
translator will load all the .EV files specified in TRMNEG.TX. The translator must be able to find
these files in the current directory or in one of the PATH directories.

• If at least one %ENVIRONMENT statement is specified, the off-line translator will only load the
files you specify in your KAREL program. Specifying your own %ENVIRONMENT statements
will reduce the amount of memory required to translate and will be faster, especially if you do not
require system variables since SYSDEF.EV is the largest file.

• SYSTEM.EV and PBCORE.EV are automatically loaded by the translator and should not be
specified in your KAREL program. The off-line translator will print the message "Continuing
without system defined symbols" if it cannot find SYSTEM.EV. Do not ignore this message.
Make sure the SYSTEM.EV file is loaded.

Example: Refer to the following sections for detailed program examples:

A�126

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.3,"Saving Data to the Default Device" (SAVE_VR.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.5.4 ERR_DATA Built-In Procedure

Purpose: Reads the requested error from the error history and returns the error

Syntax : ERR_DATA(seq_num, error_code, error_string, cause_code, cause_string, time_int,
severity, prog_nam)

Input/Output Parameters :

[in,out] seq_num :INTEGER

[out] error_code :INTEGER

[out] error_string :STRING

[out] cause_code :INTEGER

[out] cause_string :STRING

[out] time_int :INTEGER

[out] severity :INTEGER

[out] prog_nam :STRING

%ENVIRONMENT Group :ERRS

• seq_num is the sequence number of the previous error requested. seq_num should be set to 0 if
the oldest error in the history is desired. seq_num should be set to MAXINT if the most recent
error is desired.

• seq_num is set to the sequence number of the error that is returned.

� If the initial value of seq_num is greater than the sequence number of the newest error in the
log, seq_num is returned as zero and no other data is returned.

� If the initial value of seq_num is less than the sequence number of the oldest error in the
log, the oldest error is returned.

• error_code returns the error code and error_string returns the error message. error_string must
be at least 40 characters long or the program will abort with an error.

A�127

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• cause_code returns the reason code if it exists and cause_string returns the message. cause_string
must be at least 40 characters long or the program will abort with an error.

• error_code and cause_code are in the following format:

ffccc (decimal)

where ff represents the facility code of the error.

ccc represents the error code within the specified facility.

Refer to Chapter 6, "Condition Handlers," for the error facility codes.

• time_int returns the time that error_code was posted. The time is in encoded format, and
CNV_TIME_STR Built-In should be used to get the date-and-time string.

• severity returns one of the following error_codes: 0 :WARNING1 :PAUSE2 :ABORT

• If the error occurs in the execution of a program, prog_nam specifies the name of the program in
which the error occurred.

• If the error is posted by POST_ERR, or if the error is not associated with a particular program
(e.g., E-STOP), prog_nam is returned as � "" �.

• Calling ERR_DATA immediately after POST_ERR may not return the error just posted since
POST_ERR returns before the error is actually in the error log.

See Also: POST_ERR Built-In Procedure

A.5.5 ERROR Condition

Purpose: Specifies an error as a condition

Syntax : ERROR[n]

where:

n :an INTEGER expression or asterisk (*)

Details:

• If n is an INTEGER, it represents an error code number. The condition is satisfied when the
specified error occurs.

• If n is an asterisk (*), it represents a wildcard. The condition is satisfied when any error occurs.

• The condition is an event condition, meaning it is satisfied only for the scan performed when the
error was detected. The error is not remembered on subsequent scans.

A�128

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

See Also: Chapter 6 CONDITION HANDLERS , for more information on using conditions. The
appropriate application-specific FANUC Robotics SYSTEM R-J3iB Controller Setup and Operations
Manual for a list of all error codes

Example: Refer to Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.5.6 EVAL Clause

Purpose: Allows expressions to be evaluated in a condition handler definition

Syntax : EVAL(expression)

where:

expression :a valid KAREL expression

Details:

• expression is evaluated when the condition handler is defined, rather than dynamically during
scanning.

• expression can be any valid expression that does not contain a function call.

See Also: Chapter 6 CONDITION HANDLERS ,, for more information on using conditions

Example: The following example uses a local condition handler to move to the position far_pos until
AIN[force] is greater than the evaluated expression (10 * f_scale).

EVAL Clause
WRITE (’Enter force scale: ’)

READ (f_scale)
MOVE TO far_pos,

UNTIL AIN[force] > EVAL(10 * f_scale)
ENDMOVE

A.5.7 EVENT Condition

Purpose: Specifies the number of an event that satisfies a condition when a SIGNAL EVENT
statement or action with that event number is executed

Syntax : EVENT[event_no]

where:

A�129

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

event_no :is an INTEGER expression

Details:

• Events can be used as user-defined event codes that become TRUE when signaled.

• The SIGNAL EVENT statement or action is used to signal that an event has occurred.

• event_no must be in the range of -32768 to 32767.

See Also: SIGNAL EVENT Action, and CONDITION or SIGNAL EVENT Statement

Example: Refer to Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.5.8 EXP Built-In Function

Purpose: Returns a REAL value equal to e (approximately 2.71828) raised to the power specified
by a REAL argument

Syntax : EXP(x)

Function Return Type :REAL

Input/Output Parameters :

[in] x :REAL

%ENVIRONMENT Group :SYSTEM

Details:

• EXP returns e (base of the natural logarithm) raised to the power x .

• x must be less than 80. Otherwise, the program will be paused with an error.

Example: The following example uses the EXP Built-In to evaluate the exponent of the expression
(-6.44 + timevar/(timevar + 20)) .

EXP Built-In Function
WRITE (CR, ’Enter time needed for move:’)

READ (timevar)

distance = timevar *
EXP(-6.44 + timevar/(timevar + 20))

WRITE (CR, CR, ’Distance for move:’, distance::10::3)

A�130

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.6 - F - KAREL LANGUAGE DESCRIPTION

A.6.1 FILE Data Type

Purpose: Defines a variable as FILE data type

Syntax : file

Details:

• FILE allows you to declare a static variable as a file.

• You must use a FILE variable in OPEN FILE, READ, WRITE, CANCEL FILE, and CLOSE
FILE statements.

• You can pass a FILE variable as a parameter to a routine.

• Several built-in routines require a FILE variable as a parameter, such as BYTES_LEFT,
CLR_IO_STAT, GET_FILE_POS, IO_STATUS, SET_FILE_POS.

• FILE variables have these restrictions:

� FILE variables must be a static variable.

� FILE variables are never saved.

� FILE variables cannot be function return values.

� FILE types are not allowed in structures, but are allowed in arrays.

� No other use of this variable data type, including assignment to one another, is permitted.

Example: Refer to the following sections for detailed program examples:

Section B.2 , "Copying Path Variables" (CPY_PTH.KL)

Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL)

A.6.2 FILE_LIST Built-In Procedure

Purpose: Generates a list of files with the specified name and type on the specified device.

Syntax: FILE_LIST(file_spec, n_skip, format, ary_nam, n_files, status)

Input/Output Parameters :

[in] file_spec :STRING

[in] n_skip :INTEGER

A�131

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] format :INTEGER

[out] ary_nam :ARRAY of STRING

[out] n_files :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :BYNAM

Details:

• file_spec specifies the device, name, and type of the list of files to be found. file_spec can be
specified using the wildcard (*) character.

• n_skip is used when more files exist than the declared length of ary_nam . Set n_skip to 0 the
first time you use FILE_LIST. If ary_nam is completely filled with variable names, copy the
array to another ARRAY of STRINGs and execute the FILE_LIST again with n_skip equal to
n_files . The second call to FILE_LIST will skip the files found in the first pass and only locate
the remaining files.

• format specifies the format of the file name and file type. The following values are valid
for format :

1 file_name only, no blanks 2 file_type only, no blanks3 file_name.file_type , no blanks4
filename.ext size date time The total length is 40 characters.

� The file_name starts with character 1.

� The file_type (extension) starts with character 10.

� The size starts with character 21.

� The date starts with character 26.

� The time starts with character 36.

Date and time are only returned if the device supports time stamping; otherwise just the
filename.ext size is stored.

• ary_nam is an ARRAY of STRINGs to store the file names. If the string length of ary_nam is not
large enough to store the formatted information, an error will be returned.

• n_files is the number of files stored in ary_name .

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: VAR_LIST, PROG_LIST Built-In Procedures

Example: Refer to Section B.7 , "Listing Files and Programs and Manipulating Strings"
(LIST_EX.KL), for a detailed program example.

A�132

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.6.3 FOR...ENDFOR Statement

Purpose: Looping construct based on an INTEGER counter

Syntax : FOR count = initial || TO | DOWNTO || final

DO{stmnt} ENDFOR

where:

[in]count :INTEGER variable

[in]initial :INTEGER expression

[in]final :INTEGER expression

[in]stmnt :executable KAREL statement

Details:

• Initially, count is set to the value of initial and final is evaluated. For each iteration, count
is compared to final.

• If TO is used, count is incremented for each loop iteration.

• If DOWNTO is used, count is decremented for each loop iteration.

• If count is greater than final using TO, stmnt is never executed.

• If count is less than final using DOWNTO, stmnt is never executed on the first iteration.

• If the comparison does not fail on the first iteration, the FOR loop will be executed for the number
of times that equals ABS(final - initial l) + 1.

• If final = initial , the loop is executed once.

• initial is evaluated prior to entering the loop. Therefore, changing the values of initial and final
during loop execution has no effect on the number of iterations performed.

• The value of count on exit from the loop is uninitialized.

• Never issue a GO TO statement in a FOR loop. If a GO TO statement causes the program to exit
a FOR loop, the program might be aborted with a ��Run time stack overflow�� error.

• Never include a GO TO label in a FOR loop. Entering a FOR loop by a GO TO statement usually
causes the program to be aborted with a ��Run time stack underflow�� error when the ENDFOR
statement is encountered.

• The program will not be translated if count is a system variable or ARRAY element.

See Also: Appendix E , ��Syntax Diagrams,�� for additional syntax information.

Example: Refer to the following sections for detailed program examples:

A�133

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.6.4 FORCE_SPMENU Built-In Procedure

Purpose: Forces the display of the specified menu

Syntax : FORCE_SPMENU(device_code, spmenu_id, screen_no)

Input/Output Parameters :

[in] device_code :INTEGER

[in] spmenu_id :INTEGER

[in] screen_no :INTEGER

%ENVIRONMENT Group :pbcore

Details:

• device_code specifies the device and should be one of the following predefined constants:

tp_panel Teach pendant device

crt_panel CRT device

• spmenu_id and screen_no specify the menu to force. The predefined constants beginning
with SPI_ define the spmenu_id and the predefined constants beginning with SCR_ define the
screen_no . If no SCR_ is listed, use 1.

SPI_TPHINTS � UTILITIES Hints

SPI_TPPRGADJ � UTILITIES Prog Adjust

SPI_TPMIRROR � UTILITIES Mirror Image

A�134

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

SPI_TPSHIFT � UTILITIES Program Shift

SPI_TPTSTRUN � TEST CYCLE

SPI_TPMANUAL, SCR_MACMAN � MANUAL Macros

SPI_TPOTREL � MANUAL OT Release

SPI_TPALARM, SCR_ALM_ALL � ALARM Alarm Log

SPI_TPALARM, SCR_ALM_MOT � ALARM Motion Log

SPI_TPALARM, SCR_ALM_SYS � ALARM System Log

SPI_TPALARM, SCR_ALM_APPL � ALARM Appl Log

SPI_TPDIGIO � I/O Digital

SPI_TPANAIO � I/O Analog

SPI_TPGRPIO � I/O Group

SPI_TPROBIO � I/O Robot

SPI_TPUOPIO � I/O UOP

SPI_TPSOPIO � I/O SOP

SPI_TPPLCIO � I/O PLC

SPI_TPSETGEN � SETUP General

SPI_TPFRAM � SETUP Frames

SPI_TPPORT � SETUP Port Init

SPI_TPMMACRO, SCR_MACSETUP � SETUP Macro

SPI_TPREFPOS � SETUP Ref Position

SPI_TPPWORD � SETUP Passwords

SPI_TPHCCOMM � SETUP Host Comm

SPI_TPSYRSR � SETUP RSR/PNS

SPI_TPFILS � FILE

SPI_TPSTATUS, SCR_AXIS � STATUS Axis

A�135

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

SPI_TPMEMORY � STATUS Memory

SPI_TPVERSN � STATUS Version ID

SPI_TPPRGSTS � STATUS Program

SPI_TPSFTY � STATUS Safety Signals

SPI_TPUSER � USER

SPI_TPSELECT � SELECT

SPI_TPTCH � EDIT

SPI_TPREGIS, SCR_NUMREG � DATA Registers

SPI_SFMPREG, SCR_POSREG � DATA Position Reg

SPI_TPSYSV, SCR_NUMVAR � DATA KAREL Vars

SPI_TPSYSV, SCR_POSVAR � DATA KAREL Posns

SPI_TPPOSN � POSITION

SPI_TPSYSV, SCR_CLOCK � SYSTEM Clock

SPI_TPSYSV, SCR_SYSVAR � SYSTEM Variables

SPI_TPMASCAL � SYSTEM Master/Cal

SPI_TPBRKCTR � SYSTEM Brake Cntrl

SPI_TPAXLM � SYSTEM Axis Limits

SPI_CRTKCL, SCR_KCL � KCL> (crt_panel only)

SPI_CRTKCL, SCR_CRT � KAREL EDITOR (crt_panel only)

SPI_TPUSER2 � Menu for form/table managers

See Also: ACT_SCREEN Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.4 , "Standard Routines" (ROUT_EX.KL)

Section B.5 , "Using Register Built-ins" (REG_EX.KL)

Section B.12 , "Dictionary Files" (DCLISTEG.UTX)

A�136

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.13 , "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.6.5 FORMAT_DEV Built-In Procedure

Purpose: Deletes any existing information and records a directory and other internal information on
the specified device.

Syntax : FORMAT_DEV(device, volume_name, nowait_sw, status)

Input/Output Parameters :

[in] device :STRING

[in] volume_name :STRING

[in] nowait_sw :BOOLEAN

[out] status :INTEGER

%ENVIRONMENT Group :FDEV

Details:

• device specifies the device to initialize.

• volume_name acts as a label for a particular unit of storage media. volume_name can be a
maximum of 11 characters and will be truncated to 11 characters if more are specified.

• If nowait_sw is TRUE, execution of the program continues while the command is executing. If
it is FALSE, the program stops, including condition handlers, until the operation is complete.
If you have time critical condition handlers in the program, put them in another program that
executes as a separate task.

Note nowait_sw is not available in this release and should be set to FALSE.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: MOUNT_DEV, DISMOUNT_DEV Built-In Procedures

Example: Refer to Section B.9 , "Using the File and Device Built-ins" (FILE_EX.KL), for a detailed
program example.

A�137

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.6.6 FRAME Built-In Function

Purpose: Returns a frame with a POSITION data type representing the transformation to the
coordinate frame specified by three (or four) POSITION arguments.

Syntax : FRAME(pos1, pos2, pos3 <,pos4>)

Function Return Type :Position

Input/Output Parameters :

[in]pos1 :POSITION

[in]pos2 :POSITION

[in]pos3 :POSITION

[in]pos4 :POSITION

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value is computed as follows:

� pos1 is assumed to be the origin unless a pos4 argument is supplied. See Figure A�1 .

� If pos4 is supplied, the origin is shifted to pos4 , and the new coordinate frame retains the
same orientation in space as the first coordinate frame. See Figure A�1 .

� The x-axis is parallel to a line from pos1 to pos2 .

� The xy-plane is defined to be that plane containing pos1 , pos2 , and pos3 , with pos3 in the
positive half of the plane.

� The y-axis is perpendicular to the x-axis and in the xy-plane.

� The z-axis is through pos1 and perpendicular to the xy-plane. The positive direction is
determined by the right hand rule.

� The configuration of the result is set to that of pos1 , or pos4 if it is supplied.

• pos1 and pos2 arguments must be at least 10 millimeters apart and pos3 must be at least 10
millimeters away from the line connecting pos1 and pos2 .

If either condition is not met, the program is paused with an error.

A�138

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Figure A�1. FRAME Built-In Function

+X

+Z

+Y

POS 4

POS 3

POS 2

POS 1

+X

+Z

+Y

Example: The following example allows the operator to set a frame to a pallet so that a palletizing
routine will be able to move the TCP along the x, y, z direction in the pallet�s coordinate frame.

FRAME Built-In Function
WRITE(’Teach corner_1, corner_2, corner_3’,CR)

RELEASE --Allows operator to turn on teach pendant
--and teach positions

ATTACH --Returns motion control to program
$UFRAME = FRAME (corner_1, corner_2, corner_3)

A.6.7 FROM Clause

Purpose: Indicates a variable or routine that is external to the program, allowing data and/or routines
to be shared among programs

Syntax : FROM prog_name

where:

prog_name : any KAREL program identifier

Details:

• The FROM clause can be part of a type, variable, or routine declaration.

• The type, variable, or routine belongs to the program specified by prog_name .

A�139

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• In a FROM clause, prog_name can be the name of any program, including the program in which
the type, variable, or routine is declared.

• If the FROM clause is used in a routine declaration and is called during program execution, the
body of the declaration must appear in the specified program and that program must be loaded.

• The FROM clause cannot be used when declaring variables in the declaration section of a routine.

Example: Refer to the following sections for detailed program examples:

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.7 - G - KAREL LANGUAGE DESCRIPTION

A.7.1 GET_ATTR_PRG Built-In Procedure

Purpose: Gets attribute data from the specified teach pendant or KAREL program

Syntax : GET_ATTR_PRG(program_name, attr_number, int_value, string_value, status)

Input/Output Parameters :

[in] program_name :STRING

[in] attr_number :INTEGER

[out] int_value :INTEGER

[out] string_value :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• program_name specifies the program from which to get attribute.

A�140

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• attr_number is the attribute whose value is to be returned. The following attributes are valid:

AT_PROG_TYPE : Program type

AT_PROG_NAME : Program name (String[12])

AT_OWNER : Owner (String[8])

AT_COMMENT : Comment (String[16])

AT_PROG_SIZE : Size of program

AT_ALLC_SIZE : Size of allocated memory

AT_NUM_LINE : Number of lines

AT_CRE_TIME : Created (loaded) time

AT_MDFY_TIME : Modified time

AT_SRC_NAME : Source file (or original file) name (String[128])

AT_SRC_VRSN : Source file versionA

T_DEF_GROUP : Default motion groups (for task attribute)

AT_PROTECT : Protection code; 1 :Protection OFF ; 2 :Protection ON

AT_STK_SIZE : Stack size (for task attribute)

AT_TASK_PRI : Task priority (for task attribute)

AT_DURATION : Time slice duration (for task attribute)

AT_BUSY_OFF : Busy lamp off (for task attribute)

AT_IGNR_ABRT : Ignore abort request (for task attribute)

AT_IGNR_PAUS : Ignore pause request (for task attribute)

AT_CONTROL : Control code (for task attribute)

• The program type returned for AT_PROG_TYPE will be one of the following constants:

PT_KRLPRG : Karel program

PT_MNE_UNDEF : Teach pendant program of undefined sub type

PT_MNE_JOB : Teach pendant job

A�141

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

PT_MNE_PROC : Teach pendant process

PT_MNE_MACRO : Teach pendant macro

• If the attribute data is a number, it is returned in int_value and string_value is not modified.

• If the attribute data is a string, it is returned in string_value and int_value is not modified.

• status explains the status of the attempted operation. If it is not equal to 0, then an error has
occurred. Some of the errors which could occur are:

7073 The program specified in program_name does not exist

17027 string_value is not large enough to contain the attribute string. The value has been
truncated to fit.

17033 attr_number has an illegal value

See Also: SET_ATTR_PRG, GET_TSK_INFO, SET_TSK_ATTR Built-In Procedures

A.7.2 GET_FILE_POS Built-In Function

Purpose: Returns the current file position (where the next READ or WRITE operation will take
place) in the specified file

Syntax : GET_FILE_POS(file_id)

Function Return Type :INTEGER

Input/Output Parameters :

[in] file_id :FILE

%ENVIRONMENT Group :FLBT

Details:

• GET_FILE_POS returns the number of bytes before the next byte to be read or written in the file.

• Line terminators are counted in the value returned.

• The file associated with file_id must be open. Otherwise, the program is aborted with an error.

• If the file associated with file_id is open for read-only, it cannot be on the FROM or RAM
disks as a compressed file.

A�142

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Warning

GET_FILE_POS is only supported for files opened on the RAM Disk
device. Do not use GET_FILE_POS on another device; otherwise, you
could injure personnel and damage equipment.

Note GET_FILE_POS is not supported for files on the floppy disk.

Example: The following example opens the filepos.dt data file, stores the positions in my_path
in a file, and builds a directory to access them.

GET_FILE_POS Built-In Function
OPEN FILE file_id (’RW’,’filepos.dt’)

FOR i = 1 TO PATH_LEN(my_path) DO
temp_pos = my_path[i].node_pos
pos_dir[i] = GET_FILE_POS(file_id)
WRITE file_id (temp_pos)

ENDFOR

A.7.3 GET_JPOS_REG Built-In Function

Purpose: Gets a JOINTPOS value from the specified register

Syntax : GET_JPOS_REG(register_no, status <,group_no>)

Function Return Type :REGOPE

Input/Output Parameters :

[in] register_no :INTEGER

[out] status :INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :REGOPE

Details:

• register_no specifies the position register to get.

• If group_no is omitted, the default group for the program is assumed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

A�143

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• GET_JPOS_REG returns the position in JOINTPOS format. Use POS_REG_TYPE to determine
the position representation.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: GET_POS_REG, SET_JPOS_REG, SET_POS_REG Built-in Procedures

Example: Refer to Section B.5, "Using Register Built-ins" (REG_EX.KL) for a detailed program
example.

A.7.4 GET_JPOS_TPE Built-In Function

Purpose: Gets a JOINTPOS value from the specified position in the specified teach pendant program

Syntax : GET_JPOS_TPE(open_id, position_no, status <, group_no>)

Function Return Type :JOINTPOS

Input/Output Parameters :

[in] open_id :INTEGER

[in] position_no :INTEGER

[out] status :INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id specifies the teach pendant program. A program must be opened before calling this
built-in.

• position_no specifies the position in the program to get.

• If group_no is omitted, the default group for the program is assumed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

• No conversion is done for the position representation. The position data must be in JOINTPOS
format. If the stored position is not in JOINTPOS, an error status is returned. Use GET_POS_TYP
to get the position representation.

• If the specified position in the program is uninitialized, the returned JOINTPOS value is
uninitialized and the status is set to 17038, "Uninitialized TPE position".

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

A�144

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

See Also: SET_JPOS_TPE, GET_POS_TPE, SET_POS_TPE Built-ins

Example: Refer to Section B.14 , "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TPE.KL), for a detailed program example.

A.7.5 GET_PORT_ASG Built-in Procedure

Purpose: Allows a KAREL program to determine the physical port(s) to which a specified logical
port is assigned.

Syntax : GET_PORT_ASG(log_port_type, log_port_no, rack_no, slot_no, phy_port_type,
phy_port_no, n_ports, status)

Input/Output Parameters :

[in] log_port_type :INTEGER

[in] log_port_no :INTEGER

[out] rack_no :INTEGER

[out] slot_no :INTEGER

[out] phy_port_type :INTEGER

[out] phy_port_no :INTEGER

[out] n_ports :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• log_port_type specifies the code for the type of port whose assignment is being accessed. Codes
are defined in FR:KLIOTYPS.KL.

• log_port_no specifies the number of the port whose assignment is being accessed.

• rack_no is returned with the rack containing the port module. For process I/O boards,
memory-image, and dummy ports, this is zero; for Allen-Bradley ports, this is 16.

• phy_port_type is returned with the type of port assigned to. Often this will be the same as
log_port_type. Exceptions are if log_port_type is a group type (io_gpin or io_gpout) or a port is
assigned to memory-image or dummy ports.

• phy_port_no is returned with the number of the port assigned to. If log_port_type is a group,
this is the port number for the least-significant bit of the group.

A�145

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• n_ports is returned with the number of physical ports assigned to the logical port. This will be
1 in all cases except when log_port_type is a group type. In this case, n_ports indicates the
number of bits in the group.

• status is returned with zero if the parameters are valid and the specified port is assigned.
Otherwise, it is returned with an error code.

Example: The following example returns to the caller the module rack and slot number, port_number,
and number of bits assigned to a specified group input port. A boolean is returned indicating whether
the port is assigned to a DIN port. If the port is not assigned, a non-zero status is returned.

GET_PORT_ASG Built-In Procedure
PROGRAM getasgprog

%ENVIRONMENT IOSETUP
%INCLUDE FR:\kliotyps

ROUTINE get_gin_asg(gin_port_no: INTEGER;
rack_no: INTEGER;
slot_no: INTEGER;
frst_port_no: INTEGER;
n_ports: INTEGER;
asgd_to_din: BOOLEAN): INTEGER

VAR
phy_port_typ: INTEGER
status: INTEGER

BEGIN
GET_PORT_ASG(io_gpin, gin_port_no, rack_no, slot_no,

phy_port_typ, frst_port_no, n_ports, status)
IF status <> 0 THEN

RETURN (status)
ENDIF
asgd_to_din = (phy_port_typ = io_din)
END get_gin_asg

BEGIN
END getasgprog

A.7.6 GET_PORT_ATR Built-In Function

Purpose: Gets an attribute from the specified port

Syntax : GET_PORT_ATR(port_id, atr_type, atr_value)

Function Return Type :INTEGER

A�146

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Input/Output Parameters :

[in] port_id :INTEGER

[in] atr_type :INTEGER

[out] atr_value :INTEGER

%ENVIRONMENT Group :FLBT

Details:

• port_id specifies which port is to be queried. Use one of the following predefined constants:

port_1

port_2

port_3

port_4

port_5

• atr_type specifies the attribute whose current setting is to be returned. Use one of the following
predefined constants:

atr_readahd :Read ahead buffer

atr_baud :Baud rate

atr_parity :Parity

atr_sbits :Stop bit

atr_dbits :Data length

atr_xonoff :Xon/Xoff

atr_eol :End of line

atr_modem :Modem line

• atr_value receives the current value for the specified attribute.

• GET_PORT_ATR returns the status of this action to the port.

See Also: SET_PORT_ATR Built-In Function, Chapter 7 FILE INPUT/OUTPUT OPERATIONS

A�147

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: The following example sets up the port to a desired configuration, if it is not already set to
the specified configuration.

GET_PORT_ATR Built-In Function
PROGRAM port_atr
%ENVIRONMENT FLBT
VAR
stat: INTEGER
atr_value: INTEGER

BEGIN
-- sets read ahead buffer to desired value, if not already correct
stat=GET_PORT_ATR(port_2,atr_readahd,atr_value)
IF(atr_value <> 2) THEN
stat=SET_PORT_ATR(port_2,atr_readahd,2) --set to 256 bytes

ENDIF
-- sets the baud rate to 9600, if not already set
stat=GET_PORT_ATR(port_2,atr_baud,atr_value)
IF(atr_value <> BAUD_9600) THEN
stat=SET_PORT_ATR(port_2,atr_baud,baud_9600)

ENDIF
-- sets parity to even, if not already set
stat=GET_PORT_ATR(port_2,atr_parity,atr_value)
IF(atr_value <> PARITY_EVEN) THEN
stat=SET_PORT_ATR(port_2,atr_parity,PARITY_EVEN)

ENDIF
-- sets the stop bit to 1, if not already set
stat=GET_PORT_ATR(port_2,atr_sbits,atr_value)
IF(atr_value <> SBITS_1) THEN
stat=SET_PORT_ATR(port_2,atr_sbits,SBITS_1)

ENDIF
-- sets the data bit to 5, if not already set
stat=GET_PORT_ATR(port_2,atr_dbits,atr_value)
IF(atr_value <> DBITS_5) THEN
stat=SET_PORT_ATR(port_2,atr_dbits,DBITS_5)

ENDIF
-- sets xonoff to not used, if not already set
stat=GET_PORT_ATR(port_2,atr_xonoff,atr_value)
IF(atr_value <> xf_not_used) THEN
stat=SET_PORT_ATR(port_2,atr_xonoff,xf_not_used)

ENDIF
-- sets end of line marker, if not already set
stat=GET_PORT_ATR(port_2,atr_eol,atr_value)
IF(atr_value <> 65) THEN
stat=SET_PORT_ATR(port_2,atr_eol,65)

ENDIF
END port_atr

A�148

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.7.7 GET_PORT_CMT Built-In Procedure

Purpose: Allows a KAREL program to determine the comment that is set for a specified logical port

Syntax : GET_PORT_CMT(port_type, port_no, comment_str, status)

Input/Output Parameters :

[in] port_type :INTEGER

[in] port_no :INTEGER

[out] comment_str :STRING

[out] status :INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• port_type specifies the code for the type of port whose comment is being returned. Codes are
defined in FR:KLIOTYPS.KL.

• port_no specifies the port number whose comment is being set.

• comment_str is returned with the comment for the specified port. This should be declared as a
STRING with a length of at least 16 characters.

• status is returned with zero if the parameters are valid and the comment is returned for the
specified port.

See Also: GET_PORT_VAL, GET_PORT_MOD, SET_PORT_CMT, SET_PORT_VAL,
SET_PORT_MOD Built-in Procedures.

A.7.8 GET_PORT_MOD Built-In Procedure

Purpose: Allows a KAREL program to determine what special port modes are set for a specified
logical port

Syntax : GET_PORT_MOD(port_type, port_no, mode_mask, status)

Input/Output Parameters :

[in] port_type :INTEGER

[in] port_no :INTEGER

[out] mode_mask :INTEGER

A�149

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[out] status :INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• port_type specifies the code for the type of port whose mode is being returned. Codes are defined
in FR:KLIOTYPS.KL.

• port_no specifies the port number whose mode is being set.

• mode_mask is returned with a mask specifying which modes are turned on. The following
modes are defined:

1 :reverse mode

Sense of the port is reversed; if the port is set to TRUE, the physical output is set to FALSE. If the
port is set to FALSE, the physical output is set to TRUE. If a physical input is TRUE, when the port
is read, FALSE is returned. If a physical input is FALSE, when the port is read, TRUE is returned.

2 :complementary mode

The logical port is assigned to two physical ports whose values are complementary. In this case,
port_no must be an odd number. If port n is set to TRUE, then port n is set to TRUE and port n +
1 is set to FALSE. If port n is set to FALSE, then port n is set to FALSE and port n + 1 is set to
TRUE. This is effective only for output ports.

• status is returned with zero if the parameters are valid and the specified mode is returned for the
specified port.

Example: The following example gets the mode(s) for a specified port.

GET_PORT_MOD_Built-In Procedure
PROGRAM getmodprog
%ENVIRONMENT IOSETUP
%INCLUDE FR:\kliotyps
ROUTINE get_mode(port_type: INTEGER;

port_no: INTEGER;
reverse: BOOLEAN;
complementary: BOOLEAN): INTEGER

VAR
mode: INTEGER
status: INTEGER

BEGIN
GET_PORT_MOD(port_type, port_no, mode, status)

IF (status <>0) THEN
RETURN (status)

A�150

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

ENDIF

IF (mode AND 1) <> 0 THEN
reverse = TRUE

ELSE
reverse = FALSE

ENDIF

IF (mode AND 2) <> 0 THEN
complementary = TRUE

ELSE
complementary = FALSE

ENDIF

RETURN (status)
END get_mode

BEGIN
END getmodprog

A.7.9 GET_PORT_SIM Built-In Procedure

Purpose: Gets port simulation status

Syntax : GET_PORT_SIM(port_type, port_no, simulated, status)

Input/Output Parameters:

[in] port_type :INTEGER

[in] port_no :INTEGER

[out] simulated :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• port_type specifies the code for the type of port to get. Codes are defined in FRS:KLIOTYPS.KL.

• port_no specifies the number of the port whose simulation status is being returned.

• simulated returns TRUE if the port is being simulated, FALSE otherwise.

• status is returned with zero if the port is valid.

A�151

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: GET_PORT_MOD, SET_PORT_SIM, SET_PORT_MOD Built-in Procedures.

A.7.10 GET_PORT_VAL Built-In Procedure

Purpose: Allows a KAREL program to determine the current value of a specified logical port

Syntax : GET_PORT_VAL(port_type, port_no, value, status)

Input/Output Parameters :

[in] port_type :INTEGER

[in] port_no :INTEGER

[out] value :STRING

[out] status :INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• port_type specifies the code for the type of port whose comment is being returned. Codes are
defined in FR:KLIOTYPS.KL.

• port_no specifies the port number whose comment is being set.

• value is returned with the current value (status) of the specified port. For BOOLEAN port types,
(i.e. DIN), this will be 0 = OFF, or 1 = ON.

• status is returned with zero if the parameters are valid and the comment is returned for the
specified port.

See Also: GET_PORT_CMT, GET_PORT_MOD, SET_PORT_CMT, SET_PORT_VAL,
SET_PORT_MOD Built-in Procedures.

A.7.11 GET_POS_FRM Built-In Procedure

Purpose: Gets the uframe number and utool number of the specified position in the specified teach
pendant program.

Syntax : GET_POS_FRM(open_id, position_no, gnum, ufram_no, utool_no, status)

Input/Output Parameters :

[in] open_id :INTEGER

A�152

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] position_no :INTEGER

[in] gnum :INTEGER

[out] ufram_no :INTEGER

[out] utool_no :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :pbcore

Details:

• open_id specifies the opened teach pendant program. A program must be opened before calling
this built-in.

• position_no specifies the position in the teach pendant program.

• gnum specifies the group number of position.

• ufram_no is returned with the frame number of position_no.

• utool_no is returned with the tool number of position_no.

• If the specified position, position_no , is uninitialized, the status is set to 17038, "Uninitialized
TPE position."

• status indicates the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: GET_POS_TYP, CHECK_EPOS.

A.7.12 GET_POS_REG Built-In Function

Purpose: Gets an XYZWPR value from the specified register

Syntax : GET_POS_REG(register_no, status <,group_no>)

Function Return Type :XYZWPREXT

Input/Output Parameters:

[in] register_no :INTEGER

[out] status :INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :REGOPE

A�153

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Details:

• register_no specifies the position register to get.

• If group_no is omitted, the default group for the program is assumed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

• GET_POS_REG returns the position in XYZWPREXT format. Use POS_REG_TYPE to
determine the position representation.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: GET_JPOS_REG, SET_JPOS_REG, SET_POS_REG, GET_REG Built-in Procedures.

Example: Refer to Section B.5 ,"Using Register Built-ins" (REG_EX.KL), for a detailed program
example.

A.7.13 GET_POS_TPE Built-In Function

Purpose: Gets an XYZWPREXT value from the specified position in the specified teach pendant
program

Syntax : GET_POS_TPE(open_id, position_no, status <, group_no>)

Function Return Type :XYZWPREXT

Input/Output Parameters:

[in] open_id : INTEGER

[in] position_no : INTEGER

[out] status : INTEGER

[in] group_no : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id specifies the opened teach pendant program. A program must be opened before calling
this built-in.

• position_no specifies the position in the program to get.

• No conversion is done for the position representation. The positional data must be in XYZWPR
or XYZWPREXT, otherwise, an error status is returned. Use GET_POS_TYP to get the position
representation.

A�154

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• If the specified position in the program is uninitialized, the returned XYZWPR value is
uninitialized and status is set to 17038, "Uninitialized TPE Position."

• If group_no is omitted, the default group for the program is assumed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

See Also: GET_JPOS_TPE, SET_JPOS_TPE, SET_POS_TPE, GET_POS_TYP Built-in Procedures.

Example: Refer to Section B.14 , "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A.7.14 GET_POS_TYP Built-In Procedure

Purpose: Gets the position representation of the specified position in the specified teach pendant
program

Syntax : GET_POS_TYP(open_id, position_no, group_no, posn_typ, num_axs, status)

Input/Output Parameters:

[in] open_id :INTEGER

[in] position_no :INTEGER

[in] group_no :INTEGER

[out] posn_typ :INTEGER

[out] num_axs :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id specifies the opened teach pendant program. A program must be opened before calling
this built-in.

• position_no specifies the position in the program.

• group_no specifies the group number.

• Position type is returned by posn_typ. posn_typ is defined as follows:2 :XYZWPR6
:XYZWPREXT9 :JOINTPOS

A�155

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• If it is in joint position, the number of the axis in the representation is returned by num_axs .

• If the specified position in the program is uninitialized, then a status is set to 17038, "Unintialized
TPE Position."

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

Example: Refer to Section B.14 , "Applying Offsets to a Copied Teach Pendant Program"
(CPY_T.KL), for a detailed program example.

A.7.15 GET_PREG_CMT Built-In-Procedure

Purpose: To retrieve the comment information of a KAREL position register based on a given
register number.

Syntax: GET_PREG_CMT (register_no, comment_string, status)

Input/Output Parameters:

[in] register_no: INTEGER

[out] comment_string: STRING

[out] status: INTEGER

%ENVIORNMENT group: REGOPE

Details:

• Register_no specifies which position register to retrieve the comments from. The comment of
the given position register is returned in the comment_string.

A.7.16 GET_QUEUE Built-In Procedure

Purpose: Retrieves the specified oldest entry from a queue

Syntax : GET_QUEUE(queue, queue_data, value, status, sequence_no)

Input/Output Parameters:

[in,out] queue_t :QUEUE_TYPE

[in,out] queue_data :ARRAY OF INTEGER

[out] value :INTEGER

A�156

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[out] sequence_no :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBQMGR

Details:

• queue_t specifies the queue variable for the queue from which the value is to be obtained.

• queue_data specifies the array variable with the queue data.

• value is returned with the oldest entry obtained from the queue.

• sequence_no is returned with the sequence number of the returned entry.

• status is returned with the zero if an entry is successfully obtained from the queue. Otherwise, a
value of 61002, ��Queue is empty,�� is returned.

See Also: MODIFY_QUEUE Built-In Procedure, Section 15.8 , "Using Queues for Task
Communication

Example: In the following example the routine get_nxt_err returns the oldest entry from the error
queue, or zero if the queue is empty.

GET_QUEUE Built-In Procedure
PROGRAM get_queue_x

%environment PBQMGR
VAR

error_queue FROM global_vars: QUEUE_TYPE
error_data FROM global_vars: ARRAY[100] OF INTEGER

ROUTINE get_nxt_err: INTEGER
VAR

status: INTEGER
value: INTEGER
sequence_no: INTEGER

BEGIN
GET_QUEUE(error_queue, error_data, value, sequence_no, status)
IF (status = 0) THEN

RETURN (value)
ELSE

RETURN (0)
ENDIF
END get_nxt_err
BEGIN
END get_queue_x

A�157

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.7.17 GET_REG Built-In Procedure

Purpose: Gets an INTEGER or REAL value from the specified register

Syntax : GET_REG(register_no, real_flag, int_value, real_value, status)

Input/Output Parameters:

[in] register_no :INTEGER

[out] real_flag :BOOLEAN

[out] int_value :INTEGER

[out] real_value :REAL

[out] status :INTEGER

%ENVIRONMENT Group :REGOPE

Details:

• register_no specifies the register to get.

• real_flag is set to TRUE and real_value to the register content if the specified register has a real
value. Otherwise, real_flag is set to FALSE and int_value is set to the contents of the register.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: Refer to Section B.5 ,"Using Register Built-ins" (REG_EX.KL), for a detailed program
example.

A.7.18 GET_REG_CMT

Purose: To retrieve the comment information of a KAREL register based on a given register number.

Syntax:GET_REG_CMT (register_no, comment_string, status)

Input/Output Parameters:

[in] register_no: INTEGER

[out] comment_string: STRING

[out] status: INTEGER

A�158

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

%ENVIRONMENT group: REGOPE

Details:

• Register_no specifies which register to retrieve the comments from. The comment of the given
register is returned in comment_string.

A.7.19 GET_TIME Built-In Procedure

Purpose: Retrieves the current time (in integer representation) from within the KAREL system

Syntax : GET_TIME(i)

Input/Output Parameters:

[out] i :INTEGER

%ENVIRONMENT Group :TIM

Details:

• i holds the INTEGER representation of the current time stored in the KAREL system. This value
is represented in 32-bit INTEGER format as follows:

Table A�11. INTEGER Representation of Current Time

31�25 24�21 20�16

year month day

15�11 10�5 4�0

hour minute second

• The contents of the individual fields are as follows:

� DATE:

Bits 31-25 � Year since 1980

Bits 24-21 � Month (1-12)

Bits 20-16 � Day of the month

� TIME:

Bits 15-11 � Number of hours (0-23)

A�159

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Bits 10-5 � Number of minutes (0-59)

Bits 4-0 � Number of 2-second increments (0-29)

• INTEGER values can be compared to determine if one time is more recent than another.

• Use the CNV_TIME_STR built-in procedure to convert the INTEGER into the ��DD-MMM-YYY
HH:MM:SS�� STRING format.

See Also: CNV_TIME_STR Built-In Procedure

Example: Refer to Section B.9 , "Using the File and Device Built-ins" (FILE_EX.KL), for a detailed
program example.

A.7.20 GET_TPE_CMT Built-in Procedure

Purpose: This built-in provides the ability for a KAREL program to read the comment associated
with a specified position in a teach pendant program.

Syntax : GET_TPE_CMT(open_id, pos_no, comment, status)

Input/Output Parameters:

[in] open_id :INTEGER

[in] pos_no :INTEGER

[out] comment :STRING

[out] status :INTEGER

%ENVIRONMENT Group :TPE

Details:

• open_id specifies the open_id returned from a previous call to OPEN_TPE.

• pos_no specifies the number of the position in the TPP program to get a comment from.

• comment is associated with specified positions and is returned with a zero length string if the
position has no comment. If the string variable is too short for the comment, an error is returned
and the string is not changed.

• status indicates zero if the operation was successful, otherwise an error code will be displayed.

See Also: SET_TPE_CMT and OPEN_TPE for more Built-in Procedures.

A�160

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.7.21 GET_TPE_PRM Built-in Procedure

Purpose: Gets the values of the parameters when parameters are passed in a TPE CALL or MACRO
instruction.

Syntax : GET_TPE_PRM(param_no, data_type, int_value, real_value, str_value, status)

Input/Output Parameters:

[in] param_no :INTEGER

[out] data_type :INTEGER

[out] int_value :INTEGER

[out] real_value :REAL

[out] str_value :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• param_no indicates the number of the parameter. There can be at most ten parameters.

• data_type indicates the data type for the parameter, as follows:

� 1 : INTEGER

� 2 : REAL

� 3 : STRING

• int_value is the value of the parameter if the data_type is INTEGER.

• real_value is the value of the parameter if the data_type is REAL.

• str_value is the value of the parameter if the data_type is STRING.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

• If the parameter designated by param_no does not exist, a status of 17042 is returned, which is the
error message: "ROUT-042 WARN TPE parameters do not exist." If this error is returned, confirm
the param_no and the parameter in the CALL or MACRO command in the main TPE program.

See Also: FANUC Robotics SYSTEM R-J3iB Controller Application-Specific Setup and Operations
Manual , for information on using parameters in teach pendant CALL or MACRO instructions.

A�161

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: The following example shows the implementation of a macro (Send Event) with CALL
parameters that are retrieved by a KAREL program that uses the GET_TPE_PRM built-in.

GET_TPE_PRM Built-In Procedure
Macro table entry for the Send Event macro:
109 [Send Event] [SENDEVNT]--[0]

Teach pendant program, TEST1.TP, which uses the Send Event
macro:
1: ! Send Event 7

2: ! Wait for PC answer
3: ! Answer in REG 5
4: Send Event(7,1,5)
5: IF R[5]<9999,JMP LBL[10]
6: ! Error in macro
7: !
8: LBL[10]

Teach pendant program SENDEVNT.TP, which implements the
Send Event macro by calling the GESNDEVT KAREL
program and passing the CALL parameters from Send Event:

1: !Send Event Macro
2: CALL GESNDEVT(AR[1],AR[2],AR[3])

Snippet of the KAREL program GESNDEVT.KL, which gets the
parameter information using the GET_TPE_PRM
built-in:
PROGRAM GESNDEVT
. . .

BEGIN
-- Send Event(event_no [,wait_sw [,status_reg]])

-- get parameter 1 (mandatory parameter)
Get_tpe_prm(1, data_type, event_no,real_value,string_value,status)
IF status<>0 THEN -- 17042 "ROUT-042 TPE parameters do not exist"

POST_ERR(status, ’’, 0, er_abort)
ELSE

IF data_type <> PARM_INTEGER THEN -- make sure parm is an integer
POST_ERR(er_pceventer, ’1’, 0, er_abort)

ELSE
IF (event_no < MIN_EVENT) OR (event_no > MAX_EVENT) THEN

POST_ERR(er_illevent, ’’, 0, er_abort)
ENDIF

ENDIF
ENDIF

A�162

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

-- get second parameter (optional)
Get_tpe_prm(2, data_type, wait_sw,real_value,string_value,status)
IF status<>0 THEN

IF status = ER17042 THEN -- "ROUT-142 Parameter doesn’t exist"
wait_sw = 0 -- DEFAULT no wait

ELSE
POST_ERR(status, ’’, 0, er_warn) -- other error

ENDIF
. . .

A.7.22 GET_TSK_INFO Built-In Procedure

Purpose: Get the value of the specified task attribute

Syntax : GET_TSK_INFO(task_name, task_no, attribute, value_int, value_str, status)

Input/Output Parameters:

[in,out] task_name :STRING

[in,out] task_no :INTEGER

[in] attribute :INTEGER

[out] value_int :INTEGER

[out] value_str :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• task_name is the name of the task of interest. task_name is used as input only if task_no is
uninitialized or set to 0, otherwise, task_name is considered an output parameter.

• task_no is the task number of interest. If task_no is uninitialized or set to 0, it is returned as
an output parameter.

• attribute is the task attribute whose value is to be returned. It will be returned in value_int unless
otherwise specified. The following attributes are valid:

TSK_HOLDCOND : Task hold conditions

TSK_LINENUM : Current executing line number

A�163

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

TSK_LOCKGRP : Locked group

TSK_MCTL : Motion controlled groups

TSK_NOABORT : Ignore abort request

TSK_NOBUSY : Busy lamp off

TSK_NOPAUSE : Ignore pause request

TSK_NUMCLDS : Number of child tasks

TSK_PARENT : Parent task number

TSK_PAUSESFT : Pause on shift release

TSK_PRIORITY : Task priority

TSK_PROGNAME : Current program name returned in value_str

TSK_PROGTYPE : Program type - refer to description below

TSK_ROUTNAME : Current routine name returned in value_str

TSK_STACK : Stack size

TSK_STATUS : Task status � refer to description below

TSK_STEP : Single step task

TSK_TIMESLIC : Time slice duration in ms

TSK_TPMOTION : TP motion enable

TSK_TRACE : Trace enable

TSK_TRACELEN : Length of trace array

• TSK_STATUS is the task status: The return values are:

PG_RUNACCEPT : Run request has been accepted

PG_ABORTING : Abort has been accepted

PG_RUNNING : Task is running

PG_PAUSED : Task is paused

PG_ABORTED : Task is aborted

A�164

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• TSK_PROGTYPE is the program type. The return values are:

PG_NOT_EXEC : Program has not been executed yet

PG_MNEMONIC : Teach pendant program is or was executing

PG_AR_KAREL : KAREL program is or was executing

• status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.

See Also: Chapter 15 MULTI-TASKING

Example: See examples in Chapter 15 MULTI-TASKING

A.7.23 GET_VAR Built-In Procedure

Purpose: Allows a KAREL program to retrieve the value of a specified variable

Syntax : GET_VAR(entry, prog_name, var_name, value, status)

Input/Output Parameters:

[in,out] entry :INTEGER

[in] prog_name :STRING

[in] var_name :STRING

[out] value :Any valid KAREL data type except PATH, VIS_PROCESS, and MODEL

[out] status :INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• entry returns the entry number in the variable data table of var_name in the device directory
where var_name is located. This variable should not be modified.

• prog_name specifies the name of the program that contains the specified variable. If prog_name is
blank, it will default to the current task name being executed. Set the prog_name to �*SYSTEM*�
to get a system variable.

• var_name must refer to a static, program variable.

• var_name can contain node numbers, field names, and/or subscripts.

• If both var_name and value are ARRAYs, the number of elements copied will equal the size of
the smaller of the two arrays.

A�165

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• If both var_name and value are STRINGs, the number of characters copied will equal the size of
the smaller of the two strings.

• If both var_name and value are STRUCTUREs of the same type, value will be an exact copy
of var_name .

• value is the value of var_name .

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

• If the value of var_name is uninitialized, then value will be set to uninitialized and status will
be set to 12311.

See Also: SET_VAR Built-In Procedure

Caution

Using GET_VAR to modify system variables could cause unexpected results.

Example: The following example displays two programs, util_prog and task . The program
util_prog uses a FOR loop to increment the value of the INTEGER variable num_of_parts .
util_prog also assigns values to the ARRAY part_array . The program task uses two GET_VAR
statements to retrieve the values of num_of_parts and part_array[3] . The value of num_of_parts
is assigned to the INTEGER variable count and part_array[3] is assigned to the STRING variable
part_name . The last GET_VAR statement places the value of count into another INTEGER
variable newcount .

GET_VAR Built-In Procedure
PROGRAM util_prog

VAR
j, num_of_parts : INTEGER
part_array : ARRAY[5] OF STRING[10]

BEGIN
num_of_parts = 0

FOR j = 1 to 20 DO
num_of_parts = num_of_parts + 1

ENDFOR

part_array[1] = 10
part_array[2] = 20
part_array[3] = 30
part_array[4] = 40
part_array[5] = 50

END util_prog

A�166

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

PROGRAM task

VAR
entry, status : INTEGER
count, new_count : INTEGER
part_name : STRING[20]

BEGIN
GET_VAR(entry, ’util_prog’, ’part_array[3]’, part_name, status)
WRITE(’Part Name is Now....>’, part_name, cr)

GET_VAR(entry, ’util_prog’, ’num_of_parts’, count, status)
WRITE(’COUNT Now Equals....>’, count, cr)

GET_VAR(entry, ’task’, ’count’, new_count, status)

END task

A.7.24 GO TO Statement

Purpose: Transfers control to a specified statement

Syntax : || GO TO | GOTO || stmnt_label

where:

stmnt_label : A valid KAREL identifier

Details:

• stmnt_label must be defined in the same routine or program body as the GO TO statement.

• Label identifiers are followed by double colons (::). Executable statements may or may not
follow on the same line.

• GOTO should only be used in special circumstances where normal control structures such as
WHILE, REPEAT, and FOR loops would be awkward or difficult to implement.

See Also: Section 2.1.5, ��Labels,�� for more information on rules for labels, Appendix E, ��Syntax
Diagrams,�� for additional syntax information

Example: The following example moves the TCP from one position to another depending on the
status of DIN[1].

GO TO Statement
BEGIN

IF NOT DIN[1] THEN MOVE TO p1

A�167

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

ELSE GO TO end_it
ENDIF

IF NOT DIN[1] THEN MOVE TO p2
ELSE GO TO end_it
ENDIF

END_IT::

A.7.25 GROUP_ASSOC Data Type

Purpose: Declares a variable or structure field as a GROUP_ASSOC data type

Syntax : GROUP_ASSOC <IN GROUP[n]>

Details:

• GROUP_ASSOC consists of a record containing the standard associated data for a motion group.
It contains the following predefined fields, all INTEGERs except for SEGBREAK, which is
a BOOLEAN:

� SEGRELSPEED : percentage of nominal speed

� SEGMOTYPE : motion type

� SEGORIENTYPE: orientation control mode

� SEGBREAK : not implemented

• Variables and fields of structures can be declared GROUP_ASSOC.

• Subfields of this structure can be accessed and set using the usual structure field notation.

• Variables and fields declared GROUP_ASSOC can be:

� Passed as parameters.

� Written to and read from unformatted files.

� Assigned to one another.

• Each subfield of a GROUP_ASSOC variable or structure field can be passed as a parameter
to a routine, but is always passed by value.

• The keyword GROUP_ASSOC can be followed by a clause IN GROUP[n] to specify the group
to which the data applies. If it is not present, it is assumed that the data is to apply to the default
group specified by the %DEFGROUP directive.

A�168

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Section 8.4.7 , "Path Motion," for default values

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.8 - H - KAREL LANGUAGE DESCRIPTION

A.8.1 HOLD Action

Purpose: Causes the current motion to be held and prevents subsequent motions from starting

Syntax : HOLD <GROUP[n,{,n}]>

Details:

• Any motion in progress is held. Robot and auxiliary or extended axes decelerate to a stop.

• An attempted motion after a HOLD is executed is also held. HOLD cannot be overridden by
a condition handler which issues a motion.

• HOLD is released using the UNHOLD statement or action.

• If the group clause is not present, all groups for which the task has control (when the condition is
defined) will be canceled.

• If a motion that is held is part of a SIMULTANEOUS or COORDINATED motion with other
groups, the motions for all groups are held.

• Motion cannot be held for a different task.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Chapter 8 MOTION , for more information on starting and stopping motions

A�169

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: The following example uses a local condition handler to move along the path pathvar but
stops the motion before node 3 using the HOLD action.

HOLD Action
MOVE ALONG pathvar,

WHEN TIME 200 BEFORE NODE[3] DO
HOLD

ENDMOVE

A.8.2 HOLD Statement

Purpose: Causes the current motion to be held and prevents subsequent motions from starting

Syntax : HOLD <GROUP[n{,n}]>

Details:

• Any motion in progress is held. Robot and auxiliary or extended axes decelerate to a stop.

• An attempted motion after a HOLD is executed is also held. HOLD cannot be overridden by
a condition handler which issues a motion.

• HOLD is released using the UNHOLD statement or action.

• All held motions are canceled if a RELEASE statement is executed while motion is held.

• If the group clause is not present, all groups for which the task has control will be canceled.

• If a motion that is stopped, resumed, canceled, or held is part of a SIMULTANEOUS or
COORDINATED motion with other groups, the motions for all groups are stopped, resumed,
canceled, or held.

• Motion cannot be held for a different task.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Chapter 8 MOTION , for more information on starting and stopping motions, Appendix E,
��Syntax Diagrams,�� for additional syntax information

Example: The following example initiates a move along the path pathvar but stops the motion until
the F1 key TPIN[1] on the teach pendant is pressed.

A�170

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

HOLD Statement
MOVE ALONG path_var NOWAIT

HOLD
WRITE (’Press F1 on teach pendant to resume motion’)
WAIT FOR TPIN[129]+
UNHOLD

A.9 - I - KAREL LANGUAGE DESCRIPTION

A.9.1 IF ... ENDIF Statement

Purpose: Executes a sequence of statements if a BOOLEAN expression is TRUE; an alternate
sequence can be executed if the condition is FALSE.

Syntax : IF bool_exp THEN

{ true_stmnt } < ELSE

{ false_stmnt } >ENDIF

where:

bool_exp : BOOLEAN

true_stmnt : An executable KAREL statement

false_stmnt : An executable KAREL statement

Details:

• If bool_exp evaluates to TRUE, the statements contained in the true_stmnt are executed.
Execution then continues with the first statement after the ENDIF.

• If bool_exp evaluates to FALSE and no ELSE clause is specified, execution skips directly to
the first statement after the ENDIF.

• If bool_exp evaluates to FALSE and an ELSE clause is specified, the statements contained in the
false_stmnt are executed. Execution then continues with the first statement after the ENDIF.

• IF statements can be nested in either true_stmnt or false_stmnt .

See Also: Appendix E , ��Syntax Diagrams,�� for additional syntax information

Example: Refer to the following sections for detailed program examples:

Section B.3, "Saving Data to the Default Device" (SAVE_VR.KL)

Section B.5, "Using Register Built-ins" (REG_EX.KL)

A�171

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.9.2 IN Clause

Purpose: Specifies where a variable will be created

Syntax : IN (CMOS | DRAM)

Details:

• The IN clause can be part of a variable declaration. It should be specified before the FROM clause.

• IN CMOS specifies the variable will be created in permanent memory.

• IN DRAM specifies the variable will be created in temporary memory.

• If the IN clause is not specified all variables are created in temporary memory; unless the
%CMOSVARS directive is specified, in which case all variables will be created in permanent
memory.

• The IN clause cannot be used when declaring variables in the declaration section of a routine.

See Also: Section 1.4.1, "Memory," %CMOSVARS Translator Directive

Example: Refer to the following sections for detailed program examples:

In DRAM, Section B.2, "Copying Path Variables" (CPY_PTH.KL)

In CMOS, Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL) or Section B.11,
"Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

A�172

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.9.3 %INCLUDE Translator Directive

Purpose: Inserts other files in a program at translation time.

Syntax : %INCLUDE file_spec

Details:

• file_spec is the name of the file to include. It has the following details:

� The file name specified must be no longer than 12 characters.

� The file type defaults to .KL, and so it does not appear in the directive.

• The %INCLUDE directive must appear on a line by itself.

• The specified files usually contain declarations, such as CONST or VAR declarations. However,
they can contain any portion of a program including executable statements and even other
%INCLUDE directives.

• Included files can themselves include other files up to a maximum depth of three nested included
files. There is no limit on the total number of included files.

• When the KAREL language translator encounters a %INCLUDE directive during translation of a
file, it begins translating the included file just as though it were part of the original file. When the
entire file has been included, the translator resumes with the original file.

• Some examples in Appendix A reference the following include files:

%INCLUDE FR:\klevkmsk

%INCLUDE FR:\klevkeys

%INCLUDE FR:\klevccdf

%INCLUDE FR:\kliotyps

These files contain constants that can be used in your KAREL programs. If you are translating on
the controller, you can include them directly from the FROM disk.

The include files are also available on the OLPC disks, and are copied to the hard disk as part
of the installation process.

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

A�173

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.9.4 INDEX Built-In Function

Purpose: Returns the index for the first character of the first occurrence of a specified STRING
argument in another specified STRING argument. If the argument is not found, a 0 value is returned.

Syntax : INDEX(main, find)

Function Return Type :INTEGER

Input/Output Parameters:

[in] main :STRING

[in] find :STRING

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value is the index position in main corresponding to the first character of the first
occurrence of find or 0 if find does not occur in main .

Example: The following example uses the INDEX built-in function to look for the first occurrence of
the string ��Old�� in part_desc.

INDEX Built-In Function
class_key = ’Old’

part_desc = ’Refurbished Old Part’

IF INDEX(part_desc, class_key) > 0 THEN
in_class = TRUE

ENDIF

A.9.5 INI_DYN_DISB Built-In Procedure

Purpose: Initiates the dynamic display of a BOOLEAN variable. This procedure displays elements of
a STRING ARRAY depending of the current value of the BOOLEAN variable.

Syntax : INI_DYN_DISB (b_var, window_name, field_width, attr_mask, char_size, row, col,
interval, strings, status)

Input/Output Parameters :

A�174

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] b_var :BOOLEAN

[in] window_name :STRING

[in] field_width :INTEGER

[in] attr_mask :INTEGER

[in] char_size :INTEGER

[in] row :INTEGER

[in] col :INTEGER

[in] interval :INTEGER

[in] strings :ARRAY OF STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• The dynamic display is initiated based on the value of b_var . If b_var is FALSE, strings[1] is
displayed; if b_var is TRUE, strings[2] is displayed. If b_var is uninitialized, a string of *�s is
displayed. Both b_var and strings must be static (not local) variables.

• window_name must be a previously defined window name. See Section 7.9.1 . and Section
7.9.2 for predefined window names.

• If field_width is non-zero, the display is extended with blanks if the element of strings[n] is
shorter than this specified width. The area is cleared when the dynamic display is canceled.

• attr_mask is a bit-wise mask that indicates character display attributes. This should be one
of the following constants:

0 :Normal

1 :Bold (Supported only on the CRT)

2 :Blink (Supported only on the CRT)

4 :Underline

8 :Reverse video

• To have multiple display attributes, use the OR operator to combine the constant attribute values
together. For example, to have the text displayed as bold and underlined use 1 OR 4.

A�175

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• char_size specifies whether data is to be displayed in normal, double-wide, or double-high,
double-wide sizes. This should be one of the following constants:

0 :Normal

1 :Double-wide (Supported only on the CRT)

2 :Double-high, double-wide

• row and col specify the location in the window in which the data is to be displayed.

• interval indicates the minimum time interval, in milliseconds, between updates of the display.
This must be greater then zero. The actual time might be greater since the task that formats
the display runs at a low priority.

• strings[n] contains the text that will be displayed.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CNC_DYN_DISB built-in procedure

Example: Refer to Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.9.6 INI_DYN_DISE Built-In Procedure

Purpose: Initiates the dynamic display of an INTEGER variable. This procedure displays elements of
a STRING ARRAY depending of the current value of the INTEGER variable.

Syntax : INI_DYN_DISE (e_var, window_name, field_width, attr_mask, char_size, row, col,
interval, strings, status)

Input/Output Parameters :

[in] e_var :INTEGER

[in] window_name :STRING

[in] field_width :INTEGER

[in] attr_mask :INTEGER

[in] char_size :INTEGER

[in] row :INTEGER

[in] col :INTEGER

[in] interval :INTEGER

A�176

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] strings :ARRAY OF STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• The dynamic display is initiated based on the value of e_var . If e_var has a value of n,
strings[n+1] is displayed; if e_var has a negative value, or a value greater than or equal to the
length of the array of strings , a string of �?�s is displayed. Both e_var and string s must be
static (not local) variables.

• Refer to the INI_DYN_DISB built-in procedure for a description of the other parameters listed
above.

See Also: CNC_DYN_DISE built-in procedure

Example: Refer to Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.9.7 INI_DYN_DISI Built-In Procedure

Purpose: Initiate the dynamic display of an INTEGER variable in a specified window.

Syntax : INI_DYN_DISI(i_var, window_name, field_width, attr_mask, char_size, row, col, interval,
buffer_size, format, status)

Input/Output Parameters:

[in] i_var :INTEGER

[in] window_name :STRING

[in] field_width :INTEGER

[in] attr_mask :INTEGER

[in] char_size :INTEGER

[in] row :INTEGER

[in] col :INTEGER

[in] interval :INTEGER

[in] buffer_size :INTEGER

A�177

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] format :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• i_var is the integer whose dynamic display is to be initiated.

• If field_width is non-zero, the display is extended with blanks if i_var is shorter than this specified
width. The area is cleared when the dynamic display is canceled.

• buffer_size is not implemented.

• format is used to print out the variable. This can be passed as a literal enclosed in single quotes.
The format string begins with a % and ends with a conversion character. Between the % and the
conversion character there can be, in order:

� Flags (in any order), which modify the specification:

- : specifies left adjustment of this field.

+ : specifies that the number will always be printed with a sign.

0 specifies padding a numeric field width with leading zeroes.

� A number that specifies the minimum field width. The converted argument will be printed in
a field at least this wide. If necessary it will be padded on the left (or right, if left adjustment
is called for) to make up the field width.

� A period, which separates the field width from the precision.

� A number, the precision, that specifies the maximum number of characters to be printed from
a string, or the number of digits after the decimal point of a floating-point value, or the
minimum number of digits for an integer.

The format specifier must contain one of the conversion characters in Table A�12 .

Table A�12. Conversion Characters

Character Argument Type; Printed As

d INTEGER; decimal number

o INTEGER; unsigned octal notation (without a leading zero).

x,X INTEGER; unsigned hexadecimal notation (without a leading 0x or 0X), using
abcdef or ABCDEF for 10, ..., 15.

A�178

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�12. Conversion Characters (Cont�d)

Character Argument Type; Printed As

u INTEGER; unsigned decimal notation.

s STRING; print characters from the string until end of string or the number of
characters given by the precision.

f REAL; decimal notation of the form [-]mmm.dddddd, where the number of d�s
is given by the precision. The default precision is 6; a precision of 0 suppresses
the decimal point.

e,E REAL; decimal notation of the form [-]m.dddddde+-xx or [-]m.ddddddE+-xx, where
the number of d�s is given by the precision. The default precision is 6; a precision of
0 suppresses the decimal point.

g,G REAL; %e or %E is used if the exponent is less than -4 or greater than or equal to
the precision; otherwise %f is used. Trailing zeros and a trailing decimal pointer
are not printed.

% no argument is converted; print a %.

• Refer to the INI_DYN_DISB built-in procedure for a description of the other parameters listed
above.

See Also: CNC_DYN_DISI, DEF_WINDOW Built-In Procedure

Example: Refer to Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.9.8 INI_DYN_DISP Built-In Procedure

Purpose: Initiates the dynamic display of a value of a port in a specified window, based on the
port type and port number.

Syntax : INI_DYN_DISP (port_type, port_no, window_name, field_width, attr_mask, char_size,
row, col, interval, strings, status)

Input/Output Parameters :

[in] port_type :INTEGER

A�179

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] port_no :INTEGER

[in] window_name :STRING

[in] field_width :INTEGER

[in] attr_mask :INTEGER

[in] char_size :INTEGER

[in] row :INTEGER

[in] col :INTEGER

[in] interval :INTEGER

[in] strings :ARRAY OF STRING

[out] status :INTEGER

Details:

• port_type specifies the type of port to be displayed. Codes are defined in FROM: KLIOTYPS.KL.

� If the port_type is a BOOLEAN port (e.g., DIN), If the is FALSE, strings[1] is displayed; If
variable is TRUE, strings[2] is displayed.

� If the port_type is an INTEGER port (e.g., GIN), if the value of the port is n, strings[n+1]
will be displayed. If the value of the port is greater than or equal to the length of the array of
strings, a string of �?�s is displayed.

• port_no specifies the port number to be displayed.

• Refer to the INI_DYN_DISB built-in procedure for a description of other parameters listed above.

See Also: CNC_DYN_DISP Built-In procedure

Example: Refer to Section B.10 , "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.9.9 INI_DYN_DISR Built-In Procedure

Purpose: Initiates the dynamic display of a REAL variable in a specified window.

Syntax : INI_DYN_DISR(r_var, window_name, field_width, attr_mask, char_size, row, col, interval,
buffer_size, format, status)

Input/Output Parameters:

A�180

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] r_var :REAL

[in] window_name :STRING

[in] field_width :INTEGER

[in] attr_ mask :INTEGER

[in] char_size :INTEGER

[in] row :INTEGER

[in] col :INTEGER

[in] interval :INTEGER

[in] buffer_size :INTEGER

[in] format :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• r_var is the REAL variable whose dynamic display is to be initiated.

• If field_width is non-zero, the display is extended with blanks if r_var is shorter than this
specified width. The area is cleared when the dynamic display is canceled.

• Refer to the INI_DYN_DISI built-in procedure for a description of other parameters listed above.

See Also: CNC_DYN_DISR Built-In Procedure

Example: Refer to Section B.10 , "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.9.10 INI_DYN_DISS Built-In Procedure

Purpose: Initiates the dynamic display of a STRING variable in a specified window.

Syntax : INI_DYN_DISS(s_var, window_name, field_width, attr_mask, char_size, row, col, interval,
buffer_size, format, status)

Input/Output Parameters:

[in] s_var :STRING

A�181

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] window_name :STRING

[in] field_width :INTEGER

[in] attr_ mask :INTEGER

[in] char_size :INTEGER

[in] row :INTEGER

[in] col :INTEGER

[in] interval :INTEGER

[in] buffer_size :INTEGER

[in] format :STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• s_var is the STRING variable whose dynamic display is to be initiated.

• If field_width is non-zero, the display is extended with blanks if s_var is shorter than this
specified width. The area is cleared when the dynamic display is canceled.

• Refer to the INI_DYN_DISI built-in procedure for a description of other parameters listed above.

See Also: CNC_DYN_DISS, INI_DYN_DISI Built-In Procedures

Example: Refer to Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.9.11 INIT_QUEUE Built-In Procedure

Purpose: Sets a queue variable entry to have no entries in the queue

Syntax : INIT_QUEUE(queue)

Input/Output Parameters:

[out] queue_t :QUEUE_TYPE

%ENVIRONMENT Group : PBQMGR

A�182

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Details:

• queue_t is the queue to be initialized

See Also: GET_QUEUE, MODIFY_QUEUE Built-In Procedures, QUEUE_TYPE Data Type,
Section 15.8,"Using Queues for Task Communication"

Example: The following example initializes a queue called job_queue.

INIT_QUEUE Built-In Procedure
PROGRAM init_queue_x
%environment PBQMGR
VAR

job_queue FROM globals: QUEUE_TYPE
BEGIN

INIT_QUEUE(job_queue)
END init_queue_x

A.9.12 INIT_TBL Built-In Procedure

Purpose: Initializes a table on the teach pendant

Syntax : INIT_TBL(dict_name, ele_number, num_rows, num_columns, col_data, inact_array,
change_array, value_array, vptr_array, table_data, status)

Input/Output Parameters:

[in] dict_name :STRING

[in] ele_number :INTEGER

[in] num_rows :INTEGER

[in] num_columns :INTEGER

[in] col_data :ARRAY OF COL_DESC_T

[in] inact_array :ARRAY OF BOOLEAN

[in] change_array :ARRAY OF ARRAY OF BOOLEAN

[in] value_array :ARRAY OF STRING

[out] vptr_array :ARRAY OF ARRAY OF INTEGER

[in,out] table_data :XWORK_T

A�183

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• INIT_TBL must be called before using the ACT_TBL built-in.INIT_TBL does not need to be
called if using the DISCTRL_TBL built-in.

• The INIT_TBL and ACT_TBL built-in routines should only be used instead of DISCTRL_TBL
is special processing needs to be done with each keystroke or if function key processing needs to
be done without exiting the table menu.

• dict_name is the four-character name of the dictionary containing the table header.

• ele_number is the element number of the table header.

• num_rows is the number of rows in the table.

• num_columns is the number of columns in the table.

• col_data is an array of column descriptor structures, one for each column in the table. It contains
the following fields:

� item_type : Data type of values in this column. The following data type constants are defined:

TPX_INT_ITEM � Integer type

TPX_REL_ITEM � Real type

TPX_FKY_ITEM � Function key enumeration type

TPX_SUB_ITEM � Subwindow enumeration type

TPX_KST_ITEM � KAREL string type

TPX_KSL_ITEM � KAREL string label type (can select, not edit)

TPX_KBL_ITEM � KAREL boolean type

TPX_BYT_ITEM � Byte type

TPX_SHT_ITEM � Short type

TPX_PBL_ITEM � Port boolean type

TPX_PIN_ITEM � Port integer type

� start_col : Starting character column (1..40) of the display field for this data column.

� field_width : Width of the display field for this data column.

A�184

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

� num_ele : Dictionary element used to display values for certain data types. The format of
the dictionary elements for these data types are as follows:

� TPX_FKY_ITEM: The enumerated values are placed on function key labels. There can
be up to 2 pages of function key labels, for a maximum of 10 labels. Each label is a string
of up to 8 characters. However, the last character of a label which is followed by another
label should be left blank or the two labels will run together.

� A single dictionary element defines all of the label values. Each value must be put on
a separate line using &new_line. The values are assigned to the function keys F1..F5,
F6..F10 and the numeric values 1..10 in sequence. Unlabeled function keys should be left
blank. If there are any labels on the second function key page, F6..F10, the labels for keys
5 and 10 must have the character ��>�� in column 8. If there are no labels on keys F6..F10,
lines do not have to be specified for any key label after the last non-blank label.

Example:
$ example_fkey_label_c

"" &new_line
"F2" &new_line
"F3" &new_line
"F4" &new_line
"F5 >" &new_line
"F6" &new_line
"F7" &new_line
"" &new_line
"" &new_line
" >"

� -- TPX_SUB_ITEM: The enumerated values are selected from a subwindow on the
display device. There can be up to 5 subwindow pages, for a maximum of 35 values.
Each value is a string of up to 16 characters.

� A sequence of consecutive dictionary elements, starting with enum_dict, define the
values. Each value must be put in a separate element, and must not end with &new_line.
The character are assigned the numeric values 1..35 in sequence. The last dictionary
element must be "\a".

Example:
$ example_sub_win_enum_c

"Red"
$
"Blue"
$
"Green"
$
"Yellow"
$
"\a"

A�185

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

� TPX_KBL_ITEM, TPX_PBL_ITEM: The ��true�� and ��false�� values are placed on
function key labels F4 and F5, in that order. Each label is a string of up to 8 characters.
However, the last character of the ��true�� label should be left blank or the two labels
will run together.

� A single dictionary element the label values. Each value must be put on a separate line
using &new_line, with the ��false�� value first.

Example:
$ example_boolean_c

"OFF" &new_line
"ON"

� enum_dict : Dictionary name used to display data types TPX_FKY_ITEM, TPX_SUB_ITEM,
TPX_KBL_ITEM, or TPX_PBL_ITEM

� format_spec : Format string is used to print out the data value. The format string contains a
format specifier. The format string can also contain any desired characters before or after
the format specifier. The format specifier itself begins with a % and ends with a conversion
character. Between the % and the conversion character there may be, in order:

� Flags (in any order), which modify the specification:

- : specifies left adjustment of this field.

+ : specifies that the number will always be printed with a sign.

space : if the first character is not a sign, a space will be prefixed.

0 : specifies padding a numeric field width with leading zeroes.

� A number that specifies the minimum field width. The converted argument will be
printed in a field at least this wide. If necessary it will be padded on the left (or right, if
left adjustment is called for) to make up the field width.

� A period, which separates the field width from the precision.

� A number, the precision, that specifies the maximum number of characters to be printed
from a string, or the number of digits after the decimal point of a floating-point value, or
the minimum number of digits for an integer.

• The format specifier must contain one of the conversion characters in the following table:

A�186

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�13. Conversion Characters

Character Argument Type; Printed As

d INTEGER; decimal number.

o INTEGER; unsigned octal notation (without a leading zero).

x,X INTEGER; unsigned hexadecimal notation (without a leading 0x or 0X), using abcdef
or ABCDEF for 10, ..., 15.

u INTEGER; unsigned decimal notation.

s STRING; print characters from the string until end of string or the number of
characters given by the precision.

f REAL; decimal notation of the form [-]mmm.dddddd, where the number of d�s is
given by the precision. The default precision is 6; a precision of 0 suppresses the
decimal point.

e,E REAL; decimal notation of the form [-]m.dddddde+-xx or [-]m.ddddddE+-xx, where
the number of d�s is given by the precision. The default precision is 6; a precision of 0

g,G REAL; %e or %E is used if the exponent is less than -4 or greater than or equal to
the precision; otherwise %f is used. Trailing zeros and a trailing decimal pointer
are not printed.

% no argument is converted; print a %.

Example: "%d" or "%-10s"

The format specifiers which can be used with the data types specified in the item_type field
in col_data are as follows:

TPX_INT_ITEM %d, %o, %x, %X, %u

TPX_REL_ITEM %f, %e, %E, %g, %G

TPX_FKY_ITEM %s

TPX_SUB_ITEM %s

TPX_KST_ITEM %s

A�187

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

TPX_KSL_ITEM %s

TPX_KBL_ITEM %s

TPX_BYT_ITEM %d, %o, %x, %X, %u, %c

TPX_SHT_ITEM %d, %o, %x, %X, %u

TPX_PBL_ITEM %s

TPX_PIN_ITEM %d, %o, %x, %X, %u

� max_integer : Maximum value if data type is TPX_INT_ITEM, TPX_BYT_ITEM, or
TPX_SHT_ITEM.

� min_integer : Minimum value if data type is TPX_INT_ITEM, TPX_BYT_ITEM, or
TPX_SHT_ITEM.

� max_real : Maximum value for reals.

� min_real : Minimum value for reals.

� clear_flag : If data type is TPX_KST_ITEM, 1 causes the field to be cleared before entering
characters and 0 causes it not to be cleared.

� lower_case : If data type is TPX_KST_ITEM, 1 allows the characters to be input to the string
in upper or lower case and 0 restricts them to upper case.

• inact_array is an array of booleans that corresponds to each column in the table.

� You can set each boolean to TRUE which will make that column inactive. This means
the column cannot be cursored to.

� The array size can be less than or greater than the number of items in the table.

� If inact_array is not used, then an array size of 1 can be used, and the array does not need to
be initialized.

• change_array is a two dimensional array of booleans that corresponds to formatted data item in
the table.

� If the corresponding value is set, then the boolean will be set to TRUE, otherwise it is set to
FALSE. You do not need to initialize the array.

� The array size can be less than or greater than the number of data items in the table.

� If change_array is not used, then an array size of 1 can be used.

• value_array is an array of variable names that correspond to the columns of data in the table.
Each variable name can be specified as �[prog_name]var_name�.

� [prog_name] specifies the name of the program that contains the specified variable. If
[prog_name] is not specified, then the current program being executed is used.

� var_name must refer to a static, global program variable.

� var_name can contain node numbers, field names, and/or subscripts.

A�188

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

� Each of these named variables must be a KAREL array of length num_rows . Its data type
and values should be consistent with the value of the item_type field in col_data for the
corresponding column, as follows:

� TPX_INT_ITEM: ARRAY OF INTEGER containing the desired values.

� TPX_REL_ITEM: ARRAY OF REAL containing the desired values.

� TPX_FKY_ITEM: ARRAY OF INTEGER with values referring to items in the
dictionary element specified in the enum_ele field in col_data. There can be at most 2
function key pages, or 10 possible function key enumeration values.

� TPX_SUB_ITEM: ARRAY OF INTEGER with values referring to items in the
dictionary element specified in the enum_ele field in col_data . There can be at most 28
subwindow enumeration values.

� TPX_KST_ITEM: ARRAY OF STRING containing the desired values.

� TPX_KST_ITEM: ARRAY OF STRING containing the desired values.

� TPX_KSL_ITEM: ARRAY OF STRING containing the desired values. These values
cannot be edited by the user. If one is selected, ACT_TBL will return.

� TPX_KBL_ITEM: ARRAY OF BOOLEAN containing the desired values. The
dictionary element specified by the enum_ele field in col_data should have exactly two
elements, with the false item first and the true item second. TPX_BYT_ITEM: ARRAY
OF BYTE containing the desired values. "--" TPX_SHT_ITEM: ARRAY OF SHORT
containing the desired values. "--" TPX_PBL_ITEM: ARRAY OF STRING containing
the names of the ports, for example ��DIN[5]��. "--" TPX_PIN_ITEM: ARRAY OF
STRING containing the names of the ports, for example ��GOUT[3]��.

� TPX_BYT_ITEM: ARRAY OF BYTE containing the desired values.

� TPX_SHT_ITEM: ARRAY OF SHORT containing the desired values.

� TPX_PBL_ITEM: ARRAY OF STRING containing the names of the ports, for example
��DIN[5]��.

� TPX_PIN_ITEM: ARRAY OF STRING containing the names of the ports, for example
��GOUT[3]��.

• vptr_array is an array of integers that corresponds to each variable name in value_array. Do
not change this data; it is used internally.

• table_data is used to display and control the table. Do not change this data; it is used internally.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: In this example, TPXTABEG.TX is loaded as �XTAB� on the controller. TPEXTBL
calls INIT_TBL to initialize a table with five columns and four rows. It calls ACT_TBL in a
loop to read and process each key pressed.

INIT_TBL Built-In Procedure
--

TPXTABEG.TX

A�189

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

--
$title
&reverse "DATA Test Schedule" &standard &new_line
"E1: " &new_line
" W(mm) TEST C(%%) G(123456) COLOR"
^1
?2

$function_keys
"f1" &new_line
"f2" &new_line
"f3" &new_line
"f4" &new_line
" HELP >" &new_line
"f6" &new_line
"f7" &new_line
"f8" &new_line
"f9" &new_line
"f10 >"
$help_text "Help text goes here...

"$enum1
"" &new_line
"" &new_line
"TRUE" &new_line
"FALSE" &new_line
""

$enum2
"Red"
$
"Blue"
$
"Green"
$
"Yellow"
$
"Brown"
$
"Pink"
$
"Mauve"
$
"Black"
$
"......"
--

A�190

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

TPEXTBL.KL
--
PROGRAM tpextbl

%ENVIRONMENT uif
%INCLUDE FROM:\klevccdf
%INCLUDE FROM:\klevkeysVAR

dict_name: STRING[6]
ele_number: INTEGER
num_rows: INTEGER
num_columns: INTEGER
col_data: ARRAY[5] OF COL_DESC_T
inact_array: ARRAY[5] OF BOOLEAN
change_array: ARRAY[4,5] OF BOOLEAN
value_array: ARRAY[5] OF STRING[26]
vptr_array: ARRAY[4,5] OF INTEGER
table_data: XWORK_T
status: INTEGER
action: INTEGER
def_item: INTEGER
term_char: INTEGER
attach_sw: BOOLEAN
save_action: INTEGER
done: BOOLEAN
value1: ARRAY[4] OF INTEGER
value2: ARRAY[4] OF INTEGER
value3: ARRAY[4] OF REAL
value4: ARRAY[4] OF STRING[10]
value5: ARRAY[4] OF INTEGER

BEGIN
def_item = 1
value_array[1] = ’value1’
value_array[2] = ’value2’
value_array[3] = ’value3’
value_array[4] = ’value4’
value_array[5] = ’value5’

value1[1] = 21
value1[2] = 16
value1[3] = 1
value1[4] = 4

value2[1] = 3
value2[2] = 2
value2[3] = 3
value2[4] = 2

A�191

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

value3[1] = -13
value3[2] = 4.1
value3[3] = 23.9
value3[4] = -41

value4[1] = ’XXX---’
value4[2] = ’--X-X-’
value4[3] = ’XXX-XX’
value4[4] = ’-X-X--’

value5[1] = 1
value5[2] = 1
value5[3] = 2
value5[4] = 3

inact_array[1] = FALSE
inact_array[2] = FALSE
inact_array[3] = FALSE
inact_array[4] = FALSE
inact_array[5] = FALSE

col_data[1].item_type = TPX_INT_ITEM
col_data[1].start_col = 6
col_data[1].field_width = 4
col_data[1].format_spec = ’%3d’
col_data[1].max_integer = 99
col_data[1].min_integer = -99

col_data[2].item_type = TPX_FKY_ITEM
col_data[2].start_col = 12
col_data[2].field_width = 5
col_data[2].format_spec = ’%s’
col_data[2].enum_ele = 3 -- enum1 element number
col_data[2].enum_dict = ’XTAB’

col_data[3].item_type = TPX_REL_ITEM
col_data[3].start_col = 18
col_data[3].field_width = 5
col_data[3].format_spec = ’%3.1f’

col_data[4].item_type = TPX_KST_ITEM
col_data[4].start_col = 26
col_data[4].field_width = 6
col_data[4].format_spec = ’%s’

col_data[5].item_type = TPX_SUB_ITEM

A�192

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

col_data[5].start_col = 34
col_data[5].field_width = 6
col_data[5].format_spec = ’%s’
col_data[5].enum_ele = 4 -- enum2 element number
col_data[5].enum_dict = ’XTAB’

dict_name = ’XTAB’
ele_number = 0 -- title element number
num_rows = 4
num_columns = 5
def_item = 1
attach_sw = TRUE

INIT_TBL(dict_name, ele_number, num_rows, num_columns, col_data,
inact_array, change_array, value_array, vptr_array,
table_data, status)

IF status <> 0 THEN
WRITE(’INIT_TBL status = ’, status, CR);
ELSE

def_item = 1
-- Initial display of table
ACT_TBL(ky_disp_updt, def_item, table_data, term_char,

attach_sw, status)
IF status <> 0 THEN

WRITE(CR, ’ACT_TBL status = ’, status)
ENDIF

ENDIF

IF status = 0 THEN
-- Loop until a termination key is selected.
done = FALSE
action = ky_reissue -- read new key
WHILE NOT done DO

-- Read new key, act on it, and return it
ACT_TBL(action, def_item, table_data, term_char,

attach_sw, status)save_action = action
action = ky_reissue -- read new key

-- Debug only
WRITE TPERROR (CHR(cc_home) + CHR(cc_clear_win))

-- Process termination keys.
SELECT (term_char) OF

CASE (ky_select, ky_new_menu):
done = TRUE;

CASE (ky_f1):
-- Perform F1

A�193

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F1 pressed’)

CASE (ky_f2):
-- Perform F2
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F2 pressed’)

CASE (ky_f3):
-- Perform F3
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F3 pressed’)

CASE (ky_f4):
-- Perform F4
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F4 pressed’)

CASE (ky_f5):
-- Perform F5 Help
action = ky_help

CASE (ky_f6):
-- Perform F6
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F6 pressed’)

CASE (ky_f7):
-- Perform F7
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F7 pressed’)

CASE (ky_f8):
-- Perform F8
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F8 pressed’)

CASE (ky_f9):
-- Perform F9
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F9 pressed’)

CASE (ky_f10):
-- Perform F10
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F10 pressed’)

CASE (ky_undef):
-- Process special keys.
SELECT (save_action) OF

CASE (ky_f1_s):
-- Perform Shift F1
SET_CURSOR(TPERROR, 1, 1, status)
WRITE TPERROR (’F1 shifted pressed’)

ELSE:
ENDSELECT

ELSE:

A�194

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

action = term_char -- act on this key
ENDSELECT

ENDWHILE

IF term_char <> ky_new_menu THEN
-- Cancel the dynamic display
ACT_TBL(ky_cancel, def_item, table_data, term_char,

attach_sw, status)
ENDIF

ENDIF

END tpextbl

A.9.13 IN_RANGE Built-In Function

Purpose: Returns a BOOLEAN value indicating whether or not the specified position argument can
be reached by a group of axes

Syntax : IN_RANGE(posn)

Function Return Type :BOOLEAN

Input/Output Parameters:

[in] posn : XYZWPREXT

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value is TRUE if posn is within the work envelope of the group of axes; otherwise,
FALSE is returned.

• The current $UFRAME and $UTOOL are applied to posn .

See Also: CHECK_EPROS Built-in procedure, Chapter 8 MOTION , Section 4.1.2, "Group Motion"

Example: The following example checks to see if the new position is in the work envelope before
moving the TCP to it.

IN_RANGE Built-In Function
IF IN_RANGE(pallet : part_slot) THEN

WITH $UFRAME = pallet MOVE TO part_slot
ELSE WRITE(’I can’t get there!’,CR)
ENDIF

A�195

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.9.14 INSERT_NODE Built-In Procedure

Purpose: Inserts an uninitialized node in the specified PATH argument preceding the specified
path node number

Syntax : INSERT_NODE(path_var, node_num, status)

Input/Output Parameters:

[in] path_var :PATH

[in] node_num :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PATHOP

Details:

• node_num specifies the index number of the path node before which the new uninitialized node is
to be inserted.

• The new node can be assigned values by directly referencing its NODEDATA structure.

• All nodes following the inserted node are renumbered.

• Valid node_num values are in the range node_num => 1 and node_num <= PATH_LEN(path_va r
).

• If node_num is not a valid node number, status is returned with an error.

• If the program does not have enough RAM for an INSERT_NODE request, an error will occur.

• If the program is paused, the INSERT_NODE request is NOT retried.

See Also: DELETE_NODE, APPEND_NODE Built-in Procedures

Example: In the following example, the PATH_LEN built-in is used to set the variable length
equal to the number of nodes in path_var. INSERT_NODE inserts a new path node after the last
node in path_var.

INSERT_NODE Built-In Procedure
length = PATH_LEN(path_var)
INSERT_NODE(path_var, length, status)

A�196

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.9.15 INSERT_QUEUE Built-In Procedure

Purpose: Inserts an entry into a queue if the queue is not full

Syntax : INSERT_QUEUE(value, sequence_no, queue, queue_data, status)

Input/Output Parameters:

[in] value :INTEGER

[in] sequence_no :INTEGER

[in,out] queue_t :QUEUE_TYPE

[in,out] queue_data :ARRAY OF INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBQMGR

Details:

• value specifies the value to be inserted into the queue, queue_t.

• sequence_no specifies the sequence number of the entry before which the new entry is to be
inserted.

• queue_t specifies the queue variable for the queue.

• queue_data specifies the array used to hold the data in the queue. The length of this array
determines the maximum number of entries in the queue.

• status is returned with 61002, ��Queue is full,�� if there is no room for the entry in the queue, with
61003, ��Bad sequence no,�� if the specified sequence number is not in the queue.

See Also: MODIFY_QUEUE, APPEND_QUEUE, DELETE_QUEUE Built-In Procedures, Section
15.8 , "Using Queues for Task Communication"

Example: In the following example, the routine ins_in_queue adds an entry (value) to a queue
(queue_t and queue_data) following the specified entry sequence_no); it returns TRUE if this was
successful; otherwise it returns FALSE.

INSERT_QUEUE Built-In Procedure
PROGRAM ins_queue_x
%environment PBQMGR
ROUTINE ins_in_queue(value: INTEGER;

sequence_no: INTEGER;
queue_t: QUEUE_TYPE;

A�197

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

queue_data: ARRAY OF INTEGER): BOOLEAN

VAR
status: INTEGER

BEGIN
INSERT_QUEUE(value, sequence_no, queue_t, queue_data, status)
return (status = 0)
END ins_in_queue
BEGIN
END ins_queue_x

A.9.16 INTEGER Data Type

Purpose: Defines a variable, function return type, or routine parameter as INTEGER data type

Syntax : INTEGER

Details:

• An INTEGER variable or parameter can assume whole number values in the range -2147483648
through +2147483646.

• INTEGER literals consist of a series of digits, optionally preceded by a plus or minus sign.
They cannot contain decimal points, commas, spaces, dollar signs ($), or other punctuation
characters. (See Table A�14)

Table A�14. Valid and Invalid INTEGER Literals

Valid Invalid Reason

1 1.5 Decimal point not allowed (must be a whole number)

�2500450 �2,500,450 Commas not allowed

+65 +6 5 Spaces not allowed

• If an INTEGER argument is passed to a routine where a REAL parameter is expected, it is
treated as a REAL and passed by value.

• Only INTEGER expressions can be assigned to INTEGER variables, returned from INTEGER
function routines, or passed as arguments to INTEGER parameters.

• Valid INTEGER operators are:

� Arithmetic operators (+, -, *, /, DIV, MOD)

A�198

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

� Relational operators (>, >=, =, <>, <, <=)

� Bitwise operations (AND, OR, NOT)

See Also: Chapter 5 ROUTINES , for more information on passing by value, Chapter 7 FILE
INPUT/OUTPUT OPERATIONS , for more information on format specifiers

Example: Refer to Appendix B for detailed program examples.

A.9.17 INV Built-In Function

Purpose: Used in coordinate frame transformations with the relative position operator (:) to
determine the coordinate values of a POSITION in a frame that differs from the frame in which
that POSITION was recorded

Syntax : INV(pos) Function Return Type :POSITION

Input/Output Parameters:

[in] pos :POSITION

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value is the inverse of the pos argument.

• The configuration of the returned POSITION will be that of the pos argument.

Example: The following example uses the INV built-in to determine the POSITION of part_pos with
reference to the coordinate frame that has rack_pos as its origin. Both part_pos and rack_pos were
originally taught and recorded in User Frame. The robot is then instructed to move to that position.

INV Built-In Function
PROGRAM p_inv

VAR
rack_pos, part_pos, p1 : POSITION

BEGIN
p1 = INV(rack_pos):part_pos
MOVE TO p1

END p_inv

A�199

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.9.18 IO_MOD_TYPE Built-In Procedure

Purpose: Allows a KAREL program to determine the type of module in a specified rack/slot

Syntax : IO_MOD_TYPE(rack_no, slot_no, mod_type, status)

Input/Output Parameters:

[in] rack_no :INTEGER

[in] slot_no :INTEGER

[out] mod_type :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• rack_no is the rack containing the port module. For process I/O boards, this is zero; for
Allen-Bradley and Genius ports, this is 16.

• slot_no is the slot containing the port module. For process I/O boards, this is the position of the
board in the SLC-2 chain.

• mod_type is the module type.

6 A16B-2202-470

7 A16B-2202-472

8 A16B-2202-480

• status is returned with zero if the parameters are valid and there is a module or board with the
specified rack/slot number as follows:

Example: The following example returns to the caller the module in the specified rack and slot
number.

IO_MOD_TYPE Built-In Procedure
PROGRAM iomodtype
%ENVIRONMENT IOSETUP

ROUTINE get_mod_type(rack_no: INTEGER;
slot_no: INTEGER;
mod_type: INTEGER): INTEGER

VAR
status: INTEGER

BEGIN

A�200

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

IO_MOD_TYPE(rack_no, slot_no, mod_type, status)
RETURN (status)

END get_mod_type
BEGIN
END iomodtype

A.9.19 IO_STATUS Built-In Function

Purpose: Returns an INTEGER value indicating the success or type of failure of the last operation
on the file argument

Syntax : IO_STATUS(file_id)

Function Return Type :INTEGER

Input/Output Parameters:

[in] file_id :FILE

%ENVIRONMENT Group :PBCORE

Details:

• IO_STATUS can be used after an OPEN FILE, READ, WRITE, CANCEL FILE, or CLOSE
FILE statement. Depending on the results of the operation, it will return 0 if successful or one
of the errors listed in the FANUC Robotics SYSTEM R-J3iB Controller HandlingTool Setup and
Operations Manual . Some of the common errors are shown in Table A�15 .

Table A�15. IO_STATUS Errors

0 Last operation on specified file was successful

2021 End of file for RAM disk device

10006 End of file for floppy device

12311 Uninitialized variable

12324 Illegal open mode string

12325 Illegal file string

A�201

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�15. IO_STATUS Errors (Cont�d)

12326 File var is already used

12327 Open file failed

12328 File is not opened

12329 Cannot write the variable

12330 Write file failed

12331 Cannot read the variable

12332 Read data is too short

12333 Illegal ASCII string for read

12334 Read file failed

12335 Cannot open pre_defined file

12336 Cannot close pre_defined file

12338 Close file failed

12347 Read I/O value failed

12348 Write I/O value failed

12358 Timeout at read request

12359 Read request is nested

12367 Bad base in format

• Use READ file_id(cr) to clear any IO_STATUS error.

• If file_id does not correspond to an opened file or one of the pre-defined ��files�� opened to the
respective CRT/KB, teach pendant, and vision windows, the program is aborted with an error.

A�202

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLIST_EX.KL), for a
detailed program example.

A.10 - J - KAREL LANGUAGE DESCRIPTION

A.10.1 J_IN_RANGE Built-In Function

Purpose: Returns a BOOLEAN value indicating whether or not the specified joint position argument
can be reached by a group of axes

Syntax : J_IN_RANGE(posn)

Function Return Type :BOOLEAN

Input/Output Parameters:

[in] posn :JOINTPOS

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value is TRUE if posn is within the work envelope; otherwise, FALSE is returned.

See Also: IN_RANGE Built-in Function, CHECK_EPROS Built-in procedure

A.10.2 JOINTPOS Data Type

Purpose: Defines a variable, function return type, or routine parameter as JOINTPOS data type.

Syntax : JOINTPOS<n> <IN GROUP[m]>

Details:

• A JOINTPOS consists of a REAL representation of the position of each axis of the group,
expressed in degrees or millimeters (mm).

• n specifies the number of axes, with 9 as the default. The size in bytes is 4 + 4 * n.

• A JOINTPOS may be followed by IN GROUP[m], where m indicates the motion group with
which the data is to be used. The default is the group specified by the %DEFGROUP directive
or 1.

• CNV_REL_JPOS and CNV_JPOS_REL Built-ins can be used to access the real values.

A�203

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• A JOINTPOS can be assigned to other positional types. Note that some motion groups, for
example single axis positioners, have no XYZWPR representation. If you attempt to assign a
JOINTPOS to a XYZWPR or POSITION type for such a group, a run-time error will result.

Example: Refer to the following sections for detailed program examples:

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.10.3 JOINT2POS Built-In Function

Purpose: This routine is used to convert joint angles (in_jnt) to a Cartesian position (out_pos) by
calling the forward kinematics routine.

Syntax : JOINT2POS (in_jnt - Joint angles can be converted to Cartesian, uframe, utool, config_ref,
out_pos, wjnt_cfg, ext_ang, and status).

Input/Output Parameters:

[in] in_jnt :Jointpos

[in] uframe :POSITION

[in] utool :POSITION

[in] config_ref :INTEGER

[out] out_pos :POSITION

[out] wjnt_cfg :CONFIG

[out] ext_ang :ARRAY OF REAL

[out] status :INTEGER

%ENVIRONMENT Group :MOTN

Details:

• The input in_jnt is defined as the joint angles to be converted to the Cartesian position.

• The input uframe is the user frame for the Cartesian position.

A�204

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• The input utool is defined as the corresponding tool frame.

• The input config_ref is an integer representing the type of solution desired. The values listed
below are valid. Also, the pre-defined constants in the parentheses can be used and the values can
be added as required. One example includes: config_ref = HALF_SOLN + CONFIG_TCP.

� 0 :(FULL_SOLN) = Default

� 1 : (HALF_SOLN) = Wrist joint (xyz456). This value does not calculate/use wpr.

� 2 :(CONFIG_TCP) = The Wrist Joint Config (up/down) is based on the fixed wrist.

� 4 :(APPROX_SOLN) = Approximate solution. This value reduce calculation time for
some robots.

� 8 :(NO_TURNS) = Ignore wrist turn numbers. Use the closest path for joints 4, 5 and 6
(uses ref_jnt).

� 16 :(NO_M_TURNS) = Ignore major axis (J1 only) turn number. Use the closest path.

• The output out_pos is the Cartesian position corresponding to the input joint angles.

• The output wjnt_cfg is the wrist joint configuration. The value will be output when config_ref
corresponds to HALF_SOLN.

• The output ext_ang contains the values of the joint angles for the extended axes if they exist.

• The output status explains the status of the attempted operation. If it is not equal to 0, then an
error has occurred.

A.11 - K - KAREL LANGUAGE DESCRIPTION

A.11.1 KCL Built-In Procedure

Purpose: Sends the KCL command specified by the STRING argument to KCL for execution.

Syntax : KCL (command, status)

Input/Output Parameters :

[in] command :STRING

[out] status :INTEGER

%ENVIRONMENT Group :kclop

Details:

• command must contain a valid KCL command.

• command cannot exceed 126 characters.

A�205

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• Program execution waits until execution of the KCL command is completed or until an error is
detected.

• All KCL commands are performed as if they were entered at the command level, with the
exception of destructive commands, such as CLEAR ALL, for which no confirmation is required.

• status indicates whether the command was executed successfully.

• If a KCL command file is being executed and $STOP_ON_ERR is FALSE, the KCL built-in will
continue to run to completion. The first error detected will be returned or a 0 if no errors occurred.

See Also: KCL_NO_WAIT, KCL_STATUS Built-In Procedures

Example: The following example will show programs and wait until finished. Status will be the
outcome of this operation.

KCL Built-In Procedure
PROGRAM kcl_test
VAR
command :STRING[20]
status :INTEGER

BEGIN
command = ’SHOW PROGRAMS’
KCL (command, status)

END kcl_test

Example: Refer to Example Program for Display Only Data Items for another example.

A.11.2 KCL_NO_WAIT Built-In Procedure

Purpose: Sends the KCL command specified by the STRING argument to KCL for execution, but
does not wait for completion of the command before continuing program execution.

Syntax : KCL_NO_WAIT (command, status)

Input/Output Parameters :

[in] command :STRING

[out] status :INTEGER

%ENVIRONMENT Group :kclop

Details:

• command must contain a valid KCL command.

A�206

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• status indicates whether KCL accepted the command.

• Program execution waits until KCL accepts the command or an error is detected.

See Also: KCL, KCL_STATUS Built-In Procedures

Example: The following example will load a program, but will not wait for the program to be loaded
before returning. Status will indicate if the command was accepted or not.

KCL_NO_WAIT Built-In Procedure
PROGRAM kcl_test
VAR
command :STRING[20]
status :INTEGER

BEGIN
command = ’Load prog test_1’
KCL_NO_WAIT (command, status)
delay 5000
status = KCL_STATUS

END kcl_test

A.11.3 KCL_STATUS Built-In Procedure

Purpose: Returns the status of the last executed command from either KCL or KCL_NO_WAIT
built-in procedures.

Syntax : KCL_STATUS

Function Return Type :INTEGER

%ENVIRONMENT Group :kclop

Details:

• Returns the status of the last executed command from the KCL or KCL_NO_WAIT built-ins.

• Program execution waits until KCL can return the status.

See Also: KCL_NO_WAIT, KCL Built-In Procedures

A�207

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.12 - L - KAREL LANGUAGE DESCRIPTION

A.12.1 LN Built-In Function

Purpose: Returns the natural logarithm of a specified REAL argument

Syntax : LN(x)

Function Return Type :REAL

Input/Output Parameters:

[in] x : REAL

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value is the natural logarithm of x .

• x must be greater than zero. Otherwise, the program will be aborted with an error.

Example: The following example returns the natural logarithm of the input variable a and assigns
it to the variable b .

LN Built-In Function
WRITE(CR, CR, ’enter a number =’)

READ(a,CR)
b = LN(a)

A.12.2 LOAD Built-In Procedure

Purpose: Loads the specified file

Syntax : LOAD (file_spec, option_sw, status)

Input/Output Parameters:

[in] file_spec :STRING

[in] option_sw :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

A�208

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Details:

• file_spec specifies the device, name, and type of the file to load. The following types are valid:

.TP Teach pendant program

.PC KAREL program

.VR KAREL variables

.SV KAREL system variables

.IO I/O configuration data

no ext KAREL program and variables

• option_sw specifies the type of options to be done during loading.

The following value is valid for .TP files:

� 1 If the program already exists, then it overwrites the program. If option_sw is not 1 and the
program exists, an error will be returned.

The following value is valid for .SV files:

� 1 Converts system variables.

• option_sw is ignored for all other types.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

A.12.3 LOAD_STATUS Built-In Procedure

Purpose: Determines whether the specified KAREL program and its variables are loaded into memory

Syntax : LOAD_STATUS(prog_name, loaded, initialized)

Input/Output Parameters:

[in] prog_name :STRING

A�209

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[out] loaded :BOOLEAN

[out] initialized :BOOLEAN

%ENVIRONMENT Group :PBCORE

Details:

• prog_name must be a program and cannot be a routine.

• loaded returns a value of TRUE if prog_name is currently loaded into memory. FALSE is
returned if prog_name is not loaded.

• initialized returns a value of TRUE if any variable within prog_name has been initialized. FALSE
is returned if all variables within prog_name are uninitialized.

• If either loaded or initialized is FALSE, use the LOAD built-in procedure to load prog_name
and its variables.

Example: Refer to the following sections for detailed program examples:

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

A.12.4 LOCK_GROUP Built-In Procedure

Purpose: Locks motion control for the specified group of axes

Syntax : LOCK_GROUP(group_mask, status)

Input/Output Parameters:

[in] group_mask : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :MULTI

Details:

• group_mask specifies the group of axes to lock for the running task. The group numbers must be
in the range of 1 to the total number of groups defined on the controller.

• The group_mask is specified by setting the bit(s) for the desired group(s).

A�210

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�16. Group_mask Setting

GROUP DECIMAL BIT

Group 1 1 1

Group 2 2 2

Group 3 4 3

To specify multiple groups select the decimal values, shown in Table A�16, which correspond to
the desired groups. Then connect them together using the OR operator. For example to specify
groups 1, 3, enter "1 OR 4".

• Motion control is gained for the specified motion groups.

• If one or more of the groups cannot be locked, then an error is returned, and any available groups
will be locked.

• Moving a group automatically locks the group if it has not been previously locked by another task.

• If a task tries to move a group that is already locked by another task, it will be paused.

• status explains the status of the attempted operation. If not equal to 0, an error occurred.

Note Do not use more than one motion group in a KAREL program. If you need to use more
than one motion group, you must use a teach pendant program.

Warning

Do not run a KAREL program that includes more than one motion
group. Otherwise, the robot could move unexpectedly and inure
personnel or damage equipment.

Example: The following example unlocks group 1, 2, and 3, and then locks group 3. Refer to Chapter
15 MULTI-TASKING , for more examples.

LOCK_GROUP Built-In Procedure
%ENVIRONMENT MOTN
%ENVIRONMENT MULTI

VAR
status: INTEGER

BEGIN
REPEAT

-- Unlock groups 1, 2, and 3

A�211

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

UNLOCK_GROUP(1 OR 2 OR 4, status)
IF status = 17040 THEN

CNCL_STP_MTN -- or RESUME
ENDIF
DELAY 500

UNTIL status = 0

-- Lock only group 3
LOCK_GROUP(4, status)

END lock_grp_ex

A.12.5 %LOCKGROUP Translator Directive

Purpose: Specifies the motion group(s) to be locked when calling this program or a routine from
this program.

Syntax : %LOCKGROUP = n, n ,...

Details:

• n is the number of the motion group to be locked.

• The range of n is 1 to the number of groups on the controller.

• When the program or routine is called, the task will attempt to get motion control for all the
specified groups if it does not have them locked already. The task will pause if it cannot get
motion control.

• If %LOCKGROUP is not specified, all groups will be locked.

• The %NOLOCKGROUP directive can be specified if no groups should be locked.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: %NOLOCKGROUP Directive, LOCK_GROUP, UNLOCK_GROUP Built-In Procedures

A�212

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.13 - M - KAREL LANGUAGE DESCRIPTION

A.13.1 MIRROR Built-In Function

Purpose: Determines the mirror image of a specified position variable.

Syntax : MIRROR (old_pos, mirror_frame, orientation_flag)

Function Return Type: XYZWPREXT

Input/Output Parameters :

[in] old_pos :POSITION

[in] mirror_frame :POSITION

[in] orient_flag :BOOLEAN

%ENVIRONMENT Group :MIR

Details:

• old_pos and mirror_frame must both be defined relative to the same user frame.

• old_pos specifies the value whose mirror image is to be generated.

• mirror_frame specifies the value across whose xz_plane the image is to be generated.

• If orient_flag is TRUE, both the orientation and location component of old_pos will be mirrored.
If FALSE, only the location is mirrored and the orientation of the new mirror-image position is
the same as that of old_pos.

• The returned mirrored position is not guaranteed to be a reachable position, since the mirrored
position can be outside of the robot�s work envelope.

See Also: The appropriate application-specific FANUC Robotics SYSTEM R-J3iB Controller Setup
and Operations Manual, chapter on "Advanced Functions"

Example: The following example gets the current position of the robot, creates a mirror frame, and
generates a mirrored position which is mirrored about the y axis.

MIRROR Built-In Function
PROGRAM mir_exam
VAR
cur_pos: XYZWPREXT
org_pos: POSITION
mir_pos: XYZWPREXT
mir_posa: POSITION

A�213

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

pos_frame: XYZWPREXT
frame: POSITION
orient_flag: BOOLEAN

BEGIN
cur_pos = curpos(0,0) -- Get the current position of the robot

cur_pos.x = 1000.00 -- Create a new position which (1000,0,300,w,p,r)
cur_pos.y = 0.0
cur_pos.z = 300.00

move to cur_pos -- The robot is now at a know position:
--(1000,0,300,w,p,r) where (w,p,r) have not
--changed from the original position.

pos_frame = curpos(0,0) -- Create a frame used to mirror about.

pos_frame.w = 0 -- By setting (w,p,r) to 0, the x-z plane of
pos_frame.p = 0 -- pos_frame will be parallel to the world’s x-z
pos_frame.r = 0 -- plane. pos_frame now set to (1000,0,300,0,0,0)

frame = pos_frame -- Convert the mirror frame to a POSITION type.

cur_pos.y = 200 -- Move 200mm in the y direction.
move to cur_pos -- Current position is (1000,200,300,w,p,r)

org_pos = cur_pos -- Convert org_pos to a POSITION type.

orient_flag = FALSE -- Send Mirror current position: (1000, 200, 300,
-- w,p,r), and mirror frame: (1000,0,300,0,0,0).
-- Mirrors about the y axis without mirroring the
-- orientation (w,p,r).

mir_pos = mirror(org_pos, frame, orient_flag)
-- mir_pos is the mirrored position: (1000, -200,
-- 300, w, p, r).
-- The orientation is the same as org_pos.

orient_flag = TRUE -- The mirrored position includes mirroring of
-- the tool orientation.

mir_posa = mirror(org_pos,frame,orient_flag)
-- mir_posa is the mirrored position where Normal
-- Orient, & Approach vectors have been mirrored.

end mir_exam

A�214

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.13.2 MODIFY_QUEUE Built-In Procedure

Purpose: Replaces the value of an entry of a queue.

Syntax : MODIFY_QUEUE(value, sequence_no, queue_t, queue_data, status)

Input/Output Parameters:

[in] value :INTEGER

[in] sequence_no :INTEGER

[in,out] queue_t :QUEUE_TYPE

[in,out] queue_data :ARRAY OF INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBQMGR

Details:

• value specifies the value to be inserted into the queue.

• sequence_no specifies the sequence number of the entry whose value is to be modified

• queue_t specifies the queue variable for the queue

• queue_data specifies the array used to hold the data in the queue. The length of this array
determines the maximum number of entries in the queue.

• status is returned with 61003, ��Bad sequence no,�� if the specified sequence number is not in
the queue.

See Also: COPY_QUEUE, GET_QUEUE, DELETE_QUEUE Built-In ProceduresSection 15.8,
"Using Queues for Task Communication"

Example: In the following example, the routine update_queue replaces the value of the specified
entry (sequence_no); of a queue (queue and queue_data with a new value (value).

MODIFY_QUEUE Built-In Procedure
PROGRAM mod_queue_x
%ENVIRONMENT PBQMGR
ROUTINE update_queue(value: INTEGER;

sequence_no: INTEGER;
queue_t: QUEUE_TYPE;
queue_data: ARRAY OF INTEGER)

VAR
status: INTEGER

A�215

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

BEGIN
MODIFY_QUEUE(value, sequence_no, queue_t, queue_data, status)
return
END update_queue
BEGIN
END mod_queue_x

A.13.3 MOTION_CTL Built-In Function

Purpose: Determines whether the KAREL program has motion control for the specified group of axes

Syntax : MOTION_CTL<(group_mask)>

Function Return Type :BOOLEAN

Input/Output Parameters:

[in] group_mask :INTEGER

%ENVIRONMENT Group :MOTN

Details:

• If group_mask is omitted, the default group mask for the program is assumed.

• The default group_mask is determined by the %LOCKGROUP and %NOLOCKGROUP
directives.

• The group_mask is specified by setting the bit(s) for the desired group(s).

Table A�17. Group_mask Setting

GROUP DECIMAL BIT

Group 1 1 1

Group 2 2 2

Group 3 4 3

To specify multiple groups select the decimal values, shown in Table A�17, which correspond to
the desired groups. Then connect them together using the OR operator. For example to specify
groups 1, 3, enter "1 OR 4".

A�216

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

• Returns TRUE if the KAREL program has motion control for the specified group of axes.

A.13.4 MOUNT_DEV Built-In Procedure

Purpose: Mounts the specified device

Syntax : MOUNT_DEV (device, status)

Input/Output Parameters:

[in] device : STRING

[out] status :INTEGER

%ENVIRONMENT Group :FDEV

Details:

• device specifies the device to be mounted.

• status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.

See Also: DISMOUNT_DEV and FORMAT_DEV

Example: Refer to Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL), for a detailed
program example.

A.13.5 MOVE ABOUT Statement

Purpose: Moves the TCP to a destination an angular distance about a specified vector from the
current TCP position

Syntax : < WITH clause >

MOVE ABOUT vect BY angle

< NOWAIT > <,

A�217

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

cond_handler

{cond_handler}

ENDMOVE >

where:

WITH_clause : Described under ��WITH clause��

vect : VECTOR expression

angle :a REAL expression

NOWAIT : Described under ��NOWAIT clause��

cond_handler : a local condition handler

Details:

• angle is measured in degrees.

• The location of the destination will be the same as that of the current position when the move is
completed.

• If $MOTYPE is linear, the location of the TCP remains fixed during the move.

• The shortest distance for the move is always used. For example, if the angle is > 180 degrees (or
< -180), the actual motion will be in the opposite direction from what you might expect.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Local condition handlers, composed of WHEN and UNTIL clauses, Chapter 6 CONDITION
HANDLERS , Appendix E, ��Syntax Diagrams,�� for additional syntax information, NOWAIT,
WHEN, WITH, UNTIL Clauses

Example: Initially, the following example moves the TCP to a desired position, defines a vector in
the positive x direction (direction), and defines angle to be 30°. The TCP is then rotated about the
direction vector by angle .

MOVE ABOUT Statement
$MOTYPE = JOINT

MOVE TO tool_pos

A�218

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

direction.x = 1
direction.y = 0
direction.z = 0

angle = 30

WITH $SPEED = 200 MOVE ABOUT direction BY angle

A.13.6 MOVE ALONG Statement

Purpose: Moves the TCP (and, optionally, auxiliary axes) continuously along the nodes of a PATH.

Syntax : < WITH clause >

MOVE ALONG path_var <[start_node<..end_node>]>

<NOWAIT> < ,

cond_handler

{cond_handler}

ENDMOVE >

where:

WITH clause : Described under ��WITH Clause��

path_var : a PATH variable

start_node : an INTEGER expression

end_node : an INTEGER expression

NOWAIT : Described under ��NOWAIT Clause��

cond_handler : a local condition handler

Details:

• If start_node is not present, the TCP (and, optionally, auxiliary axes) moves to the first node of
the PATH, then to each successive node until the end of the PATH is reached.

• If only start_node is present, the TCP (and, optionally, auxiliary axes) moves to the specified
start_node , then to each successive node until the end of the PATH is reached.

A�219

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• If a range of nodes is specified with start_node...end _node , the TCP (and, optionally, auxiliary
axes) moves to the specified start_node , then to each successive node until the specified
end_node is reached.

• start_node and end_node must be in the range from 1 to the length of the PATH. If, during
program execution, one of these values is less than 1, the program will be aborted. If one of these
values is greater than the actual length of the PATH, the program will be paused.

• The standard associated data values for each node are applied to the motion segment whose
destination is the corresponding node.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Local condition handlers, composed of WHEN and UNTIL clauses, Chapter 6 CONDITION
HANDLERS , Appendix E, ��Syntax Diagrams,�� for additional syntax information, NOWAIT,
WHEN, WITH, UNTIL Clauses

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.13.7 MOVE AWAY Statement

Purpose: Moves the TCP away from its current position using a REAL value offset, measured in
millimeters along the negative z-axis of the tool coordinate system.

Syntax : < WITH_clause >

MOVE AWAY distance

< NOWAIT >< ,

cond_handler

{ cond_handler }

A�220

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

ENDMOVE >

where:

WITH_clause : Described under ��WITH Clause��

distance : a REAL expression

NOWAIT : Described under ��NOWAIT Clause��

cond_handler : a local condition handler

Details:

• distance designates the offset distance, in millimeters, that the TCP is to move from the current
TCP position.

• The direction of displacement is determined by the sign of the specified distance and the tool
orientation at the starting point.

• If the distance is positive, displacement will be in the negative z direction in the coordinate frame
of the tool. Otherwise it is in the positive z direction.

• The tool orientation at the end of the move will be the same as at the start. It will be constant
during the move only if $MOTYPE is specified as linear.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Local condition handlers, composed of WHEN and UNTIL clauses, Chapter 6 CONDITION
HANDLERS , Appendix E, ��Syntax Diagrams,�� for additional syntax information, NOWAIT,
WHEN, WITH, UNTIL Clauses

Example: The following example sets $MOTYPE to JOINT and moves the TCP to the position
start_pos. Next the TCP moves away -100 millimeters which brings the tool closer to the surface.
Moving the TCP away 100 millimeters brings the tool farther away from the surface.

MOVE AWAY Statement
$MOTYPE = JOINT -- start_pos is located

MOVE TO start_pos -- 100 mm away from a
-- surface. Tool is
-- perpendicular to
-- surface at start_pos.

distance = 100.0

A�221

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

MOVE AWAY -distance
MOVE AWAY distance

A.13.8 MOVE AXIS Statement

Purpose: Moves a specified robot or auxiliary axis a distance specified in degrees or millimeters

Syntax : < WITH_clause >

MOVE AXIS axis_no BY distance

< NOWAIT > < ,

cond_handler

{ cond_handler }

ENDMOVE >

where:

WITH_clause : Described under ��WITH Clause��

axis_no : an INTEGER expression

distance : a REAL expression

NOWAIT : Described under ��NOWAIT Clause��

cond_handler : a local condition handler

Details:

• axis_no indicates the robot or auxiliary axis to move.

• Robot axes are numbered from one to the number of axes on the robot; auxiliary axes are
numbered from one more than the last robot axis to the last auxiliary axis.

• distance designates the distance to move. The units of distance are degrees for rotational axes
and millimeters for linear (prismatic) axes.

• If an emergency stop occurs during a MOVE AXIS motion, a new destination is computed
using the current position at the time the motion is resumed. The original distance is used in the
computation, meaning the axis will not end up at the position it was originally moving to before
the emergency stop occurred.

A�222

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Appendix E, ��Syntax Diagrams,�� for additional syntax information, NOWAIT, WHEN,
WITH, UNTIL Clauses

See Also: NOWAIT Clause, Appendix A, ��KAREL Language Alphabetical Description,�� WHEN
Clause and UNTIL Clause, Appendix A, ��KAREL Language Alphabetical Description,�� WITH
Clause, Appendix A, ��KAREL Language Alphabetical Description,�� Appendix E, ��Syntax
Diagrams,�� for additional syntax information

Example: The following example moves each axis individually 45°.

MOVE AXIS Statement
degrees = 45

FOR i = 1 TO 5 DO
MOVE AXIS i BY degrees

ENDFOR

A.13.9 MOVE_FILE Built-In Procedure

Purpose: Moves the specified file from one memory file device to another

Syntax : MOVE_FILE (file_spec, status)

Input/Output Parameters :

[in] file_spec : string

[out] status : integer

%ENVIRONMENT Group :FDEV

Details:

• file_spec specifies the device, name, and type of the file to be moved. The file should exist on
the FROM or RAM disks.

• If file_spec is a file on the FROM disk, the file is moved to the RAM disk, and vice versa.

A�223

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• The wildcard character (*) can be used to replace the entire file name, the first part of the file
name, the last part of the file name, or both the first and last parts of the file name. The file type
can also use the wildcard in the same manner. If file_spec specifies multiple files, then they are
all moved to the other disk.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: In the following example, all .KL files are moved from the RAM disk to the FROM disk.

MOVE_FILE Built-In Procedure
PROGRAM move_files
%NOLOCKGROUP
%ENVIRONMENT FDEV
VAR

status: INTEGER
BEGIN

MOVE_FILE(’RD:*.KL’, status)
IF status <> 0 THEN

POST_ERR(status, ’’, 0, 0)
ENDIF

END move_files

A.13.10 MOVE NEAR Statement

Purpose: Moves the TCP to a destination near the specified POSITION by the distance offset, which
is measured along the negative z-axis of the POSITION

Syntax : < WITH_clause >

MOVE NEAR posn BY distance

< NOWAIT > < ,

cond_handler

{ cond_handler }

ENDMOVE >

where:

WITH_clause : Described under ��WITH Clause��

posn : a POSITION variable

distance : a REAL expression

A�224

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

NOWAIT : Described under ��NOWAIT Clause��

cond_handler : a local condition handler

Details:

• distance designates the offset from the POSITION posn to move to in millimeters.

• The direction of the offset is determined by the sign of distance and the orientation of the tool
at posn .

• If distance is positive, the displacement will be along the negative z-axis of posn . Otherwise, the
displacement will be along the positive z-axis.

• The orientation of the final POSITION will be the same as that specified in posn .

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Local condition handlers, composed of WHEN and UNTIL clauses, Chapter 6 CONDITION
HANDLERS , Appendix E , ��Syntax Diagrams,�� for additional syntax information, NOWAIT,
WHEN, WITH, UNTIL Clauses

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.13.11 MOVE RELATIVE Statement

Purpose: Moves the TCP from its present location by a distance specified as a VECTOR or
POSITION, in $UFRAME coordinates

Syntax : < WITH_clause >

MOVE RELATIVE distance

< NOWAIT ><,

cond_handler

{ cond_handler }

ENDMOVE >

A�225

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

where:

WITH_clause : Described under ��WITH Clause��

distance : a VECTOR or POSITION expression

NOWAIT : Described under ��NOWAIT Clause��

cond_handler : a local condition handler

Details:

• The TCP is moved the specified distance in x, y, and z directions of the default or specified
$UFRAME.

• If a VECTOR is used, the orientation of the TCP at the destination will be the same as that of
the TCP at the current position, when the move is complete.

• If a POSITION is used, the orientation of the TCP at the destination will be computed by
premultiplying the orientation from the distance position to the current orientation of the current
position.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Local condition handlers, composed of WHEN and UNTIL clauses, Chapter 6 CONDITION
HANDLERS , Appendix E, ��Syntax Diagrams,�� for additional syntax information, NOWAIT Clause

Example: The following example sets $MOTYPE to JOINT and uses the MOVE TO statement to
move the TCP to position start_pos. The VECTOR variable direction is set to the x, y, and z values of
300, 0, 0. The MOVE RELATIVE statement moves the TCP from start_pos by the value of direction.

MOVE RELATIVE Statement
$MOTYPE = JOINT

MOVE TO start_pos
direction.x = 300
direction.y = 0
direction.z = 0
MOVE RELATIVE direction

A�226

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.13.12 MOVE TO Statement

Purpose: Initiates motion of the robot TCP to a specified POSITION or PATH node

Syntax : < WITH_clause >

MOVE TO || posn | p_var[n] || < VIA_clause >

< NOWAIT ><,

cond_handler

{cond_handler}

ENDMOVE >

where:

WITH_clause : Described under ��WITH clause��

posn : a positional expression

p_var : a PATH

n : an INTEGER

VIA_clause : Described under ��VIA Clause��

NOWAIT : Described under ��NOWAIT Clause��

cond_handler : a local condition handler

Details:

• If the destination is a PATH variable, n specifies the node within p_var that is the destination
of the motion.

Any other fields, including the standard associated data fields, do not affect the motion.

• A positional expression can be a POSITION, XYZWPR, XYZWPREXT or JOINTPOS.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

A�227

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: Local condition handlers, composed of WHEN and UNTIL Clauses,Chapter 6 CONDITION
HANDLERS , Appendix E, ��Syntax Diagrams,�� for additional syntax information

Example: Refer to the following sections for detailed program examples:

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

A.13.13 MSG_CONNECT Built-In Procedure

Purpose: Connect a client or server port to another computer for use in Socket Messaging.

Syntax : MSG_CONNECT (tag, status)

Input/Output Parameters :

[in] tag :STRING

[out] status :INTEGER

%ENVIRONMENT Group :FLBT

Details:

• Tag is the name of a client port (C1:-C8) or server port (S1:S8).

• Status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.

See Also: Socket Messaging in the FANUC Robotics SYSTEM R-J3iB Controller Internet Options
Setup and Operations Manual.

Example: The following example connects to S8: and reads messages. The messages are displayed
on the teach pendant screen.

MSG_CONNECT Built-In Procedure
PROGRAM tcpserv8

VAR
file_var : FILE
tmp_int : INTEGER
tmp_int1 : INTEGER
tmp_str : string [128]
tmp_str1 : string [128]
status : integer
entry : integer

A�228

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

BEGIN

SET_FILE_ATR (file_var, ATR_IA)
-- Set up S8 server tag
DISMOUNT_DEV(’S8:’,status)
MOUNT_DEV(’S8:’,status)
write (’ Mount Status = ’,status,cr)
status = 0
IF status = 0 THEN

-- Connect the tag
write (’Connecting ..’,cr)
MSG_CONNECT (’S8:’,status)
write (’Connect Status = ’,status,cr)
IF status < > 0 THEN

MSG_DISCO(’S8:’,status)
write (’ Connecting..’,cr)
MSG_CONNECT(’S8:’,status)
write (’ Connect Status = ’,status,cr)
ENDIF

IF status = 0 THEN
-- OPEN S8:
write (’Opening’,cr)
OPEN FILE file_var (’rw’,’S8:’)
status = io_status(file_var)
FOR tmp_int 1 TO 1000 DO

write (’Reading’,cr)
BYTES_AHEAD(file_var, entry, status)
-- Read 10 bytes
READ file_var (tmp_str::10)
status = i/o_status(file_var)

--Write 10 bytes
write (tmp_str::10,cr)
status = io_status(file_var)
ENDFOR

CLOSE FILE file_var
write (’Disconnecting..’,cr)
MSG_DISCO(’S8:’,status)
write (’Done.’,cr)

ENDIF
ENDIF

END tcpserv8

A.13.14 MSG_DISCO Built-In Procedure

Purpose: Disconnect a client or server port from another computer.

A�229

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Syntax : MSG_DISCO (tag, status)

Input/Output Parameters :

[in] tag :STRING

[out] status :INTEGER

%ENVIRONMENT Group :FLBT

Details:

• Tag is the name of a client port (C1:-C8) or server port (S1:S8).

• Status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.

See Also: Socket Messaging in the FANUC Robotics SYSTEM R-J3iB Controller Internet Options
Setup and Operations Manual.

Example: Refer to MSG_CONNECT Built-In Procedure for more examples.

A.13.15 MSG_PING

Syntax : MSG_PING (host name, status)

Input/Output Parameters :

[in] host name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :FLBT

Details:

• Host name is the name of the host to perform the check on. An entry for the host has to be present
in the host entry tables (or the DNS option loaded and configured on the robot).

• Status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.

See Also: Ping in the FANUC Robotics SYSTEM R-J3iB Controller Internet Options Setup and
Operations Manual.

Example: The following example performs a PING check on the hostname "fido". It writes the
results on the teach pendant.

MSG_PING Built-In Procedure
PROGRAM pingtest

A�230

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

VAR
Tmp_int : INTEGER
Status : integer

BEGIN
WRITE(’pinging..’,cr)
MSG_PING(’fido’,status)
WRITE(’ping Status = ’,status,cr)

END pingtest

A.14 - N - KAREL LANGUAGE DESCRIPTION

A.14.1 NOABORT Action

Purpose: Prevents program execution from aborting when an external error occurs

Details:

• The NOABORT action usually corresponds to an ERROR[n].

• If the program is aborted by itself (i.e., executing an ABORT statement, run time error), the
NOABORT action will be ignored and program execution will be aborted.

Example: The following example uses a global condition handler to test for error number 11038,
"Pulse Mismatch." If this error occurs, the NOABORT action will prevent program execution from
being aborted.

NOABORT Action
PROGRAM noabort_ex

%NOLOCKGROUP

BEGIN

--Pulse Mismatch condition handler
CONDITION[801]:

WHEN ERROR[11038] DO
NOABORT

ENDCONDITION

ENABLE CONDITION[801]

END noabort_ex

A�231

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.14.2 %NOABORT Translator Directive

Purpose: Specifies a mask for aborting

Syntax : %NOABORT = ERROR + COMMAND

Details:

• ERROR and COMMAND are defined as follows:
ERROR : ignore abort error severity

COMMAND : ignore abort command

• Any combination of ERROR and COMMAND can be specified.

• If the program is aborted by itself (for example, executing an ABORT statement, run-time error),
the %NOABORT directive will be ignored and program execution will be aborted.

• This directive is only effective for programs with %NOLOCKGROUP. If the program has motion
control, the %NOABORT directive will be ignored and program execution will be aborted.

A.14.3 %NOBUSYLAMP Translator Directive

Purpose: Specifies that the busy lamp will be OFF during execution.

Syntax: %NOBUSYLAMP

Details:

• The busy lamp can be set during task execution by the SET_TSK_ATTR built-in.

A.14.4 NODE_SIZE Built-In Function

Purpose: Returns the size (in bytes) of a PATH node

Syntax : NODE_SIZE(path_var)

Function Return Type :INTEGER

Input/Output Parameters:

[in] path_var : PATH

%ENVIRONMENT Group :PATHOP

Details:

A�232

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• The returned value is the size of an individual PATH node, including the positional data type
size and any associated data.

• The returned value can be used to calculate file positions for random access to nodes in files.

Example: The following example program reads a path, while overlapping reads with preceding
moves. The routine read_header reads the path header and prepares for reading of nodes. The
routine read_node reads a path node.

NODE_SIZE Built-In Function
PROGRAM read_and_mov
VAR my_path: PATH

path_base: INTEGER
node_size: INTEGER
max_node_no: INTEGER
i: INTEGER
file_var: FILE

ROUTINE read_header

BEGIN
READ file_var(my_path[0])
IF IO_STATUS(file_var) <> 0 THEN

WRITE(’HEADER READ ERROR:’,IO_STATUS(file_var),cr)
ABORT

ENDIF
max_node_no = PATH_LEN(my_path)
node_size = NODE_SIZE(my_path)
path_base = GET_FILE_POS(file_var)

END read_header

ROUTINE read_node(node_no: INTEGER)
--
VAR status: INTEGER
BEGIN

SET_FILE_POS(file_var, path_base+(node_no-1)*node_size, status)
READ file_var(my_path[node_no])

END read_node

BEGIN
SET_FILE_ATR(file_var, atr_uf)
OPEN FILE F1(’RO’,’PATHFILE.DT’)
read_header
FOR i = 1 TO max_node_no DO

read_node(i)
MOVE TO my_path[i] NOWAIT

ENDFOR
CLOSE FILE file_var

END read_and_mov

A�233

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.14.5 %NOLOCKGROUP Translator Directive

Purpose: Specifies that motion groups do not need to be locked when calling this program, or a
routine defined in this program.

Syntax : %NOLOCKGROUP

Details:

• When the program or routine is called, the task will not attempt to get motion control.

• If %NOLOCKGROUP is not specified, all groups will be locked when the program or routine
is called, and the task will attempt to get motion control. The task will pause if it cannot get
motion control.

• The task will keep motion control while it is executing the program or routine. When it exits the
program or routine, the task automatically unlocks all the motion groups.

• If the task contains executing or stopped motion, then task execution is held until the motion is
completed. Stopped motion must be resumed and completed or cancelled.

• If a program that has motion control calls a program with the %NOLOCKGROUP Directive
or a routine defined in such a program, the program will keep motion control even though it
is not needed.

• The UNLOCK_GROUP built-in routine can be used to release control.

• If a motion statement is encountered in a program that has the %NOLOCKGROUP Directive, the
task will attempt to get motion control for all the required groups if it does not already have it.
The task will pause if it cannot get motion control.

Caution

Many of the fields in the $GROUP system variable are initialized to a
set of default values when a KAREL task is started, see KAREL Motion
Initialization . When %NOLOCKGROUP is specified, this initialization does
not occur. Therefore, when a motion is issued the current values of these
fields are used. This could cause unexpected motion.

KAREL Motion Initialization
$GROUP[n].$MOTYPE = JOINT

$GROUP[n].$TERMTYPE = FINE
$GROUP[n].$SEGTERMTYPE = FINE
$GROUP[n].$DECELTOL = 0
$GROUP[n].$USE_CONFIG = TRUE
$GROUP[n].$ORIENT_TYPE = RSWORLD
$GROUP[n].$SPEED = 300.0
$GROUP[n].$ROTSPEED = 500.0 ($MRR_GRP[n].$ROTSPEEDLIM x 57.29577951)
$GROUP[n].$CONTAXISVEL = 0.0

A�234

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

$GROUP[n].$SEG_TIME = 0

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up for
more than one motion group, all motion must be initiated from a teach
pendant program. Otherwise, the robot could move unexpectedly and
injure personnel or damage equipment.

See Also: %LOCKGROUP Translator Directive, LOCK_GROUP, UNLOCK_GROUP Built-In
Procedures

Example: Refer to the following sections for detailed program examples:

Section B.3,"Saving Data to the Default Device" (SAVE_VR.KL)

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

A.14.6 NOMESSAGE Action

Purpose: Suppresses the display and logging of error messages

Syntax : NOMESSAGE

Details:

• Display and logging of the error messages are suppressed only for the error number specified in
the corresponding condition.

• Use a wildcard (*) to suppress all messages.

• Abort error messages still will be displayed and logged even if NOMESSAGE is used.

Example: Refer to Section B.1 , "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A�235

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.14.7 NOPAUSE Action

Purpose: Resumes program execution if the program was paused, or prevents program execution
from pausing

Syntax : NOPAUSE

Details:

• The NOPAUSE action usually corresponds to an ERROR[n] or PAUSE condition.

• The program will be resumed, even if it was paused before the error.

• If the program is paused by itself, the NOPAUSE action will be ignored and program execution
will be paused.

Example: The following example uses a global condition handler to test for error number 12311. If
this error occurs, the NOPAUSE action will prevent program execution from being paused and the
NOMESSAGE action will suppress the error message normally displayed for error number 12311.
This will allow the routine uninit_error to be executed without interruption.

NOPAUSE Action
ROUTINE uninit_error

BEGIN
WRITE (’Uninitialized operand’,CR)
WRITE (’Use KCL> SET VAR to initialize operand’,CR)
WRITE (’Press Resume at Test/Run screen to ’,cr)
WRITE (’continue program’,cr)
PAUSE --pauses program (undoes NOPAUSE action)

END uninit_error

CONDITION[1]:
WHEN ERROR[12311] DO

NOPAUSE, NOMESSAGE, uninit_error
ENDCONDITION

A.14.8 %NOPAUSE Translator Directive

Purpose: Specifies a mask for pausing

Syntax : %NOPAUSE = ERROR + COMMAND + TPENABLE

Details:

• The bits for the mask are as follows:
ERROR : ignore pause error severity

COMMAND : ignore pause command

A�236

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

TPENABLE : ignore paused request when TP enabled

• Any combination of ERROR, COMMAND, and TPENABLE can be specified.

• If the program is paused by itself, the %NOPAUSE directive will be ignored and program
execution will be paused.

• This directive is only effective for programs with %NOLOCKGROUP. If the program has motion
control, the %NOPAUSE Directive will be ignored and program execution will be paused.

A.14.9 %NOPAUSESHFT Translator Directive

Purpose: Specifies that the task is not paused if shift key is released.

Syntax : %NOPAUSESHFT

Details:

• This attribute can be set during task execution by the SET_TSK_ATTR built-in routine.

A.14.10 NOWAIT Clause

Purpose: Allows program execution to overlap with motion or a pulse

Syntax : NOWAIT

Details:

• If NOWAIT is included in a motion statement, the next statement will be executed at the same
time motion begins.

• NOWAIT follows the motion specification of a MOVE statement and the VIA clause but
precedes any condition handler clauses.

• If NOWAIT is not included, the next statement will be executed when the motion is completed or
canceled.

• A NOWAIT motion will be canceled at the time the CANCEL action or statement is executed.

See Also: PULSE Statement, MOVE Statements Syntax Diagrams, Appendix E ��Syntax Diagrams��

Example: In the following example, the NOWAIT clause is used so that all statements will be
executed at the same time.

NOWAIT Clause
PULSE DOUT[2] FOR 50 NOWAIT

MOVE TO p1 NOWAIT

A�237

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

DOUT[1] = ON

A.15 - O - KAREL LANGUAGE DESCRIPTION

A.15.1 OPEN FILE Statement

Purpose: Associates a data file or communication port with a file variable

Syntax : OPEN FILE file_var (usage_string, file_string)

where:

file_var : FILE

usage_string : a STRING

file_string : a STRING

Details:

• file_var must be a static variable not already in use by another OPEN FILE statement.

• The usage_string is composed of the following:

�RO� :Read only

�RW� :Read write

�AP� :Append

�UD� :Update

• The file_string identifies a data file name and type, a window or keyboard, or a communication
port.

• The SET_FILE_ATR built-in routine can be used to set a file�s attributes.

• When a program is aborted or exits normally, any opened files are closed. Files are not closed
when a program is paused.

• Use the IO_STATUS built-in function to verify if the open file operation was successful.

See Also: IO_STATUS Built-In Function, SET_FILE_ATR Built-In Procedure, Chapter 7 FILE
INPUT/OUTPUT OPERATIONS , Chapter 9 FILE SYSTEM , Appendix E, ��Syntax Diagrams��
for more syntax information

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

A�238

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Section B.12 , "Displaying a List From a Dictionary File" (DCLST_EX.KL)

A.15.2 OPEN HAND Statement

Purpose: Opens a hand on the robot

Syntax : OPEN HAND hand_num

where:

hand_num : an INTEGER expression

Details:

• The actual effect of the statement depends on how the HAND signals are set up. Refer to Chapter
13, ��Input/Output System.��

• hand_num must be a value in the range 1-2. Otherwise, the program is aborted with an error.

• The statement has no effect if the value of hand_num is in range but the hand is not connected.

• If the value of hand_num is in range but the HAND signal represented by that value has not been
assigned, the program is aborted with an error.

See Also: Appendix D, ��Syntax Diagrams�� for more syntax information

Example: The following example moves the TCP to the position p2 and opens the hand of the robot
specified by the INTEGER variable hand_num.

OPEN HAND Statement
MOVE TO p2
OPEN HAND hand_num

A.15.3 OPEN_TPE Built-In Procedure

Purpose: Opens the specified teach pendant program

Syntax : OPEN_TPE(prog_name, open_mode, reject_mode, open_id, status)

Input/Output Parameters:

[in] prog_name :STRING

[in] open_mode :INTEGER

[in] reject_mode :INTEGER

A�239

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[out] open_id :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• prog_name specifies the name of the teach pendant program to be opened. prog_name must be
in all capital letters.

• prog_name must be closed, using CLOSE_TPE, before prog_name can be executed.

• open_mode determines the access code to the program. The access codes are defined as follows:

0 : none

TPE_RDACC : Read Access

TPE_RWACC : Read/Write Access

• reject_mode determines the reject code to the program. The program that has been with a reject
code cannot be opened by another program. The reject codes are defined as follows:

TPE_NOREJ : none

TPE_RDREJ : Read Reject

TPE_WRTREJ : Write Reject

TPE_RWREJ : Read/Write Reject

TPE_ALLREJ : All Reject

• open_id indicates the id number of the opened program.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

• All open teach pendant programs are closed automatically when the KAREL program is aborted
or exits normally.

See Also: CREATE_TPE Built-In Procedure, COPY_TPE Built-In Procedure, AVL_POS_NUM
Built-In Procedure

Example: Refer to Section B.14, "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A�240

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.15.4 ORD Built-In Function

Purpose: Returns the numeric ASCII code corresponding to the character in the STRING argument
that is referenced by the index argument

Syntax : ORD(str, str_index)

Function Return Type :INTEGER

Input/Output Parameters:

[in] str :STRING

[in] str_index :INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value represents the ASCII numeric code of the specified character.

• str_index specifies the indexed position of a character in the argument str . A value of 1 indicates
the first character.

• If str_index is less than one or greater than the current length of str , the program is paused
with an error.

See Also: Appendix D, ��Character Codes��

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.15.5 ORIENT Built-In Function

Purpose: Returns a unit VECTOR representing the y-axis (orient vector) of the specified POSITION
argument

Syntax : ORIENT(posn)

Function Return Type :VECTOR

Input/Output Parameters:

[in] posn : POSITION

%ENVIRONMENT Group :VECTR

A�241

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Details:

• Instead of using this built-in, you can directly access the Orient Vector of a POSITION.

• The returned value is the orient vector of posn.

• The orient vector is the positive y-direction in the tool coordinate frame.

Example: The following example initially moves the TCP to the POSITION start_pos . The
VECTOR pos_vector is then set to the value of the orient vector for start_pos. The MOVE ABOUT
statement moves the TCP about pos_vector by 45°.

ORIENT Built-In Function
MOVE TO start_pos

pos_vector = ORIENT (start_pos)
MOVE ABOUT pos_vector BY 45

A.16 - P - KAREL LANGUAGE DESCRIPTION

A.16.1 PATH Data Type

Purpose: Defines a variable or routine parameter as PATH data type

Syntax : PATH

Details:

• A PATH is a varying length list of elements called path nodes, numbered from 1 to the number of
nodes in the PATH.

• No valid operators are defined for use with PATH variables.

• A PATH variable is indexed (or subscripted) as if it were an ARRAY variable. For example,
tool_track[1] refers to the first node of a PATH called tool_track .

• An uninitialized PATH has a length of zero.

• PATH variables cannot be declared local to routines and cannot be returned from functions.

• Only PATH expressions can be assigned to PATH variables or passed as arguments to PATH
parameters.

• A PATH variable can specify a data structure constituting the data for each path node.

• A PATH variable can specify a data structure constituting the path header. This can be used to
specify the UFRAME and/or UTOOL to be used with recording or moving along the path. It
can also specify an axis group whose current position defines a table-top coordinate frame with
respect to which the robot data is recorded and moved.

A�242

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• A PATH can be declared with either, neither, or both of the following clauses following the
word PATH:

� NODEDATA = node_struct_name, specifying the data structure constituting a path node.

� PATHHEADER = header_struct_name, specifying the structure constituting the path header.

If both fields are present, they can appear in either order and are separated by a comma and optionally
a new line.

• If NODEDATA is not specified, it defaults to the STD_PTH_NODE structure described in
Appendix A.

• If PATHHEADER is not specified, there is no (user-accessible) path header.

• An element of the PATHHEADER structure can be referenced with the syntax
path_var_name.header_field_name.

• An element of a NODEDATA structure can be referenced with the syntax
path_var_name[node_no].node_field_name.

• The path header structure can be copied from one path to another with the path_var1 = path_var2
statement.

• The path node structure can be copied from one node to another with the path_var[2] =
path_var[1] statement.

• A path can be passed as an argument to a routine as long as the PATHHEADER and NODEDATA
types match. A path that is passed as an argument to a built-in routine can be of any type.

• A path node can be passed as an argument to a routine as long as the routine parameter is the
same type as the NODEDATA structure.

• If the data structure specified for NODEDATA in a path includes more than one position data
type for the same group, only the first for that group will be used in move statements specifying
the path.

• PATHs provide the ability to specify motion groups to be used for local condition handlers.

• A path can be declared with a NODEDATA structure having no position type elements. This can
be a useful way of maintaining a list structure. Such a path can not be used in a MOVE statement.

See Also: APPEND_NODE, DELETE_NODE, INSERT_NODE Built-In Procedures, PATH_LEN,
NODE_SIZE Built-In Functions

Example: The following example shows different declarations of PATH variables.

PATH Data Type
TYPE

node_struct = STRUCTURE
node_posn: XYZWPR IN GROUP[1]
node_data: GROUP_ASSOC IN GROUP[1]
aux_posn: JOINTPOS IN GROUP[2]
common_data: COMMON_ASSOC

A�243

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

weld_time: INTEGER
weld_current: INTEGER

ENDSTRUCTURE

std_pth_node = STRUCTURE -- This type is predefined
node_pos: POSITION IN GROUP[1]
group_data: GROUP_ASSOC IN GROUP[1]
common_data: COMMON_ASSOC

ENDSTRUCTURE

hdr_struct = STRUCTURE
uframe1: POSITION
utool: POSITION
speed: REAL

ENDSTRUCTURE

VAR
path_1a: PATH PATHHEADER = hdr_struct, NODEDATA = node_struct
path_1b: PATH NODEDATA = node_struct, PATHHEADER = hdr_struct
path_2: PATH NODEDATA = node_struct -- no header
path_3: PATH -- equivalent to PATH NODEDATA = std_pth_node
path_4: PATH PATHHEADER = hdr_struct -- std_pth_node

The following example shows how an element of a NODEDATA structure can be referenced.

PATH Data Type
-- Using declaration for path_1a:

-- Using NODEDATA fields:

path_1a[1].node_posn = CURPOS(0, 0)
cnt_dn_time = path_1a[node_no].weld_time
path_1a[1].node_data.SEGRELSPEED = new_value
path_1a[1].common_data.SEGTERMTYPE = new_value

-- Using PATHHEADER fields:

path_1a.utool = tool_1
WITH $UFRAME = path_1a.uframe, $SPEED = path_1a.speed
MOVE ALONG path_1a

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

A�244

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.16.2 PATH_LEN Built-In Function

Purpose: Returns the number of nodes in the PATH argument

Syntax : PATH_LEN(path_nam)

Function Return Type : INTEGER

Input/Output Parameters :

[in] path_nam : PATH

%ENVIRONMENT Group :PBCORE

Details:

• The returned value corresponds to the number of nodes in the PATH variable argument.

• Calling PATH_LEN with an uninitialized PATH returns a value of zero.

See Also: COPY_PATH Built-in

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.16.3 PAUSE Action

Purpose: Suspends execution of a running task

Syntax : PAUSE <PROGRAM[n]>

Details:

• The PAUSE action pauses task execution in the following manner:

� Any motion already initiated continues until completed.

� Files are left open.

� All connected timers continue being incremented.

� All PULSE statements in execution continue execution.

A�245

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

� Sensing of conditions specified in condition handlers continues.

� Any Actions, except routine call actions, are completed. Routine call actions are performed
when the program is resumed.

• The PAUSE action can be followed by the clause PROGRAM[n], where n is the task number to
be paused.

• Use GET_TSK_INFO to find a task number.

See Also: UNPAUSE Action

A.16.4 PAUSE Condition

Purpose: Monitors the pausing of program execution

Syntax : PAUSE < PROGRAM [n] >

Details:

• The PAUSE condition is satisfied when a program is paused, for example, by an error, a PAUSE
Statement, or the PAUSE Action.

• If one of the actions corresponding to a PAUSE condition is a routine call, it is necessary to
specify a NOPAUSE action to allow execution of the routine.

Also, the routine being called needs to include a PAUSE statement so the system can handle
completely the cause of the original pause.

• The PAUSE condition can be followed by the clause PROGRAM[n], where n is the task number
to be paused.

• Use GET_TSK_INFO to find a task number.

Example: The following example scans for the PAUSE condition in a global condition handler. If
this condition is satisfied, DOUT[1] will be turned on. The CONTINUE action continues program
execution; ENABLE reenables the condition handler.

PAUSE Condition
CONDITION[1]:

WHEN PAUSE DO
DOUT[1] = TRUE
CONTINUE
ENABLE CONDITION[1]

ENDCONDITION

A�246

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.16.5 PAUSE Statement

Purpose: Suspends execution of a KAREL program

Syntax : PAUSE < PROGRAM [n] >

Details:

• The PAUSE statement pauses program execution in the following manner:

� Any motion already initiated continues until completed.

� Files are left open.

� All connected timers continue being incremented.

� All PULSE statements in execution continue execution.

� Sensing of conditions specified in condition handlers continues.

� Any actions, except routine call actions, are completed. Routine call actions are performed
when the program is resumed.

• The PAUSE statement can be followed by the clause PROGRAM[n], where n is the task number
to be paused.

• Use GET_TSK_INFO to find a task number.

See Also: Appendix E, ��Syntax Diagrams,�� for more syntax information

Example: If DIN[1] is TRUE, the following example pauses the KAREL program using the PAUSE
statement. The message, ��Program is paused. Press RESUME function key to continue�� will
be displayed on the CRT/KB screen.

PAUSE Statement
PROGRAM p_pause

BEGIN
IF DIN[1] THEN

WRITE (’Program is Paused. ’)
WRITE (’Press RESUME function key to continue’, CR)
PAUSE

ENDIF
END p_pause

A�247

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.16.6 PAUSE_TASK Built-In Procedure

Purpose: Pauses the specified executing task

Syntax : PAUSE_TASK(task_name, force_sw, stop_mtn_sw, status)

Input/Output Parameters:

[in] task_name :STRING

[in] force_sw :BOOLEAN

[in] stop_mtn_sw :BOOLEAN

[out] status :INTEGER

%ENVIRONMENT Group :MULTI

Details:

• task_name is the name of the task to be paused. If task name is �*ALL*�, all executing tasks are
paused except the tasks that have the ��ignore pause request�� attribute set.

• force_sw specifies whether a task should be paused even if the task has the ��ignore pause
request�� attribute set. This parameter is ignored if task_name is �*ALL*�.

• stop_mtn_sw specifies whether all motion groups belonging to the specified task are stopped.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: RUN_TASK, CONT_TASK, ABORT_TASK Built-In Procedures, Chapter 15
MULTI-TASKING

Example: The following example pauses the user-specified task and stops any motion. Refer to
Chapter 15 MULTI-TASKING , for more examples.

PAUSE_TASK Built-In Procedure
PROGRAM pause_ex

%ENVIRONMENT MULTI

VAR
task_str: STRING[12]
status : INTEGER

BEGIN

A�248

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

WRITE(’Enter task name to pause:’)
READ(task_str)
PAUSE_TASK(task_str, TRUE, TRUE, status)

END pause_ex

A.16.7 PEND_SEMA Built-In Procedure

Purpose: Suspends execution of the task until either the value of the semaphore is greater than zero
or max_time expires

Syntax : PEND_SEMA(semaphore_no, max_time, time_out)

Input/Output Parameters:

[in] semaphore_no :INTEGER

[in] max_time :INTEGER

[out] time_out :BOOLEAN

%ENVIRONMENT Group :MULTI

Details:

• PEND_SEMA decrements the value of the semaphore.

• semaphore_no specifies the semaphore number to use.

• semaphore_no must be in the range of 1 to the number of semaphores defined on the controller.

• max_time specifies the expiration time, in milliseconds. A max_time value of -1 indicates to
wait forever, if necessary.

• On continuation, time_out is set TRUE if max_time expired without the semaphore becoming
nonzero, otherwise it is set FALSE.

See Also: POST_SEMA, CLEAR_SEMA Built-In Procedures, SEMA_COUNT Built-In Function,
Chapter 15 MULTI-TASKING

Example: See examples in Chapter 15 MULTI-TASKING

A.16.8 PIPE_CONFIG Built-In Procedure

Purpose: Configure a pipe for special use.

Syntax : pipe_config(pipe_name, cmos_flag, n_sectors, record_size, form_dict, form_ele, status)

A�249

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Input/Output Parameters :

[in] pipe_name :STRING

[in] cmos_flag :BOOLEAN

[in] n_sectors :INTEGER

[in] record_size :INTEGER

[in] form_dict :STRING

[in] form_ele :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :FLBT

Details:

• pipe_name is the name of the pipe file. If the file does not exist it will be created with this
operation.

• CMOS_flag if set to TRUE will put the pipe data in CMOS. By default pipe data is in DRAM.

• n_sectors number of 1024 byte sectors to allocate to the pipe. The default is 8.

• record_size the size of a binary record in a pipe. If set to 0 the pipe is treated as ASCII. If a pipe
is binary and will be printed as a formatted data then this must be set to the record length.

• form_dict is the name of the dictionary containing formatting information.

• form_ele is the element number in form_dict containing the formatting information.

• status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.

See Also: For further information see "PIP: Device" in Section 9.2.3 .

A.16.9 POP_KEY_RD Built-In Procedure

Purpose: Resumes key input from a keyboard device

Syntax : POP_KEY_RD(key_dev_name, pop_index, status)

Input/Output Parameters:

[in] key_dev_name :STRING

[in] pop_index :INTEGER

A�250

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Resumes all suspended read requests on the specified keyboard device.

• If there were no read requests active when suspended, this operation will not resume any inputs.
This is not an error.

• key_dev_name must be one of the keyboard devices already defined:

�TPKB� :Teach Pendant Keyboard Device

�CRKB� :CRT Keyboard Device

• pop_id is returned from PUSH_KEY_RD and should be used to re-activate the read requests.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: PUSH_KEY_RD, READ_KB Built-in Procedures

Example: Refer to the example for the READ_KB Built-In Routine.

A.16.10 Port_Id Action

Purpose: Sets the value of a port array element to the result of an expression

Syntax : port_id[n] = expression

where:

port_id :an output port array

n :an INTEGER

expression :a variable, constant, or EVAL clause

Details:

• The value of expression is assigned to the port array element referenced by n .

• The port array must be an output port array that can be written to by a KAREL program. Refer to
Chapter 2, ��Language Elements.��

• expression can be a user-defined, static variable, a system variable that can be read by a KAREL
program, any constant, or an EVAL clause.

A�251

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• If expression is a variable, the value used is the current value of the variable at the time the action
is taken, not when the condition handler is defined.

• If expression is an EVAL clause, it is evaluated when the condition handler is defined and that
value is assigned when the action is taken.

• The expression must be of the same type as port_id .

• You cannot assign a port array element to a port array element directly.

• If the expression is a variable that is uninitialized when the condition handler is enabled, the
program will be aborted with an error.

See Also: Chapter 6 CONDITION HANDLERS , Chapter 7 FILE INPUT/OUTPUT OPERATIONS ,
Relational Conditions, Appendix A, ��KAREL Language Alphabetical Description��

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.16.11 Port_Id Condition

Purpose: Monitors a digital port signal

Syntax : <NOT> port_id[n] < + | - >

where:

port_id :a port array

n :an INTEGER

Details:

• n specifies the port array signal to be monitored.

• port_id must be one of the predefined BOOLEAN port array identifiers with read access. Refer to
Chapter 2, ��Language Elements.��

• For event conditions, only the + or - alternatives are used.

• For state conditions, only the NOT alternative is used.

See Also: Chapter 6 CONDITION HANDLERS , Chapter 7 FILE INPUT/OUTPUT OPERATIONS ,
Relational Conditions, Appendix A, ��KAREL Language Alphabetical Description��

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A�252

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.16.12 POS Built-In Function

Purpose: Returns an XYZWPR composed of the specified location arguments (x,y,z), orientation
arguments (w,p,r), and configuration argument (c)

Syntax : POS(x, y, z, w, p, r, c)

Function Return Type : XYZWPR

Input/Output Parameters:

[in] x, y, z, w, p, and r :REAL

[in] c :CONFIG

%ENVIRONMENT Group :SYStem

Details:

• c must be a valid configuration for the robot attached to the controller. CNV_STR_CONF can be
used to convert a string to a CONFIG variable.

• x , y , and z are the Cartesian values of the location (in millimeters). Each argument must be in the
range±10000000 mm (±10 km). Otherwise, the program is paused with an error.

• w , p , and r are the yaw, pitch, and roll values of the orientation (in degrees). Each argument
must be in the range ±180 degrees. Otherwise, the program is paused with an error.

See Also: Chapter 8 MOTION

Example: The following example uses the POS Built-In to designate numerically the POSITION
next_pos and then moves the TCP to that position.

POS Built-In Function
CNV_STR_CONF(’n’, config_var, status)
next_pos = POS(100,-400.25,0.5,10,-45,30,config_var)
MOVE TO next_pos

A.16.13 POS2JOINT Built-In Function

Purpose: This routine is used to convert Cartesian positions (in_pos) to joint angles (out_jnt) by
calling the inverse kinematics routine.

Syntax : POS2JOINT (in_pos, uframe, utool, config_ref, wjnt_cfg, ext_ang, out_jnt, and status).

Input/Output Parameters:

A�253

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] ref_jnt :Jointpos

[in] in_pos :POSITION

[in] uframe :POSITION

[in] utool :POSITION

[in] config_ref :INTEGER

[in] wjnt_cfg :CONFIG

[in] ext_ang :ARRAY OF REAL

[out] out_jnt :JOINTPOS

[out] status :INTEGER

%ENVIRONMENT Group :MOTN

Details:

• The input ref_jnt are the reference joint angles that represent the robot�s position just before
moving to the current position.

• The input in_pos is the robot Cartesian position to be converted to joint angles.

• The input uframe is the user frame for the Cartesian position.

• The input utool is the corresponding tool frame.

• The input config_ref is an integer representing the type of solution desired. The values listed
below are valid. Also, the pre-defined constants in the parentheses can be used and the values can
be added as required. One example includes: config_ref = HALF_SOLN + CONFIG_TCP.

� 0 :(FULL_SOLN) = Default

� 1 : (HALF_SOLN) = Wrist joint (XYZ456). This does not calculate/use WPR.

� 2 :(CONFIG_TCP) = The Wrist Joint Config (up/down) is based on the fixed wrist.

� 4 :(APPROX_SOLN) = Approximate solution. Reduce calculation time for some robots.

� 8 :(NO_TURNS) = Ignore wrist turn numbers. Use the closest path for joints 4, 5 and 6
(uses ref_jnt).

� 16 :(NO_M_TURNS) = Ignore major axis (J1 only) turn number. Use the closest path.

• The input wjnt_cfg is the wrist joint configuration. This value must be input when config_ref
corresponds to HALF_SOLN.

• The input ext_ang contains the values of the joint angles for the extended axes if they exist.

• The output out_jnt are the joint angles that correspond to the Cartesian position

A�254

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• The output status explains the status of the attempted operation. If it is not equal to 0, then an
error has occurred.

A.16.14 POS_REG_TYPE Built-In Procedure

Purpose: Returns the position representation of the specified position register

Syntax : POS_REG_TYPE (register_no, group_no, posn_type, num_axes, status)

Input/Output Parameters :

[in] register : INTEGER

[in] group_no : INTEGER

[out] posn_type : INTEGER

[out] num_axes : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :REGOPE

Details:

• register_no specifies the position register.

• If group_no is omitted, the default group for the program is assumed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

• posn_type returns the position type. posn_type is defined as follows:

� 1 :POSITION

� 2 :XYZWPR

� 6 :XYZWPREXT

� 9 :JOINTPOS

• num_axes returns number of axes in the representation if the position type is a JOINTPOS. If the
position type is an XYZWPREXT, only the number of extended axes is returned by num_axes.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: GET_POS_REG, GET_JPOS_REG, SET_POS_REG, SET_JPOS_REG Built-in
Procedures

A�255

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: The following example determines the position type in the register and uses the appropriate
built-in to get data.

POS_REG_TYPE Built-In Procedure
PROGRAM get_reg_data
%NOLOCKGROUP
%ENVIRONMENT REGOPE

VAR
entry: INTEGER
group_no: INTEGER
jpos: JOINTPOS
maxpregnum: integer
num_axes: INTEGER
posn_type: INTEGER
register_no: INTEGER
status: INTEGER
xyz: XYZWPR
xyzext: XYZWPREXTBEGIN
group_no = 1

GET_VAR(entry, ’*POSREG*’ ,’$MAXPREGNUM’, maxpregnum, status)

-- Loop for each register
FOR register_no = 1 to 10 DO

-- Get the position register type
POS_REG_TYPE(register_no, group_no, posn_type, num_axes, status)

-- Get the position register
WRITE(’PR[’, register_no, ’] of type ’, posn_type, CR)
SELECT posn_type OF

CASE (2):
xyz = GET_POS_REG(register_no, status)

CASE (6):
xyzext = GET_POS_REG(register_no, status)

CASE (9):
jpos = GET_JPOS_REG(register_no, status)

ELSE:
ENDSELECT

ENDFOR
END get_reg_data

A�256

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.16.15 POSITION Data Type

Purpose: Defines a variable, function return type, or routine parameter as POSITION data type

Syntax : POSITION <IN GROUP[n]>

Details:

• A POSITION consists of a matrix defining the normal, orient, approach, and location vectors and
a component specifying a configuration string, for a total of 56 bytes.

• The configuration string indicates the joint placements and multiple turns that describe the
configuration of the robot when it is at a particular position.

• A POSITION is always referenced with respect to a specific coordinate frame.

• The POSITION data type can be used to represent a frame of reference in which case the
configuration component is ignored.

• Coordinate frame transformations can be done using the relative position operator (:).

• A POSITION can be assigned to other positional types.

• Valid POSITION operators are the

� Relative position (:) operator

� Approximately equal (>=<) operator

• A POSITION can be followed by IN GROUP[n], where n indicates the motion group with which
the data is to be used. The default is the group specified by the %DEFGROUP directive, or 1.

• Components of POSITION variables can be accessed or set as if they were defined as follows:

POSITION Data Type
POSITION = STRUCTURE

NORMAL: VECTOR -- read-only
ORIENT: VECTOR -- read-only
APPROACH: VECTOR -- read-only
LOCATION: VECTOR -- read-write
CONFIG_DATA: CONFIG -- read-write

ENDSTRUCTURE

See Also: Chapter 8 MOTION , POS, UNPOS Built-In Functions

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A�257

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.16.16 POST_ERR Built-In Procedure

Purpose: Posts the error code and reason code to the error reporting system to display and keep
history of the errors

Syntax: POST_ERR(error_code, parameter, cause_code, severity)

Input/Output Parameters:

[in] error_code :INTEGER

[in] parameter :STRING

[in] cause_code :INTEGER

[in] severity :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• error_code is the error to be posted.

• parameter will be included in error_code’s message if %s is specified in the dictionary text. If not
necessary, then enter the null string.

• cause_code is the reason for the error. 0 can be used if no cause is applicable.

• error_code and cause_code are in the following format:
ffccc (decimal)

where

ff represents the facility code of the error. specified facility.

ccc represents the error code within the

• severity is defined as follows:

0 : WARNING, no change in task execution

1 : PAUSE, all tasks and stop all motion all motion

2 : ABORT, all tasks and cancel

See Also: ERR_DATA Built-In Procedure, the appropriate application-specific FANUC Robotics
SYSTEM R-J3iB Controller Setup and Operations Manual, "Error Codes"

Example: Refer to Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL), for a
detailed program example.

A�258

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.16.17 POST_SEMA Built-In Procedure

Purpose: Add one to the value of the indicated semaphore

Syntax : POST_SEMA(semaphore_no)

Input/Output Parameters:

[in] semaphore_ no : INTEGER

%ENVIRONMENT Group : MULTI

Details:

• The semaphore indicated by semaphore_no is incremented by one.

• semaphore_no must be in the range of 1 to the number of semaphores defined on the controller.

See Also: PEND_SEMA, CLEAR_SEMA Built-In Procedures, SEMA_COUNT Built-In Function,
Chapter 15 MULTI-TASKING ,

Example: See examples in Chapter 15 MULTI-TASKING .

A.16.18 PRINT_FILE Built-In Procedure

Purpose: Prints the contents of an ASCII file to a serial printer

Syntax : PRINT_FILE(file_spec, nowait_sw, status)

Input/Output Parameters:

[in] file_spec :STRING

[in] nowait_sw :BOOLEAN

[out] status :INTEGER

%ENVIRONMENT Group : FDEV

Details:

• file_spec specifies the device, name, and type of the file to print.

• If nowait_sw is TRUE, execution of the program continues while the command is executing. If it
is FALSE, the program stops, including condition handlers, until the operation has completed.
If you have time critical condition handlers in your program, put them in another program that
executes as a separate task.

A�259

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Note nowait_sw is not available in this release and should be set to FALSE.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

A.16.19 %PRIORITY Translator Directive

Purpose: Specifies task priority

Syntax : %PRIORITY = n

Details:

• n is the priority and is defined as follows:
1 to 89 : lower than motion, higher than user interface
90 to 99 : lower than user interface

• The lower the value, the higher the task priority.

• The default priority is 50. Refer to Section 15.4, "Task Scheduling" for more information on
how the specified priority is converted into the system priority.

• The priority can be set during task execution by the SET_TSK_ATTR Built-In routine.

Example: Usually an error handling task pends on an error and when an error occurs, it processes the
error recovery as soon as possible. In this case, the error handling task might need to have a higher
priority than other tasks, so ��n�� should be less than 50.

%PRIORITY Translator Directive
%PRIORITY = 49

A.16.20 PROG_LIST Built-In Procedure

Purpose: Returns a list of program names.

Syntax : prog_list(prog_name, prog_type, n_skip, format, ary_name, n_progs <,f_index>)

Input/Output Parameters :

[in] prog_name :STRING

[in] prog_type :INTEGER

[in] n_skip :INTEGER

[in] format :INTEGER

A�260

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[out] ary_name :ARRAY of string

[out] n_progs :INTEGER

[out] status :INTEGER

[in,out] f_index :INTEGER

%ENVIRONMENT Group :BYNAM

Details:

• prog_name specifies the name of the program(s) to be returned in ary_name . prog_name may
use the wildcard (*) character, to indicate that all programs matching the prog_type should be
returned in ary_name .

• prog_type specifies the type of programs to be retrieved. The valid types are:

1 :VR - programs which contain only variables

2 :JB, PR, MR, TP3 :JB - job programs only

4 :PR - process programs only

5 :MR - macro programs only

6 :PC - KAREL programs only

7 :all programs VR, JB, PR, MR, TP, PC

8 :all programs except VR

• n_skip is used when more programs exist than the declared length of ary_name. Set n_skip to 0
the first time you use PROG_LIST. If ary_name is completely filled with program names, copy
the array to another ARRAY of STRINGS and execute PROG_LIST again with n_skip equal to
n_skip + n_progs . The call to PROG_LIST will then skip the programs found in the previous
passes and locate only the remaining programs.

• format specifies the format of the program name. The following values are valid for format :

1 :program name only, no blanks

2 :�program name program type�

total length = 15 characters

• prog_name = 12 characters followed by a space

• prog_type = 2 characters

• ary_name is an ARRAY of STRING used to store the program names.

A�261

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• n_progs is the number of variables stored in the ary_name .

• status will return zero if successful.

• f_index is an optional parameter for fast indexing. If you specify prog_name as a complex
wildcard (anything other than the straight *), then you should use this parameter. The first call to
PROG_LIST set f_index and n_skip both to zero. f_index will then be used internally to quickly
find the next prog_name. DO NOT change f_index once a listing for a particular prog_name
has begun.

See Also: VAR_LIST Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.16.21 PROGRAM Statement

Purpose: Identifies the program name in a KAREL source program

Syntax : PROGRAM prog_name

where:

prog_name : a valid KAREL identifier

Details:

• It must be the first statement (other than comments) in a program.

• The identifier used to name a program cannot be used in the program for any other purpose, such
as to identify a variable or constant.

• prog_name must also appear in the END statement that marks the end of the executable section
of the program.

• The program name can be used to call the program as a procedure routine from within a program
in the same way routine names are used to call procedure routines.

Example: Refer to Appendix B, "KAREL Example Programs," for more detailed examples of how to
use the PROGRAM Statement.

A�262

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.16.22 PULSE Action

Purpose: Pulses a digital output port for a specified number of milliseconds

Syntax : PULSE DOUT[port_no] FOR time_in_ms

where:

port_no : an INTEGER variable or literal

time_in_ms : an INTEGER

Details:

• port_no must be a valid digital output port number.

• time_in_ms specifies the duration of the pulse in milliseconds.

• If time_in_ms duration is zero, no pulse will occur. Otherwise, the period is rounded up to
the next multiple of 8 milliseconds.

• A pulse always turns on the port at the start of the pulse and turns off the port at the end of
the pulse.

• If the port is ��normally on,�� negative pulses can be accomplished by setting the port to reversed
polarity, or by executing the following sequence:
DOUT[n] = FALSE
DELAY x
DOUT[n] = TRUE

• NOWAIT is not allowed in a PULSE action.

• If the program is paused while a pulse is in progress, the pulse will end at the correct time.

• If the program is aborted while a pulse is in progress, the port stays in whatever state it was in
when the abort occurred.

• If time_in_ms is negative or greater than 86,400,000 (24 hours), the program is aborted with an
error.

See Also: Chapter 6 CONDITION HANDLERS , Chapter 7 FILE INPUT/OUTPUT OPERATIONS

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.16.23 PULSE Statement

Purpose: Pulses a digital output port for a specified number of milliseconds.

A�263

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Syntax : PULSE DOUT[port_no] FOR time_in_ms < NOWAIT >

where:

port_no : an INTEGER variable or literal

time_in_ms : an INTEGER

Details:

• port_no must be a valid digital output port number.

• time_in_ms specifies the duration of the pulse in milliseconds.

• If time_in_ms duration is zero, no pulse will occur. Otherwise, the period is rounded up to
the next multiple of 8 milliseconds.

The actual duration of the pulse will be from zero to 8 milliseconds less than the rounded value.

For example, if 100 is specified, it is rounded up to 104 (the next multiple of 8) milliseconds. The
actual duration will be from 96 to 104 milliseconds.

• A pulse always turns on the port at the start of the pulse and turns off the port at the end of
the pulse.

• If the port is ��normally on,�� negative pulses can be accomplished by setting the port to reversed
polarity, or by executing the following sequence:
DOUT[n] = FALSE
DELAY x
DOUT[n] = TRUE

• If NOWAIT is specified in a PULSE statement, the next KAREL statement will be executed
concurrently with the pulse.

• If NOWAIT is not specified in a PULSE statement, the next KAREL statement will not be
executed until the pulse is completed.

See Also: Appendix E, ��Syntax Diagrams�� for more syntax information

Example: In the following example a digital output is pulsed, followed by the pulsing of a second
digital output. Because NOWAIT is specified, DOUT[start_air] will be executed before DOUT[5] is
completed.

PULSE Statement
PULSE DOUT[5] FOR (seconds * 1000) NOWAIT
PULSE DOUT[start_air] FOR 50 NOWAIT

A�264

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.16.24 PURGE CONDITION Statement

Purpose: Deletes the definition of a condition handler from the system

Syntax : PURGE CONDITION[cond_hand_no]

where:

cond_hand_no : an INTEGER expression

Details:

• The statement has no effect if there is no condition handler defined with the specified number.

• The PURGE CONDITION Statement is used only to purge global condition handlers.

• The PURGE CONDITION Statement will purge enabled conditions.

• If a condition handler with the specified number was previously defined, it must be purged
before it is replaced with a new one.

See Also: ENABLE CONDITION StatementChapter 6 CONDITION HANDLERS , Appendix E,
��Syntax Diagrams�� for more syntax information

Example: In the following example, if the BOOLEAN variable ignore_cond is TRUE, the
global condition handler, CONDITION[1], will be purged using the PURGE statement; otherwise
CONDITION[1] is enabled.

PURGE CONDITION Statement
IF ignore_cond THEN

PURGE CONDITION[1]
ELSE

ENABLE CONDITION[1]
ENDIF

A.16.25 PURGE_DEV Built-In Procedure

Purpose: Purges the specified memory file device by freeing any used blocks that are no longer
needed

Syntax : PURGE_DEV (device, status)

Input/Output Parameters :

A�265

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] device : STRING

[out] status : INTEGER

%ENVIRONMENT Group :FDEV

Details:

• device specifies the memory file device to purge. device should be set to �FR:� for FROM disk,
�RD:� for RAM disk, or �MF:� for both disks.

• The purge operation is only necessary when the device does not have enough memory to perform
an operation. The �FR:� device will return 85001 if the FROM disk is full. The �RD:� device will
return 85020 if the RAM disk is full.

• The purge operation will erase file blocks that were previously used, but no longer needed. These
are called garbage blocks. The FROM disk may contain many garbage blocks if files are deleted
or overwritten. The RAM disk does not normally contain garbage blocks, but they can occur
when power is removed during a file copy.

• The VOL_SPACE built-in can be used to determine the number of garbage blocks on the FROM
disk. Hardware limitations may reduce the number of blocks actually freed.

• The device must be mounted and no files can be open on the device or an error will be returned.

• status explains the status of the attempted operation. If not equal to 0 then an error occurred.
85023 is returned if no errors occurred, but no blocks were purged.

Example: Return to Section B.9, "Using the File and Device Built-Ins" (FILE_EX.KL), for a more
detailed program example.

A.16.26 PUSH_KEY_RD Built-In Procedure

Purpose: Suspend key input from a keyboard device

Syntax : PUSH_KEY_RD(key_dev_name, key_mask, pop_index, status)

Input/Output Parameters:

[in] key_dev_name :STRING

[in] key_mask :INTEGER

[out] pop_index :INTEGER

A�266

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Suspends all read requests on the specified keyboard device that uses (either as accept_mask or
term_mask) any of the specified key classes.

• If there are no read requests active, a null set of inputs is recorded as suspended. This is not an
error.

• key_dev_name must be one of the keyboard devices already defined:

�TPKB� :Teach Pendant Keyboard Device

�CRKB� :CRT Keyboard Device

• key_mask is a bit-wise mask indicating the classes of characters that will be suspended. This
should be an OR of the constants defined in the include file klevkmsk.kl.

kc_display :Displayable keys

kc_func_key :Function keys

kc_keypad :Keypad and Edit keys

kc_enter_key :Enter and Return keys

kc_delete :Delete and Backspace keys

kc_lr_arw :Left and Right Arrow keys

kc_ud_arw :Up and Down Arrow keys

kc_other :Other keys (such as Prev)

• pop_id is returned and should be used in a call to POP_KEY_RD to re-activate the read requests.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: POP_KEY_RD Built-In Procedure

Example: Refer to the READ_KB Built-In Procedure for an example.

A�267

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.17 - Q - KAREL LANGUAGE DESCRIPTION

A.17.1 QUEUE_TYPE Data Type

Purpose: Defines the data type for use in QUEUE built-in routines

Syntax : queue_type = STRUCTURE

n_entries : INTEGER

sequence_no : INTEGER

head : INTEGER

tail : INTEGER

ENDSTRUCTURE

Details:

• queue_type is used to initialize and maintain queue data for the QUEUE built-in routines. Do
not change this data; it is used internally.

See Also: APPEND_QUEUE, DELETE_QUEUE, INSERT_QUEUE, COPY_QUEUE,
GET_QUEUE, INIT_QUEUE, MODIFY_QUEUE Built-In Procedures

A.18 - R - KAREL LANGUAGE DESCRIPTION

A.18.1 READ Statement

Purpose: Reads data from a serial I/O device or file

Syntax : READ < file_var > (data_item {,data_item})

where:

file_var : a FILE variable

data_item : a variable identifier and its optional format specifiers or the reserved word CR

A�268

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Details:

• If file_var is not specified in a READ statement the default TPDISPLAY is used. %CRTDEVICE
directive will change the default to INPUT.

• If file_var is specified, it must be one of the input devices (INPUT, CRTPROMPT, TPDISPLAY,
TPPROMPT) or a variable that was set in the OPEN FILE statement.

• If file_var attribute was set with the UF option, data is transmitted into the specified variables
in binary form. Otherwise, data is transmitted as ASCII text.

• data_item can be a system variable that has RW access or a user-defined variable.

• When the READ statement is executed, data is read beginning with the next nonblank input
character and ending with the last character before the next blank, end of line, or end of file
for all input types except STRING.

• If data_item is of type ARRAY, a subscript must be provided.

• If data_item is of type PATH, you can specify that the entire path be read, a specific node be read
([n]), or a range of nodes be read ([n .. m]).

• Optional format specifiers can be used to control the amount of data read for each data_item .
The effect of format specifiers depends on the data type of the item being read and on whether the
data is in text (ASCII) or binary (unformatted) form.

• The reserved word CR, which can be used as a data item, specifies that any remaining data in
the current input line is to be ignored. The next data item will be read from the start of the
next input line.

• If reading from a file and any errors occur during input, the variable being read and all subsequent
variables up to CR in the data list are set uninitialized.

• If file_var is a window device and any errors occur during input, an error message is displayed
indicating the bad data item and you are prompted to enter a replacement for the invalid data item
and to reenter all subsequent items.

• Use IO_STATUS (file_var) to determine if the read operation was successful.

Note Read CR should never be used in unformatted mode.

See Also: Chapter 7 FILE INPUT/OUTPUT OPERATIONS , for more information on the READ
format specifiers, IO_STATUS Built-In Function, Appendix E, ��Syntax Diagrams,�� for more syntax
information

Example: Refer to the following sections for detailed program examples:

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

A�269

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.18.2 READ_DICT Built-In Procedure

Purpose: Reads information from a dictionary

Syntax : READ_DICT(dict_name, element_no, ksta, first_line, last_line, status)

Input/Output Parameters:

[in] dict_name : STRING

[in] element_no : INTEGER

[out] ksta : ARRAY OF STRING

[in] first_line : INTEGER

[out] last_line : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• dict_name specifies the name of the dictionary from which to read.

• element_no specifies the element number to read. This element number is designated with
a $ in the dictionary file.

• ksta is a KAREL STRING ARRAY used to store the information being read from the dictionary
text file.

• If ksta is too small to store all the data, then the data is truncated and status is set to 33008,
"Dictionary Element Truncated."

• first_line indicates the array element of ksta , at which to begin storing the information.

• last_line returns a value indicating the last element used in the ksta array.

A�270

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• status explains the status of the attempted operation. If not equal to 0, then an error occurred
reading the element from the dictionary file.

• &new_line is the only reserved attribute code that can be read from dictionary text files using
READ_DICT. The READ_DICT Built-In ignores all other reserved attribute codes.

See Also: ADD_DICT, WRITE_DICT, REMOVE_DICT Built-In Procedures. Refer to the program
example for the DISCTRL_LIST Built-In Procedure. Chapter 10 DICTIONARIES AND FORMS

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.18.3 READ_DICT_V Built-In-Procedure

Purpose: Reads information from a dictionary with formatted variables

Syntax : READ_DICT_V(dict_name, element_no, value_array, ksta, status)

Input/Output Parameters:

[in] dict_name : STRING

[in] element_no : INTEGER

[in] value_array : ARRAY OF STRING

[out] ksta : ARRAY OF STRING

[out] status : INTEGER

%ENVIRONMENT Group :UIF

Details:

• dict_name specifies the name of the dictionary from which to read.

• element_no specifies the element number to read. This number is designated with a $ in the
dictionary file.

• value_array is an array of variable names that corresponds to each formatted data item in the
dictionary text. Each variable name can be specified as �[prog_name]var_name�.

� [prog_name] specifies the name of the program that contains the specified variable. If not
specified, then the current program being executed is used.

A�271

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

� var_name must refer to a static variable.

� var_name may contain node numbers, field names, and/or subscripts.

• ksta is a KAREL STRING ARRAY used to store the information that is being read from the
dictionary text file.

• If ksta is too small to store all the data, then the data is truncated and status is set to 33008,
"Dictionary Element Truncated."

• status explains the status of the attempted operation. If not equal to 0, then an error occurred
reading the element from the dictionary file.

• &new_line is the only reserved attribute code that can be read from dictionary text files using
READ_DICT_V. The READ_DICT_V Built-In ignores all other reserved attribute codes.

See Also: WRITE_DICT_V Built-In Procedure, Chapter 10 DICTIONARIES AND FORMS

Example: In the following example, TPTASKEG.TX contains dictionary text information which will
display a system variable. This information is the first element in the dictionary. Element numbers
start at 0. util_prog uses READ_DICT_V to read in the text and display it on the teach pendant.

READ_DICT_V Built-In Procedure
--
TPTASKEG.TX
--
$ "Maximum number of tasks = %d"
--
UTILITY PROGRAM:
--
PROGRAM util_prog

%ENVIRONMENT uif
VAR

ksta: ARRAY[1] OF STRING[40]
status: INTEGER
value_array: ARRAY[1] OF STRING[30]

BEGIN
value_array[1] = ’[*system*].$scr.$maxnumtask’
ADD_DICT(’TPTASKEG’, ’TASK’, dp_default, dp_open, status)
READ_DICT_V(’TASK’, 0, value_array, ksta, status)
WRITE(ksta[i], cr)

END util_prog

A�272

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.18.4 READ_KB Built-In Procedure

Purpose: Read from a keyboard device and wait for completion

Syntax : READ_KB(file_var, buffer, buffer_size, accept_mask, term_mask, time_out, init_data,
n_chars_got, term_char, status)

Input/Output Parameters:

[in] file_var : FILE

[out] buffer : STRING

[in] buffer_size : INTEGER

[in] accept_mask : INTEGER

[in] time_out : INTEGER

[in] term_mask : INTEGER

[in] init_data : STRING

[out] n_chars_got : INTEGER

[out] term _char : INTEGER

[out] stat us : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Causes data from specified classes of characters to be stored in a user-supplied buffer until a
termination condition is met or the buffer is full. Returns to the caller when the read is terminated.

• If you use READ_KB for the CRT/KB, you will get "raw" CRT characters returned. To get teach
pendant equivalent key codes, you must perform the following function:
tp_key = $CRT_KEY_TBL[crt_key + 1]

This mapping allows you to use common software between the CRT/KB and teach pendant
devices.

A�273

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• file_var must be open to a keyboard-device. If file_var is also associated with a window, the
characters are echoed to the window.

• The characters are stored in buffer , up to a maximum of buffer_size or the size of the string,
whichever is smaller.

• accept_mask is a bit-wise mask indicating the classes of characters that will be accepted as input.
This should be an OR of the constants defined in the include file klevkmsk.kl.

kc_display :Displayable keys

kc_func_key :Function keys

kc_keypad :Key-pad and Edit keys

kc_enter_key :Enter and Return keys

kc_delete :Delete and Backspace keys

kc_lr_arw :Left and Right Arrow keys

kc_ud_arw :Up and Down Arrow keys

kc_other :Other keys (such as Prev)

• It is reasonable for accept_mask to be zero; this means that no characters are accepted as input.
This is used when waiting for a single key that will be returned as the term_char. In this case,
buffer_size would be zero.

• If accept_mask includes displayable characters, the following characters, if accepted, have the
following meanings:

� Delete characters - If the cursor is not in the first position of the field, the character to the left
of the cursor is deleted.

� Left and right arrows - Position the cursor one character to the left or right from its present
position, assuming it is not already in the first or last position already.

� Up and down arrows - Fetch input previously entered in reads to the same file.

• term_mask is a bit-wise mask indicating conditions which will terminate the request. This should
be an OR of the constants defined in the include file klevkmsk.kl.

kc_display :Displayable keys

kc_func_key :Function keys

A�274

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

kc_keypad :Key-pad and Edit keys

kc_enter_key :Enter and Return keys

kc_delete :Delete and Backspace keys

kc_lr_arw :Left and Right Arrow keys

kc_ud_arw :Up and Down Arrow keys

kc_other :Other keys (such as Prev)

• time_out specifies the time, in milliseconds, after which the input operation will be automatically
canceled. A value of -1 implies no timeout.

• init_data_p points to a string which is displayed as the initial value of the input field. This
must not be longer than buffer_size.

• n_chars_got is set to the number of characters in the input buffer when the read is terminated.

• term_char receives a code indicating the character or other condition that terminated the form.
The codes for key terminating conditions are defined in the include file klevkeys.kl. Keys
normally returned are pre-defined constants as follows:

ky_up_arw

ky_dn_arw

ky_rt_arw

ky_lf_arw

ky_enter

ky_prev

ky_f1

ky_f2

ky_f3

ky_f4

ky_f5

A�275

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

ky_next

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: Refer to Section B.2, "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

The following example suspends any teach pendant reads, uses READ_KB to read a single key, and
then resumes any suspended reads.

READ_KB Built-In Procedure
PROGRAM readkb

%NOLOCKGROUP
%ENVIRONMENT flbt
%ENVIRONMENT uif
%INCLUDE FR:eklevkmsk

VAR
file_var: FILE
key: INTEGER
n_chars_got: INTEGER
pop_index: INTEGER
status: INTEGER
str: STRING[1]

BEGIN
-- Suspend any outstanding TP Keyboard reads
PUSH_KEY_RD(’TPKB’, 255, pop_index, status)
IF (status = 0) THEN

WRITE (CR, ’pop_index is ’, pop_index)
ELSE

WRITE (CR, ’PUSH_KEY_RD status is ’, status)
ENDIF

-- Open a file to TP Keyboard with PASALL and FIELD attributes
-- and NOECHO
SET_FILE_ATR(file_var, ATR_PASSALL)
SET_FILE_ATR(file_var, ATR_FIELD)
OPEN FILE file_var (’RW’, ’KB:TPKB’)

-- Read a single key from the TP Keyboard

A�276

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

READ_KB(file_var, str, 1, 0, kc_display+kc_func_key+kc_keypad+
kc_enter_key+kc_lr_arw+kc_ud_arw+kc_other, 0, ’’,
n_chars_got, key, status)

IF (status = 0) THEN
WRITE (CR, ’key is ’, key, ’, n_chars_got = ’, n_chars_got)

ELSE
WRITE (CR, ’READ_KB status is ’, status)

ENDIF

CLOSE FILE file_var

-- Resume any outstanding TP Keyboard reads
POP_KEY_RD(’TPKB’, pop_index, status)
IF (status <> 0) THEN

WRITE (CR, ’POP_KEY_RD status is ’, status)
ENDIF

END readkb

A.18.5 REAL Data Type

Purpose: Defines a variable, function return type, or routine parameter as a REAL data type with a
numeric value that includes a decimal point and a fractional part, or numbers expressed in scientific
notation

Syntax : REAL

Details:

• REAL variables and expressions can have values in the range of -3.4028236E+38 through
-1.175494E-38, 0.0, and from +1.175494E-38 through +3.4028236E+38, with approximately
seven decimal digits of significance. Otherwise, the program will be aborted with the ��Real
overflow�� error.

• The decimal point is mandatory when defining a REAL constant or literal (except when using
scientific notation). The decimal point is not mandatory when defining a REAL variable as
long as it was declared as REAL.

• Scientific notation is allowed and governed by the following rules:

� The decimal point is shifted to the left so that only one digit remains in the INTEGER part.

� The fractional part is followed by the letter E (upper or lower case) and ±an INTEGER.
This part specifies the magnitude of the REAL number. For example, 123.5 is expressed as
1.235E2.

� The fractional part and the decimal point can be omitted. For example, 100.0 can be
expressed as 1.000E2, as 1.E2, or 1E2.

A�277

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• All REAL variables with magnitudes between -1.175494E- 38 and +1.175494E-38 are treated
as 0.0.

• Only REAL or INTEGER expressions can be assigned to REAL variables, returned from REAL
function routines, or passed as arguments to REAL parameters.

• If an INTEGER expression is used in any of these instances, it is treated as a REAL value. If
an INTEGER variable is used as an argument to a REAL parameter, it is always passed by
value, not by reference.

• Valid REAL operators are (refer to Table A�18):

� Arithmetic operators (+, +, *, /)

� Relational operators (>, >=, =, < >, <, <=)

Table A�18. Valid and Invalid REAL operators

VALID INVALID REASON

1.5 15 Decimal point is required (15 is an INTEGER not a REAL)

1. . Must include an INTEGER or a fractional part

+2500.450 +2,500.450 Commas not allowed

1.25E-4 1.25E -4 Spaces not allowed

Example: Refer to the following sections for detailed program examples:

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.18.6 Relational Condition

Purpose: Used to test the relationship between two operands

Syntax : variable <[subscript]> rel_op expression

A�278

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

where:

variable : a static INTEGER or REAL variable or a BOOLEAN port array element

subscript : an INTEGER expression (only used with port arrays)

rel_op : a relational operator

expression : a static variable, constant, or EVAL clause

Details:

• Relational conditions are state conditions, meaning the relationship is tested during every scan.

• The following relational operators can be used:

= :equal

<> :not equal

< :less than

=< :less than or equal

> :greater than

>= :greater than or equal

• Both operands must be of the same data type and can only be of type INTEGER, REAL, or
BOOLEAN. INTEGER values can be used where REAL values are required, and will be treated
as REAL values.

• variable can be any of the port array signals, a user-defined static variable, or a system variable
that can be read by a KAREL program.

• expression can be a user-defined static variable, a system variable that can be read by a KAREL
program, any constant, or an EVAL clause.

• Variables used in relational conditions must be initialized before the condition handler is enabled.

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.18.7 RELAX HAND Statement

Purpose: Turns off open signal for a tool controlled by one signal or turns off both open and close
signals for a tool controlled by a pair of signals.

Syntax : RELAX HAND hand_num

A�279

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

where:

hand_num : an INTEGER expression

Details:

• The actual effect of the statement depends on how the HAND signals are set up. Refer to Chapter
13, ��Input/Output System.��

• hand_num must be a value in the range 1-2. Otherwise, the program is aborted with an error.

• The statement has no effect if the value of hand_num is in range but the hand is not connected.

• If the value of hand_num is in range but the HAND signal represented by that value has not been
assigned, the program is aborted with an error.

See Also: Chapter 13, ��Input/Output System,�� Appendix D, ��Syntax Diagrams,�� for more syntax
information

Example: In the following example, the robot hand, specified by gripper , is relaxed using the
RELAX HAND statement. The robot then moves to the POSITION pstart before closing the hand.

RELAX HAND Statement
PROGRAM p_release
%NOPAUSE=TPENABLE
%ENVIRONMENT uif
BEGIN
RELAX HAND gripper
MOVE TO pstart
CLOSE HAND gripper

END p_release

A.18.8 RELEASE Statement

Purpose: Releases all motion control of the robot arm and auxiliary or extended axes from the KAREL
program so that they can be controlled by the teach pendant while a KAREL program is running

Syntax : RELEASE

Details:

• Motion stopped prior to execution of the RELEASE statement can only be resumed after the
execution of the next ATTACH statement.

• If motion is initiated from the program while in a released state, the program is aborted with the
following error, ��MCTRL Denied because Released.��

• If RELEASE is executed while motion is in progress or in a HOLD condition, the program is
aborted with the following error, "Detach request failed."

A�280

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• All motion control from all KAREL tasks will be released.

See Also: Appendix E, ��Syntax Diagrams,�� for more syntax information

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.18.9 REMOVE_DICT Built-In Procedure

Purpose: Removes the specified dictionary from the specified language or from all existing languages

Syntax : REMOVE_DICT(dict_name, lang_name, status)

Input/Output Parameters:

[in] dict_name : STRING

[in] lang_name : STRING

[out] status : INTEGER

%ENVIRONMENT Group :UIF

Details:

• dict_name specifies the name of the dictionary to remove.

• lang_name specifies which language the dictionary should be removed from. One of the
following pre-defined constants should be used:

dp_default

dp_english

dp_japanese

dp_french

dp_german

dp_spanish

If lang_name is ��, it will be removed from all languages in which it exists.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred
removing the dictionary file.

See Also: ADD_DICT Built-In Procedure, Chapter 10 DICTIONARIES AND FORMS

A�281

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.18.10 RENAME_FILE Built-In Procedure

Purpose: Renames the specified file name

Syntax : RENAME_FILE(old_file, new_file, nowait_sw, status)

Input/Output Parameters:

[in] old_file : STRING

[in] new_file : STRING

[in] nowait_sw : BOOLEAN

[out] status : INTEGER

%ENVIRONMENT Group :FDEV

Details:

• old_file specifies the device, name, and type of the file to rename.

• new_file specifies the name and type of the file to rename to.

• If nowait_sw is TRUE, execution of the program continues while the command is executing. If it
is FALSE, the program stops, including condition handlers, until the operation has completed.
If you have time critical condition handlers in your program, put them in another program that
executes as a separate task.

Note nowait_sw is not available in this release and should be set to FALSE.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: COPY_FILE, DELETE_FILE Built-In Procedures

A.18.11 RENAME_VAR Built-In Procedure

Purpose: Renames a specified variable in a specified program to a new variable name

Syntax : RENAME_VAR(prog_nam, old_nam, new_nam, status)

Input/Output Parameters:

A�282

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] prog_nam : STRING

[in] old_nam : STRING

[in] new_nam : STRING

[out] status : INTEGER

%ENVIRONMENT Group :MEMO

Details:

• prog_nam is the name of the program that contains the variable to be renamed.

• old_nam is the current name of the variable.

• new_nam is the new name of the variable.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CREATE_VAR, SET_VAR Built-In Procedures

A.18.12 RENAME_VARS Built-In Procedure

Purpose: Renames all of the variables in a specified program to a new program name

Syntax : RENAME_VARS(old_nam, new_nam, status)

Input/Output Parameters:

[in] old_nam : STRING

[in] new_nam : STRING

[out] status : INTEGER

%ENVIRONMENT Group :MEMO

Details:

• old_nam is the current name of the program.

• new_nam is the new name of the program.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CREATE_VAR, RENAME_VARS Built-in Procedures

A�283

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.18.13 REPEAT ... UNTIL Statement

Purpose: Repeats statement(s) until a BOOLEAN expression evaluates to TRUE

Syntax : REPEAT

{ statement }

UNTIL boolean_exp

where:

statement : a valid KAREL executable statement

boolean_exp : a BOOLEAN expression

Details:

• boolean_exp is evaluated after execution of the statements in the body of the REPEAT loop to
determine if the statements should be executed again.

• statement continues to be executed and the boolean_exp is evaluated until it equals TRUE.

• statement will always be executed at least once.

Caution

Make sure your REPEAT statement contains a boolean flag that is modified
by some condition, and an UNTIL statement that terminates the loop. If it
does not, your program could loop infinitely.

See Also: Appendix E , ��Syntax Diagrams,�� for more syntax information

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL)

Section B.11, "Manipulating Values of Dynamically Displayed Variables" (CHG_DATA.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A�284

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.18.14 RESET Built-In Procedure

Purpose: Resets the controller

Syntax : RESET(successful)

Input/Output Parameters:

[out] successful : BOOLEAN

%ENVIRONMENT Group :MOTN

Details:

• successful will be TRUE even if conditions exist which prevent resetting the controller.

• To determine whether the reset operation was successful, delay 1 second and check OPOUT[3]
(FAULT LED). If this is FALSE, the reset operation was successful.

• The statement following the RESET Built-In is not executed until the reset fails or has completed.
The status display on the CRT or teach pendant will indicate PAUSED during the reset.

• The controller appears to be in a PAUSED state while a reset is in progress but, during this time,
PAUSE condition handlers will not be triggered.

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.18.15 RESUME Action

Purpose: Restarts the last stopped motion issued by the task

Syntax : RESUME <GROUP[n{,n}]>

Details:

• A motion set is a group of motions issued but not yet terminated when a STOP statement
or action is issued.

• If there are no stopped motion sets, no motion will result from the RESUME.

• If more than one motion set has been stopped, RESUME restarts the most recently stopped,
unresumed motion set. Subsequent RESUMEs will start the others in last-in-first-out sequence.

• The motions contained in a stopped motion set are resumed in the same order in which they
were originally issued.

• If a motion is in progress when the RESUME action is issued, any resumed motion(s) occur
after the current motion is completed.

A�285

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• If the group clause is not present, all groups for which the task has control (when the condition is
defined) will be resumed.

• If the motion that is stopped, resumed, canceled, or held is part of a SIMULTANEOUS or
COORDINATED motion with other groups, the motions for all groups are stopped, resumed,
canceled, or held.

• Motion cannot be resumed for a different task.

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.18.16 RESUME Statement

Purpose: Restarts the last stopped motion issued by the task

Syntax : RESUME <GROUP[n{,n}]>

• A motion set is a group of motions issued but not yet terminated when a STOP statement
or action is issued.

• If there are no stopped motion sets, no motion will result from the RESUME.

• If more than one motion set has been stopped, RESUME restarts the most recently stopped,
unresumed motion set. Subsequent RESUMEs will start the others in last-in-first-out sequence.

• Those motions in a stopped motion set are resumed in the same order in which they were
originally issued.

• If a motion is in progress when the RESUME statement is issued, any resumed motion(s) occur
after the current motion is completed.

• If the group clause is not present, all groups for which the task has control will be resumed.

• If the motion that is stopped, resumed, canceled, or held is part of a SIMULTANEOUS or
COORDINATED motion with other groups, the motions for all groups are stopped, resumed,
canceled, or held.

• Motion cannot be resumed for a different task.

See Also: Appendix E, ��Syntax Diagrams�� for more syntax information

Example: In the following example, motion is stopped if DIN[1] is ON. It is resumed after F1
is pressed.

RESUME Statement
MOVE ALONG some_path NOWAIT
IF DIN[1] THEN

WRITE(’ Motion stopped’)
STOP
WRITE(CR, ’Motion and the program will resume’)

A�286

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

WRITE(CR, ’ when F1 of teach pendant is pressed’)
WAIT FOR TPIN[129]
RESUME

ENDIF

A.18.17 RETURN Statement

Purpose: Returns control from a routine/program to the calling routine/program, optionally returning
a result

Syntax : RETURN < (value) >

Details:

• value is required when returning from functions, but is not permitted when returning from
procedures. The data type of value must be the same as the type used in the function declaration.

• If a main program executes a RETURN statement, execution is terminated and cannot be
resumed. All motions in progress will be completed normally.

• If no RETURN is specified, the END statement serves as the return.

• If a function routine returns with the END statement instead of a RETURN statement, the
program is aborted with the 12321 error, ��END STMT of a func rtn.��

See Also: Appendix E , ��Syntax Diagrams,�� for more syntax information

Example: Refer to the following sections for detailed program examples:

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.18.18 ROUND Built-In Function

Purpose: Returns the INTEGER value closest to the specified REAL argument

Syntax : ROUND(x)

Function Return Type :INTEGER

Input/Output Parameters:

[in] x :REAL

%ENVIRONMENT Group :SYStem

A�287

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Details:

• The returned value is the INTEGER value closest to the REAL value x, as demonstrated by
the following rules:

� If x >= 0, let n be a positive INTEGER such that n <= x <= n + 1

� If x >= n + 0.5, then n + 1 is returned; otherwise, n is returned.

� If x <= 0, let n be a negative INTEGER such that n >= x >= n - 1

� If x <= n - 0.5, then n - 1 is returned; otherwise, n is returned.

• x must be in the range of -2147483648 to +2147483646. Otherwise, the program will be aborted
with an error.

See Also: TRUNC Built-In Function

Example: Refer to Section B.7, "Listing Files and Programs and Manipulating Strings"
(LIST_.EX.KL), for a detailed program example.

A.18.19 ROUTINE Statement

Purpose: Specifies a routine name, with parameters and types, and a returned value data type for
function routines

Syntax : ROUTINE name < param_list > <: return_type >

where:

name : a valid KAREL identifier

param_list : described below

return_type : any data type that can be returned by a function, that is, any type except FILE, PATH,
and vision types

Details:

• name specifies the routine name.

• param_list is of the form (name_group { ; name_group })

� name_group is of the form param_name : param_type

� param_name is a parameter which can be used within the routine body as a variable of
data type param_type.

� If a param_type or return_type is an ARRAY, the size is excluded. If the param_type is
a STRING, the string length is excluded.

A�288

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• When the routine body follows the ROUTINE statement, the names in param_list are used to
associate arguments passed in with references to parameters within the routine body.

• When a routine is from another program, the names in the parameter list are of no significance
but must be present in order to specify the number and data types of parameters.

• If the ROUTINE statement contains a return_type, the routine is a function routine and returns a
value. Otherwise, it is a procedure routine.

• The ROUTINE statement must be followed by a routine body or a FROM clause.

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.4,"Standard Routines" (ROUT_EX.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.7 , "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.18.20 RUN_TASK Built-In Procedure

Purpose: Runs the specified program as a child task

Syntax : RUN_TASK (task_name, line_number, pause_on_sft, tp_motion, lock_mask, status)

Input/Output Parameters:

[in] task_name : STRING

[in] line_number : INTEGER

[in] pause_on_sft : BOOLEAN

[in] tp_motion : BOOLEAN

A�289

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] lock_mask : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :MULTI

Details:

• task_name is the name of the task to be run. This creates a child task. The task that executes
this built-in is called the parent task.

• If the task already exists and is paused, it will be continued. A new task is not created.

• line_number specifies the line from which execution starts. Use 0 to start from the beginning of
the program. This is only valid for teach pendant programs.

• If pause_on_sft is TRUE, the task is paused when the teach pendant shift key is released.

• If tp_motion is TRUE, the task can execute motion while the teach pendant is enabled. The
TP must be enabled if tp_motion is TRUE.

• The control of the motion groups specified in lock_mask will be transferred from parent task to
child task, if tp_motion is TRUE and the teach pendant is enabled. The group numbers must be in
the range of 1 to the total number of groups defined on the controller. Bit 1 specifies group 1, bit
2 specifies group 2, and so forth.

Table A�19. Group_mask setting

GROUP DECIMAL BIT

Group 1 1 1

Group 2 2 2

Group 3 4 3

To specify multiple groups select the decimal values, shown in Table A�19, which correspond to
the desired groups. Then connect them together using the OR operator. For example to specify
groups 1 and 3, enter "1 OR 4".

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

A�290

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CONT_TASK, PAUSE_TASK, ABORT_TASK Built-In Procedures, Chapter 15
MULTI-TASKING

Example: Refer to Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL), for a
detailed program example.

A.19 - S - KAREL LANGUAGE DESCRIPTION

A.19.1 SAVE Built-In Procedure

Purpose: Saves the program or variables into the specified file

Syntax : SAVE (prog_nam, file_spec, status)

Input/Output Parameters :

[in] prog_nam :STRING

[in] file_spec :STRING

[out] status :INTEGER

%ENVIRONMENT Group :MEMO

Details:

• prog_nam specifies the program name. If program name is �*�, all programs or variables of the
specified type are saved. prog_name must be set to "*SYSTEM*" in order to save all system
variables.

• file_spec specifies the device, name, and type of the file being saved to. The type also implies
whether programs or variables are being saved.

The following types are valid:

.TP : Teach pendant program

.VR : KAREL variables

.SV : KAREL system variables

.IO : I/O configuration data

• If file_spec already exists on the specified device, then an error is returned the save does not occur.

A�291

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: CLEAR, LOAD Built-In Procedures

Example: Refer to Section B.3 ,"Saving Data to the Default Device" (SAVE_VRS.KL), for a
detailed program example.

A.19.2 SAVE_DRAM Built-In Procedure

Purpose:Saves the RAM variable content to FlashROM.

Syntax:SAVE_DRAM (prog_nam, status)

Input/Output Parameters:

[in] prog_nam: STRING

[out] status: INTEGER

%ENVIRONMENT Group: MEMO

Details:

• prog_nam specifies the program name. This operation will save the current values of any
variables in DRAM to FlashROM for the specified program. At power up these saved values will
automatically be loaded into DRAM.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

A.19.3 SELECT ... ENDSELECT Statement

Purpose: Permits execution of one out of a series of statement sequences, depending on the value
of an INTEGER expression.

Syntax: SELECT case_val OF

CASE(value{,value}):

{statement}

{ CASE(value{, value}):

{statement} }

<ELSE:

A�292

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

{ statement }>

ENDSELECT

where:

case_val : an INTEGER expression

value : an INTEGER constant or literal

statement : a valid KAREL executable statement

Details:

• case_val is compared with each of the values following the CASE in each clause. If it is equal to
any of these, the statements between the CASE and the next clause are executed.

• Up to 1000 CASE clauses can be used in a SELECT statement.

• If the same INTEGER value is listed in more than one CASE, only the statement sequence
following the first matching CASE will be executed.

• If the ELSE clause is used and the expression case_val does not match any of the values in the
CASE clauses, the statements between the keywords ELSE and ENDSELECT are executed.

• If no ELSE clause is used and the expression case_val does not match any of the values in the
CASE clauses, the program is aborted with the ��No match in CASE�� error.

See Also: Appendix E , ��Syntax Diagrams,�� for more syntax information

Example: Refer to the following sections for detailed program examples:

Section B.3, "Saving Data to the Default Device" (SAVE_VR.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

A.19.4 SELECT_TPE Built-In Procedure

Purpose: Selects the program of the specified name

Syntax : SELECT_TPE(prog_name, status)

Input/Output Parameters :

[in] prog_name :STRING

[out] status : :INTEGER

A�293

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

%ENVIRONMENT Group :TPE

Details:

• prog_name specifies the name of the program to be selected as the teach pendant default. This is
the program that is "in use" by the teach pendant. It is also the program that will be executed if the
CYCLE START button is pressed or the teach pendant FWD key is pressed.

• status explains the status of the attempted operation. If it is not equal to 0, then an error has
occurred.

See Also: OPEN_TPE Built-in Procedure

Example: Refer to Section B.14, "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A.19.5 SEMA_COUNT Built-In Function

Purpose: Returns the current value of the specified semaphore

Syntax : SEMA_COUNT (semaphore_no)

Function Return Type :INTEGER

Input/Output Parameters :

[in] semaphore_no : INTEGER

%ENVIRONMENT Group :MULTI

Details:

• The value of the semaphore indicated by semaphore_no is returned.

• This value is incremented by every POST_SEMA call and SIGNAL SEMAPHORE Action
specifying the same semaphore_no . It is decremented by every PEND_SEMA call.

• If SEMA_COUNT is greater than zero, a PEND_SEMA call will "fall through" immediately. If it
is -n (minus n), then there are n tasks pending on this semaphore.

See Also: POST_SEMA, PEND_SEMA, CLEAR_SEMA Built-In Procedures, Chapter 15
MULTI-TASKING

Example: See examples in Chapter 15 MULTI-TASKING

A�294

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.19.6 SEMAPHORE Condition

Purpose: Monitors the value of the specified semaphore

Syntax : SEMAPHORE[semaphore_no]

Details:

• semaphore_no specifies the semaphore number to use.

• semaphore_no must be in the range of 1 to the number of semaphores defined on the controller.

• When the value of the indicated semaphore is greater than zero, the condition is satisfied (TRUE).

A.19.7 SEND_DATAPC Built-In Procedure

Purpose: To send an event message and other data to the PC.

Syntax : SEND_DATAPC(event_no, dat_buffer, status)

Input/Output Parameters :

[in] event_no :INTEGER

[in] dat_buffer :ARRAY OF BYTE

[out] status :INTEGER

%ENVIRONMENT Group :PC

Details:

• event_no - a GEMM event number. Valid values are 0 to 255.

• dat_buffer - an array of up to 244 bytes. The KAREL built-ins ADD_BYNAMEPC,
ADD_INTPC, ADD_REALPC, and ADD_STRINGPC can be used to format a KAREL byte
buffer. The actual data buffer format depends on the needs of the PC. There is no error checking
of the dat_buffer format on the controller.

• status - the status of the attempted operation. If not 0, then an error occurred and the event
request was not sent to the PC.

See Also: ADD_BYNAMEPC, ADD_INTPC, ADD_REALPC, ADD_STRINGPC

Example: The following example sends event 12 to the PC with a data buffer.

SEND_DATAPC Built-In Procedure
PROGRAM TESTDATA

A�295

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

%ENVIRONMENT PC
CONST

er_abort = 2
VAR

dat_buffer: ARRAY[100] OF BYTE
index: INTEGER
status: INTEGER

BEGIN
index = 1
ADD_INTPC(dat_buffer,index,55,status)
ADD_REALPC(dat_buffer,index,123.5,status)
ADD_STRINGPC(dat_buffer,index,’YES’,status)

-- send event 12 and data buffer to PC
SEND_DATAPC(12,dat_buffer,status)
IF status<>0 THEN

POST_ERR(status,’’,0,er_abort)
ENDIF

END testdata

A.19.8 SEND_EVENTPC Built-In Procedure

Purpose: To send an event message to the PC.

Syntax : SEND_EVENTPC(event_no, status)

Input/Output Parameters :

[in] event_no :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PC

Details:

• event_no - a GEMM event number. Valid values are 0 through 255.

• status - the status of the attempted operation. If not 0, then an error occurred and the event
request was not sent to the PC.

Example: The following example sends event 12 to the PC.

SEND_EVENTPC Built-In Procedure
PROGRAM TESTEVT
%ENVIRONMENT PC

A�296

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

CONST
er_abort = 2

VAR
status: INTEGER

BEGIN

-- send event 12 to PC
SEND_EVENTPC(12,status) -- call built-in here
IF status<>0 THEN

POST_ERR(status,’’,0,er_abort)
ENDIF

END testevt

A.19.9 SET_ATTR_PRG Built-In Procedure

Purpose: Sets attribute data of the specified teach pendant or KAREL program

Syntax : SET_ATTR_PRG(program_name, attr_number, int_value, string_value, status)

Input/Output Parameters :

[in] program_name : STRING

[in] attr_number : INTEGER

[in] int_value : INTEGER

[in] string_value : STRING

[out] status : INTEGER

%ENVIRONMENT Group :TPE

Details:

• program_name specifies the program to which attribute data is set.

• attr_number is the attribute whose value is to be set. The following attributes are valid:

AT_PROG_TYPE : (#) Program type

AT_PROG_NAME : Program name (String[12])

AT_OWNER : Owner (String[8])

AT_COMMENT : Comment (String[16])

A�297

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

AT_PROG_SIZE : (#) Size of program

AT_ALLC_SIZE : (#) Size of allocated memory

AT_NUM_LINE : (#) Number of lines

AT_CRE_TIME : (#) Created (loaded) time

AT_MDFY_TIME : (#) Modified time

AT_SRC_NAME : Source file (or original file) name (String[128])

AT_SRC_VRSN : Source file version

AT_DEF_GROUP : Default motion groups (for task attribute)

AT_PROTECT : Protection code; 1 :protection OFF; 2 : protection ON

AT_STK_SIZE : Stack size (for task attribute)

AT_TASK_PRI : Task priority (for task attribute)

AT_DURATION : Time slice duration (for task attribute)

AT_BUSY_OFF : Busy lamp off (for task attribute)

AT_IGNR_ABRT : Ignore abort request (for task attribute)

AT_IGNR_PAUS : Ignore pause request (for task attribute)

AT_CONTROL : Control code (for task attribute)

(#) --- Cannot be set.

• If the attribute data is a number, it is set to int_value and string_value is ignored.

• If the attribute data is a string, it is set to string_value and int_value is ignored.

• status explains the status of the attempted operation. If it is not equal to 0, then an error has
occurred. Some of the errors which could occur are:

7073 The program specified in program_name does not exist

7093 The attribute of a program cannot be set while it is running

17033 attr_number has an illegal value or cannot be set

A�298

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.19.10 SET_CURSOR Built-In Procedure

Purpose: Set the cursor position in the window

Syntax : SET_CURSOR(file_var, row, col, status)

Input/Output Parameters :

[in] file_var : FILE

[in] row : INTEGER

[in] col : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• Sets the current cursor of the specified file that is open to a window so subsequent writes will
start in the specified position.

• file_var must be open to a window.

• A row value of 1 indicates the top row of the window. A col value of 1 indicates the left-most
column of the window.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: DEF_WINDOW Built-In Procedure

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

A.19.11 SET_EPOS_REG Built-In Procedure

Purpose: Stores an XYZWPREXT value in the specified register

Syntax : SET_EPOS_REG(register_no, posn, status <, group_no>)

Input/Output Parameters :

A�299

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] register_no : INTEGER

[in] posn : XYZWPREXT

[out] status : INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :REGOPE

Details:

• register_no specifies the position register in which to store the value.

• The position data is set in XYZWPREXT representation.

• status explains the status of the attempted operation. If it is not equal to 0, then an error occurred.

• If group_no is omitted, the default group for the program is assumed. Data for other groups
is not changed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

See Also: SET_POS_REG, SET_JPOS_REG Built-In Procedures, GET_POS_REG,
GET_JPOS_REG Built-In Functions

Example: The following example sets the extended position for the specified register.

SET_EPOS_REG Built-In Procedure
PROGRAM spe
%environment REGOPE
VAR

cur_pos: XYZWPREXT
posget: XYZWPREXT
status: INTEGER
v_mask, g_mask: INTEGER
reg_no: INTEGER

BEGIN
reg_no = 1
cur_pos = CURPOS(v_mask,g_mask)
SET_EPOS_REG(reg_no,cur_pos,status)
posget = GET_POS_REG(reg_no,status)

END spe

A�300

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.19.12 SET_EPOS_TPE Built-In Procedure

Purpose: Stores an XYZWPREXT value in the specified position in the specified teach pendant
program

Syntax: SET_EPOS_TPE (open_id, position_no, posn, status <,group_no>)

Input/Output Parameters :

[in] open_id : INTEGER

[in] position_no : INTEGER

[in] posn : XYZWPREXT

[out] status : INTEGER

[in] group_no : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id specifies the opened teach pendant program. A program must be opened before calling
this built-in.

• position_no specifies the position in the program in which to store the value.

• A motion instruction must already exist that uses the position_no or the position will not be
used by the teach pendant program.

• The position data is set in XYZWPREXT representation with no conversion.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

• If group_no is omitted, the default group for the program is assumed. Data for other groups
is not changed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

A.19.13 SET_FILE_ATR Built-In Procedure

Purpose: Sets the attributes of a file before it is opened

Syntax : SET_FILE_ATR(file_id, atr_type <,atr_value>)

Input/Output Parameters :

A�301

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] file_id : FILE

[in] atr_type : INTEGER expression

[in] atr_value : INTEGER expression

%ENVIRONMENT Group :PBCORE

Details:

• file_id is the file variable that will be used in the OPEN FILE, WRITE, READ, and/or CLOSE
FILE statements.

• atr_type specifies the attribute type to set. The predefined constants as specified in Table 7-2
should be used.

• atr_value is optional depending on the attribute type being set.

See Also: SET_PORT_ATR Built-In Function, Section 7.2.1, ��Setting File Attributes".

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

A.19.14 SET_FILE_POS Built-In Procedure

Purpose: Sets the file position for the next READ or WRITE operation to take place in the specified
file to the value of the new specified file position

Syntax : SET_FILE_POS(file_id, new_file_pos, status)

Input/Output Parameters :

[in] file_id : FILE

[in] new_file_pos : INTEGER expression

[out] status : INTEGER variable

%ENVIRONMENT Group :FLBT

Details:

• The file associated with file_id must be opened and uncompressed on either the FROM or RAM
disks. Otherwise, the program is aborted with an error.

A�302

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• new_file_pos must be in the range of -1 to the number of bytes in the file.at_eof : specifies that
the file position is to be set at the end of the file. at_sof : specifies that the file position is to be
set at the start of the file.

� Any other value causes the file to be set the specified number of bytes from the beginning of
the file.

• status is set to 0 if the new_file_pos is between -1 and the number of bytes in the file, indicating
the file position was successfully set. If not equal to 0, then an error occurred.

Note SET_FILE_POS is not supported for files on the floppy disk.

See Also: Chapter 7 FILE INPUT/OUTPUT OPERATIONS

Example: The following example opens the filepos.dt data file, sets the file position from a directory,
reads the positions from the file, and stores the positions in the PATH, my_path .

SET_FILE_POS Built-In Procedure
OPEN FILE file_id (’RW’,’filepos.dt’)

FOR i = 1 TO PATH_LEN(my_path) DO
SET_FILE_POS(file_id, pos_dir[i], status)
IF status = 0 THEN

READ file_id (temp_pos)
my_path[i].node_pos = temp_pos

ENDIF
ENDFOR

A.19.15 SET_INT_REG Built-In Procedure

Purpose: Stores an integer value in the specified register

Syntax : SET_INT_REG(register_no, int_value, status)

Input/Output Parameters :

[in] register_no : INTEGER

[in] int_value : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :REGOPE

Details:

• register_no specifies the register into which int_value will be stored.

A�303

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: GET_INT_REG, GET_REAL_REG, SET_REAL_REG Built-in Procedures

Example: Refer to Section B.5, "Using Register Built-ins" (REG_EX.KL), for a detailed program
example.

A.19.16 SET_JPOS_REG Built-In Procedure

Purpose: Stores a JOINTPOS value in the specified register

Syntax : SET_JPOS_REG(register_no, jpos, status<, group_no>)

Input/Output Parameters :

[in] register_no : INTEGER

[in] jpos : JOINTPOS

[out] status :INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :REGOPE

Details:

• register_no specifies the position register in which to store the position, jpos .

• The position data is set in JOINTPOS representation with no conversion.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

• If group_no is omitted, the default group for the program is assumed. Data for other groups
is not changed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

See Also: GET_JPOS_REG, GET_POS_REG, SET_POS_REG, POS_REG_TYPE Built-in
Procedures

Example: Refer to Section B.5,"Using Register Built-ins" (REG_EX.KL), for a detailed program
example.

A�304

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

A.19.17 SET_JPOS_TPE Built-In Procedure

Purpose: Stores a JOINTPOS value in the specified position in the specified teach pendant program

Syntax : SET_JPOS_TPE(open_id, position_no, posn, status<, group_no>)

Input/Output Parameters :

[in] open_id : INTEGER

[in] position_no : INTEGER

[in] posn : JOINTPOS

[out] status : INTEGER

[in] group_no :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id specifies the opened teach pendant program. Before calling this built-in, a program must
be opened using the OPEN_TPE Built-In, and have read/write access.

• position_no specifies the position in the program in which to store the value.

• The position data is set in JOINTPOS representation with no conversion.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

• If group_no is omitted, the default group for the program is assumed. Data for other groups
is not changed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

See Also: GET_JPOS_TPE, GET_POS_TPE, SET_POS_TPE, GET_POS_TYP Built-in Procedures

Example: Refer to Section B.14, "Applying Offsets to a Copied Teach Pendant Program"
(CPY.TP.KL), for a detailed program example.

A.19.18 SET_LANG Built-In Procedure

Purpose: Changes the current language

Syntax : SET_LANG(lang_name, status)

Input/Output Parameters :

A�305

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

[in] lang_name :STRING

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• lang_name specifies which language from which the dictionaries should be read/written. Use
one of the following pre-defined constants:

dp_default

dp_english

dp_japanese

dp_french

dp_german

dp_spanish

• The read-only system variable $LANGUAGE indicates which language is currently in use.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred
setting the language.

• The error, 33003, "No dict found for language," will be returned if no dictionaries are loaded
into the specified language. The KCL command "SHOW LANGS" can be used to view which
languages are created in the system.

See Also: Chapter 10 DICTIONARIES AND FORMS

Example: Refer to Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL), for a
detailed program example.

A.19.19 SET_PERCH Built-In Procedure

Purpose: Sets the perch position and tolerance for a group of axes

Syntax : SET_PERCH(jpos, tolerance, indx)

Input/Output Parameters :

[in] jpos : JOINTPOS

[in] tolerance : ARRAY[6] of REAL

A�306

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] indx : INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• The values of jpos are converted to radians and stored in the system variable $REFPOS1[indx
].$perch_pos.

• The tolerance array is converted to degrees and stored in the system variable $REFPOS1[indx
].$perchtol. If the tolerance array is uninitialized, an error is generated.

• indx specifies the element number to be set in the $REFPOS1 array.

• The group of axes is implied from the specified position, jpos . If JOINTPOS is not in group 1,
then the system variable $REFPOSn is used where n corresponds to the group number of jpos
and indx must beset to 1.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: The appropriate application-specific FANUC Robotics SYSTEM R-J3iB Controller Setup
and Operations Manual to setup Reference Positions

Example: In the following example, $REFPOS1[2].$perchpos and $REFPOS1[2].$perchtol are
set according to perch_pos and tolerance[i].

SET_PERCH Built-In Procedure
VAR

perch_pos: JOINTPOS IN GROUP[1]
BEGIN

FOR i = 1 to 6 DO
tolerance[i] = 0.01

ENDFOR
SET_PERCH (perch_pos, tolerance, 2)

END

A.19.20 SET_PORT_ASG Built-In Procedure

Purpose: Allows a KAREL program to assign one or more logical ports to specified physical port(s)

A�307

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Syntax : SET_PORT_ASG(log_port_type, log_port_no, rack_no, slot_no, phy_port_type,
phy_port_no, n_ports, status)

Input/Output Parameters :

[in] log_port_type : INTEGER

[in] log_port_no : INTEGER

[in] rack_no : INTEGER

[in] slot_no : INTEGER

[in] phy_port_type : INTEGER

[in] phy_port_no : INTEGER

[in] n_ports : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• log_port_type specifies the code for the type of port to be assigned. Codes are defined in
KLIOTYPS.KL.

• log_port_no specifies the number of the port to be assigned.

• rack_no is the rack containing the port module. For process I/O boards, memory-image, and
dummy ports, this is zero; for Allen-Bradley and Genius ports, this is 16.

• slot_no is the slot containing the port module. For process I/O boards, this is the sequence in
the SLC-2 chain. For memory-image and dummy ports, this is zero; for Allen-Bradley and
Genius ports, this is 1.

• phy_port_type is the type of port to be assigned to. Often this will be the same as log_port_type .
Exceptions are if log_port_type is a group type (io_gpin or io_gpout) or a port is assigned
to memory-image or dummy ports.

• phy_port_no is the number of the port to be assigned to. If log_port_type is a group, this is the
port number for the least-significant bit of the group.

• n_ports is the number of physical ports to be assigned to the logical port. If log_port_type is a
group type, n_ports indicates the number of bits in the group. When setting digital I/O, n_ports is
the number of points you are configuring. In most cases this will be 8, but may be 1 through 8.

• status is returned with zero if the parameters are valid. Otherwise, it is returned with an error
code. The assignment is invalid if the specified port(s) do not exist or if the assignment of
log_port_type to phy_port_type is not permitted.

A�308

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

For example, GINs cannot be assigned to DOUTs. Neither log_port_type nor phy_port_type can
be a system port type (SOPIN, for example).

Note The assignment does not take effect until the next power-up.

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.19.21 SET_PORT_ATR Built-In Function

Purpose: Sets the attributes of a port

Syntax : SET_PORT_ATR(port_id, atr_type, atr_value)

Function Return Type :INTEGER

Input/Output Parameters :

[in] port_id : INTEGER

[in] atr_type : INTEGER

[in] atr_value : INTEGER

%ENVIRONMENT Group :FLBT

Details:

• port_id is one of the predefined constants as follows:

port_1

port_2

port_3

port_4

• atr_type specifies the attribute type to set. One of the following predefined constants should be
used:

atr_readahd :Read ahead buffer

atr_baud :Baud rate

atr_parity :Parity

A�309

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

atr_sbits :Stop bits

atr_dbits :Data length

atr_xonoff :XON/XOFF

atr_eol :End of line

atr_modem :Modem line

• atr_value specifies the value for the attribute type. See Table A�20 on the following page which
contains acceptable pre-defined attribute types with corresponding values.

Table A�20. Attribute Values

ATR_TYPE ATR_VALUE

atr_readahd any integer, represents multiples of 128 bytes (for example: atr_value=1 means
the buffer length is 128 bytes.

atr_baud baud_9600

baud_4800

baud_2400

baud_1200

atr_parity parity_none

parity_even

parity_odd

atr_sbits sbits_1

sbits_15

sbits_2

A�310

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�20. Attribute Values (Cont�d)

ATR_TYPE ATR_VALUE

atr_dbits dbits_5

dbits_6

dbits_7

dbits_8

atr_xonoff xf_not_used

xf_used

atr_eol an ASCII code value, Refer to Appendix D, "Character Codes"

atr_modem md_not_used

md_use_dsr

md_nouse_dsr

md_use_dtr

md_nouse_dtr

md_use_rts

md_nouse_rts

• A returned integer is the status of this action to port.

See Also: SET_FILE_ATR Built-In Procedure, Section 7.2.1, ��Setting File and Port Attributes,��
for more information

Example: Refer to the example for the GET_PORT_ATR Built_In Function.

A.19.22 SET_PORT_CMT Built-In Procedure

Purpose: Allows a KAREL program to set the comment displayed on the teach pendant, for a
specified logical port

A�311

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Syntax : SET_PORT_CMT(port_type, port_no, comment_str, status)

Input/Output Parameters :

[in] port_type : INTEGER

[in] port_no : INTEGER

[in] comment_str : STRING

[out] status : INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• port_type specifies the code for the type of port whose mode is being set. Codes are defined
in KLIOTYPS.KL.

• port_no specifies the port number whose mode is being set.

• comment_str is a string whose value is the comment for the specified port. This must not be over
16 characters long.

• status is returned with zero if the parameters are valid and the specified mode can be set for the
specified port.

See Also: SET_PORT_VALUE, SET_PORT_MOD, GET_PORT_CMT, GET_PORT_VALUE,
GET_PORT_MOD Built-in Procedures

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.19.23 SET_PORT_MOD Built-In Procedure

Purpose: Allows a KAREL program to set (or reset) special port modes for a specified logical port

Syntax : SET_PORT_MOD(port_type, port_no, mode_mask, status)

Input/Output Parameters :

[in] port_type : INTEGER

[in] port_no : INTEGER

[in] mode_mask : INTEGER

[out] status : INTEGER

A�312

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

%ENVIRONMENT Group :IOSETUP

Details:

• port_type specifies the code for the type of port whose mode is being set. Codes are defined
in KLIOTYPS.KL.

• port_no specifies the port number whose mode is being set.

• mode_mask is a mask specifying which modes are turned on. The following modes are defined:

1 :reverse mode - sense of the port is reversed; if the port is set to TRUE, the physical output
is set toFALSE. If the port is set to FALSE, the physical output is set to TRUE. If a physical
input is TRUE when the port is read, FALSE is returned. If a physical input is FALSE when the
port is read, TRUE is returned.ports.

2 :complementary mode - the logical port is assigned to two physical ports whose values are
complementary. In this case, port_no must be an odd number. If port n is set to TRUE, port n is
set to TRUE, and port n + 1 is set to FALSE. If port n is set to FALSE, port n is set to FALSE
and port n + 1 is set to TRUE. This is effective only for output

Note The mode setting does not take effect until the next power-up.

• status is returned with zero if the parameters are valid and the specified mode can be set for the
specified port.

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.19.24 SET_PORT_SIM Built-In Procedure

Purpose: Sets port simulated

Syntax : SET_PORT_SIM(port_type, port_no, value, status)

Input/Output Parameters :

[in] port_type : INTEGER

[in] port_no : INTEGER

[in] value : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

A�313

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• port_type specifies the code for the type of port to simulate. Codes are defined in KLIOTYPS.KL.

• port_no specifies the number of the port to simulate.

• value specifies the initial value to set.

• status is returned with zero if the port is simulated.

See Also: SET_PORT_ASG, GET_PORT_ASG, GET_PORT_SIM Built-in Procedures

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.19.25 SET_PORT_VAL Built-In Procedure

Purpose: Allows a KAREL program to set a specified output (or simulated input) for a specified
logical port

Syntax : SET_PORT_VAL(port_type, port_no, value, status)

Input/Output Parameters :

[in] port_type : INTEGER

[in] port_no : INTEGER

[in] value : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :IOSETUP

Details:

• port_type specifies the code for the type of port whose mode is being set. Codes are defined
in KLIOTYPS.KL.

• port_no specifies the port number whose mode is being set.

• value indicates the value to be assigned to a specified port. If the port_type is BOOLEAN
(i.e. DOUT), this should be 0 = OFF, or 1 = ON. This field can be used to set input ports if
the port is simulated.

• status is returned with zero if the parameters are valid and the specified mode can be set for the
specified port.

See Also: SET_PORT_VALUE, SET_PORT_MOD, GET_PORT_CMT, GET_PORT_VALUE,
GET_PORT_MOD Built-in Procedures

A�314

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Example: The following example sets the value for a specified port.

SET_PORT_VAL Built-In Procedure
PROGRAM setvalprog
%ENVIRONMENT IOSETUP
%INCLUDE FR:\kliotyps
ROUTINE set_value(port_type: INTEGER;

port_no: INTEGER;
g_value: BOOLEAN): INTEGER

VAR
value: INTEGER
status: INTEGER

BEGIN
IF g_value THEN
value = 1

ELSE
value = 0;

ENDIF

SET_PORT_VAL (port_type, port_no, value, status)
RETURN (status)

END set_value

BEGIN
END setvalprog

A.19.26 SET_POS_REG Built-In Procedure

Purpose: Stores an XYZWPR value in the specified position register

Syntax : SET_POS_REG(register_no, posn, status<, group_no>)

Input/Output Parameters :

[in] register_no : INTEGER

[in] posn : XYZWPR

[out] status : INTEGER

[in] group_no : INTEGER

%ENVIRONMENT Group :REGOPE

Details:

A�315

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• register_no specifies the position register in which to store the value.

• The position data is set in XYZWPR representation with no conversion.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

• If group_no is omitted, the default group for the program is assumed. Data for other groups
is not changed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

Example: Refer to Section B.5,"Using Register Built-ins" (REG_EX.KL), for a detailed program
example.

A.19.27 SET_POS_TPE Built-In Procedure

Purpose: Stores an XYZWPR value in the specified position in the specified teach pendant program

Syntax : SET_POS_TPE(open_id, position_no, posn, status<, group_no>)

Input/Output Parameters :

[in] open_id : INTEGER

[in] position_no : INTEGER

[in] posn : XYZWPR

[out] status : INTEGER

[in] group_no : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id specifies the opened teach pendant program. Before calling this built-in, a program must
be opened using the OPEN_TPE Built-In, and have read/write access.

• position_no specifies the position in the program in which to store the value.

• A motion instruction must already exist that uses the position_no or the position will not be
used by the teach pendant program.

• The position data is set in XYZWPR representation with no conversion.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

A�316

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• If group_no is omitted, the default group for the program is assumed. Data for other groups
is not changed.

• If group_no is specified, it must be in the range of 1 to the total number of groups defined on
the controller.

Example: Refer to Section B.14, "Applying Offsets to a Copied Teach Pendant Program"
(CPY_TP.KL), for a detailed program example.

A.19.28 SET_PREG_CMT Built-In-Procedure

Purpose:To set the comment information of a KAREL position register based on a given register
number and a given comment.

Syntax:SET_PREG_CMT (register_no, comment_string, status)

Input/Output Parameters:

[in] register_no: INTEGER

[in] comment_string: STRING

[out] status: INTEGER

%ENVIRONMENT group: REGOPE

A.19.29 SET_REAL_REG Built-In Procedure

Purpose: Stores a REAL value in the specified register

Syntax : SET_REAL_REG(register_no, real_value, status)

Input/Output Parameters :

[in] register_no : INTEGER

[in] real_value : REAL

[out] status : INTEGER

%ENVIRONMENT Group :REGOPE

Details:

A�317

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• register_no specifies the register into which real_value will be stored.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: SET_INT_REG, GET_REAL_REG, GET_INT_REG Built-in Procedures

A.19.30 SET_REG_CMT Built-In-Procedure

Purpose:To set the comment information of a KAREL register based on a given register number
and a given comment.

Syntax:SET_REG_CMT (register_no, comment_string, status

Input/Output Parameters:

[in] register_no: INTEGER

[in] comment_string: STRING

[out] status: INTEGER

%ENVIRONMENT group REGOPE

Details:

• Register_no specifies which register to retrieve the comments from. The comment_string
represents the data which is to be used to set the comment of the given register. If the
comment_string exceeds more than 16 characters, the built-in will truncate the string.

A.19.31 SET_TIME Built-In Procedure

Purpose: Set the current time within the KAREL system

Syntax : SET_TIME(i)

Input/Output Parameters :

[in] i : INTEGER

%ENVIRONMENT Group :TIM

Details:

A�318

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• i holds the INTEGER representation of time within the KAREL system. This value is represented
in 32-bit INTEGER format as follows:

Table A�21. 32�Bit INTEGER Format of Time

31�25 24�21 20�16

year month day

15�11 10�5 4�0

hour minute second

• The contents of the individual fields are as follows:

� DATE:

Bits 15-9 � Year since 1980

Bits 8-5 � Month (1-12)

Bits 4-0 � Day of the month

� TIME:

Bits 31-25 � Number of hours (0-23)

Bits 24-21 � Number of minutes (0-59)

Bits 20-16 � Number of 2-second increments (0-29)

• This value can be determined using the GET_TIME and CNV_STR_TIME Built-In procedures.

• If i is 0, the time on the system will not be changed.

• INTEGER values can be compared to determine if one time is more recent than another.

See Also: CNV_STR_TIME, GET_TIME Built-In Procedures

Example: The following example converts the STRING variable str_time , input by the user in
��DD-MMM-YYY HH:MM:SS�� format, to the INTEGER representation of time int_time using the
CNV_STR_TIME Built-In procedure. SET_TIME is then used to set the time within the KAREL
system to the time specified by int_time.

SET_TIME Built-In Procedure
WRITE(’Enter the new time : ’)
READ(str_time)
CNV_STR_TIME(str_time,int_time)
SET_TIME(int_time)

A�319

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.19.32 SET_TPE_CMT Built-In Procedure

Purpose: Provides the ability for a KAREL program to set the comment associated with a specified
position in a teach pendant program.

Syntax : SET_TPE_CMT(open_id, pos_no, comment, status)

Input/Output Parameters :

[in] open_id :INTEGER

[in] pos_no :INTEGER

[in] comment :STRING

[out] status :INTEGER

%ENVIRONMENT Group :TPE

Details:

• open_id specifies the open_id returned from a previous call to OPEN_TPE. An open mode of
TPE_RWACC must be used in the OPEN_TPE call.

• pos_id specifies the number of the position in the teach pendant program to get a comment from.
The specified position must have been recorded.

• comment is the comment to be associated with the specified position. A zero length string can be
used to ensure that a position has no comment. If the string is over 16 characters, it is truncated
and used and a warning error is returned.

• status indicates zero if the operation was successful, otherwise an error code will be displayed.

See Also: GET_TPE_CMT and OPEN_TPE for more Built-in Procedures.

A.19.33 SET_TRNS_TPE Built-In Procedure

Purpose: Stores a POSITION value within the specified position in the specified teach pendant
program

Syntax : SET_TRNS_TPE(open_id, position_no, posn, status)

Input/Output Parameters :

A�320

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] open_id : INTEGER

[in] position_no : INTEGER

[in] posn : POSITION

[out] status : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• open_id specifies the opened teach pendant program. A program must be opened before calling
this built-in.

• position_no specifies the position in the program in which to store the value specified by posn .
Data for other groups is not changed.

• The position data is set in POSITION representation with no conversion.

• posn is the group number of position_no.

• status explains the status of the attempted operation. If not equal to 0, then an error has occurred.

A.19.34 SET_TSK_ATTR Built-In Procedure

Purpose: Set the value of the specified running task attribute

Syntax : SET_TSK_ATTR(task_name, attribute, value, status)

Input/Output Parameters :

[in] task_name : STRING

[in] attribute : INTEGER

[in] value : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• task_name is the name of the specified running task. A blank task_name will indicate the calling
task.

A�321

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• attribute is the task attribute whose value is to be set. The following attributes are valid:

TSK_PRIORITY :Priority, see %PRIORITY for value information

TSK_TIMESLIC :Time slice duration, see %TIMESLICE for value information

TSK_NOBUSY :Busy lamp off, see %NOBUSYLAMP

TSK_NOABORT :Ignore abort request

Pg_np_error :no abort on error

Pg_np_cmd :no abort on command

TSK_NOPAUSE :Ignore pause request

pg_np_error :no pause on error

pg_np_end :no pause on command when TP is enabled

pg_np_tpenb :no pause

TSK_TRACE :Trace enable

TSK_TRACELEN :Maximum number of lines to store when tracing

TSK_TPMOTION :TP motion enable, see %TPMOTION for value information

TSK_PAUSESFT :Pause on shift, reverse of %NOPAUSESHFT

• value depends on the task attribute being set.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: GET_TSK_INFO Built-in Procedure

Example: See examples in Chapter 15 MULTI-TASKING

A.19.35 SET_TSK_NAME Built-In Procedure

Purpose: Set the name of the specified task

Syntax : SET_TSK_NAME(old_name, new_name, status)

Input/Output Parameters :

A�322

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] old_name : STRING

[in] new_name : STRING

[out] status : INTEGER

%ENVIRONMENT Group :MULTI

Details:

• task_name is the name of the task of interest. A blank task_name will indicate the calling task.

• new_name will become the new task name.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: GET_ATTR_PRG Built-in Procedure

Example: See examples in Chapter 15 MULTI-TASKING

A.19.36 SET_VAR Built-In Procedure

Purpose: Allows a KAREL program to set the value of a specified variable

Syntax : SET_VAR(entry, prog_name, var_name, value, status)

Input/Output Parameters :

[in,out] entry : INTEGER

[in] prog_name : STRING

[in] var_name : STRING

[in] value : Any valid KAREL data type except PATH, VIS_PROCESS, and MODEL

[out] status : INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• entry returns the entry number in the variable data table of var_name in the device directory
where var_name is located. This variable should not be modified.

A�323

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• prog_name specifies the name of the program that contains the specified variable. If prog_name
is ��, then it defaults to the current task name being executed.

• Use prog_name of �*SYSTEM*� to set a system variable.

• var_name must refer to a static variable.

• var_name can contain node numbers, field names, and/or subscripts.

• If both var_name and value are ARRAYs, the number of elements copied will equal the size of
the smaller of the two arrays.

• If both var_name and value are STRINGs, the number of characters copied will equal the size of
the smaller of the two strings.

• If both var_name and value are STRUCTUREs of the same type, value will be an exact copy of
var_name.

• var_name will be set to value.

• If value is uninitialized, the value of var_name will be set to uninitialized and status will be set to
12311. value must be a static variable within the calling program.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Caution

Using SET_VAR to modify system variables could cause unexpected results.

See Also: CREATE_VAR, RENAME_VAR Built-In Procedures

Example: Refer to Section B.2, "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.19.37 SHORT Data Type

Purpose: Defines a variable as a SHORT data type

Syntax : SHORT

Details:

• SHORT, is defined as 2 bytes with the range of (-32768 <= n >= 32766). A SHORT variable
assigned to (32767) is considered uninitialized.

• SHORTs are allowed only within an array or within a structure.

• SHORTs can be assigned to BYTEs and INTEGERs, and BYTEs and INTEGERs can be assigned

A�324

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

to SHORTs. An assigned value outside the SHORT range is detected during execution and
causes the program to be aborted.

A.19.38 SIGNAL EVENT Action

Purpose: Signals an event that might satisfy a condition handler or release a waiting program

Syntax : SIGNAL EVENT[event_no]

where:

event_no : an INTEGER expression

Details:

• You can use the SIGNAL EVENT action to indicate a user-defined event has occurred.

• event_no occurs when signaled and is not remembered. Thus, if a WHEN clause has the event as
its only condition, the associated actions will occur.

• If other conditions are specified that are not met at the time the event is signaled, the actions are
not taken, even if the other conditions are met at another time.

• event_nomust be in the range of -32768 to 32767. Otherwise, the program is aborted with an error.

See Also: EVENT Condition

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.19.39 SIGNAL EVENT Statement

Purpose: Signals an event that might satisfy a condition handler or release a waiting program

Syntax : SIGNAL EVENT [event_no]

where:

event_no : an INTEGER

Details:

• You can use the SIGNAL EVENT statement to indicate a user-defined event has occurred.

• event_no occurs when signaled and is not remembered. Thus, if a WHEN clause has the event as
its only condition, the associated actions will occur.

A�325

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• If other conditions are specified that are not met at the time the event is signaled, the actions are
not taken, even if the other conditions are met at another time.

• event_nomust be in the range of -32768 to 32767. Otherwise, the program is aborted with an error.

See Also: Appendix E, ��Syntax Diagrams�� for more syntax information, EVENT Condition

Example: Refer to the DISABLE CONDITION Statement example program.

A.19.40 SIGNAL SEMAPHORE Action

Purpose: Adds one to the value of the indicated semaphore

Syntax : SIGNAL SEMAPHORE[semaphore_no]

where:

semaphore_no : an INTEGER expression

Details:

• The semaphore indicated by semaphore_no is incremented by one.

• semaphore_no must be in the range of 1 to the number of semaphores defined on the controller.

See Also: Section 15.8, "Task Communication" for more information and examples.

A.19.41 SIN Built-In Function

Purpose: Returns a REAL value that is the sine of the specified angle argument

Syntax : SIN(angle)

Function Return Type :REAL

Input/Output Parameters :

[in] angle : REAL

%ENVIRONMENT Group :SYSTEM

Details:

• angle specifies an angle in degrees.

A�326

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• angle must be in the range of ± 18000 degrees. Otherwise, the program will be aborted with an
error.

Example: Refer to Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL),
for a detailed program example.

A.19.42 SQRT Built-In Function

Purpose: Returns a REAL value that is the positive square root of the specified REAL argument

Syntax : SQRT(x)

Function Return Type :REAL

Input/Output Parameters :

[in] x : REAL

%ENVIRONMENT Group :SYSTEM

Details:

• x must not be negative. Otherwise, the program will be aborted with an error.

Example: The following example calculates the square root of the expression (a*a+b*b) and indicates
that this is the hypotenuse of a triangle.

SQRT Built-In Function
c = SQRT(a*a+b*b)
WRITE (’The hypotenuse of the triangle is ’,c::6::2)

A.19.43 %STACKSIZE Translator Directive

Purpose: Specifies stack size in long words.

Syntax : %STACKSIZE = n

Details:

• n is the stack size.

• The default value of n is 300 (1200 bytes).

See Also: Section 5.1.6, ��Stack Usage,�� for information on computing stack size

A�327

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.19.44 STD_PTH_NODE Data Type

Purpose: Defines a data type for use in PATHs.

Syntax : STD_PTH_NODE = STRUCTURE

node_pos : POSITION in GROUP[1]

group_data : GROUP_ASSOC in GROUP[1]

common_data : COMMON_ASSOC

ENDSTRUCTURE

Details:

• If the NODEDATA clause is omitted from the PATH declaration, then STD_PTH_NODE will
be the default.

• Each node in the PATH will be of this type.

A.19.45 STOP Action

Purpose: Stops any motion in progress, leaving it in a resumable state

Syntax : STOP <GROUP[n{,n}]>

Details:

• Any motion in progress is decelerated to a stop. The unfinished motion as well as any pending
motions are grouped together in a motion set and placed on a stack.

• More than one motion might be stacked by a single STOP action.

• If the KAREL program was waiting for the completion of the motion in progress, it will continue
to wait.

• The stacked motion set can be removed from the stack and restarted with either a RESUME
statement or action or by issuing RESUME from the operator interface (CRT/KB).

• If the group clause is not present, all groups for which the task has control (when the condition is
defined) will be stopped.

• If the motion that is stopped, resumed, canceled, or held is part of a SIMULTANEOUS or
COORDINATED motion with other groups, the motions for all groups are stopped, resumed,
canceled, or held.

• Motion cannot be stopped for a different task.

A�328

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Chapter 8 MOTION , RESUME Statement

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.19.46 STOP Statement

Purpose: Stops any motion in progress, leaving it in a resumable state

Syntax : STOP <GROUP[n{,n}]>

Details:

• Any motion in progress is decelerated to a stop. The unfinished motion as well as any pending
motions are grouped together in a motion set and placed on a stack.

• More than one motion might be stacked by a single STOP statement.

• If the KAREL program was waiting for the completion of the motion in progress, it will continue
to wait.

• The stacked motion set can be removed from the stack and restarted with either a RESUME
statement or action, or by issuing RESUME from the CRT/KB.

• If the group clause is not present, all groups for which the task has control will be stopped.

• If the motion that is stopped, resumed, canceled, or held is part of a SIMULTANEOUS or
COORDINATED motion with other groups, the motions for all groups are stopped, resumed,
canceled, or held.

• Motion cannot be stopped for a different task.

A�329

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

See Also: Chapter 8 MOTION , RESUME Action, RESUME Statement, Appendix E, ��Syntax
Diagrams,�� for more syntax information

Example: The following example stops motion if the digital input is ON.

STOP Statement
IF DIN[2] THEN

STOP
ENDIF

A.19.47 STRING Data Type

Purpose: Defines a variable or routine parameter as STRING data type

Syntax : STRING[length]

where:

length : an INTEGER constant or literal

Details:

• length , the physical length of the string, indicates the maximum number of characters for which
space is allocated for a STRING variable.

• lengthmust be in the range 1 through 128 and must be specified in a STRING variable declaration.

• A length value is not used when declaring STRING routine parameters; a STRING of any length
can be passed to a STRING parameter.

• Attempting to assign a STRING to a STRING variable that is longer than the physical length
of the variable results in the STRING value being truncated on the right to the physical length
of the STRING variable.

• Only STRING expressions can be assigned to STRING variables or passed as arguments to
STRING parameters.

• STRING values cannot be returned by functions.

A�330

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• Valid STRING operators are:

� Relational operators (>, >=, =, <>, <, and <=)

� Concatenation operator (+)

• STRING literals consist of a series of ASCII characters enclosed in single quotes (apostrophes).
Examples are given in the following table.

Table A�22. Example STRING Literals

VALID INVALID REASON

�123456� 123456 Without quotes 123456 is an INTEGER literal

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.3, "Saving Data to the Default Device" (SAVE_VR.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL)

Section B.13, "Using the DISCTRL_ALPHA Built-in" (DCALP_EX.KL)

Section B.14, "Applying Offsets to a Copied Teach Pendant Program" (CPY_TP.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.19.48 STR_LEN Built-In Function

Purpose: Returns the current length of the specified STRING argument

Syntax : STR_LEN(str)

Function Return Type :INTEGER

A�331

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Input/Output Parameters :

[in] str : STRING

%ENVIRONMENT Group :SYSTEM

Details:

• The returned value is the length of the STRING currently stored in the str argument, not the
maximum length of the STRING specified in its declaration.

Example: Refer to Section B.12, "Displaying a List from a Dictionary File" (DCLST_EX.KL) for a
detailed program example.

A.19.49 STRUCTURE Data Type

Purpose: Defines a data type as a user-defined structure

Syntax : new_type_name = STRUCTURE

field_name_1: type_name_1

field_name_2: type_name_2

...

ENDSTRUCTURE

Details:

• A user-defined structure is a data type consisting of a list of component fields, each of which can
be a standard data type or another, previously defined, user data type.

• When a program containing variables of user-defined types is loaded, the definitions of these
types is checked against a previously created definition. If this does not exist, it is created.

• The following data types are not permitted as part of a data structure:

� STRUCTURE definitions (types that are declared structures are permitted)

� PATH types

� FILE types

� Vision types

� Variable length arrays

A�332

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

� The data structure itself, or any type that includes it, either directly or indirectly

• A variable may not be defined as a structure, but as a data type previously defined as a structure

See Also: Section 2.4.2, ��User-Defined Data Structures��

Example: Refer to Section B.2, "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.19.50 SUB_STR Built-In Function

Purpose: Returns a copy of part of a specified STRING argument

Syntax : SUB_STR(src, strt, len)

Function Return Type :STRING

Input/Output Parameters :

[in] src : STRING

[in] strt : INTEGER

[in] len : INTEGER

%ENVIRONMENT Group :SYSTEM

Details:

• A substring of src is returned by the function.

• The length of substring is the number of characters, specified by len , that starts at the indexed
position specified by strt .

• strt must be positive. Otherwise, the program is aborted with an error. If strt is greater than the
length of src , then an empty string is returned.

• len must be positive. Otherwise, the program is aborted with an error. If len is greater than the
declared length of the return STRING, then the returned STRING is truncated to fit.

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.7, "Listing Files and Programs and Manipulating Strings" (LIST_EX.KL)

A�333

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Section B.9, "Using the File and Device Built-ins" (FILE_EX.KL)

A.20 - T - KAREL LANGUAGE DESCRIPTION

A.20.1 TAN Built-In Function

Purpose: Returns a REAL value that is the tangent of the specified REAL argument

Syntax : TAN(angle)

Function Return Type :REAL

Input/Output Parameters:

[in] angle : REAL

%ENVIRONMENT Group :SYSTEM

Details:

• The value of angle must be in the range of ± 18000 degrees. Otherwise, the program will be
aborted with an error.

Example: The following example uses the TAN Built-In function to specify the tangent of the
variable angle . The tangent should be equal to the SIN(angle) divided by COS(angle).

TAN Built-In Function
WRITE (’enter an angle:’)
READ (angle,CR)

ratio = SIN(angle)/COS(angle)
IF ratio = TAN(angle) THEN

WRITE (’ratio is correct’,CR)
ENDIF

A.20.2 TIME Condition

Purpose: Monitors the progress of a move to a POSITION or along a PATH

Syntax : TIME t ||BEFORE | AFTER|| NODE[n]

A�334

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

where:

t : INTEGER expression

n : INTEGER expression

Details:

• The TIME conditions can be used only in local condition handlers.

• t indicates the time interval in milliseconds BEFORE or AFTER NODE[n].

• The maximum value for t is 500.

• NODE[n] indicates the node BEFORE which or AFTER which the condition is satisfied.

• If n is a wildcard (*), any node will satisfy the BEFORE or AFTER condition.

• Node 0 indicates the start of the move.

• If the move is along a PATH or to a path node,n specifies a path node.

• If the move is to a POSITION, node 1 can be used to indicate the destination.

• If n is greater than the length of the path (or greater than 1 if the move is to a POSITION), the
condition is never satisfied.

• If n is less than zero or greater than 1000, the program is aborted with an error.

See Also: Chapter 6 CONDITION HANDLERS , Appendix E, ��Syntax Diagrams,�� for more syntax
information

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.20.3 %TIMESLICE Translator Directive

Purpose: Supports round-robin type time slicing for tasks with the same priority

Syntax : %TIMESLICE = n

Details:

• n specifies task execution time in msec for one slice. The default value is 256 msec.

• The timeslice value must be greater than 0.

• This value is the maximum duration for executing the task continuously if there are other tasks
with the same priority that are ready to run.

A�335

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• This function is effective only when more than one KAREL task with the same priority is
executing at the same time.

• The timeslice duration can be set during task execution by the SET_TSK_ATTR Built-In routine.

A.20.4 %TPMOTION Translator Directive

Purpose: Specifies that task motion is enabled when the teach pendant is on

Syntax : %TPMOTION

Details:

• This attribute can be set during task execution by the SET_TSK_ATTR Built-In routine.

A.20.5 TRANSLATE Built-In Procedure

Purpose: Translates a KAREL source file (.KL file type) into p-code (.PC file type), which can be
loaded into memory and executed.

Syntax : TRANSLATE(file_spec, listing_sw, status)

Input/Output Parameters:

[in] file_spec : STRING

[in] listing_sw : BOOLEAN

[out] status : INTEGER

%ENVIRONMENT Group :trans

Details:

• file_spec specifies the device, name and type of the file to translate. If no device is specified, the
default device will be used. The type, if specified, is ignored and .KL is used instead.

• The p-code file will be created on the default device. The default device should be set to the
ram disk.

• listing_sw specifies whether a .LS file should be created. The .LS file contains a listing of
the source lines and any errors which may have occurred. The .LS file will be created on the
default device.

• The KAREL program will wait while the TRANSLATE Built-In executes. If the KAREL

A�336

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

program is paused, translation will continue until completed. If the KAREL program is aborted,
translation will also be aborted and the .PC file will not be created.

• If the KAREL program must continue to execute during translation, use the KCL_NO_WAIT
Built-In instead.

• status explains the status of the attempted operation. If the number 0 is returned, the translation
was successful. If not, an error occurred. Some of the status codes are shown below:

0 Translation was successful

268 Translator option is not installed

35084 File cannot be opened or created.KL file cannot be found or default device is not the
RAM disk

-1 Translation was not successful (Please see .LS file for details)

Example: The following example program will create, translate, load, and run another program
called hello.

TRANSLATE Built-In Procedure
OPEN FILE util_file (’RW’, ’hello.kl’)

WRITE util_file (’PROGRAM hello’, CR)
WRITE util_file (’%NOLOCKGROUP’, CR)
WRITE util_file (’BEGIN’, CR)
WRITE util_file (’ WRITE (’’hello world’’, CR)’, CR)
WRITE util_file (’END hello’, CR)
CLOSE FILE util_file

TRANSLATE(’hello’, TRUE, status)
IF status = 0 THEN

LOAD(’hello.pc’, 0, status)
ENDIF
IF status = 0 THEN

CALL_PROG(’hello’, prog_index)
ENDIF

A.20.6 TRUNC Built-In Function

Purpose: Converts the specified REAL argument to an INTEGER value by removing the fractional
part of the REAL argument

Syntax : TRUNC(x)

Function Return Type :INTEGER

A�337

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Input/Output Parameters:

[in] x : REAL

%ENVIRONMENT Group :SYStem

Details:

• The returned value is the value of x after any fractional part has been removed. For example, if x
= 2.3, the .3 is removed and a value of 2 is returned.

• x must be in the range of -2147483648 to +2147483583. Otherwise, the program is aborted
with an error.

• ROUND and TRUNC can both be used to convert a REAL expression to an INTEGER expression.

See Also: ROUND Built-In Function

Example: The following example uses the TRUNC Built-In to determine the actual INTEGER
value of miles divided by hours to get mph.

TRUNC Built-In Function
WRITE (’enter miles driven, hours used: ’)

READ (miles,hours,CR)
mph = TRUNC(miles/hours)
WRITE (’miles per hour=’,mph::5)

A.21 - U - KAREL LANGUAGE DESCRIPTION

A.21.1 UNHOLD Action

Purpose: Releases a HOLD of motion

Syntax : UNHOLD <GROUP [n{,n}]>

Details:

• Any motion that was in progress when the last HOLD was executed is resumed.

• If motions are not held, the action has no effect.

• Held motions are canceled if a RELEASE statement is executed.

• If the group clause is not present, all groups or which the task has control (when the condition is
defined) will be resumed.

• Motion cannot be stopped for a different task.

Example: The following example moves the robot along the PATH pathvar and holds the robot

A�338

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

motion 200 milliseconds before node[3]. The global condition handler is triggered when TPIN[1] is
pressed. This condition handler then issues a UNHOLD statement to resume robot motion.

UNHOLD Action
CONDITION[1]:

WHEN TPIN[1]+ DO
UNHOLD

ENDCONDITION

ENABLE CONDITION[1]

MOVE ALONG pathvar,
WHEN TIME 200 BEFORE NODE[3] DO

HOLD
ENDMOVE

A.21.2 UNHOLD Statement

Purpose: Releases a HOLD of motion

Syntax : UNHOLD <GROUP [n{,n}]>

Details:

• Any motion that was in progress when the last HOLD was executed is resumed.

• If motions are not held, the statement has no effect.

• Held motions are canceled if a RELEASE statement is executed.

• If the group clause is not present, all groups or which the task has control (when the condition is
defined) will be resumed.

• Motion cannot be stopped for a different task.

See Also: Appendix E , ��Syntax Diagrams,�� for more syntax information

Example: The following example initiates a move to p1 and HOLDs the motion. If DIN[1] is ON,
UNHOLD allows the program to resume motion.

UNHOLD Statement
MOVE TO p1 NOWAIT
HOLD
IF DIN[1] THEN

UNHOLD
ENDIF

A�339

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.21.3 UNINIT Built-In Function

Purpose: Returns a BOOLEAN value indicating whether or not the specified argument is uninitialized

Syntax : UNINIT(variable)

Function Return Type :BOOLEAN

Input/Output Parameters :

[in] variable :any KAREL variable

%ENVIRONMENT Group :SYSTEM

Details:

• A value of TRUE is returned if variable is uninitialized. Otherwise, FALSE is returned.

• variable can be of any data type except an unsubscripted ARRAY, PATH, or structure.

Example: Refer to Section B.12 , "Displaying a List from a Dictionary File" (DCLST_EX.KL) for a
detailed program example.

A.21.4 UNLOCK_GROUP Built-In Procedure

Purpose: Unlocks motion control for the specified group of axes

Syntax : UNLOCK_GROUP(group_mask, status)

Input/Output Parameters:

[in] group_mask :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :MULTI

Details:

• group_mask specifies the group of axes to unlock for the running task. The group numbers must
be in the range of 1 to the total number of groups defined on the controller.

A�340

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�23. Group_mask Settings

GROUP DECIMAL BIT

Group 1 1 1

Group 2 2 2

Group 3 4 3

To specify multiple groups select the decimal values, shown in Table A�23, which correspond to
the desired groups. Then connect them together using the OR operator. For example to specify
groups 1, 3, enter "1 OR 4".

• Unlocking a group indicates that the task is done with the motion group.

• When a task completes execution (or is aborted), all motion groups that are locked by the
program will be unlocked automatically.

• If motion is executing or pending when the UNLOCK_GROUP Built-In is called, then status
is set to 17039, "Executing motion exists."

• If motion is stopped when the UNLOCK_GROUP Built-In is called, then status is set to 17040,
"Stopped motion exists."

• If a motion statement is encountered in a program that has the %NOLOCKGROUP Directive, the
task will attempt to get motion control for all the required groups if it does not already have it.
The task will pause if it cannot get motion control.

Caution

Many of the fields in the $GROUP system variable are initialized to a set of
default values when the UNLOCK_GROUP built-in is executed, see KAREL
Motion Initialization . This could cause unexpected motion.

KAREL Motion Initialization
$GROUP[n].$MOTYPE = JOINT

$GROUP[n].$TERMTYPE = FINE
$GROUP[n].$SEGTERMTYPE = FINE
$GROUP[n].$DECELTOL = 0
$GROUP[n].$USE_CONFIG = TRUE
$GROUP[n].$ORIENT_TYPE = RSWORLD
$GROUP[n].$SPEED = 300.0
$GROUP[n].$ROTSPEED = 500.0 ($MRR_GRP[n].$ROTSPEEDLIM x 57.29577951)
$GROUP[n].$CONTAXISVEL = 0.0

A�341

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

$GROUP[n].$SEG_TIME = 0

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

See Also: LOCK_GROUP Built-In Procedure, Chapter 15 MULTI-TASKING , for more information
and examples.

Example: The following example unlocks groups 1, 2, and 3, and then locks group 3.

UNLOCK_GROUP Built-In Procedure
PROGRAM lock_grp_ex
%ENVIRONMENT MOTN
%ENVIRONMENT MULTI

VAR
status: INTEGER

BEGIN
REPEAT

-- Unlock groups 1, 2, and 3
UNLOCK_GROUP(1 OR 2 OR 4, status)
IF status = 17040 THEN

CNCL_STP_MTN -- or RESUME
ENDIF
DELAY 500

UNTIL status = 0
-- Lock only group 3
LOCK_GROUP(4, status)

END lock_grp_ex

A.21.5 UNPAUSE Action

Purpose: Resumes program execution long enough for a routine action to be executed

Syntax : UNPAUSE

Details:

• If a routine is called as an action, but program execution is paused, execution is resumed only for
the duration of the routine and then is paused again.

• If more than one routine is called, all of the routines will be executed before execution is
paused again.

• The resume and pause caused by UNPAUSE do not satisfy any RESUME and PAUSE conditions.

See Also: RESUME, PAUSE Actions

A�342

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.21.6 UNPOS Built-In Procedure

Purpose: Sets the specified REAL variables to the location (x,y,z) and orientation (w,p,r) components
of the specified XYZWPR variable and sets the specified CONFIG variable to the configuration
component of the XYZWPR

Syntax : UNPOS(posn, x, y, z, w, p, r, c)

Input/Output Parameters:

[in] posn :XYZWPR

[out] x, y, z :REAL

[out] w, p, r :REAL

[out] c :CONFIG

%ENVIRONMENT Group :SYSTEM

Details:

• x, y, z, w, p , and r arguments are set to the x, y, and z location coordinates and yaw, pitch,
and roll orientation angles of posn .

• c returns the configuration of posn .

See Also: Chapter 8 MOTION

Example: The following example uses the UNPOS Built-In to add 100 to the x location argument.

UNPOS Built-In Procedure
UNPOS (CURPOS,x,y,z,w,p,r,config)

next_pos = POS (x+100,y,z,w,p,r,config)
MOVE TO next_pos

A.21.7 UNTIL Clause

Purpose: Used in a MOVE statement to specify a local condition handler

Syntax : UNTIL cond_list < THEN action_list >

A�343

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

where:

cond_list : one or more conditions

action_list : one or more actions

Details:

• Multiple conditions in cond_list must be separated by the AND operator or the OR operator.
Mixing of AND and OR is not allowed.

• For the AND operator, all of the conditions in a single UNTIL clause must be satisfied
simultaneously for the condition handler to be triggered.

• If the condition handler is triggered, the motion is canceled.

• The optional action_list represents a list of additional actions to be taken when the condition
handler is triggered.

• Multiple actions must be separated by a comma or a new line.

• Calls to function routines are not allowed in an UNTIL clause.

• Local condition handlers can include multiple WHEN and UNTIL clauses.

• The condition handler is enabled when the motion physically begins.

• The condition handler is purged when the motion completes.

• The motion is treated as complete if the condition handler is triggered.

See Also: Chapter 6 CONDITION HANDLERS , Appendix E, ��Syntax Diagrams,�� for more syntax
information

A.21.8 USING ... ENDUSING Statement

Purpose: Defines a range of executable statements in which fields of a variable of a STRUCTURE
type can be accessed without repeating the name of the variable.

Syntax : USING struct_var{,struct_var} DO

{statement} ENDUSING

where:

struct_var : a variable of STRUCTURE type

statement : an executable KAREL statement

Details:

A�344

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

• In the executable statement, if the same name is both a field name and a variable name, the
field name is used.

• If the same field name appears in more than one variable, the right-most variable in the USING
statement is used.

• When the translator sees any field, it searches the structure type variables listed in the USING
statement from right to left.

Example: Refer to Section B.2, "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.22 - V - KAREL LANGUAGE DESCRIPTION

A.22.1 VAR_INFO Built-In Procedure

Purpose: Allows a KAREL program to determine data type and numerical information regarding
internal or external program variables

Syntax: VAR_INFO(prog_name, var_name, uninit, type_nam, type_value, dims, slen, status)

Input/Output Parameters:

[in] prog_name :STRING

[in] var_name :STRING

[out] uninit_b :BOOLEAN

[out] type_nam :STRING

[out] dims:ARRAY[3] OF INTEGER

[out] type_value :INTEGER

[out] status :INTEGER

[out] slen :INTEGER

%ENVIRONMENT Group :BYNAM

Details:

• prog_name specifies the name of the program that contains the specified variable. If prog_name
is blank, then it defaults to the current program being executed.

• var_name must refer to a static program variable.

A�345

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• var_name can contain node numbers, field names, and/or subscripts.

• uninit_b will return a value of TRUE if the variable specified by var_name is uninitialized and
FALSE if the variable specified by var_name is initialized.

• type_nam returns a STRING specifying the type name of var_name

• type_value returns an INTEGER corresponding to the data type of var_name. The following
table lists valid data types and their representative INTEGER values.

Table A�24. Valid Data Types

Data Type Value

POSITION
1

XYZWPR
2

XYZWPREXT
6

INTEGER
16

REAL
17

BOOLEAN
18

VECTOR
19

COMMON_ASSOC
20

VIS_PROCESS
21

MODEL
22

SHORT
23

BYTE
24

JOINTPOS1
25

CONFIG
28

A�346

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Table A�24. Valid Data Types (Cont�d)

Data Type Value

FILE
29

GROUP_ASSOC
30

PATH
31

CAM_SETUP
32

JOINTPOS2
41

JOINTPOS3
57

JOINTPOS4
73

JOINTPOS5
89

JOINTPOS6
105

JOINTPOS7
121

JOINTPOS8
137

JOINTPOS9
153

JOINTPOS
153

STRING
209

user-defined type
210

• dims returns the dimensions of the array, if any. The size of the dims array should be 3.

� dims[1] = 0 if not an array

� dims[2] = 0 if not a two-dimensional array

� dims[3] = 0 if not a three-dimensional array

• slen returns the declared length of the variable specified by var_name if it is a STRING variable.

A�347

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• status explains the status of the attempted operation. If not equal to 0, then an error occurred.

Example: The following example retrieves information regarding the variable counter, located in
util_prog, from within the program task.

VAR_INFO Built-In Procedure
PROGRAM util_prog

VAR
counter, i : INTEGER

BEGIN
counter = 0
FOR i = 1 TO 10 DO

counter = counter + 1
ENDFOR

END util_prog

PROGRAM task
VAR

uninit_b : BOOLEAN
type_name : STRING[12]
type_code : INTEGER
slen, status : INTEGER
alen : ARRAY[3] OF INTEGER

BEGIN
VAR_INFO(’util_prog’, ’counter’, uninit_b, type_name, type_code,

alen, slen, status)
WRITE(’counter : ’, CR)
WRITE(’UNINIT : ’, uninit_b, ’ TYPE : ’, type_name, cr)

END task

A.22.2 VAR_LIST Built-In Procedure

Purpose: Locates variables in the specified KAREL program with the specified name and data type

Syntax : VAR_LIST(prog_name, var_name, var_type, n_skip, format, ary_nam, n_vars, status)

Input/Output Parameters:

[in] prog_name : STRING

[in] var_name : STRING

[in] var_type : INTEGER

[in] n_skip : INTEGER

A�348

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

[in] format : INTEGER

[out] ary_nam : ARRAY of STRING

[out] n_vars : INTEGER

[out] status : INTEGER

%ENVIRONMENT Group :BYNAM

Details:

• prog_name specifies the name of the program that contains the specified variables. prog_name
can be specified using the wildcard (*) character, which specifies all loaded programs.

• var_name is the name of the variable to be found. var_name can be specified using the wildcard
(*) character, which specifies that all variables for prog_name be found.

• var_type represents the data type of the variables to be found. The following is a list of valid
data types:

Table A�25. Valid Data Types

Data Type Value

All variable types 0

POSITION 1

XYZWPR 2

INTEGER 16

REAL 17

BOOLEAN 18

VECTOR 19

COMMON_ASSOC 20

VIS_PROCESS 21

MODEL 22

SHORT 23

BYTE 24

JOINTPOS1 25

CONFIG 28

FILE 29

A�349

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Table A�25. Valid Data Types (Cont�d)

Data Type Value

GROUP_ASSOC 30

PATH 31

CAM_SETUP 32

JOINTPOS2 41

JOINTPOS3 57

JOINTPOS4 73

JOINTPOS5 89

JOINTPOS6 105

JOINTPOS7 121

JOINTPOS8 137

JOINTPOS9 153

JOINTPOS 153

STRING 209

user-defined type 210

• n_skip is used when more variables exist than the declared length of ary_nam . Set n_skip to 0
the first time you use VAR_LIST. If ary_nam is completely filled with variable names, copy the
array to another ARRAY of STRINGs and execute the VAR_LIST again with n_skip equal to
n_vars . The call to VAR_LIST will skip the variables found in the first pass and locate only the
remaining variables.

• format specifies the format of the program name and variable name. The following values
are valid for format :

1=prog_name only, no blanks
2 =var_name only, no blanks
3 =[prog_name]var_name, no blanks
4 =’prog_name var_name ’,
Total length = 27 characters, prog_name
starts with character 1 and var_name starts with character 16.

• ary_nam is an ARRAY of STRINGs to store the variable names. If the declared length of the
STRING in ary_nam is not long enough to store the formatted data, then status is returned with an
error.

• n_vars is the number of variables stored in ary_name.

• status will return zero if successful.

See Also: FILE_LIST, PROG_LIST Built-In Procedures

A�350

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Example: Refer to Section B.2 , "Copying Path Variables" (CPY_PTH.KL), for a detailed program
example.

A.22.3 VECTOR Data Type

Purpose: Defines a variable, function return type, or routine parameter as VECTOR data type

Syntax : VECTOR

Details:

• A VECTOR consists of three REAL values representing a location or direction in three
dimensional Cartesian coordinates.

• Only VECTOR expressions can be assigned to VECTOR variables, returned from VECTOR
function routines, or passed as arguments to VECTOR parameters.

• Valid VECTOR operators are:

� Addition (+) and subtraction (-) mathematical operators

� Equal (=) and the not equal (<>) relational operators

� Cross product (#) and the inner product (@) operators.

� Multiplication (*) and division (÷) operators

� Relative position (:) operator

• Component fields of VECTOR variables can be accessed or set as if they were defined as follows:

VECTOR Data Type
VECTOR = STRUCTURE
X: REAL
Y: REAL
Z: REAL

ENDSTRUCTURE

Note: All fields are read-write

Example: The following example shows VECTOR as variable declarations, as parameters in a
routine, and as a function routine return type.

VECTOR Data Type
VAR

direction, offset : VECTOR

ROUTINE calc_offset(offset_vec:VECTOR):VECTOR FROM util_prog

A�351

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.22.4 VIA Clause

Purpose: Specifies an intermediate POSITION in a move statement using circular interpolation

Syntax : VIA posn

where:

posn : a POSITION variable

Details:

• VIA clauses are required and permitted only in moves using circular interpolation
($MOTYPE=CIRCULAR).

• VIA clauses are permitted only in MOVE TO statements (not in MOVE ALONG, MOVE
NEAR, and so on).

• The circle is computed using the current POSITION, the POSITION given in the VIA clause, and
the destination POSITION specified in the MOVE statement.

Example: Refer to Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)
for a detailed program example.

A.22.5 VOL_SPACE Built-In Procedure

Purpose: Returns the total bytes, free bytes, and volume name for the specified device

Syntax : VOL_SPACE(device, total, free, volume)

Input/Output Parameters:

[in] device :STRING

[out] total :INTEGER

[out] free :INTEGER

[out] volume :STRING

%ENVIRONMENT Group :FLBT

Details:

• devices can be:

A�352

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

RD: The RAM disk returns all three parameters, but the volume name is �� since it is not
supported. The RAM disk must be mounted in order to query it.

FR: The FROM disk returns all three parameters, but the volume name is �� since it is not
supported. The FROM disk must be mounted in order to query it.

FR: Size of the Flash ROM. This only sets the total parameter.

DRAM: Size of the DRAM. This only sets the total parameter.

CMOS: Size of the CMOS ROM. This only sets the total parameter.

TPP: The area of system memory where teach pendant programs are stored.

PERM: The area of permanent CMOS RAM memory where system variables and selected
KAREL variables are stored.

TEMP: The area of temporary DRAM memory used for loaded KAREL programs, KAREL
variables, program execution information, and system operations.

SYSTEM: The area of temporary DRAM memory where the system software and options are
stored. This memory is saved to FROM and restored on power up.

Note All device names must end with a colon (:).

• total is the original size of the memory, in bytes.

• free is the amount of available memory, in bytes.

• volume is the name of the storage device used.

See Also: Section 1.4.1, "Memory." Status Memory in the "Status Displays and Indicators," chapter
of the appropriate application-specific FANUC Robotics SYSTEM R-J3iB Controller Setup and
Operations Manual.

Example: The following example gets information about the different devices.

VOL_SPACE Built-In Procedure
PROGRAM space
%NOLOCKGROUP
%ENVIRONMENT FLBT

VAR
total: INTEGER
free: INTEGER
volume: STRING [30]

BEGIN
VOL_SPACE(’rd:’, total, free, volume)

A�353

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

VOL_SPACE(’fr:’, total, free, volume)
VOL_SPACE(’frp:’, total, free, volume)
VOL_SPACE(’fr:’, total, free, volume)
VOL_SPACE(’dram:’, total, free, volume)
VOL_SPACE(’cmos:’, total, free, volume)
VOL_SPACE(’tpp:’, total, free, volume)
VOL_SPACE(’perm:’, total, free, volume)
VOL_SPACE(’temp:’, total, free, volume)

END space

A.23 - W - KAREL LANGUAGE DESCRIPTION

A.23.1 WAIT FOR Statement

Purpose: Delays continuation of program execution until some condition(s) are met

Syntax : WAIT FOR cond_list

where:

cond_list: one or more conditions

Details:

• All of the conditions in a single WAIT FOR statement must be satisfied simultaneously for
execution to continue.

See Also: Chapter 6 CONDITION HANDLERS , Appendix E, ��Syntax Diagrams,�� for more syntax
information

Example: Refer to the following sections for detailed program examples:

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.23.2 WHEN Clause

Purpose: Used to specify a conditions/actions pair in a local or global condition handler

Syntax : WHEN cond_list DO action_list

where:

A�354

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

cond_list : one or more conditions

action_list : one or more conditions

Details:

• All of the conditions in the cond_list of a single WHEN clause must be satisfied simultaneously
for the condition handler to be triggered.

• The action_list represents a list of actions to be taken when the corresponding conditions of a
WHEN clause are satisfied simultaneously.

• Calls to function routines are not allowed in a CONDITION or MOVE statement and, therefore,
cannot be used in a WHEN clause.

• CONDITION and MOVE statements can include multiple WHEN clauses.

See Also: Chapter 6 CONDITION HANDLERS , Appendix E, ��Syntax Diagrams,�� for more syntax
information

Example: Refer to the following sections for detailed program examples:

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.10, "Using Dynamic Display Built-ins" (DYN_DISP.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.23.3 WHILE...ENDWHILE Statement

Purpose: Used when an action is to be executed as long as a BOOLEAN expression remains TRUE

Syntax : WHILE boolean_exp DO{ statement }ENDWHILE

where:

boolean_exp : a BOOLEAN expression

statement : a valid KAREL executable statement

Details:

• boolean_exp is evaluated before each iteration.

• As long as boolean_exp is TRUE, the statements in the loop are executed.

• If boolean_exp is FALSE, control is transferred to the statement following ENDWHILE, and the
statement or statements in the body of the loop are not executed.

A�355

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: Appendix E, ��Syntax Diagrams,�� for more syntax information

Example: Refer to Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)
for a detailed program example.

A.23.4 WITH Clause

Purpose: Used in a MOVE statement to specify temporary values for system variables. Also used in
condition handlers to specify condition handler qualifiers

Syntax : WITH param_spec {, param_spec}

where:

param_spec is of the form : move_sys_var = value or move_sys_var[n] = value

move_sys_var : one of the system variables available for use in the WITH clause

n : specifies the group number

value : an expression of the type corresponding to the type of the system variable

Details:

• The actual system variables specified are not changed. The temporary value is used only by the
motion environment while executing the move in which the WITH clause is used.

• The temporary value remains in effect until the next time the system variable is used by the
motion environment. At that time, the assigned system variable value is used and the temporary
value ceases to exist.

• INTEGER values can be used where REAL values are expected.

• Predefined constants are used to specify values for some system variables that can be used in the
WITH clause. For example, $MOTYPE is specified as LINEAR, CIRCULAR, or JOINT.

• $PRIORITY and $SCAN_TIME are condition handler qualifiers that can be used in a WITH
clause only when the WITH clause is part of a condition handler statement.

Warning

Do not run a KAREL program that performs motion if more than one
motion group is defined on your controller. If your controller is set up
for more than one motion group, all motion must be initiated from a
teach pendant program. Otherwise, the robot could move unexpectedly
and injure personnel or damage equipment.

A�356

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

See Also: Chapter 6 CONDITION HANDLERS , Chapter 12 SYSTEM VARIABLES , for a list of the
system variables that can be used in the WITH clause

Example: Refer to the following sections for detailed program examples:

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.23.5 WRITE Statement

Purpose: Writes data to a serial device or file

Syntax : WRITE <file_var> (data_item { ,data_item })

where:

file_var : a FILE variable

data_item : an expression and its optional format specifiers or the reserved word CR

Details:

• If file_var is not specified in a WRITE statement the default TPDISPLAY is used. %CRTDEVICE
directive will change the default to OUTPUT.

• If file_var is specified, it must be one of the output devices or a variable that has been equated
to one of them.

• If file_var attribute was set with the UF option, data is transmitted to the specified file or device
in binary form. Otherwise, data is transmitted as ASCII text.

• data_item can be any valid KAREL expression.

• If data_item is of type ARRAY, a subscript must be provided.

• If data_item is of type PATH, you can specify that the entire path be read, a specific node be
read [n], or a range of nodes be read [n .. m].

• Optional format specifiers can be used to control the amount of data that is written for each
data_item .

• The reserved word CR, which can be used as a data item, specifies that the next data item to be
written to the file_var will start on the next line.

• Use the IO_STATUS Built-In to determine if the write operation was successful.

A�357

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

See Also: PATH Data Type, for more information on writing PATH variables, Chapter 7 FILE
INPUT/OUTPUT OPERATIONS , for more information on format specifiers and file_vars. Appendix
E, ��Syntax Diagrams,�� for more syntax information

Example: Refer to Appendix B, "KAREL Example Programs" for more detailed program examples.

A.23.6 WRITE_DICT Built-In Procedure

Purpose: Writes information from a dictionary

Syntax : WRITE_DICT(file_var, dict_name, element_no, status)

Input/Output Parameters:

[in] file_var :FILE

[in] dict_name :STRING

[in] element_no :INTEGER

[out] status :INTEGER

%ENVIRONMENT Group :PBCORE

Details:

• file_var must be opened to the window where the dictionary text is to appear.

• dict_name specifies the name of the dictionary from which to write.

• element_no specifies the element number to write. This number is designated with a ��$�� in the
dictionary file.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred
writing the element from the dictionary file.

See Also: READ_DICT, REMOVE_DICT Built-In Procedures, Chapter 10 DICTIONARIES AND
FORMS

Example: Refer to Section B.12, "Displaying a List From a Dictionary File" (DCLST_EX.KL), for a
detailed program example.

A.23.7 WRITE_DICT_V Built-In Procedure

Purpose: Writes information from a dictionary with formatted variables

A�358

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Syntax : WRITE_DICT_V(file_var, dict_name, element_no, value_array, status)

Input/Output Parameters:

[in] file_var :FILE

[in] dict_name :STRING

[in] element_no :INTEGER

[in] value_array :ARRAY OF STRING

[out] status :INTEGER

%ENVIRONMENT Group :UIF

Details:

• file_var must be opened to the window where the dictionary text is to appear.

• dict_name specifies the name of the dictionary from which to write.

• element_no specifies the element number to write. This number is designated with a $ in the
dictionary file.

• value_array is an array of variable names that corresponds to each formatted data item in the
dictionary text. Each variable name may be specified as �[prog_name]var_name�.

� [prog_name] specifies the name of the program that contains the specified variable. If not
specified, then the current program being executed is used.

� var_name must refer to a static, global program variable.

� var_name may contain node numbers, field names, and/or subscripts.

• status explains the status of the attempted operation. If not equal to 0, then an error occurred
writing the element from the dictionary file.

See Also: READ_DICT_V Built-In Procedure, Chapter 10 DICTIONARIES AND FORMS

Example: In the following example, TPTASKEG.TX contains dictionary text information which will
display a system variable. This information is the first element in the dictionary and element numbers
start at 0. util_prog uses WRITE_DICT_V to display the text on the teach pendant.

WRITE_DICT_V Built-In Procedure
--
TPTASKEG.TX
--
$ "Maximum number of tasks = %d"

--
UTILITY PROGRAM:

A�359

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

--
PROGRAM util_prog

%ENVIRONMENT uif
VAR

status: INTEGER
value_array: ARRAY[1] OF STRING[30]

BEGIN
value_array[1] = ’[*system*].$scr.$maxnumtask’

ADD_DICT(’TPTASKEG’, ’TASK’, dp_default, dp_open, status)
WRITE_DICT_V(TPDISPLAY, ’TASK’, 0, value_array, status)

END util_prog

A.24 - X - KAREL LANGUAGE DESCRIPTION

A.24.1 XYZWPR Data Type

Purpose: Defines a variable, function return type, or routine parameter as XYZWPR data type

Syntax : XYZWPR <IN GROUP [n]>

Details:

• An XYZWPR consists of three REAL components specifying a Cartesian location (x,y,z), three
REAL components specifying an orientation (w,p,r), and a component specifying a CONFIG
Data Type, 32 bytes total.

• The configuration string indicates the joint placements and multiple turns that describe the
configuration of the robot when it is at a particular position.

• A position is always referenced with respect to a specific coordinate frame.

• Components of XYZWPR variables can be accessed or set as if they were defined as follows:

XYZWPR Data Type
XYZWPR = STRUCTURE
X: REAL
Y: REAL
Z: REAL
W: REAL
P: REAL
R: REAL
CONFIG_DATA: CONFIG

ENDSTRUCTURE

Note: All fields are read-write access.

A�360

MARAIKLRF06031E REV A A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION

Example: Refer to the following sections for detailed program examples:

Section B.2, "Copying Path Variables" (CPY_PTH.KL)

Section B.5,"Using Register Built-ins" (REG_EX.KL)

Section B.6, "Path Variables and Condition Handlers Program" (PTH_MOVE.KL)

Section B.8, "Generating and Moving Along a Hexagon Path" (GEN_HEX.KL)

Section B.1, "Setting Up Digital Output Ports for Monitoring" (DOUT_EX.KL)

A.24.2 XYZWPREXT Data Type

Purpose: Defines a variable, function return type, or routine parameter as an XYZWPREXT

Syntax : XYZWPREXT <IN GROUP [n]>

Details:

• An XYZWPREXT consists of three REAL components specifying a Cartesian location (x,y,z),
three REAL components specifying an orientation (w,p,r), and a component specifying a
configuration string. It also includes three extended axes, 44 bytes total.

• The configuration string indicates the joint placements and multiple turns that describe the
configuration of the robot when it is at a particular position.

• A position is always referenced with respect to a specific coordinate frame.

• Components of XYZWPREXT variables can be accessed or set as if they were defined as follows:

XYZWPREXT Data Type
XYZWPRext = STRUCTURE
X: REAL
Y: REAL
Z: REAL
W: REAL
P: REAL
R: REAL
CONFIG_DATA: CONFIG
EXT1: REAL
EXT2: REAL
EXT3: REAL

ENDSTRUCTURE

--Note: All fields are read-write access.

A�361

A. KAREL LANGUAGE ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

A.25 - Y - KAREL LANGUAGE DESCRIPTION

There are no KAREL descriptions beginning with "Y".

A.26 - Z - KAREL LANGUAGE DESCRIPTION

There are no KAREL descriptions beginning with "Z".

A�362

Appendix B
KAREL EXAMPLE PROGRAMS

Contents

Appendix B KAREL EXAMPLE PROGRAMS .. B�1
B.1 SETTING UP DIGITAL OUTPUT PORTS FOR PROCESS MONITORING B�10
B.2 COPYING PATH VARIABLES.. B�23
B.3 SAVING DATA TO THE DEFAULT DEVICE .. B�33
B.4 STANDARD ROUTINES .. B�36
B.5 USING REGISTER BUILT-INS ... B�38
B.6 PATH VARIABLES AND CONDITION HANDLERS PROGRAM B�43
B.7 LISTING FILES AND PROGRAMS AND MANIPULATING STRINGS B�49
B.8 GENERATING AND MOVING ALONG A HEXAGON PATH .. B�55
B.9 USING THE FILE AND DEVICE BUILT-INS.. B�58
B.10 USING DYNAMIC DISPLAY BUILT-INS ... B�62
B.11 MANIPULATING VALUES OF DYNAMICALLY DISPLAYED VARIABLES B�74
B.12 DISPLAYING A LIST FROM A DICTIONARY FILE ... B�76

B.12.1 Dictionary Files.. B�86
B.13 USING THE DISCTRL_ALPHA BUILT-IN ... B�87

B.13.1 Dictionary Files.. B�91
B.14 APPLYING OFFSETS TO A COPIED TEACH PENDANT PROGRAM B�92

B�1

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

This appendix contains some KAREL program examples. These programs are meant to show you
how to use the KAREL built-ins and commands described in Appendix A , "KAREL Language
Alphabetical Description."

Refer to this section for examples of how to use the KAREL built-ins and commands in a program.
Refer to Appendix A , for more detailed information on each of the KAREL built-ins and commands.

Table B�1 lists the programs in this section, their main function, the built-ins used in each program,
and the section to refer to for the program listing.

Conventions

Each program in this appendix is divided into five sections.

Section 0 - Lists each element of the KAREL language that is used in the example program.

Section 1 - Contains the program and environment declarations.

Section 2 - Contains the constant, variable, and type declarations.

Section 3 - Contains the routine declarations.

Section 4 - Contains the main body of the program.

B�2

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Table B�1. KAREL Example Programs

Program Name Program
Function

Built-ins Used Section to Refer

CPY_PTH.KL Copies path
variables.

APPEND_NODE

BY_NAME

CALL_PROG

CNV_INT_STR

COPY_PATH

CREATE_VAR

CURPOS

DELETE_NODE

LOAD

PATH_LEN

PROG_LIST

READ_KB

SET_CURSOR

SET_FILE_ATR

SET_VAR

SUB_STR

VAR_LIST

Section B.2

SAVE_VRS.KL Saves data to the
default device.

DELETE_FILE

SAVE

Section B.3

B�3

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Table B�1. KAREL Example Programs (Cont�d)

Program Name Program
Function

Built-ins Used Section to Refer

ROUT_EX.KL Contains standard
routines that are
used throughout
the program
examples.

CHR

FORCE_SPMENU

Section B.4

REG_EX.KL Uses Register
built-ins.

CALL_PROGLIN

CHR

CURPOS

GET_JPOS_REG

GET_POS_REG

GET_REG

POS_REG_TYP

SET_INT_REG

SET_JPOS_REG

SET_POS_REG

FORCE_SPMENU

Section B.5

PTH_MOVE.KL Teaches and
moves along a
path. Also uses
condition handlers.

CHR

CNV_REL_JPOS

PATH_LEN

SET_CURSOR

Section B.6

B�4

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Table B�1. KAREL Example Programs (Cont�d)

Program Name Program
Function

Built-ins Used Section to Refer

LIST_EX.KL Lists files and
programs, and
manipulate strings.

ABS

ARRAY_LEN

CNV_INT_STR

FILE_LIST

LOAD

LOAD_STATUS

PROG_LIST

ROUND

SUB_STR

Section B.7

GEN_HEX.KL Generates a
hexagon, and
moves along the
path.

CNV_REL_JPOS

COS

CURPOS

SIN

Section B.8

FILE_EX.KL Uses the File and
Device built-ins.

CNV_TIME_STR

COPY_FILE

DISMOUNT_DEV

FORMAT_DEV

GET_TIME

MOUNT_DEV

SUB_STR

Section B.9

B�5

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Table B�1. KAREL Example Programs (Cont�d)

Program Name Program
Function

Built-ins Used Section to Refer

DYN_DISP.KL Uses Dynamic
Display built-ins.

ABORT_TASK

CNC_DYN_DISB

CNC_DYN_DISE

CNC_DYN_DISP

CNC_DYN_DISS

CNC_DYN_DISI

CNC_DYN_DISR

INI_DYN_DISB

INI_DYN_DISE

INI_DYN_DISP

INI_DYN_DISS

INI_DYN_DISI

INI_DYN_DISR

LOAD

LOAD_STATUS

RUN_TASK

Section B.10

CHG_DATA.KL Processes and
changes values
of dynamically
displayed
variables.

Section B.11

B�6

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Table B�1. KAREL Example Programs (Cont�d)

Program Name Program
Function

Built-ins Used Section to Refer

DCLST_EX.KL Displays a list from
a dictionary file.

ADD_DICT

ACT_SCREEN

ATT_WINDOW_S

CHECK_DICT

CLR_IO_STAT

CNV_STR_INT

DEF_SCREEN

DISCTRL_LIST

FORCE_SPENU

IO_STATUS

ORD

READ_DICT

REMOVE_DICT

SET_FILE_ATR

SET_WINDOW

STR_LEN

UNINIT

WRITE_DICT

Section B.12.1

DCLISTEG.UTX Dictionary file. N/A Section B.12

B�7

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Table B�1. KAREL Example Programs (Cont�d)

Program Name Program
Function

Built-ins Used Section to Refer

DCALP_EX.KL Uses the
DISCTRL_ALPHA
Built-in.

ADD_DICT

CHR

DISCTRL_ALPH

FORCE_SPEMU

POST_ERR

SET_CURSOR

SET_LANG

Section B.13

DCALPHEG.UTX Dictionary file. N/A Section B.13.1

B�8

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Table B�1. KAREL Example Programs (Cont�d)

Program Name Program
Function

Built-ins Used Section to Refer

CPY_TP.KL Applies offsets
to copied teach
pendant pro
grams.

AVL_POS_NUM

CHR

CLOSE_TPE

CNV_JPOS_REL

CNV_REL_JPOS

COPY_TPE

GET_JPOS_TYP

GET_POS_TPE

GET_POS_TYP

OPEN TPE

PROG_LIST

SELECT_TPE

SET_JPOS_TPE

SET_POS_TPE

Section B.14

B�9

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Table B�1. KAREL Example Programs (Cont�d)

Program Name Program
Function

Built-ins Used Section to Refer

DOUT_EX.KL Sets up digital
output ports
for process
monitoring. The
DOUTs are used to
monitor the status
of the external
equipment and
to show the
current status
of the process.
The equipment
status DOUTs are
simulated, but in
practice they are
looked up to the
actual external
equipment as
a feedback
response. The
robot is moved
along a path
until the external
equipment needs
servicing, which
is triggered by the
DOUT values.

CHRPATH_LEN

CURPOS

DELAY

FORCE_SPMENU

RESET

SET_PORT_ASG

SET_PORT_CMT

SET_PORT_MOD

SET_PORT_SIM

Section B.1

B.1 SETTING UP DIGITAL OUTPUT PORTS FOR PROCESS
MONITORING

This program sets up digital output ports for process monitoring. The DOUT are to monitor the
external equipment status and show the current status of the process. The equipment status DOUT�s
are simulated, but in practice are hooked up to the actual external equipments as a feedback response.
The robot is moved along a path until external equipment needs to be serviced, which is triggered
by the DOUT values.

Setting Up Digital Output Ports for Process Monitoring - Overview
--
---- DOUT_EX.Kl

B�10

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

--
--
---- Section 0: Detail about DOUT_EX.kl
--
---- Elements of KAREL Language Covered:
---- Action:
---- CONTINUE Sec 4-A
---- PORT_ID Sec 4-D,E
---- ENABLE CONDITION Sec 3-B; 4-D
---- NOMESSAGE Sec 4-A
---- PULSE Sec 4-E
---- RESUME Sec 4-D
---- ROUTINE CALL Sec 4-A,D
---- SIGNAL EVENT Sec 4-D
---- STOP Sec 4-D
---- UNPAUSE Sec 4-A

---- Clauses:
---- FROM Sec 3-A
---- WHEN Sec 4-A,D,E
---- WITH Sec 3-E

---- Conditions:
---- AT NODE Sec 4-E
---- PORT_ID Sec 4-D
---- ERROR[xxx] Sec 4-A
---- EVENT Sec 4-D
---- RELATIONAL condition Sec 4-A
---- TIME xxx BEFORE Sec 4-E

---- Data types:
---- BOOLEAN Sec 2
---- INTEGER Sec 2
---- PATH Sec 2
---- POSITION Sec 2
---- STRING Sec 2
---- XYZWPR Sec 2

Setting Up Digital Output Ports for Monitoring Teach Pendant Program - Overview Continued
---- Directives:
---- ALPHABETIZE Sec 1
---- COMMENT Sec 1
---- CMOSVARS Sec 1
---- INCLUDE Sec 1

---- Built-in Functions & Procedures:
---- CHR Sec 3-E; 4-E

B�11

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- CURPOS Sec 3-E
---- DELAY Sec 3-B,E
---- FORCE_SPMENU Sec 3-E; 4-E
---- PATH_LEN Sec 4-C; 4-E
---- RESET Sec 3-B
---- SET_PORT_ASG Sec 3-D
---- SET_PORT_CMT Sec 3-D
---- SET_PORT_MOD Sec 3-C
---- SET_PORT_SIM Sec 4-E

---- Statements:
---- ABORT Sec 3-D; 4-C,E
---- ATTACH Sec 4-C
---- CONNECT TIMER Sec 4-A
---- CONDITION...ENDCONDITON Sec 4-A,D,E
---- ENABLE CONDITION Sec 3-E; 4-A,D
---- FOR...ENDFOR Sec 3-D
---- IF...THEN...ENDIF Sec 3-B,C,D; 4-C,D,E
---- MOVE ALONG Sec 4-E
---- MOVE NEAR Sec 3-E
---- RELEASE Sec 4-C
---- ROUTINE Sec 3-A,B,C,D,E
---- WAIT FOR Sec 3-E
---- WHILE...ENDWHILE Sec 4-C
---- WRITE Sec 3-B,D,E; 4-C,E

---- Reserve Words:
---- BEGIN Sec 3-B,C,D,E; 4
---- CONST Sec 2
---- CR Sec 3-B,D,E; 4-C,E
---- END Sec 3-B,C,D,E, 4-E
---- NOT Sec 3-B; 4-D
---- PROGRAM Sec 1
---- VAR Sec 2

---- Predefined FILE names:
---- TPFUNC Sec 4-E

Setting Up Digital Output Ports for Process Monitoring - Declaration Section
--
---- Section 1: Program and Environment Declaration
--
PROGRAM DOUT_EX -- Define the program name
%ALPHABETIZE -- CReate the variables in alphabetical order
%NOPAUSE = TPENABLE -- Do not pause the program if TP is ENABLED.

-- during execution.
%COMMENT = ’PORT/CH DOUT_EX’

B�12

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

%CMOSVARS -- Make sure variables are stored in CMOS
%INCLUDE KLIOTYPS
--
---- Section 2: Constant and Variable Declarations
--
CONST
-- Condition Handler Numbers

CONT_CH = 2 -- Continue execution condition
EQIP_FAIL = 3 -- Equipment Failure Condition
RESTART = 6 -- Restart condition Handler
SERV_DONE = 4 -- Servicing Done condition
UNINIT_CH = 10 -- Monitor for uninit error
WARMED_UP = 5 -- Event to notify eqip is ready

-- Process DOUT numbers (1 thru 6 are complementary DOUT)
-- (3 and 4 are simulated DOUT)

EQIP_READY = 1 -- Equipment Ready
EQIP_NOT_RD= 2 -- Equipment Not Ready
EQIP_ERROR = 3 -- Equipment Failed during process
EQIP_FIXED = 4 -- Equipment Fixed after failure
EQIP_ON = 5 -- Turn Eqip-1 ON DOUT
EQIP_OFF = 6 -- Turn Eqip-1 OFF DOUT
NODE_PULSE = 7 -- Node Pulsing DOUT
FINISH = 8 -- Path Finishing signal DOUT

-- Process Constants
SUCCESS = 0 -- Successful Operation Status
UNASIGNED = 13007 -- Unassigned Port Deletion Error

VAR
cont_timer,
last_node,
status :INTEGER -- Status from builtin calls
prg_abrt :BOOLEAN -- Set when the program is aborted
pth1 :PATH -- Process Path
stop_pos :POSITION -- Process Stop Position
perch_pos :XYZWPR -- Perch Position
indx :INTEGER -- Used a FOR loop counter
ports_ready :BOOLEAN -- Check if ports assigned
cmt_str :STRING[10] -- Comment String

Setting Up Digital Output Ports for Process Monitoring - Declare Routines

---- Section 3: Routine Declaration

---- Section 3-A: TP_CLS Declaration
---- This routine is from ROUT_EX.kl and will
---- clear the TP USER menu screen and force

B�13

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- it to be visible.

ROUTINE tp_cls FROM rout_ex -- ROUT_EX must also be loaded.

---- Section 3-B: port_init Declaration
---- This routine assigns a value to, ports_ready, which
---- allows the ports to be initialized. It resets the
---- controller so that program execution may be continued
---- automatically thought the CONT_CH condition handler.

ROUTINE init_port
VAR

reset_ok: BOOLEAN
BEGIN

ports_ready = FALSE -- Set false so ports will be initialized
DELAY 500;
RESET(reset_ok) -- Reset the controller
IF (NOT reset_ok) THEN

WRITE(’Reset Failed’, CR)
ENDIF

cont_timer = 0 -- Set a timer to continue the processprocess
ENABLE CONDITION[CONT_CH] -- Enabled the CONT_CH which continues

-- program execution
END init_port

Setting Up Digital Output Ports for Process Monitoring - Declaration Section

---- Section 3-C: SET_MODE Declaration
---- Sets up the mode of IO’s. Depending on the passed
---- parameter the IO ports will be set to REVERSE
---- and/or COMPLEMENTARY mode. When the ports are set
---- to REVERSE mode, the TRUE condition is represented by
---- a FALSE signal. When COMPLEMENTARY mode is selected
---- for a port (odd number port), the port n and n+1 are
---- complementary signal of each other.

ROUTINE set_mode(port_type: INTEGER;
port_no: INTEGER;
reverse: BOOLEAN;
complmnt: BOOLEAN)

VAR
mode: INTEGER

B�14

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

BEGIN -- set_mode
IF reverse THEN

mode = 1 -- Set the reverse mode
ELSE

mode = 0
ENDIF

IF complmnt THEN
mode = mode OR 2 -- Set complementary mode

ENDIF

SET_PORT_MOD(port_type, port_no, mode, status)

END set_mode

Setting Up Digital Output Ports for Process Monitoring - Declaration Section

---- Section 3-D: SETUP_PORTS Declaration
---- This section assumes that you do not have an AB or GENIUS I/O
---- or any other external I/O board. Therefore, any previous port
---- assignments are no longer needed for this application, and
---- can be deleted.

ROUTINE setup_ports
VAR

port_n : INTEGER
BEGIN
-- Delete DIGITAL OUTPUT PORTS 1 thru 48

FOR port_n = 0 to 5 DO
-- Indexing of 0 to 5 may not be obvious, But look into the DIGITAL
-- OUT Configuration screen in TP, you will see the 8 DIGITAL OUTPUT
-- ports are grouped together in configuration.
SET_PORT_ASG(IO_DOUT, port_n*8+1, 0, 0, 0, 0, 0, status)
IF (status <> SUCCESS) AND (status <> UNASIGNED) THEN

-- Verify that deletion by SET_PORT_ASG was successful
WRITE (’SET_PORT_ASG built-in for DOUT (deletion) failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
ENDFOR

-- Assign the DIGITAL PORTS 1 THRU 48 as memory images.
FOR port_n = 0 TO 5 DO

SET_PORT_ASG(IO_DOUT, port_n*8+1, 0, 0, io_mem_boo, port_n*8+1, 8, status)
IF (status <> 0) THEN -- Verify that SET_PORT_ASG was successful

WRITE (’SET_PORT_ASG built-in for DOUT (assignment) failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
ENDFOR

B�15

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- Suppose equipment-1 is turned ON by the DOUT[1] = TRUE signal and
-- turned OFF by the DOUT[2] = TRUE signal. To avoid both signals being
-- TRUE or FALSE at the same time, set DOUT[1] to be a complement.
-- Once the DOUT[1] is set in complementary mode, the DOUT[1] and
-- DOUT[2] will always show the opposite signal of each other.
-- Thus avoiding the confusion of turning the equipment OFF and ON
-- at the same time.
-- Set port-1, port-3 and port-5 to COMPLEMENTARY mode.
FOR port_n = 1 to 6 DO

SET_MODE(io_dout, port_n, TRUE, TRUE)
IF (status <> SUCCESS) THEN

WRITE (’SET_PORT_MODE Failed on port ’,1,CR)
WRITE (’With Status = ’,status,CR)

ENDIF
ENDFOR

Setting Up Digital Output Ports for Process Monitoring - Main
-- Set appropriate comments for the ports.

SET_PORT_CMT(IO_DOUT, EQIP_READY, ’Equip-READY ’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
SET_PORT_CMT(IO_DOUT, EQIP_NOT_RD, ’E - NOT READY’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
SET_PORT_CMT(IO_DOUT, EQIP_ERROR, ’Equip- ERROR’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
SET_PORT_CMT(IO_DOUT, EQIP_FIXED, ’Equip- FIXED’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
SET_PORT_CMT(IO_DOUT, EQIP_ON, ’Equip- ON’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
SET_PORT_CMT(IO_DOUT, EQIP_OFF, ’Equip- OFF’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

B�16

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

ENDIF
SET_PORT_CMT(IO_DOUT, NODE_PULSE, ’Pulse @ node’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF
SET_PORT_CMT(IO_DOUT, FINISH, ’Finish PATH’,status)
IF (status <> 0) THEN -- Verify SET_PORT_CMT was successful

WRITE (’SET_PORT_CMT built-in failed’,CR)
WRITE (’Status = ’,status,CR)

ENDIF

Setting Up Digital Output Ports for Process Monitoring - Main
TP_CLS -- clear the teach pendant USER sCReen

WRITE (’PORT SETUP IS COMPLETE’,CR)
WRITE (’AT THIS POINT YOU NEED TO COLD START’,CR)
WRITE (’Configuration changes of PORTs will not’,CR)
WRITE (’take effect until after a COLD START.’,CR,CR)
WRITE (’Once the controller is ready after’,CR)
WRITE (’COLD START, re-load this program’,CR)
WRITE (’rerun.’,CR)

ports_ready = TRUE -- Set the ports_ready variable so re-execution of
-- this routine, setup_ports, is not performed.

-- Aborting program to allow for the cold start.
ABORT

END setup_ports

--
---- Section 3-E: SERVICE_RTN interrupt routine Declaration
---- This routine waits until the equipment has been
---- serviced and then moves the robot back to where
---- it was before servicing. It then sets the DOUT
---- to notify that the equipment is ready.
--
ROUTINE service_rtn
BEGIN

TP_CLS

-- store the current position, where the process is stopped due to failure
-- so after resuming the process can be started from this point.

stop_pos = CURPOS(0,0)

-- move the robot to the perch position so the equipment

B�17

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- can be worked on safely.
WITH $SPEED = 1000 MOVE TO perch_pos
WRITE (chr(139),’ PLEASE READ ’,chr(143),CR) --Display in reverse video
WRITE (’Equipment - 1 failed during’,CR)
WRITE (’processing. Motions have been stopped.’,CR)
WRITE (’Please Fix the equipment then’,CR)
WRITE (’SET DOUT[’,EQIP_FIXED,’] = TRUE ’,CR)

--Display the following message in reverse video
WRITE (chr(139), ’IMPORTANT: Once the DOUT is set, current’,CR)
WRITE (’STOPPED motion will be RESUMED’,chr(143),CR)
WAIT FOR DOUT[EQIP_FIXED] -- wait until equipment has been fixed

Setting Up Digital Output Ports for Process Monitoring - Main
-- Move close to the point where the process was stopped

-- Depending on orientation and path , the "by offset" value should be
-- selected properly.

WITH $SPEED = 1000 MOVE NEAR stop_pos by +100

-- Move slowly to the point where the process was stopped
WITH $SPEED = 500 MOVE NEAR stop_pos by 0

-- Enable the SERVICE-DONE condition handler to resume the process.
ENABLE CONDITION[SERV_DONE]

-- Wait a sufficient time to allow equipment to warm up and get ready for
-- processing after the fix is completed.
WRITE (’Continuing the process.....’,CR)
DELAY 2000

--Signal that the equipment is now ready.
DOUT[EQIP_READY] = TRUE

-- Force the teach pendant back to the IO sCReen
FORCE_SPMENU(tp_panel, SPI_TPDIGIO, 1)

END service_rtn

---- Section 4: Main Program

BEGIN -- DOUT_EX

---- Section 4-A: Global Condition Handler Declaration

CONDITION[UNINIT_CH]:
WHEN ERROR[12311] DO -- Trap UNINITIALIZATION error

B�18

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

NOMESSAGE -- Supress the error message
UNPAUSE -- UNPAUSE
init_port -- Allow ports to be initialized.

ENDCONDITION

ENABLE CONDITION[UNINIT_CH]

CONNECT TIMER to cont_timer

CONDITION [CONT_CH]:
WHEN cont_timer > 1000 DO
CONTINUE

ENDCONDITION

Setting Up Digital Output Ports for Process Monitoring - Main

---- Section 4-C: Verify PATH variable, pth1, has been taught.

TP_CLS -- Routine Call; Clears the TP USER menu and

-- forces the TP USER menu to be visible.
-- Check the number of nodes in the path
IF PATH_LEN(pth1) = 0 THEN -- Path is empty (no nodes)

WRITE (’You need to teach the path.’,CR) -- Display instructions
WRITE (’before executing this program.’,CR)
WRITE (’Teach the PATH variable pth1’, CR, ’and restart the program’,CR)
WRITE (’PROGRAM ABORTED’,CR)
ABORT -- ABORT the task. do not continue

-- There are no nodes to move to
ENDIF
-- Set Perch Position
-- This position is used in the service_rtn routine

IF UNINIT(perch_pos) THEN

WRITE (’PERCH POSITION is not recorded.’,cr)
WRITE (’RELEASing Motion Control to TP.’,cr)
WRITE (’Please Move robot to desired Perch Pos’,cr)

-- Wait until the DEADMAN switch is HELD and
-- TP is TURNED ON to move robot from TP.
WHILE ((TPIN[248] = ON) AND (TPIN[247] = ON)) DO

WRITE TPPROMPT(CHR(128),CHR(137),’Hold Down the DEAD-MAN switch’)
DELAY 500

ENDWHILE

-- Release motion control from the KAREL program to the
-- TP control. Robot can be moved to desired Perch

B�19

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- position with out disturbing the flow of this KAREL task.
RELEASE

WHILE (TPIN[249] = OFF) DO
WRITE TPPROMPT(CHR(128),CHR(137),’Turn the TP ON’)
DELAY 1000

ENDWHILE

WRITE (’ROBOT is ready to move from TP’,cr)
WRITE (’After moving ROBOT to PERCH position ’,cr)
WRITE (’Turn OFF the TP then RELEASE DEADMAN ’,cr)

WHILE (TPIN[249] = ON) DO
WRITE TPPROMPT(CHR(128),CHR(137),’Turn OFF TP, after MOVE is done
DELAY 10000

ENDWHILE

Setting Up Digital Output Ports for Process Monitoring - Main
-- KAREL program execution will not continue passed ATTACH

-- statement until the TP is turned OFF.
-- Wait until the TP is TURNED OFF after move from TP is completed.
WHILE (TPIN[249] = ON) DO

DELAY 2000
ENDWHILE

-- At this point the robot is positioned to the desired
-- Perch position. Get the motion
-- control back from TP and record the perch position.
ATTACH
perch_pos = CURPOS(0,0,1)

ENDIF
--
----Section 4-D: Set up Ports and Declare Process dependant condition
handler
--
-- Port assignments need to be assigned only once and take effect
-- after the controller is COLD STARTED.
-- The ports_ready variable is used to determine if the ports have
-- already been assigned by this program.
-- Therefore only the first execution of this program will assign the ports
IF NOT(ports_ready) THEN

setup_ports
ENDIF
-- Define a condition handler to trap equipment failure.
-- If equipment fails during the process, then the DOUT[EQIP_ERROR] is
-- set to TRUE. Which will stop the motion and require the equipment to be
-- fixed before motion can be resumed.
CONDITION[EQIP_FAIL]:

B�20

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

WHEN DOUT[EQIP_ERROR] DO
STOP
DOUT[EQIP_FIXED] = FALSE
DOUT[EQIP_READY] = FALSE
ENABLE CONDITION[RESTART]
service_rtn

ENDCONDITION
ENABLE CONDITION[EQIP_FAIL]
-- Define a condition handler to monitor the servicing process.
-- Once Servicing/Fixing of equipment is complete, wait for the equipment
-- to be in READY mode. When the equipment is READY, signal an event
-- which will restart the process where it left off. The SERV_DONE
-- condition handler is ENABLED from the SERVICE_RTN interrupt routine.
CONDITION[SERV_DONE]:

WHEN DOUT[EQIP_READY] DO
SIGNAL EVENT[WARMED_UP]
DOUT[EQIP_ERROR] = FALSE

ENDCONDITION

Setting Up Digital Output Ports for Process Monitoring - Main
-- Define a condition handler to monitor when the warm up is complete, then
-- resume the stopped motion and continue the process. Also re-enable
-- the EQIP_FAIL condition handler to continue monitoring for equipment
-- failure.

CONDITION[RESTART]:
WHEN EVENT[WARMED_UP] DO

RESUME
ENABLE CONDITION[EQIP_FAIL]

ENDCONDITION

--
---- Section 4-E: Do process manipulation
--

-- Using the PATH_LEN built-in find out the last node of the path
last_node = PATH_LEN(pth1)

-- Setting EQIP_ERROR/EQIP_FIXED number ports to be simulated.
-- This setup does not require cold start, can change the port to be
-- simulated on the fly.

SET_PORT_SIM(io_dout, NODE_PULSE, 1, status)
IF (status <> SUCCESS) THEN

WRITE (’SET_PORT_SIM Failed on port ’,indx,CR)
WRITE (’With Status = ’,status,CR)

ENDIF

B�21

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

SET_PORT_SIM(io_dout, FINISH, 1, status)
IF (status <> SUCCESS) THEN

WRITE (’SET_PORT_SIM Failed on port ’,indx,CR)
WRITE (’With Status = ’,status,CR)

ENDIF

Setting Up Digital Output Ports for Process Monitoring - Main
WRITE (’ NOW YOU WILL SEE THE DOUT[’,NODE_PULSE,’] PULSE’,CR)
WRITE (’ as the robot moves through every node.’,CR,CR)
WRITE (’ To simulate EQUIPMENT failure, change ’,CR)
WRITE (’ DOUT[’,EQIP_ERROR,’] = TRUE. ’,CR)
WRITE (’ Press ’’ENTER’’ to Continue’,CR)
READ(CR)

-- Change the TP display to the DI/O sCReen
FORCE_SPMENU(tp_panel, SPI_TPDIGIO, 1)

-- Moving along path when equipment is ready.
-- Need to turn on equipment-1 for 1/2 second when robot position
-- is at 1st node. Pulse the DOUT[NODE_PULSE] for every node
-- Turn on the DOUT[FINISH] about 200 ms before the last node.

IF DOUT[EQIP_READY] THEN
MOVE ALONG pth1,

WHEN AT NODE[*] DO
PULSE DOUT[NODE_PULSE] for 1000

WHEN AT NODE[1] DO
PULSE DOUT[EQIP_ON] for 500

WHEN TIME 200 BEFORE NODE[last_node] DO
DOUT[FINISH] = TRUE

ENDMOVE
ELSE

FORCE_SPMENU(TP_PANEL,SPI_TPUSER,1)
WRITE (’ Equipment is not READY’,CR)
WRITE (’ Set equipment to READY MODE’,CR)
WRITE (’ before executing this program.’,CR)
WRITE (’ SET DOUT[’,EQIP_READY,’] = TRUE ’,CR)
ABORT

ENDIF

WRITE TPFUNC (CHR(128),CHR(137)) -- Home Cursor and Clear to End-of-line
-- This will remove the ABORT displayed
-- above F1.

END DOUT_EX

B�22

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

B.2 COPYING PATH VARIABLES

This example shows the different ways of copying and appending PATH variables. The PATH Data
Type can be copied from one to another only with hard coded path variable names. However, user
defined paths can be copied from one to another. The path variable names can be determined during
execution of the program.

Copy Path Variables Program - Overview
--
---- Detail about CPY_PTH.Kl
--
---- Elements of KAREL Language Covered: In Section:

---- Action:

---- Clauses:
---- FROM Sec 3-A
---- IN DRAM Sec 2
---- WHEN Sec 4-A
---- Conditions:

---- Data types:
---- ARRAY OF STRING Sec 2
---- BOOLEAN Sec 2; 3-C
---- COMMON_ASSOC Sec 2
---- FILE Sec 2
---- GROUP_ASSOC Sec 2
---- INTEGER Sec 2; 3-B,C
---- PATH Sec 2
---- STRING Sec 2; 3-B
---- STRUCTURE...ENDSTRUCTURE Sec 2
---- USER DEFINED PATH Sec 2
---- XYZWPR Sec 2

---- Directives:
---- ALPHABETIZE Sec 1
---- COMMENT Sec 1
---- CMOSVARS Sec 1
---- CRTDEVICE Sec 1
---- INCLUDE Sec 2

Copy Path Variables Program - Overview and Declaration Section
---- Built-in Functions & Procedures:
---- APPEND_NODE Sec 4-D
---- BYNAME Sec 4-E
---- CALL_PROG Sec 4-B
---- COPY_PATH Sec 3-C; 4-D

B�23

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- CNV_INT_STR Sec 4-E
---- CREATE_VAR Sec 4-E
---- CURPOS Sec 4-B
---- DELETE_NODE Sec 4-C
---- LOAD Sec 4-B
---- PATH_LEN Sec 4-C,E
---- PROG_LIST Sec 4-B
---- READ_KB Sec 3-B
---- SET_CURSOR Sec 4-E
---- SET_FILE_ATR Sec 4-A
---- SET_VAR Sec 4-B
---- SUB_STR Sec 4-E
---- VAR_LIST Sec 4-E
---- Statements:
---- ABORT Sec 4-C,E
---- CLOSE FILE Sec 4-E
---- FOR ENDFOR Sec 3-C; 4-C,D,E
---- IF...THEN...ENDIF Sec 3-B,C; 4-B,C,D,E
---- MOVE ALONG Sec 4-D
---- OPEN FILE Sec 4-A
---- REPEAT...UNTIL Sec 3-B; 4-E
---- ROUTINE Sec 3
---- WRITE Sec 3-B,C; 4-A,B,C,E
---- USING...ENDUSING Sec 4-D
---- Reserve Word:
---- BEGIN Sec 3-B,C; 4
---- END Sec 3-B,C; 4-E
---- PROGRAM Sec 1
---- TYPE Sec 2
---- VAR Sec 2
---- Predefined File Names:
---- CRTFUNC Sec 3-B
---- CRTPROMPT Sec 3-B,C
--
---- Section 1: Program and Environment Declaration
--
PROGRAM CPY_PTH
%ALPHABETIZE
%COMMENT = ’COPY PATH’ -- Display information by default to
CRT/KB
%CRTDEVICE -- Use CMOS RAM to store all static
variables,
%CMOSVARS -- except those specified with IN DRAM

Copy Path Variables Program - Declaration Section
--
---- Section 2: Constant, Variable and Type Declarations

B�24

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

--
CONST

SUCCESS = 0 -- The value returned from all built-ins when successful
TYPE

node_struc = STRUCTURE -- Create a user defined node structure
posn_dat :XYZWPR
grup_dat :GROUP_ASSOC
comn_dat :COMMON_ASSOC

ENDSTRUCTURE
user_path = PATH nodedata = node_struc --Create a user defined path

VAR
pth1,
pth2,
pth3
pth4 :PATH -- These are system defined PATHs

upth1,
upth2,
upth3,
upth4 :user_path -- These are user defined PATHs

p1_len,
p2_len,
status,
total_node :INTEGER

F1_press,
F2_press :BOOLEAN

src_num,
des_num :INTEGER

dummy_str,
src_var,
des_var :STRING[20]

cur_name :STRING[12]
entry :INTEGER
var_type :INTEGER
mem_loc :INTEGER

Copy Path Variables Program - Storing Variables in Memory
-- Store the following variables in DRAM, which is temporary memory

indx IN DRAM :INTEGER
prog_name IN DRAM :STRING[10]
prog_type IN DRAM :INTEGER
n_match IN DRAM :INTEGER

B�25

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

n_skip IN DRAM :INTEGER
format IN DRAM :INTEGER
ary_nam IN DRAM :ARRAY[5] OF STRING[20]
prog_indx IN DRAM :INTEGER
do_copy IN DRAM :BOOLEAN
crt_kb IN DRAM :FILE

%INCLUDE KLEVKMSK -- system supplied file: definition of KC_FUNC_KEY
%INCLUDE KLEVKEYS -- system supplied file: definition of KY_F1 & KY_F2

Copy Path Variables Program - Monitor User Response
--
---- Section 3: Routine Declaration
--
--
---- Section 3-A: CRT_CLS Declaration
--

ROUTINE CRT_CLS FROM rout_ex -- include this routine from the file rout_ex.kl

--
---- Section 3-B: YES_NO Declaration
---- LABEL the F1 key as YES and F2 key as NO, ask for user
---- confirmation. These two keys are monitored by global
---- condition handler,so User response can be trapped.
--
ROUTINE YES_NO
VAR
key_press : INTEGER
str : STRING[1]
n_chars: INTEGER
l_status: INTEGER

BEGIN ---- YES_NO
WRITE CRTFUNC (CHR(128),CHR(137)) --- Clear Window, Home Cursor

-- Display YES above F1 & NO above F2 & clear rest of Function window
WRITE CRTFUNC (’ YES NO ’,chr(129))

F1_press = FALSE
F2_press = FALSE
REPEAT -- until user presses either the F1 or F2 key

-- Read just the function keys of the CRT/KB.
-- The read will be satisfied only when a function key is pressed.
READ_KB (crt_kb, str , 0, 0, kc_func_key, -1,

’’, n_chars, key_press, l_status)
-- key_press must be converted from a "raw" CRT character to the teach

B�26

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

-- pendant equivalent character.g
key_press = $CRT_KEY_TBL[key_press+1]
IF (key_press = ky_f1) THEN -- The user pressed F1

F1_press = true
ENDIF
IF (key_press = ky_f2) THEN -- The user pressed F2

F2_press = true
ENDIF

UNTIL ((f1_press = TRUE) OR (F2_press = TRUE))
WRITE CRTFUNC (CHR(128),CHR(137)) --- Clear Window, Home Cursor
WRITE CRTPROMPT (CHR(128),CHR(137)) --- Clear Window, Home Cursor

END YES_NO

Copy Path Variables Program - Copying Path Variables
--
---- Section 3-C: PTH_CPY Declaration
---- Copy one user defined path variable to another user defined path
---- variable. The first parameter is the source path. The second
---- parameter is the destination path. The path parameters can only
---- be passed using BYNAME and the path’s must be user defined
--
ROUTINE PTH_CPY(src_path: USER_PATH; des_path: USER_PATH)
VAR

node_indx :INTEGER
do_it :BOOLEAN
1_stat :INTEGER

BEGIN --- pth_cpy

CRT_CLS -- Clear the CRT/KB USER Menu screen
do_it = true
-- WRITE (’Peform copy’,CR)

yes_no
do_it = F1_press -- F1_press will be true only if the user selected

YES
IF (do_it) THEN
-- Copy the entire path of src_path to des_path

COPY_PATH (src_path, 0,0, des_path, l_stat)
IF (l_stat <> 0) THEN

WRITE (’Error in COPY_PATH’, l_stat, CR)
ELSE

WRITE (’Path Copy function Completed ’,cr)
ENDIF

ELSE
WRITE (’Path Copy function canceled by choice’,cr,cr)

ENDIF
END PTH_CPY

B�27

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Copy Path Variables Program - Opens CRT/KB & Sends Data to Default Device

---- Section 4: Main Program

BEGIN --- CPY_PATH

---- Section 4-A: Open CRT KB for reading YES/NO inputs from user

CRT_CLS -- will force the CRT USER menu to be visible & clear the screen
SET_FILE_ATR(crt_kb, ATR_FIELD) -- Needed so the read is satisfied with one

-- character.
OPEN FILE crt_kb (’RO’, ’KB:crkb’) -- Open a file to the CRT/KB

-- Used within the YES_NO routine.

---- Section 4-B: Check if SAVE_VRS.PC is loaded. If loaded then execute

---- First check if the "SAVE_VRS" program is loaded or not.

prog_name = ’SAVE_VRS’ -- Only interested in SAVE_VRS program
prog_type = 6 -- Interested only in PC type files
n_skip = 0 -- First time do not skip any files
format = 1 -- Return just the filename

do_copy = TRUE
WRITE (’Checking Program List’,cr)
PROG_LIST(prog_name, prog_type, n_skip, format, ary_nam, n_match, status)

IF (status <>SUCCESS) THEN
IF (status = 7073) THEN ---- Program does not exist error

--- Program SAVE_VRS is not loaded on the controller.
WRITE (’LOADING ’,prog_name, CR)
LOAD (prog_name+’.PC’, 0, status)
IF (status <> SUCCESS) THEN

WRITE (’Error loading ’, prog_name,cr)
WRITE CRTPROMPT(’Copy path’’s WITHOUT saving program variables?’,CR)
YES_NO
do_copy = F1_press -- F1_press is true only if user selected

YES
-- Copy without saving variables.

ENDIF
ELSE
-- The program listing failed.
WRITE (’PROG_LIST built-in failed’,cr,’ with Status = ’,status,cr)
WRITE CRTPROMPT(’Copy path’’s WITHOUT saving program variables?’,CR)
YES_NO
do_copy = F1_press -- F1_press is true only if user selected

YES

B�28

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

ENDIF -- Copy without saving variables.
ENDIF

Copy Path Variables Program - Checks Path Initialization
IF (status = SUCCESS) THEN

-- This is one way to set variables within another program without
-- using the FROM clause in the variable section.
-- It is very useful if you want to have run-time independent code,
-- where the program or variable name you are setting is not
-- known until run-time.
cur_name = CURR_PROG
SET_VAR (entry, prog_name, ’del_vr’, TRUE, status)
SET_VAR (entry, prog_name, ’prog_name’,cur_name , status)
SET_VAR (entry, prog_name, ’sav_type’, 1, status)
SET_VAR (entry, prog_name, ’dev’, ’FLPY:’, status)
WRITE (’Saving program variables before copy’, CR)
CALL_PROG(prog_name,prog_indx) -- call SAVE_VRS

ENDIF

---- Section 4-C: Check for initialization of PATHs pth1 and pth2.

IF (NOT do_copy) THEN

WRITE (’Program exiting, unable to save variables,’,cr)
WRITE (’before copying path’’s’,cr)
-- NOTICE:
-- Two single quotes will display as one single quote
-- so this write statement will appear as :
-- "before copying path’s"
ABORT

ENDIF
WRITE (’Checking Variable initialization’,cr)
-- Check if the pth variables are initialized.
p1_len = PATH_LEN(pth1) ; p2_len = PATH_LEN(pth2)
IF ((p1_len = 0) OR (p2_len = 0))THEN

WRITE (’PTH1 or PTH2 is empty path’,cr)
WRITE (’Please make sure both paths are taught then restart’,cr)
ABORT -- Cannot copy uninitialized variables.

ENDIF
-- Check if the pth3 variable is initialized.
IF (PATH_LEN(pth3) <> 0) THEN

WRITE (’Deleting nodes from pth3’,cr) -- Delete the old path of pth3
FOR indx = PATH_LEN(pth3) DOWNTO 1 DO

-- its easy to delete nodes from the end instead of deleting node from
-- the front end. Since after every deletion the nodes are renumbered.
DELETE_NODE(pth3, indx, status) -- Delete last node of pth3
IF status <> SUCCESS THEN

WRITE (’While Deleting ’,indx, ’ node’,cr)

B�29

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

WRITE (’DELETE_NODE unsuccessful: Status = ’,status,cr)
ENDIF

ENDFOR
ENDIF

Copy Path Variables Program - Path Initialization

---- Section 4-D: Add pth1 and pth2 together to create pth3.
---- Move along pth1 and pth2.
---- Move backwards through pth3.

total_node = p1_len + p2_len -- Total number of nodes needed for pth3

-- Copy the node data from pth1 to pth3
WRITE (’copying pth1 to pth3’,cr)
COPY_PATH (pth1, 0,0, pth3, status)

IF (status <> 0) THEN
WRITE (’ERROR in COPY_PATH’, status, CR)

ENDIF

-- Create the required number of nodes for pth3.
-- We know that pth3 now has PATH_LEN(pth3) nodes.
WRITE (’Appending nodes to pth3’,cr)
FOR indx = p1_len+1 TO total_node DO -- Append the correct number of nodes.

APPEND_NODE(pth3, status)
IF (status <> 0) THEN

WRITE (’While Appending ’,indx, ’ node’,cr)
WRITE (’APPEND_NODE unsuccessful: Status = ’,status,cr)

ENDIF
ENDFOR
-- Append the node data of pth2 to pth3.
WRITE (’Appending pth2 to pth3’,cr)
FOR indx = p1_len+1 TO total_node DO

USING pth2[indx - p1_len] DO
pth3[indx].node_pos = node_pos
pth3[indx].group_data = group_data
pth3[indx].common_data = common_data

ENDUSING
ENDFOR

-- Move Along the path pth1 and pth2
WRITE (’Moving Along Path pth1’,cr)
MOVE ALONG pth1
WRITE (’Moving Along Path pth2’,cr)
MOVE ALONG pth2

--Copy pth3 in reverse order to pth4

B�30

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

COPY_PATH (pth3, PATH_LEN(pth3), 1, pth4, status)
IF (status <> 0) THEN

WRITE (’ERROR in COPY_PATH’, status, CR)
ENDIF--- Move along pth4 which is a reverse order of pth3.
WRITE (’Moving Along Path pth4’,cr)
MOVE ALONG pth4

Copy Path Variables Program - Copy User Defined Paths

---- Section 4-E: Copy User Defined Paths.
---- Copy one user defined path to another user defined path,
---- where the user specifies which paths to be copied.

CRT_CLS
SET_CURSOR(OUTPUT,2,10, status) -- Position cursor nicely on CRT
IF (status <> 0) THEN

WRITE (’SET_CURSOR built-in failed with status = ’,status,cr)
ENDIF

-- write message in reverse video and then set back to normal video
WRITE (chr(139),’ COPY PATH FUNCTION’,chr(143),CR,cr)

WRITE (’Currently you have the following ’,cr)
WRITE (’User Defined Paths’,cr,cr)

n_skip = 0
var_type = 31 -- Get listing of only PATH type variables
REPEAT
VAR_LIST (’CPY_PTH’, ’*’,var_type, n_skip, 2, ary_nam, n_match, status)

FOR indx = 1 TO n_match DO
IF (SUB_STR (ary_nam[indx], 1, 4) = ’UPTH’) THEN -- Verify it’s one of

-- the user defined path’s
WRITE (ary_nam[indx], CR)

ENDIF
ENDFOR
n_skip = n_skip + n_match

UNTIL (n_match < ARRAY_LEN(ary_nam))

Write (’Enter the source path number:’)
READ(src_num);

Write (’Enter the destination path number:’)
READ(des_num);

CNV_INT_STR(src_num,2,0,dummy_str) -- Convert source number to string
src_var = ’UPTH’+ SUB_STR(dummy_str,2,1) -- SUB_STR will remove the leading

-- blank from dummy_str before

B�31

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- concatenating to create the
var_type = 0 -- source variable name
VAR_LIST (’CPY_PTH’, src_var, var_type, 0, 2, ary_nam, n_match, status)
IF (status <> SUCCESS) THEN

WRITE (’Var_list for src_var: status ’, status, cr)
ENDIF

Copy Path Variables Program - Copy User Defined Paths Continued
-- If the variable does not exist create it.
IF (n_match = 0) THEN

CREATE_VAR (’’, src_var, ’’, ’USER_PATH’, 1, 0, 0, 0, status, mem_loc)
IF (status <> SUCCESS) THEN

WRITE (’Error creating ’, src_var, ’:’, status, cr)
ENDIF

ENDIF
--Create the destination variable name
CNV_INT_STR(des_num,2,0,dummy_str) -- Convert des_num to a string
des_var = ’UPTH’+ SUB_STR(dummy_str,2,1)-- The SUB_STR will remove the leading

-- blank from dummy_str before
-- concatenating to create the
-- source variable name

-- Verify that the des_var variable exists.
VAR_LIST (’CPY_PTH’, des_var, var_type, 0, 2, ary_nam, n_match, status)
IF (status <> SUCCESS) THEN

WRITE (’Var_list for des_vr: status’, status, cr)
ENDIF
-- If the variable does not exist create it.
IF (n_match = 0) THEN

CREATE_VAR (’’, des_var, ’’, ’USER_PATH’, 1, 0, 0, 0, status, mem_loc)
IF (status <> SUCCESS) THEN

WRITE (’Error creating ’, des_var, ’:’, status, cr)
ENDIF

ENDIF

-- Copy the specified source path to the specified destination path
pth_cpy(BYNAME(’’, src_var, indx), BYNAME(’’, des_var, indx))

-- Close file before quitting
CLOSE FILE crt_kb

WRITE (’CPY_PTH example completed’,cr)
END CPY_PTH

B�32

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

B.3 SAVING DATA TO THE DEFAULT DEVICE

This program will save variables or teach pendant programs to the default device. If the user specified
to overwrite the file then the file will be deleted before performing the save.

Note This program is called by the CPY_PTH.KL program. Refer to Section B.2 , for information on
CPY_PTH.KL.

Saving Data Program - Overview

---- SAVE_VRS.KL

---- Section 0: Detail about SAVE_VRS.KL

---- Elements of KAREL Language Covered: In Section:

---- Actions:

---- Clauses:

---- Conditions:

---- Data types:
---- BOOLEAN Sec 2
---- INTEGER Sec 2
---- STRING Sec 2

---- Directives:
---- COMMENT Sec 1
---- ENVIRONMENT Sec 1
---- NOLOCKGROUP Sec 1

---- Built-in Functions & Procedures:
---- DELETE_FILE Sec 4-B
---- SAVE Sec 4-B

---- Statements:
---- IF, THEN, ENDIF Sec 4-B
---- SELECT, CASE, ENDSELECT Sec 4-A
---- WRITE Sec 4-B

---- Reserve Words:
---- BEGIN Sec 4
---- CONST Sec 2
---- CR Sec 4-B
---- END Sec 4-B

B�33

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- PROGRAM Sec 1
---- VAR Sec 2

Saving Data Program - Declarations Section
--
---- Section 1: Program and Environment Declaration
--
PROGRAM SAVE_VRS
%NOLOCKGROUP
%COMMENT = ’Save .vr, .tp, .sv’
%ENVIRONMENT MEMO
%ENVIRONMENT FDEV

--
---- Section 2: Constant, Variable and Type Declarations
--
CONST

DO_VR = 1 -- Save variable file(s)
DO_TP = 2 -- Save TP program(s)
DO_SYS = 3 -- Save system variables

SUCCESS = 0 -- The value expected from all built-in calls.

VAR
sav_type : INTEGER -- Specifies the type of save to perform
prog_name : STRING[12] -- The program name to save
status : INTEGER -- The status returned from the built-in calls
file_spec : STRING[30] -- The created file specification for SAVE
dev : STRING[5] -- The device to save to specify whether to
del_vr : BOOLEAN -- delete file_spec before performing the SAVE.

--
---- Section 3: Routine Declaration
--

Saving Data Program - Create File Spec
--
---- Section 4: Main Program
--
BEGIN -- SAVE_VRS

--
---- Section 4-A: Create the file_spec, which contains the device, file
---- name and type to be saved.

SELECT (sav_type) OF

B�34

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

CASE (DO_VR):
-- If prog_name is ’*’ then all PC variables will be saved with the
-- correct program name, irregardless of the file name part of
-- file_spec.
file_spec = dev+prog_name+’.VR’ -- Create the variable file name

CASE (DO_TP):
-- If prog_name is ’*’ then all TP programs will be saved with the
-- correct TP program name, irregardless of the prog_name part of
-- file_spec.
file_spec = dev+prog_name+’.TP’ -- Create the TP program name

CASE (DO_SYS):
prog_name = ’*SYSTEM*’
file_spec = dev+’ALLSYS.SV’ -- All system variables will be

-- saved into this one file.
ENDSELECT

Saving Data Program - Delete/Overwrite

---- Section 4-B: Decide whether to delete the file before saving
---- and then perform the SAVE.

-- If the user specified to delete the file before saving, then
-- delete the file and verify that the delete was successful.
-- It is possible that the delete will return a status of:
-- 10003 : "file does not exist", for the FLPY: device
-- OR
-- 85014 : "file not found", for all RD: and FR: devices
-- We will disregard these errors since we do not care if the
-- file did not previously exist.
IF (del_vr = TRUE) THEN

DELETE_FILE (file_spec, FALSE, status) -- Delete the file.
IF (status <> SUCCESS) AND (status <> 10003) AND

(status <> 85014) THEN
WRITE (’Error ’, status,’ in attempt to delete ’,cr, file_spec,cr)

ENDIF
ENDIF

-- If prog_name is specified as an ’*’ for either .tp or .vr files then
-- the SAVE builtin will save the appropriate files/programs with the
-- correct names.
SAVE (prog_name, file_spec, status) -- Save the variable/program
IF (status <> SUCCESS) THEN -- Verify SAVE was successful

WRITE (’error saving ’, file_spec, ’variables’, status, cr)
ENDIF

END SAVE_VRS

B�35

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

B.4 STANDARD ROUTINES

This program is made up of several routines which are used through out the examples. The following
is a list of the routines within this file:

• CRT_CLS Clears the CRT/KB USER Menu screen
• TP_CLS Clears the teach pendant USER Menu screen

Standard Routines - Overview

---- ROUT_EX.KL

---- Section 0: Detail about ROUT_EX.kl

---- Elements of KAREL Language Covered: In Section:

---- Actions:

---- Clauses:
---- Conditions:

---- Data types:

---- Built-in Functions & Procedures:
---- CHR Sec 3-A,B
---- FORCE_SPMENU Sec 3-A,B

---- Statements:
---- ROUTINE Sec 3-A,B
---- WRITE Sec 3-A,B

---- Reserve Words:
---- BEGIN Sec 3-A,B; 4
---- CR Sec 3-B
---- END Sec 3-A,B; 4
---- PROGRAM Sec 1

---- Predefined File Names:
---- CRTERROR Sec 3-A
---- CRTFUNC Sec 3-A
---- CRTPROMPT Sec 3-A
---- CRTSTATUS Sec 3-A
---- OUTPUT Sec 3-A
---- TPERROR Sec 3-B

B�36

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

---- TPFUNC Sec 3-B
---- TPSTATUS Sec 3-B
---- TPPROMPT Sec 3-B

Standard Routines - Declaration Section

---- Section 1: Program and Environment Declaration

PROGRAM ROUT_EX
%NOLOCKGROUP ---- Don’t lock any motion groups
%COMMENT = ’MISC_ROUTINES’

---- Section 2: Constant and Variable Declarations

---- Section 3: Routine Declarations

---- Section 3-A: CRT_CLS Declaration
---- Clear the predefined windows:
---- CRTPROMPT, CRTSTATUS, CRTFUNC, CRTERROR, OUTPUT
---- Force Display of the CRT/KB USER SCREEN.

ROUTINE CRT_CLS

BEGIN ---- CRT_CLS
--See Chapter 7.9.2 for more information on the PREDEFINED window names

WRITE CRTERROR (CHR(128),CHR(137)) -- Clear Window, Home Cursor
WRITE CRTSTATUS (CHR(128),CHR(137)) -- Clear Window, Home Cursor
WRITE CRTPROMPT (CHR(128),CHR(137)) -- Clear Window, Home Cursor
WRITE CRTFUNC (CHR(128),CHR(137)) -- Clear Window, Home Cursor
WRITE OUTPUT (CHR(128),CHR(137)) -- Clear Window, Home Cursor
FORCE_SPMENU(CRT_PANEL,SPI_TPUSER,1) -- Force the CRT USER Menu

-- to be visible last. This will
-- avoid the screen from flashing
-- since the screen will be clean
-- when you see it.

END CRT_CLS

Standard Routines - Clears Screen and Displays Menu
--

B�37

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- Section 3-B: TP_CLS Declaration
Clear the predefined windows:

---- TPERROR, TPSTATUS, TPPROMPT, TPFUNC TPDISPLAY
---- Force Display of the TP USER Menu SCREEN.
--
ROUTINE TP_CLS
BEGIN

WRITE (CHR(128),CHR(137)) -- By default this will clear TPDISPLAY
WRITE TPERROR (CR,’ ’,CR)
WRITE TPSTATUS(CR,’ ’,CR)
WRITE TPPROMPT(CR,’ ’,CR)
WRITE TPFUNC (CR,’ ’,CR)
FORCE_SPMENU(TP_PANEL,SPI_TPUSER,1) -- Force the USER menu screen

-- to be visible last.
-- This will avoid the screen from
-- flashing since the screen will
-- be clean when you see it.

END TP_CLS

--
---- Section 4: Main Program
--
BEGIN -- ROUT_EX
END ROUT_EX

B.5 USING REGISTER BUILT-INS

This program demonstrates the use of the REGISTER builtins. REG_EX.KL retrieves the current
position and stores it in PR[1]. Then it executes the program PROG_VAL.TP. PROG_VAL will
modify the value within the Position Register PR[1].

After PROG_VAL is completed, REG_EX.KL retrieves the PR[1] position. The position is then
manipulated and restored in PR[2], and an INTEGER number is stored in R[1]. A different teach
pendant program, PROG_1.TP, is executed which loops through some positions and stores a value to
R[2]. The number of loops depends on the value of the R[1] (which was initially set by the KAREL
program.)

After PROG_1.TP has completed, the KAREL program gets the value from R[2] and verifies it
was the expected value.

The PROG_VAL.TP teach pendant program should look similar to the following.

B�38

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

PROG_VAL JOINT 10%

1: !POSITION REG VALUE ;
2:J P[1:ABOVE JOINT] 100% FINE ;
3: PR[1,2]=600 ;
4:L PR[1] 100.0 Inch/mm FINE ;
5:J P[1:ABOVE JOINT]100% FINE ;

The PROG_VAL.TP teach pendant program does the following:

• Moves to position 1 in joint mode.
• Changes the �y� location of the position in Position Register 1, PR[1] (which was set by the
KAREL program).

• Moves to the new PR[1] position.
• Finally moves back to position 1.

The PROG_1.TP teach pendant program should look similar to the following.

PROG_1 JOINT 10%

1: LBL[1:START] ;
2: IF R[1]=0, JMP LBL[2] ;
3:J P[1] 100% FINE ;
4:J P[2] 100% FINE ;
5: R[1]=R[1]–1 ;
6: JMP LBL[1] ;
7: LBL[2:DONE] ;
8: R[2]=1 ;

The PROG_1.TP teach pendant program does the following:

• Checks the value of the R[1].
• If the value of R[1] is not 0, then moves to J P[1] and J P[2] and decrements the value of R[1].
PROG_1.TP continues in this loop until the Register R[1] is zero.

• After the looping is complete, PROG_1.TP stores value 1 in R[2], which will be checked by
the KAREL program.

Using Register Built-ins Program - Overview
--

B�39

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- REG_EX.Kl
--
---- Elements of KAREL Language Covered: In Section:

---- Actions:

---- Clauses:

---- Conditions:

---- Data types:
---- BOOLEAN Sec 2
---- JOINTPOS Sec 2
---- REAL Sec 2
---- XYZWPR Sec 2

---- Directives:
---- ALPHABETIZE Sec 1
---- COMMENT Sec 1
---- NOLOCKGROUP Sec 1

---- Built-in Functions & Procedures:
---- CALL_PROGLIN Sec 4-A, 4-C
---- CHR Sec 4
---- CURPOS Sec 4-A
---- FORCE_SPMENU Sec 4
---- GET_POS_REG Sec 4-B
---- GET_JPOS_REG Sec 4-B
---- GET_REG Sec 4-C
---- POS_REG_TYP Sec 4-B
---- SET_JPOS_REG Sec 4-B
---- SET_INT_REG Sec 4-B
---- SET_POS_REG Sec 4-A

---- Statements:
---- WRITE Sec 4, 4-A,B,C
---- IF..THEN..ELSE..ENDIF Sec 4-A,B,C
---- SELECT...CASE...ENDSELECT Sec 4-B

---- Reserve Words:
---- BEGIN Sec 4
---- CONST Sec 2
---- CR Sec 4-A,B,C
---- END Sec 4-C
---- PROGRAM Sec 4
---- VAR Sec 2

B�40

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Using Register Built-ins Program - Declaration Section

---- Section 1: Program and Environment Declaration

PROGRAM reg_ex
%nolockgroup
%comment = ’Reg-Ops’
%alphabetize

---- Section 2: Variable Declaration

CONST

cc_success = 0 -- Success status
cc_xyzwpr = 2 -- Position Register has an XYZWPR
cc_jntpos = 9 -- Position Register has a JOINTPOS

VAR
xyz :XYZWPR
jpos :JOINTPOS
r_val :REAL
prg_indx,
i_val,
pos_type,
num_axes,
status :INTEGER
r_flg :BOOLEAN

--
---- Section 3: Routine Declaration
--
--
---- Section 4: Main program
--
BEGIN -- REG_EX

write(chr(137),chr(128)); -- Clear the TP USER menu screen
FORCE_SPMENU(TP_PANEL,SPI_TPUSER,1) -- Force the TP USER menu to be

-- visible

Using Register Built-ins - Storing and Manipulating Positions
--
---- Section 4-A: Store current position in PR[1] and execute PROG_VAL.TP
--

WRITE(’Getting Current Position’,cr)
xyz = CURPOS(0,0) -- Get the current position

B�41

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

WRITE(’Storing Current position to PR[1]’,cr)
SET_POS_REG(1,xyz, status) -- Store the position in PR[1]
IF (status = cc_success) THEN -- verify SET_POS_REG is successful

WRITE(’Executing "PROG_VAL.TP"’,cr)
CALL_PROGLIN(’PROG_VAL’,2,prg_indx, FALSE)

--Execute ’PROG_VAL.TP’ starting
-- at line 2. Do not pause on
-- entry of PROG_VAL.

--
---- Section 4-B: Get new position from PR[1]. Manipulate and store in PR[2]
--

WRITE(’Getting Position back from PR[1]’,cr)
-- Decide what type of position is stored in Position Register 1, PR[1]

POS_REG_TYPE(1, 1, pos_type, num_axes, status)
IF (status = cc_success) THEN
-- Get the position back from PR[1], using the correct builtin.
-- This position was modified in PROG_VAL.TP

SELECT pos_type OF
CASE (cc_xyzwpr):

xyz= GET_POS_REG(1, status)
CASE (cc_jntpos):

jpos = GET_JPOS_REG(1, status)
xyz = jpos

ELSE:
write (’The position register set to invalid type’, pos_type,CR)
status = -1 -- set status so do not continue.

ENDSELECT
IF (status = cc_success) THEN -- Verify GET_POS_REG/GET_JPOS_REG is

-- successful
xyz.x = xyz.x+10 -- Manipulate the position.
xyz.z = xyz.z-10
jpos = xyz -- Convert to a JOINTPOS

WRITE(’Setting New Position to PR[2]’,cr)
SET_JPOS_REG(2,jpos,status) -- Set the JOINTPOS into PR[2]
IF (status = cc_success) THEN -- Verify SET_JPOS_REG is successful

WRITE(’Setting Integer Value to R[1]’,cr)
SET_INT_REG(1, 10, status) -- Set the value 10 into R[1]

Using Register Built-ins - Executing Program and Checking Register
--
---- Section 4-C: Execute PROG_1.TP and check the R[2]
--

IF (status=cc_success) THEN --Verify SET_INT_REG is successful
WRITE(’Executing "PROG_1.TP"’,cr)

B�42

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

CALL_PROGLIN(’PROG_1’,1, prg_indx, FALSE)
--Execute PROG_1.TPstarting on first line.
--Do not pause on entry of PROG_1.

WRITE(’Getting Value from R[2]’,cr)
GET_REG(2,r_flg, i_val, r_val, status) --Get R[2] value
IF (status = cc_success) THEN --Verify GET_REG success

IF (r_flg) THEN --REAL value in register
WRITE(’Got REAL value from R[2]’,cr)

IF (r_val <> 1.0) THEN --Verify value set
WRITE (’PROG_1 failed to set R[2]’,cr)-- by PROG_1_TP
WRITE (’PROG_1 failed to set R[2]’,cr)

ENDIF
ELSE --Register contained an INTEGER

WRITE(’Got INTEGER value from R[2]’,cr)
IF (i_val <> 1) THEN --Verify value set by

WRITE (’PROG_1 failed to set R[2]’,cr) --PROG_1.TP
ENDIF

ENDIF
ELSE --GET_REG was NOT successful

WRITE(’GET_REG Failed’,cr,’ Status = ’,status,cr)
ENDIF

ELSE --SET_INT_REG was NOT successful
WRITE(’SET_INT_REG Failed, Status = ’,status,cr)

ENDIF
ELSE --SET_JPOS_REG was NOT successful

WRITE(’SET_JPOS_REG Failed, Status = ’,status,cr)
ENDIF

ELSE -- GET_POS_REG was NOT Successful
WRITE(’GET_POS_REG Failed, Status = ’,status,cr)

ENDIF
ELSE

WRITE (’POS_REG_TYPE Failed, Status =’, status, cr)
ENDIF

ELSE -- SET_POS_REG was NOT successful
WRITE(’SET_POS_REG Failed, Status = ’,status,cr)

ENDIF
IF (status = cc_success) THEN; WRITE (’Program Completed

Successfully’,cr)
ELSE ; WRITE (’Program Aborted due to error’,cr)
ENDIF

END reg_ex

B.6 PATH VARIABLES AND CONDITION HANDLERS PROGRAM

This program checks to determine if PATH variables are taught or not. If the paths are taught, the
robot moves to a joint position and then loops along a path 5 times.

B�43

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

This example also sets up two global condition handlers.

• The first condition handler detects if the user has pushed a teach pendant key, and if so aborts the
program.

• The second condition handler sets a variable when the program is aborted.

Path Variables and Condition Handlers Program - Overview
--
---- PTH_MOVE.Kl
--
--
---- Section 0: Detail about PTH_MOVE.kl
--
---- Elements of KAREL Language Covered: In Section:
---- Actions:
---- ABORT Sec 4-A

---- Clauses:
---- WHEN Sec 4-A
---- WITH Sec 4-D
---- FROM Sec 3-A
---- VIA Sec 4-D

---- Conditions:
---- ABORT Sec 4-A
---- Data types:
---- ARRAY OF REAL Sec 2
---- BOOLEAN Sec 2
---- INTEGER Sec 2
---- JOINTPOS6 Sec 2
---- PATH Sec 2
---- XYZWPR Sec 2

---- Directives:
---- ALPHABETIZE Sec 1
---- COMMENT Sec 1
---- ENVIRONMENT Sec 1

---- Built-in Functions & Procedures:
---- PATH_LEN Sec 4-C
---- CHR Sec 3-B; 4-B,D
---- CNV_REL_JPOS Sec 4-D
---- SET_CURSOR Sec 4-B

B�44

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Path Variables and Condition Handlers Program - Overview Continued
---- Statements:
---- Abort Sec 4-C
---- CONDITION...ENDCONDITION Sec 4-A
---- FOR...ENDFOR Sec 4-D
---- ROUTINE Sec 3-A, B
---- WAIT FOR Sec 3-B
---- WRITE Sec 3-B; 4-B,C,D

---- Reserve Words:
---- BEGIN Sec 3-A,B, 4
---- CONST Sec 2
---- END Sec 3-A,B: 4-D
---- VAR Sec 2
---- PROGRAM Sec 1

---- Predefined File Names:
---- TPFUNC Sec 3-B; 4-D
---- TPDISPLAY Sec 4-B

Path Variables and Condition Handlers Program - Declaration Section
--
---- Section 1: Program and Environment Declaration
--
PROGRAM PTH_MOVE -- Define the program name
%ALPHABETIZE -- Create the variables in alphabetical order
%COMMENT = ’PATH MOVES’

%ENVIRONMENT PATHOP -- Necessary for PATH_LEN
%ENVIRONMENT SYSDEF -- Necessary for using the $MOTYPE in the
MOVEs
%ENVIRONMENT UIF -- Necessary for SET_CURSOR

--
---- Section 2: Constant and Variable Declarations
--
CONST

CH_ABORT = 1 -- Number associated with the
-- abort Condition handler

CH_F1 = 2 -- Number associated with the
-- F1 key Condition handler

VAR
status :INTEGER -- Status from built-in calls
loop_pth :INTEGER -- Used in a FOR loop counter
prg_abrt :BOOLEAN -- Set when program is aborted

B�45

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

pth1 :PATH
strt_jnt :JOINTPOS6 -- starting position of a move
via_pos :XYZWPR -- via point for a circular move
des_pos :XYZWPR -- destination point
real_ary :ARRAY[6] OF REAL -- This is used for creating

-- a joint position with 6 axes
index :INTEGER -- FOR loop counter

Path Variables and Condition Handlers Program - Declare Routines
--
---- Section 3: Routine Declaration
--
---- Section 3-A: RANDOM Declaration
---- ROUTINE TP_CLS FROM ROUT_EX -- ROUT_EX must also be loaded.
--
--
---- Section 3-B: YES_NO Declaration
---- Display maximum elements of ary_nam.
--- Display choices on the function line of the TP.
---- Asks for user response.
--- F1 key is monitored by the Global condition handler
---- [CH_F1] and the F2 is monitored here.
---- If F1 is pressed the program will abort.
--- But, if the F2 is pressed the program will continue.
--
ROUTINE YES_NO
BEGIN

WRITE TPFUNC (CHR(137)) -- Home Cursor in Function window
WRITE TPFUNC (’ ABORT CONT’) -- Display Function key options
WAIT FOR TPIN[131] -- Wait for user to respond to

-- continue. If the user presses
-- F1 (abort) condition handler
-- CH_ABORT will abort program.

WRITE TPFUNC (CHR(137)) -- Home Cursor in Function window
WRITE TPFUNC (’ ABORT’,chr(129)) -- Redisplay just Abort option and

-- clear rest of Function window
END YES_NO

Path Variables and Condition Handlers Program - Declare Condition Handlers

---- Section 4: Main Program

BEGIN -- PTH_MOVE

---- Section 4-A: Global Condition Handler Declaration

CONDITION[CH_ABORT]:

B�46

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

WHEN ABORT DO -- When the program is aborting set prg_abrt flag.
-- This will be triggered if this program aborts itself
-- or if an external mechanism aborts this program.

prg_abrt = TRUE -- You may then have another task which detects
-- prg_abrt being set, and does shutdown operations
-- (ie: set DOUT/GOUT’s, send signals to a PLC)

ENDCONDITION

CONDITION[CH_F1]:
WHEN TPIN[129] DO -- Monitor TP ’F1’ Key. If ’F1’ key is pressed,

ABORT -- abort the program.
ENDCONDITION

prg_abrt = false -- Initialize variable which is set
only if

-- the program is aborted and CH_ABORT is
-- enabled.

ENABLE CONDITION[CH_ABORT] -- Start scanning abort condition as defined.
ENABLE CONDITION[CH_F1] -- Start scanning F1 key condition as defined.

---- Section 4-B: Display banner message and wait for users response

TP_CLS -- Routine Call; Clears the TP USER
-- menu, and forces the TP USER menu
-- to be visible.

SET_CURSOR(TPDISPLAY,2,13, status) -- Set cursor position in TP
USER menu
IF (status <> 0) THEN -- Verify that SET_CURSOR was successful

WRITE (’SET_CURSOR built-in failed with status = ’,status,cr)
YES_NO -- Ask whether to quit, due to error.

ENDIF
--- Write heading in REVERSE video, then turn reverse video off
WRITE (chr(139),’ PLEASE READ ’,chr(143),CR)
WRITE (cr,’ *** F1 Key is labelled as ABORT key *** ’)
WRITE (cr,’ Any time the F1 key is pressed the program’)
WRITE (cr,’ will abort. However, the F2 key is active ’)
WRITE (cr,’ only when the function key is labeled.’,cr,cr)
YES_NO -- Wait for user response

Path Variables and Condition Handlers Program - Teach and Move Along Path
--
---- Section 4-C: Verify PATH variable, pth1, has been taught
--

B�47

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- Check the number of nodes in the path
IF PATH_LEN(pth1) = 0 THEN -- Path is empty (has no nodes)

WRITE (’You need to teach the path.’,cr) -- Display instructions to user
WRITE (’before executing this program.’,cr)
WRITE (’Teach the PATH variable pth1’, CR, ’ and restart the program’,cr)
ABORT -- Simply ABORT the task

-- do not continue since there
ENDIF -- are no nodes to move to

--
---- Section 4-D: Creating a joint position and moving along path’s
--

FOR indx = 1 to 6 DO -- Set all joint angles to zero
real_ary[indx] = 0.0

ENDFOR

real_ary[5] = 90.0 -- Make sure that the position
-- is not at a singularity point.

CNV_REL_JPOS(real_ary, strt_jnt, status) -- Convert real_ary values into
-- a joint position, strt_jnt

IF (status <> 0) THEN -- Converting joint position
-- was NOT successful

WRITE (’CNV_REL_JPOS built-in failed with status = ’,status,cr)
YES_NO -- Ask user if want to continue.

ELSE -- Converting joint position was
-- successful.

-- The start position, strt_jnt, has been created and is located at
-- axes 1-4 = 0.0, axes 5 = 90.0, axes 6 = 0.0.

via_pos = strt_jnt -- Copy the strt_jnt to via_pos
via_pos.x = via_pos.x +200 -- Add offset to the x location
via_pos.y = via_pos.y +200 -- Add offset to the y location

-- The via position, via_pos, has been created to be the same position
-- as strt_jnt except it has been offset in the x and y locations by
-- 200 mm.

des_pos = strt_jnt -- Copy the strt_jnt to des_pos
des_pos.x = des_pos.x + 400 -- Add offset to the x location

-- The destination position, des_pos, has been created to be the same
-- position as strt_jnt except it has been offset in the x location by
-- 200 mm.

Path Variables and Condition Handlers Program - Move Along Path
MOVE TO strt_jnt -- Move to the start position

B�48

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

WRITE (cr,’Moving to Destination Position’,cr)
WITH $MOTYPE = CIRCULAR MOVE TO des_pos VIA via_pos

-- Move robot to destination
-- position using circular motion
-- via the via_pos

ENDIF

--- Execute the same path for 5 times.

FOR loop_pth = 1 TO 5 DO
WRITE (’Moving Along pth1 ’,loop_pth::2, ’ times’,cr)

-- Display the loop iteration
-- NOTICE: that "loop_pth::2" will cause 2 blanks to be
-- displayed after "pth1 ’" and before loop_pth.

MOVE ALONG pth1
ENDFOR

WRITE TPFUNC (CHR(128),CHR(137)) -- Home Cursor and Clear to
-- End-of-line. This will remove
-- the ABORT displayed above F1.

WRITE (’pth_move Successfully Completed’,cr)

END PTH_MOVE

B.7 LISTING FILES AND PROGRAMS AND MANIPULATING
STRINGS

This program displays the list of files on the FLPY: device, and lists the programs loaded on the
controller. It also shows basic STRING manipulating capabilities, using semi-colons(;) as a statement
separator, and nesting IF statements.

Listing Files and Programs and Manipulating Strings - Overview
--
---- LIST_EX.Kl
--
---- Section 0: Detail about LIST_EX.kl
--
---- Elements of KAREL Language Covered: In Section:

---- Actions:

---- Clauses:
---- FROM Sec 3-B

B�49

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- Conditions:

---- Data types:
---- ARRAY OF STRING Sec 2
---- BOOLEAN Sec 2, 3
---- INTEGER Sec 2, 3
---- STRING Sec 2

---- Directives:
---- %COMMENT Sec 1
---- %NOLOCKGROUP Sec 1

---- Built-in Functions & Procedures:
---- ABS Sec 4-A
---- ARRAY_LEN Sec 4-C&D
---- CNV_INT_STR Sec 4-A
---- FILE_LIST Sec 4-C
---- LOAD Sec 4-B
---- LOAD_STATUS Sec 4-B
---- PROG_LIST Sec 4-D
---- ROUND Sec 4-A
---- SUB_STR Sec 4-A

Listing Files and Programs and Manipulating Strings - Overview Continued
---- Statements:
---- FOR ENDFOR Sec 3-B
---- IF...THEN...ENDIF Sec 4-A,B,C,D
---- ROUTINE Sec 3-A,B,C
---- REPEAT...UNTIL Sec 4-C,D
---- RETURN Sec 3-A
---- WRITE Sec 3-B; 4-A,B

---- Reserve Words:
---- BEGIN Sec 3-A,B; 4
---- CONST Sec 2
---- CR Sec 3-B; 4-A,B
---- END Sec 3-A,B, 4-B
---- PROGRAM Sec 1
---- VAR Sec 2

---- Operators:
---- MOD Sec 3-A
---- / Sec 3-A
---- * Sec 3-A

---- Devices Used:

B�50

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

---- FLPY: Sec 4-C

---- Basic Concepts:
---- Semi-colon(;) as statement separator
---- Nested IF..THEN..ELSE..IF..THEN..ELSE..ENDIF..ENDIF structure
---- Concatenation of STRINGS using ’+’

Listing Files and Programs and Manipulating Strings - Declarations Section
--
---- Section 1: Program and Environment Declaration
--
PROGRAM LIST_EX
%NOLOCKGROUP ---- Don’t lock any motion groups
%COMMENT = ’FILE_LIST’
--
---- Section 2: Constant and Variable Declarations
--

CONST
INCREMENT = 13849
MODULUS = 65536
MULTIPLIER = 25173

VAR
pr_cases :STRING[6] -- psuedo random number converted to string
prg_nm :STRING[50] -- Concatenated program name
loaded :BOOLEAN -- Used to see if program is loaded
initi :BOOLEAN -- Used to see if variables initialized

indx1 :INTEGER -- FOR loop index
cases, -- Random number returned
max_number, -- Maximum random number
seed :INTEGER -- Seed for generating a random number

file_spec :STRING[20] -- File specification for FILE_LIST
n_files :INTEGER -- Number of files returned from FILE_LIST
n_skip :INTEGER -- Number to skip for FILE_LIST & PROG_LIST
format :INTEGER -- Format of returned names

-- For FILE_LIST & PROG_LIST
ary_nam :ARRAY[9] OF STRING[20] -- Returned names

-- from FILE_LIST & PROG_LIST

prog_name :STRING[10] -- Program names to list from PROG_LIST
prog_type :INTEGER -- Program types to list form PROG_LIST
n_progs :INTEGER -- Number of programs returned from PROG_LIST

B�51

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

status :INTEGER -- Status of built-in procedure call

Listing Files and Programs and Manipulating Strings - Declare Routines

---- Section 3: Routine Declaration

---- Section 3-A: RANDOM Declaration
--- Creates a pseudo-random number and returns the number.

ROUTINE random(seed : INTEGER) : REAL
BEGIN

seed = (seed * MULTIPLIER + INCREMENT) MOD MODULUS
RETURN(seed/65535.0)

END random

---- Section 3-B: DISPL_LIST Declaration
---- Display maxnum elements of ary_nam.

ROUTINE displ_list(maxnum :INTEGER)
BEGIN

FOR indx1 = 1 TO maxnum DO ; WRITE (ary_nam[indx1],cr); ENDFOR
-- Notice the use of the semi-colon, which allows multiple statements
-- on a line.

END displ_list

---- Section 3-C: TP_CLS Declaration
---- This routine is from ROUT_EX.KL and will
---- clear the TP USER menu screen and force it to be visible.

ROUTINE tp_cls FROM rout_ex

Listing Files and Programs and Manipulating Strings - Main Program
--
---- Section 4: Main Program
--
BEGIN -- LIST_EX
tp_cls -- Use routine from the rout_ex.kl file

--
---- Section 4-A: Generate a pseudo random number, convert INTEGER to STRING
--

max_number = 255 ; -- So the random number is 0..255

B�52

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

seed = 259 ;

WRITE (’Manupulating String’,cr)
cases = ROUND(ABS((random(seed)*max_number)))-- Call random then take the

-- absolute value of the number
-- returned and round off the
-- number.

CNV_INT_STR(cases, 1, 0, pr_cases) -- Convert cases to its
-- ascii representation

pr_cases = SUB_STR(pr_cases, 2,3) -- get at most 3 characters,
-- starting at the second
-- character, since first
-- character is a blank.

Listing Files and Programs and Manipulating Strings - Create and Load Program
--
---- Section 4-B: Build a program name from the number and try to load it
--

--- Build a random program name to show the manipulation of
--- STRINGS and INTEGERs.

prg_nm = ’MYPROG’ + pr_cases + ’.PC’ -- Concatenate the STRINGs together
-- which create a program name

--- Verify that the program is not already loaded
WRITE (’Checking load status of ’,prg_nm,cr)
LOAD_STATUS(prg_nm, loaded, initi)
IF (NOT loaded) THEN -- The program is not loaded

WRITE (’Loading ’,prg_nm,cr)
LOAD(prg_nm, 0 , status) -- Load in the program
IF (status = 0) THEN -- Verify load is successful

WRITE (’Loading ’,’MYPROG’ + pr_cases + ’.VR’,cr)
LOAD(’MYPROG’ + pr_cases + ’.VR’, 0, status) -- Load the .vr file
IF (status <> 0) THEN -- Loading variables failed

WRITE (’Loading of ’, ’MYPROG’ + pr_cases + ’.VR’, ’ failed’,cr)
WRITE (’Status = ’,status);

ENDIF
ELSE -- Load of program failed

IF (status = 10003) THEN -- File does not exist
WRITE (prg_nm, ’ file does not exist’,cr)

ELSE
WRITE (’Loading of ’,prg_nm, ’ failed’,cr,’Status = ’,status);

ENDIF
ENDIF

ELSE -- The program is already loaded

B�53

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

IF (NOT initi) THEN -- Variables not initialized
WRITE (’Loading ’,’MYPROG’ + pr_cases + ’.VR’,cr)
LOAD(’MYPROG’ + pr_cases + ’.VR’, 0, status) -- Load in variables
IF (status <> 0) THEN -- Load of variables failed

WRITE (’Loading of ’, ’MYPROG’ + pr_cases + ’.VR’, ’ failed’,cr)
WRITE (’Status = ’,status);

ENDIF
ENDIF

ENDIF

Listing Files and Programs and Manipulating Strings - List Programs
--
---- Section 4-C: Check the file listing of the drive FLPY: and display them
--

--- Display a directory listing of files on the Flpy:
file_spec = ’FLPY:*.*’ -- All files in FLPY: drive
n_skip = 0 -- First time do not skip any files
format = 3 -- Return list in filename.filetype format

WRITE (’Doing File list’,cr)
REPEAT -- UNTIL all files have been listed

FILE_LIST(file_spec, n_skip, format, ary_nam, n_files, status)
IF (status <>0) THEN -- Error occurred

WRITE (’FILE_LIST builtin failed with Status = ’,status,cr)
ELSE

displ_list(n_files) -- Write the names to the TP USER menu
n_skip = n_skip + n_files -- Skip the files we already got.

ENDIF
UNTIL (ARRAY_LEN(ary_nam) <> n_files) -- When n_files does not equal

-- declared size of ary_name then
-- all files have been listed.

--
---- Section 4-D: Show the programs loaded in controller
--

--- Display the list of programs loaded on the controller
prog_name = ’*’ -- All program names should be listed
prog_type = 6 -- Only PC type files should be listed
n_skip = 0 -- First time do not skip any file
format = 2 -- Return list in filename.filetype format

WRITE (’Doing Program list’,cr)
REPEAT -- UNTIL all programs have been listed

PROG_LIST(prog_name, prog_type, n_skip, format, ary_nam, n_progs, status)
-- The program names are stored in ary_nam

B�54

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

-- n_progs is the number of program names stored in ary_nam
IF (status <>0) THEN

WRITE (’PROG_LIST builtin failed with Status = ’,status,cr)
ELSE

displ_list(n_progs) -- Display the current list
n_skip = n_skip + n_progs -- Skip the programs already listed

ENDIF
UNTIL (ARRAY_LEN(ary_nam) <> n_progs) -- When n_files does not equal the

-- declared size of ary_name then all
-- programs have been listed.

END LIST_EX

B.8 GENERATING AND MOVING ALONG A HEXAGON PATH

This program generates a hexagon path and moves along each side of the hexagon.

Generate and Move Along Hexagon Path - Overview
--
---- GEN_HEX.KL
--
---- Section 0: Detail about GEN_HEX.KL
--
---- Elements of KAREL Language Covered: In Section:---- Action:---- Clauses:
---- WITH Sec 3-B; 4-B
---- Conditions:---- Data types:
---- ARRAY OF REAL Sec 3-B
---- ARRAY OF XYZWPR Sec 2
---- INTEGER Sec 2; 3-A,B
---- JOINTPOS6 Sec 2
---- REAL Sec 3-A
---- Directives:

%COMMENT Sec 1---- Built-in Functions &
Procedures:

---- CHECK_EPOS Sec 4-B
---- CNV_REL_JPOS Sec 3-B
---- COS Sec 3-A
---- CURPOS Sec 4-A
---- SIN Sec 3-A---- Statements:
---- CONNECT TIMER Sec 4-A
---- FOR ... ENDFOR Sec 3-A,B; 4-B
---- MOVE TO Sec 3-B; 4-B
---- ROUTINE Sec 3-A,B
---- WRITE Sec 4-A,B---- Reserve Word:
---- BEGIN Sec 3-A,B; 4
---- CONST Sec 2
---- CR Sec 4-A

B�55

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- END Sec 3-A,B; 4-B
---- PROGRAM Sec 1
---- VAR Sec 2

Generate and Move Along Hexagon Path - Declaration Section
--
---- Section 1: Program and Environment Declaration
--
PROGRAM gen_hex
%COMMENT = ’HEXAGON’

--
---- Section 2: Constant and Variable Declaration
--
CONST

L_HEX_SIDE = 300 -- Length of one side of the hexagon
NUM_AXES = 6 -- Number of robot axesVAR
p_cntr : JOINTPOS6 -- Center of the hexagon
p_xyzwpr : ARRAY[NUM_AXES] OF XYZWPR

-- Six vertices of the hexagon clock,
t_start,
t_end,
t_total : INTEGER status,
p_indx : INTEGER

Generate and Move Along Hexagon Path - Declare Routines
--
---- Section 3: Routine Declaration
--
--
---- Section 3-A: R_CALC_HEX Declaration
---- Calculates the hexagon points based on distance
---- between point 1 and 4 of the hexagon.
--
ROUTINE r_calc_hex
VAR

p1_to_pcntr : REAL -- Distance from the center of the hex to point 1
vertice : INTEGER -- the index used specify each vertice of hexagon

BEGIN
p1_to_pcntr = (L_HEX_SIDE / 2) + (L_HEX_SIDE * COS(60))
p_xyzwpr[1] = p_cntr -- p_cntr was calculated in r_hex_center
p_xyzwpr[1].y = p_xyzwpr[1].y - p1_to_pcntr --set the first vertice of hex
FOR vertice = 2 TO NUM_AXES DO -- start at 2 since 1 is already set

p_xyzwpr[vertice] = p_xyzwpr[1] -- Intialize all vertices
ENDFOR
-- Calculating individual components for each vertice of the hexagon
p_xyzwpr[2].x = p_xyzwpr[1].x + (L_HEX_SIDE * SIN(60))

B�56

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

p_xyzwpr[2].y = p_xyzwpr[1].y + (L_HEX_SIDE * COS(60))
p_xyzwpr[3].x = p_xyzwpr[1].x + (L_HEX_SIDE * SIN(60))
p_xyzwpr[3].y = p_xyzwpr[1].y + (L_HEX_SIDE + (L_HEX_SIDE * COS(60)))

p_xyzwpr[4].y = p_xyzwpr[1].y + (L_HEX_SIDE + (2 * (L_HEX_SIDE * COS(60)))
p_xyzwpr[5].x = p_xyzwpr[1].x - (L_HEX_SIDE * SIN(60))
p_xyzwpr[5].y = p_xyzwpr[3].y
p_xyzwpr[6].x = p_xyzwpr[1].x - (L_HEX_SIDE * SIN(60))
p_xyzwpr[6].y = p_xyzwpr[2].y

END r_calc_hex

Generate and Move Along Hexagon Path - Declare Routines

---- Section 3-B: R_CALC_HEX Declaration
---- Positions the face plate perpendicular
---- to the xy world coordinate plane.

ROUTINE r_hex_center
VAR

status, indx : INTEGER
p_cntr_arry : ARRAY[NUM_AXES] OF REAL

BEGIN
-- Initalize the center position array to zero

FOR indx = 1 TO NUM_AXES DO
p_cntr_arry[indx] = 0

ENDFOR
-- Set JOINT 3 and 5 to -45 and 45 degrees

p_cntr_arry[3] = -45
p_cntr_arry[5] = 45-- Convert the REAL array to a joint position,

p_cntr
CNV_REL_JPOS(p_cntr_arry,p_cntr,status)
$motype = JOINT
WITH $GROUP[1].$SPEED = 1000

MOVE TO p_cntr

END r_hex_center

Generate and Move Along Hexagon Path - Main Program

---- Section 4: Main Program

BEGIN --- GEN_HEX

---- Section 4-A: Connect timer, set uframe, call routines

clock = 0 -- Initialize clock value to zero

B�57

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

CONNECT TIMER TO clock -- Connect the timer
WRITE (’Moving to the center of the HEXAGON’,CR) -- update user of process
r_hex_center -- position the face plate of robot.
$UFRAME = CURPOS(0,0) -- Set uframe to CURPOS of the robot.
WRITE (’Calculating the sides of HEXAGON’,CR) -- update user
r_calc_hex -- Calculate the hexagon points

---- Section 4-B: Move on sides of hexagon

WRITE (’Moving along the sides of the Hexagon’,CR) -- Update user
$MOTYPE = JOINT -- Set the system variable $GROUP[1].$MOTYPE
$SPEED = 2000 -- Set the system variable $GROUP[1].$SPEED
$TERMTYPE = FINE -- Set the system variable $GROUP[1].$TERMTYPE
t_start = clock -- Record the time before motion begins

FOR p_indx = 1 TO 6 DO
-- Verify that the position is reachable
CHECK_EPOS ((p_xyzwpr[p_indx]), $UFRAME, $UTOOL, status)
IF (status <> 0) THEN
WRITE (’unable to move to p_xyzwpr[’, p_indx,’]’,CR);

ELSE
MOVE TO p_xyzwpr[1] -- Move to first vertice of hexagon

ENDIF
ENDFOR
MOVE TO p_xyzwpr[1] -- Move back to first vertice of hexagon
WITH $GROUP[1].$MOTYPE = LINEAR MOVE TO p_cntr -- Move TCP in a straight

-- line to the center position
t_end = clock -- Record ending time
WRITE(’Total motion time = ’,t_end-t_start,CR) --Display the total time for

-- motion.
-- NOTE that the total was
-- computed in the

WRITE
-- statement.

END GEN_HEX£

B.9 USING THE FILE AND DEVICE BUILT-INS

This program demonstrates how to use the File and Device built-ins. This program FORMATS and
MOUNTS the RAM disk. Then copies files from the FLPY: device to RD:. If the RAM disk gets full
the RAM disk size is increased and reformatted. This program continues until either all the files are
copied successfully, or the built-in operations fail.

B�58

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

File and Device Built-ins Program - Overview
--
---- FILE_EX.Kl
--
---- Section 0: Detail about FILE_EX.kl
--
---- Elements of KAREL Language Covered: In Section:

---- Action:

---- Clauses:
---- FROM Sec 3
---- Conditions:

---- Data types:
---- BOOLEAN Sec 2
---- INTEGER Sec 2
---- STRING Sec 2
---- Directives:
---- COMMENT Sec 1
---- NOLOCKGROUP Sec 1

---- Built-in Functions & Procedures:
---- CNV_TIME_STR Sec 4-A
---- COPY_FILE Sec 4-B
---- DISMOUNT_DEV Sec 4-B
---- FORMAT_DEV Sec 4-B
---- GET_TIME Sec 4-A
---- MOUNT_DEV Sec 4-B
---- PURGE_DEV Sec 4-B
---- SUB_STR Sec 4-A

---- Statements:
---- IF...THEN...ELSE...ENDIF Sec 4-B
---- REPEAT...UNTIL Sec 4-A
---- ROUTINE Sec 3
---- SELECT...ENDSELECT Sec 4-B
---- WRITE Sec 4-A,B

File and Device Built-ins Program - Overview Continued
---- Reserve Words:
---- BEGIN Sec 4
---- CONST Sec 2
---- CR Sec 4-A,B
---- END Sec 4-B
---- PROGRAM Sec 4
---- VAR Sec 2

B�59

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- Devices Used:
---- FLPY Sec 4-B
---- MF3 Sec 4-B
---- RD Sec 4-B
---- FR Sec 4-B

File and Device Built-ins Program - Declaration Section, Declare Routines
--
---- Section 1: Program and Environment Declaration
--
PROGRAM FILE_EX
%nolockgroup
%comment = ’COPY FILES’
--
---- Section 2: Variable Declaration
--
CONST

SUCCESS = 0 -- Success status from builtins
FINISHED = TRUE -- Finished Copy
TRY_AGAIN = FALSE -- Try to copy again
RD_FULL = 85020 -- RAM disk full
NOT_MOUNT = 85005 -- Device not mounted
FR_FULL = 85001 -- FROM disk is full
MNT_RD = 85004 -- RAM disk must be mounted

--Refer to FANUC Robotics SYSTEM R-J3iB Controller KAREL
Setup and Operations Manual for an Error Code listing

VAR
time_int : INTEGER
time_str : STRING[30]
status : INTEGER
cpy_stat : BOOLEAN
to_dev : STRING[5]

--
---- Section 3: Routine Declaration
--
ROUTINE tp_cls FROM ROUT_EX
--
---- Section 4: Main program
--
BEGIN -- FILE_EX

tp_cls -- from rout_ex.kl
--
---- Section 4-A: Get Time and FORMAT ramdisk with date as volume name
--
GET_TIME(time_int) -- Get the system time

B�60

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

CNV_TIME_STR(time_int, time_str) -- Convert the INTEGER time
-- to readable format

WRITE (’Today is ’, SUB_STR(time_str, 2,8),CR) -- Display the date part
WRITE (’Time is ’, SUB_STR(time_str, 11,5),CR) -- Display the time part

File and Device Built-ins Program - Mount and Copy to RAM Disk

---- Section 4-B: Mount RAMDISK and start copying from FLPY to
MF3:

to_dev = ’MF3:’
REPEAT -- Until all files have been copied

cpy_stat = FINISHED
WRITE(’COPYing......’,cr)
-- Copy the files from FLPY: to to_dev and overwrite the file if it
-- already exists.
COPY_FILE(’FLPY:*.kl’, to_dev, TRUE, FALSE, status)
SELECT (status) OF

CASE (RD_FULL): -- RAM disk is full
-- Dismount and re-size the RAM-DISK

WRITE (’DISMOUNTing RD:’,cr)
DISMOUNT_DEV(’RD:’, status)

-- Verify DISMOUNT was successful or that
-- the device was not already mounted

IF (status = SUCCESS) OR (status = NOT_MOUNT) THEN
-- Increase the size of RD:

WRITE(’Increasing RD: size...’,cr)
$FILE_MAXSEC = ROUND($FILE_MAXSEC * 1.2)

-- Increase the RAM disk size
-- Format the RAM-DISK

WRITE(’FORMATTING RD:......’,cr)
FORMAT_DEV(’RD:’,’’ ,FALSE, status) -- Format the RAM disk
IF (status <> SUCCESS) THEN

WRITE (’FORMAT of RD: failed, status:’, status,CR)
WRITE (’Copy incomplete’,cr)

ELSE
cpy_stat = TRY_AGAIN

ENDIF
WRITE(’MOUNTing RD:......’,cr)
MOUNT_DEV (’RD:’, status)
IF (status <> SUCCESS) THEN

WRITE (’MOUNTing of RD: failed, status:’, status,CR)
WRITE (’Copy incomplete’,cr)

ELSE
cpy_stat = TRY_AGAIN

ENDIF
ELSE

B�61

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

WRITE (’DISMOUNT of RD: failed, status:’, status,cr)
WRITE (’Copy incomplete’,cr)

ENDIF

File and Device Built-ins Program - Mount and Copy to RAM Disk Continued
CASE (FR_FULL): -- FROM disk is full

WRITE (’FROM disk is full’,CR, ’PURGING FROM.....’, CR)
PURGE_DEV (’FR:’, status) -- Purge the FROM
IF (status <> SUCCESS) THEN

WRITE (’PURGE of FROM failed, status:’, status, CR)
WRITE (’Copy incomplete’, CR)

ELSE
cpy_stat = TRY_AGAIN

ENDIF
CASE (NOT_MOUNT, MNT_RD): -- Device is not mounted

WRITE (’MOUNTing ’,to_dev,’.....’,CR)
MOUNT_DEV(to_dev, status)
IF (status <> SUCCESS) THEN

WRITE (’MOUNTing of ’,to_dev,’: failed, status:’, status, CR)
WRITE (’Copy incomplete’, CR)

ELSE
cpy_stat = TRY_AGAIN

ENDIF
CASE (SUCCESS):

WRITE (’Copy completed successfully!’,CR)
ELSE:

WRITE (’Copy failed, status:’, status,CR)
ENDSELECT
UNTIL (cpy_stat = FINISHED)

END file_ex

B.10 USING DYNAMIC DISPLAY BUILT-INS

This program demonstrates how to use the dynamic display built-ins. This program initiates the
dynamic display of various data types. It then executes another task, CHG_DATA, which changes
the values of these variables.

Before exiting this program the dynamic displays are cancelled and the other task is aborted.
If DYN_DISP is aborted, it will set a variable which CHG_DATA detects. This ensures that
CHG_DATA cannot continue executing once DYN_DISP is aborted.

Using Dynamic Display Built-ins - Overview

---- DYN_DISP.Kl

---- Section 0: Detail about DYN_DISP.KL

B�62

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

---- Elements of KAREL Language Covered: In Section:

---- Actions:

---- Clauses:
---- FROM Sec 3-C
---- IN CMOS Sec 2
---- WHEN Sec 4

---- Conditions:
---- ABORT Sec 4

---- Data types:
---- BOOLEAN Sec 2
---- INTEGER Sec 2
---- REAL Sec 2
---- STRING Sec 2

---- Directives:
---- ALPHABETIZE Sec 1
---- COMMENT Sec 1
---- NOLOCKGROUP Sec 1

Using Dynamic Display Built-ins - Overview Continued
---- Built-in Functions & Procedures:
---- ABORT_TASK Sec 4-C
---- CNC_DYN_DISI Sec 4-C
---- CNC_DYN_DISR Sec 4-C
---- CNC_DYN_DISB Sec 4-C
---- CNC_DYN_DISE Sec 4-C
---- CNC_DYN_DISP Sec 4-C
---- CNC_DYN_DISS Sec 4-C
---- INI_DYN_DISI Sec 3-A, 4-A
---- INI_DYN_DISR Sec 3-B, 4-A
---- INI_DYN_DISB Sec 3-C, 4-A
---- INI_DYN_DISE Sec 3-D, 4-A
---- INI_DYN_DISP Sec 3-E, 4-A
---- INI_DYN_DISS Sec 3-F, 4-A
---- LOAD_STATUS Sec 4-B
---- LOAD Sec 4-B
---- RUN_TASK Sec 4-B

---- Statements:
---- CONDITION...ENDCONDITION Sec 4
---- IF...THEN...ENDIF Sec 4-A,B,C
---- READ Sec 4-C

B�63

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- ROUTINE Sec 3-A,B,C
---- WRITE Sec 4-A,B,C

---- Reserve Words:
---- BEGIN Sec 3-A,B; 4
---- CR Sec 4-A
---- CONST Sec 2
---- END Sec 3-A,B; 4-C
---- PROGRAM Sec 4
---- VAR Sec 2

---- Predefined File Variables:
---- TPPROMPT Sec 4-B,C

---- Predefined Windows:
---- T_FU Sec 3-A,B

Using Dynamic Display Built-ins - Declaration Section

---- Section 1: Program and Environment Declaration

PROGRAM DYN_DISP
%nolockgroup
%comment = ’Dynamic Disp’
%alphabetize
%INCLUDE KLIOTYPS

---- Section 2: Variable Declaration

CONST

cc_success = 0 -- Success status
cc_clear_win = 128 -- Clear window
cc_clear_eol = 129 -- Clear to end of line
cc_clear_eow = 130 -- Clear to end of window

CH_ABORT = 1 -- Condition Handler to detect when program aborts

VAR

Int_wind :STRING[10]
Rel_wind :STRING[10]
Field_Width :INTEGER
Attr_Mask :INTEGER
Char_Size :INTEGER
Row :INTEGER
Col :INTEGER

B�64

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Interval :INTEGER
Buffer_Size :INTEGER
Format :STRING[7]
bool_names :ARRAY[2] OF STRING[10]
enum_names :ARRAY[4] OF STRING[10]
pval_names :ARRAY[2] OF STRING[10]
bool1 IN CMOS :BOOLEAN
enum1 IN CMOS :INTEGER
port_type :INTEGER
port_no :INTEGER
Str1 IN CMOS :STRING[10]
Int1 IN CMOS :INTEGER -- Using IN CMOS will create the variables
Real1 IN CMOS :REAL -- in CMOS RAM, which is permanent memory.
status :INTEGER
loaded,
initialized :BOOLEAN
dynd_abrt :BOOLEAN -- Set to true when program aborts.

Using Dynamic Display Built-ins - Declare Routines

---- Section 3: Routine Declaration

---- Section 3-A: SET_INT Declaration
---- Set all the input parameters for the INI_DYN_DISI call.

ROUTINE Set_Int
Begin

-- Valid predefined windows are described in
-- Chapter 7.9.1, "USER MENU on the Teach Pendant
-- Error Line --> ’ERR’ 1 line
-- Status Line --> ’T_ST’ 3 lines
-- Display Window --> ’T_FU’ 10 lines
-- Prompt Line --> ’T_PR’ 1 line
-- Function Key --> ’T_FK’ 1 line

Int_Wind = ’T_FU’ -- Use the predefined display window
Field_Width = 0 -- Use the minimum width necessary
Attr_Mask = 1 OR 4 -- BOLD and UNDERLINED
Char_Size = 0 -- Normal
Row = 1 -- Specify the location within ’T_FU’
Col = 16 -- to dynamically displayed
Interval = 250 -- 250ms between updates
Buffer_Size = 10 -- Minimum value required.
Format = ’%-8d’ -- 8 character minimum field width

B�65

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

--- With this specification the INTEGER will be displayed as follows:
--- --------
--- |xxxxxxxx|
--- --------
--- Where the integer value will be left justified.
--- The x’s will be the integer value unless the integer value is
--- less then 8 characters, then the right side will be blanks up to
--- a total 8 characters. If the integer value is greater than the 8
--- characters the width is dynamically increased to display the whole
--- integer value. The INTEGER value will also be bold and underlined.

End Set_Int

Using Dynamic Display Built-ins - Declare Routines Continued

---- Section 3-B: SET_REAL Declaration
---- Set all the input parameters for the INI_DYN_DISR call.

ROUTINE Set_Real
Begin

Rel_Wind = ’T_FU’ -- Use the predefined display window
Field_Width = 10 -- Maximum width of display.
Attr_Mask = 2 OR 8 -- blinking and reverse video
Char_Size = 0 -- Normal
Row = 2 -- Specify the location within ’TFU’
Col = 16 -- to dynamically display
Interval = 200 -- 200ms between update
Buffer_Size = 10 -- Minimum value required.
Format = ’%2.2f’

--- With the format and field_width specification the REAL will be
--- displayed as follows:
--- ----------
--- |xxxx.xx |
--- ----------
--- Where the real value will be left justified.
--- There will always be two digits after the decimal point.
--- A maximum width of 10 will be used.
--- If the real value is less then 10 characters the right side will be
--- padded with blanks up to 10 character width.
--- If the real value exceeds 10 characters, the display width will not
--- expand but will display a ">" as the last character, indicating the
--- entire value is not displayed.
--- The value will also be blinking and in reverse video.

B�66

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

End Set_Real

Using Dynamic Display Built-ins - Declare Routines Continued

---- Section 3-C: SET_BOOL Declaration
---- Set all the input parameters for the INI_DYN_DISB call

ROUTINE Set_Bool
Begin

-- Valid predefined windows are described in
-- Chapter 7.9.1, "USER MENU on the Teach Pendant
-- Error Line --> ’ERR’ 1 line
-- Status Line --> ’T_ST’ 3 lines
-- Display Window --> ’T_FU’ 10 lines
-- Prompt Line --> ’T_PR’ 1 line
-- Function Key --> ’T_FK’ 1 line

Int_Wind = ’T_FU’ -- Use the predefined display window
Field_Width = 10 -- Display 10 chars
Attr_Mask = 2 -- Blinking
Char_Size = 0 -- Normal
Row = 3 -- Specify the location within ’T_FU’
Col = 16 -- to dynamically displayed
Interval = 250 -- 250ms between updates
Buffer_Size = 10 -- Minimum value required
bool_names[1] = ’YES’ -- string display in bool_var is FALSE
bool_names[2] = ’NO’ -- string display in bool_var is TRUE

--- With this specification the BOOLEAN will be displayed as follows:
--- --------
--- |xxxxxxxx|
--- --------
--- Where the boolean value will be left justified.
--- The x’s will be one of the strings ’YES’ or ’NO’, depending on
--- the value of bool1. The string will be blinking.

End Set_Bool

Using Dynamic Display Built-ins - Declare Routines Continued

---- Section 3-D: SET_ENUM Declaration
---- Set all the input parameters for the INI_DYN_DISE call.

ROUTINE Set_Enum
Begin

B�67

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- Valid predefined windows are described in
-- Chapter 7.9.1, "USER MENU on the Teach Pendant
-- Error Line --> ’ERR’ 1 line
-- Status Line --> ’T_ST’ 3 lines
-- Display Window --> ’T_FU’ 10 lines
-- Prompt Line --> ’T_PR’ 1 line
-- Function Key --> ’T_FK’ 1 line

Int_Wind = ’T_FU’ -- Use thE predefined display window
Attr_Mask = 8 -- REVERSED
Field_Width = 10 -- Display to characters
Char_Size = 0 -- Normal
Row = 4 -- Specify the location within ’T_FU’
Col = 16 -- to dynamically displayed
Interval = 250 -- 250ms between updates
Buffer_Size = 10 -- Minimum value required
enum_names[1] = ’Enum-0’ -- value displayed if enum_var = 0
enum_names[2] = ’Enum-1’ -- value displayed if enum_var = 1
enum_names[3] = ’Enum-2’ -- value displayed if enum_var = 2
enum_names[4] = ’Enum-3’ -- value displayed if enum_var = 3

--- With this specification enum_var will be displayed as follows:
--- --------
--- |xxxxxxxx|
--- --------
--- Where one of the strings enum_names will be displayed,
--- depending on the integer value enum1. If enum1 is outside
--- the range 0-3, a string of 10 ’?’s will be displayed.
--- The string will be displayed in reversed video.

End Set_Enum

Using Dynamic Display Built-ins - Declare Routines Continued

---- Section 3-E: SET_PORT Declaration
---- Set all the input parameters for the INI_DYN_DISP call.

ROUTINE Set_Port
Begin

-- Valid predefined windows are described in
-- Chapter 7.9.1, "USER MENU on the Teach Pendant
-- Error Line --> ’ERR’ 1 line
-- Status Line --> ’T_ST’ 3 lines
-- Display Window --> ’T_FU’ 10 lines
-- Prompt Line --> ’T_PR’ 1 line
-- Function Key --> ’T_FK’ 1 line

B�68

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Int_Wind = ’T_FU’ -- Use the predefined display window
Field_Width = 10 -- Display to characters
Attr_Mask = 1 -- BOLD
Char_Size = 0 -- Normal
Row = 5 -- Specify the location within ’T_FU’
Col = 16 -- to dynamically displayed
Interval = 250 -- 250ms between updates
Buffer_Size = 10 -- Minimum value required.
pval_names[1] = ’RELEASED’ -- text displayed if key is not pressed
pval_names[2] = ’PRESSED’ -- text displayed if key is pressed
port_type = io_tpin -- port type = TP key
port_no = 175 -- user-key 3

--- With this specification PRESSED or RELEASED will be displayed as follows:
--- --------
--- |xxxxxxxx|
--- --------
--- Where the string will be left justified.
--- The x’s will be either ’RELEASED’ or ’PRESSED’.
--- The string will also be normal video.
--- (Bold is not supported on the teach pendant.)

End Set_Port

Using Dynamic Display Built-ins - Declare Routines Continued

---- Section 3-F: SET_STR Declaration
---- Set all the input parameters for the INI_DYN_DISS call.

ROUTINE Set_Str
Begin

-- Valid predefined windows are described in
-- Chapter 7.9.1, "USER MENU on the Teach Pendant
-- Error Line --> ’ERR’ 1 line
-- Status Line --> ’T_ST’ 3 lines
-- Display Window --> ’T_FU’ 10 lines
-- Prompt Line --> ’T_PR’ 1 line
-- Function Key --> ’T_FK’ 1 line

Int_Wind = ’T_FU’ -- Use th predefined display window
Field_Width = 10 -- Use the minimum width neccessary
Attr_Mask = 1 OR 4 -- BOLD and UNDERLINED
Char_Size = 0 -- Normal
Row = 6 -- Specify the location within ’T_FU’

B�69

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Col = 16 -- to dynamically displayed
Interval = 250 -- 250ms between updates
Buffer_Size = 10 -- Minimum value required.
Format = ’%10s’ -- 10 character minimum field width

--- With this specification the STRING will be displayed as follows:
--- --------
--- |xxxxxxxx|
--- --------
--- Where the string value will be left justified.
--- The x’s will be the string value.
--- The STRING will also be underlined.

End Set_Str

---- Section 3-G: TP_CLS Declaration
---- Clear the TP USER menus screen and force it to be visible.

ROUTINE tp_cls FROM rout_ex

Using Dynamic Display Built-ins - Initiate Dynamic Displays

---- Section 4: Main program

BEGIN --- DYN_DISP
dynd_abrt = FALSE

CONDITION[CH_ABORT]:
WHEN ABORT DO -- When the program is aborting set dynd_abrt flag.

-- This will be triggered if this program aborts itself
-- or if an external mechanism aborts this program.

dynd_abrt = TRUE -- CHG_DATA will detect this and complete execution.
ENDCONDITION

ENABLE CONDITION [CH_ABORT]

---- Section 4-A: Setup variables, initiate dynamic display

TP_CLS -- Clear the TP USER screen
-- Force display of the TP USER screen

STATUS = cc_success -- Initialize the status variable
-- Initialize the dynamically displayed variables
Int1 = 1
Real1 = 1.0

B�70

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Bool1 = FALSE
Enum1 = 0
Strl = ’’
-- Display messages to the TP USER screen
WRITE (’Current INT1 =’,CR)
WRITE (’Current REAL1=’,CR)
WRITE (’Current BOOL1=’,CR)
WRITE (’Current ENUM1=’,CR)
WRITE (’Current PORT =’,CR)
WRITE (’Current STR1 =’,CR)
Set_Int -- Set parameter values for INTEGER DYNAMIC DISPLAY
INI_DYN_DISI(Int1,Int_Wind,Field_Width,Attr_Mask,Char_Size,

Row,Col, Interval, Buffer_Size, Format ,Status)
IF Status <> cc_success THEN -- Check the status

WRITE(’ INI_DYN_DISI failed, Status=’,status,CR)
ENDIF

Set_Bool -- Set parameter values for BOOLEAN DYNAMIC
DISPLAY

INI_DYN_DISB(Bool1,Int_Wind,Field_Width,Attr_Mask,Char_Size,
Row,Col, Interval, bool_names,Status)

IF Status <> cc_success THEN -- Check the status
WRITE(’ INI_DYN_DISB failed, Status=’,status,CR)

ENDIF

Using Dynamic Display Built-ins - Initiate Dynamic Displays
Set_Enum -- Set parameter values for Enumerated Integer

-- DYNAMIC DISPLAY
INI_DYN_DISE(Enum1,Int_Wind,Field_Width,Attr_Mask,Char_Size,

Row,Col, Interval, enum_names,Status)
IF Status <> cc_success THEN -- Check the status

WRITE(’ INI_DYN_DISE failed, Status=’,status,CR)
ENDIF

Set_Port -- Set parameter values for Port DYNAMIC DISPLAY
INI_DYN_DISP(port_type, port_no ,Int_Wind,Field_Width,Attr_Mask,Char_Size,

Row,Col, Interval, pval_names, Status)
IF Status <> cc_success THEN -- Check the status

WRITE(’ INI_DYN_DISP failed, Status=’,status,CR)
ENDIF

Set_Real -- Set parameter values for REAL DYNAMIC DISPLAY
INI_DYN_DISR(Real1,Rel_Wind,Field_Width,Attr_Mask,Char_Size,

Row,Col, Interval, Buffer_Size, Format ,Status)
IF Status <> cc_success THEN -- Check the status

WRITE(’ INI_DYN_DISR failed, Status=’,status,CR)
ENDIF

B�71

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Set_Str -- Set parameter values for STRING DYNAMIC
DISPLAY

INI_DYN_DISS(Str1,Int_Wind,Field_Width,Attr_Mask,Char_Size,
Row,Col, Interval, Buffer_Size, Format ,Status)

IF Status <> cc_success THEN -- Check the status
WRITE(’ INI_DYN_DISS failed, Status=’,status,CR)

ENDIF

Using Dynamic Display Built-ins - Execute Subordinate Task

---- Section 4-B: Check on subordinate program and execute it.

-- Check the status of the other program which will change the value
-- of the variables.

LOAD_STATUS(’chg_data’, loaded, initialized)
IF (loaded = FALSE) THEN

WRITE TPPROMPT(CHR(cc_clear_win)) -- Clear the prompt line
WRITE TPPROMPT(’CHG_DATA is not loaded. Loading now...’)
LOAD(’chg_data.pc’,0,status)
IF (status = cc_success) THEN -- Check the status

RUN_TASK(’CHG_DATA’,1,false,false,1,status)
IF (Status <> cc_success) THEN -- Check the status

WRITE (’Changing the value of the variables’,CR)
WRITE (’by another program failed’,CR)
WRITE (’BUT you can try changing the values’,CR)
WRITE (’from KCL’,CR)

ENDIF
ELSE

WRITE (’LOAD Failed, status = ’,status,CR)
ENDIF

ELSE
RUN_TASK(’CHG_DATA’,1,false,false,1,status)
IF (Status <> cc_success) THEN -- Check the status

WRITE (’Changing the value of the variables’,CR)
WRITE (’by another program failed’,CR)
WRITE (’BUT you can try changing the values’,CR)
WRITE (’from KCL’,CR)

ENDIF
ENDIF

Using Dynamic Display Built-ins - User Response Cancels Dynamic Displays

---- Section 4-C: Wait for user response, and cancel dynamic displays

B�72

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

WRITE TPPROMPT(CHR(cc_clear_win)) -- Clear the prompt line
WRITE TPPROMPT(’Enter a number to cancel DYNAMIC display: ’)
READ (CR) -- Read only one character

-- See Chapter 7.7.1,
-- "Formatting INTEGER Data Items"

ABORT_TASK(’CHG_DATA’,TRUE, TRUE,status) -- Abort CHG_DATA
IF (status <> cc_success) THEN -- Check the status

WRITE(’ ABORT_TASK failed, Status=’,status,CR)
ENDIF

CNC_DYN_DISI(Int1, Int_Wind,Status) -- Cancel display of Intl
IF Status <> 0 THEN -- Check the status

WRITE(’ CND_DYN_DISI failed, Status=’,status,CR)
ENDIF

CNC_DYN_DISR(Real1,Rel_Wind,Status) -- Cancel display of Real1
IF Status <> 0 THEN -- Check the status

WRITE(’ CND_DYN_DISR failed, Status=’,status,CR)
ENDIF

CNC_DYN_DISB(Bool1, Int_Wind,Status) -- Cancel display of Bool1
IF Status <> 0 THEN -- Check the status

WRITE(’ CND_DYN_DISB failed, Status=’,status,CR)
ENDIF

CNC_DYN_DISE(Enum1, Int_Wind,Status) -- Cancel display of Enum1
IF Status <> 0 THEN -- Check the status

WRITE(’ CND_DYN_DISE failed, Status=’,status,CR)
ENDIF

CNC_DYN_DISP(port_type, Port_no, Int_Wind,Status) -- Cancel display of Port
IF Status <> 0 THEN -- Check the status

WRITE(’ CND_DYN_DISP failed, Status=’,status,CR)
ENDIF

CNC_DYN_DISS(Str1, Int_Wind,Status) -- Cancel display of String
IF Status <> 0 THEN -- Check the status

WRITE(’ CND_DYN_DISS failed, Status=’,status,CR)
ENDIF

END DYN_DISP

B�73

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

B.11 MANIPULATING VALUES OF DYNAMICALLY DISPLAYED
VARIABLES

The CHG_DATA.KL program is called by DYN_DISP, where the actual variables are displayed
dynamically. This program does some processing and changes the value of those variables.

Manipulate Dynamically Displayed Variables - Overview
--
---- CHG_DATA.KL
--
--
---- Section 0: Detail about CHG_DATA.KL
--

---- Elements of KAREL Language Covered: In Section:
---- Actions:

---- Clauses:
---- FROM Sec 2
---- Conditions:

---- Data types:
---- INTEGER Sec 2
---- REAL Sec 2

---- Directives:

---- Built-in Functions & Procedures:

---- Statements:
---- DELAY Sec 4
---- FOR....ENDFOR Sec 4
---- REPEAT...UNTIL Sec 4

---- Reserve Words:
---- BEGIN Sec 4
---- END Sec 4
---- PROGRAM Sec 1
---- VAR Sec 2

--
---- Section 1: Program and Environment Declaration
--
PROGRAM CHG_DATA
%nolockgroup
%comment = ’Dynamic Disp2’

B�74

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Manipulate Dynamically Displayed Variables - Declaration Section

---- Section 2: Variable Declaration

VAR

-- IF the following variables did NOT have IN CMOS, the following errors
-- would be posted when loading this program:
-- VARS-012 Create var -INT1 failed VARS-038 Cannot change CMOS/DRAM type
-- VARS-012 Create var -REAL1 failed VARS-038 Cannot change CMOS/DRAM type
-- This indicates that there is a discrepancy between DYN_DISP and CHG_DATA.
-- One program has specified to create the variables in DRAM the
-- other specified CMOS.

Int1 IN CMOS FROM dyn_disp :INTEGER -- dynamically displayed variable
Real1 IN CMOS FROM dyn_disp :REAL -- dynamically displayed variable
Bool1 IN CMOS FROM dyn_disp :BOOLEAN -- dynamically displayed variable
Enum1 IN CMOS FROM dyn_disp :INTEGER -- dynamically displayed variable
Str1 IN CMOS FROM dyn_disp :STRING[10] -- dynamically displayed variable

indx :INTEGER

dynd_abrt FROM dyn_disp :BOOLEAN -- Set in dyn_disp when dyn_disp
-- is aborting

---- Section 3: Routine Declaration

Manipulate Dynamically Displayed Variables - Main Program

---- Section 4: Main program

BEGIN -- CHG_DATA

-- This demonstrates that the variables are changed from this task, CHG_DATA.
-- The dynamic display initiated in task DYN_DISP, will continue
-- to correctly display the updated values of these variables.

-- Do real application processing.
-- Simulated here in a FOR loop.

REPEAT
FOR indx = -9999 to 9999 DO

int1 = (indx DIV 2) * 7
real1 = (indx DIV 3)* 3.13
bool1 = ((indx AND 4) = 0)

B�75

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

enum1 = (ABS(indx) DIV 5) MOD 5
Str1 = SUB_STR(’123456789A’, 1, (ABS(indx) DIV 6) MOD 7 + 1)
delay 200 -- Delay for 1/5 of a second as if processing is going on.

ENDFOR
UNTIL (DYND_ABRT) -- This task is aborted from DYN_DISP. However, if

-- DYN_DISP aborts abnormally (ie from a KCL> ABORT), it
-- will set DYND_ABRT, which will allow CHG_DATA to
-- complete execution.

END CHG_DATA

B.12 DISPLAYING A LIST FROM A DICTIONARY FILE

This program controls the display of a list which is read in from the dictionary file DCLISTEG.UTX.
For more information on DCLISTEG.UTX refer to Section B.12.1 . DCLST_EX.KL controls the
placement of the cursor along with the action taken for each command.

Note The use of DISCTRL_FORM is the preferred method of displaying information.
DISCTRL_FORM will automatically take care of all the key inputs and is much easier to use. For
more information, refer to Chapter 10 DICTIONARIES AND FORMS .

Display List from Dictionary File - Overview
--
---- DCLST_EX.KL
--
---- Section 0: Detail about DCLST_EX.KL
--
---- Elements of KAREL Language Covered: In Section:
---- Actions:

---- Clauses:
---- FROM Sec 3-E

---- Conditions:

---- Data types:
---- ARRAY OF STRING Sec 2
---- BOOLEAN Sec 2
---- DISP_DAT_T Sec 2
---- FILE Sec 2
---- INTEGER Sec 2
---- STRING Sec 2

---- Directives:
---- ALPHABETIZE Sec 1
---- COMMENT Sec 1

B�76

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

---- INCLUDE Sec 1
---- NOLOCKGROUP Sec 1

---- Built-in Functions & Procedures:
---- ADD_DICT Sec 3-B
---- ACT_SCREEN Sec 4-I
---- ATT_WINDOW_S Sec 4-C
---- CHECK_DICT Sec 3-B
---- CLR_IO_STAT Sec 3-A,C
---- CNV_STR_INT Sec 4-E
---- DEF_SCREEN Sec 4-B
---- DET_WINDOW Sec 4-I
---- DISCTRL_LIST Sec 4-G,H
---- FORCE_SPMENU Sec 4-A,B,C
---- IO_STATUS Sec 3-A,
---- ORD Sec 4-H
---- READ_DICT Sec 4-E,F

Display List from Dictionary File - Overview Continued
---- REMOVE_DICT Sec 4-I
---- SET_FILE_ATR Sec 4-G
---- STR_LEN Sec 4-F
---- UNINIT Sec 3-C
---- WRITE_DICT Sec 4-D,H,I

---- Statements:
---- ABORT Sec 3-B
---- CLOSE FILE Sec 4-I
---- FOR...ENDFOR Sec 4-F
---- IF...THEN...ENDIF Sec 3-A,B,C,D; 4-F,H,I
---- OPEN FILE Sec 3-A; 4-H
---- READ Sec 4-A,B,H
---- REPEAT...UNTIL Sec 4-H
---- ROUTINE Sec 3-A,B,C,D,E
---- SELECT...ENDSELECT Sec 4-H
---- WRITE Sec 3-A,B,C,D;4-A,I

---- Reserve Words:
---- BEGIN Sec 3-A,B,C,D;4
---- CR Sec 4-A,B,C
---- END Sec 3-A,B,C,D; 4-I
---- PROGRAM Sec 1
---- VAR Sec 2

---- Predefined File Names:
---- TPDISPLAY Sec 4-D,G,H,I
---- TPFUNC Sec 4-D,H

B�77

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

---- TPPROMPT Sec 4-D,H,I
---- TPSTATUS Sec 4-D,I

---- Devices Used:
---- RD2U Sec 3-B

---- Predefined Windows:
---- ERR Sec 4-C
---- T_ST Sec 4-C
---- T_FU Sec 4-C
---- T_PR Sec 4-C
---- T_FR Sec 4-C

Display List from Dictionary File - Declaration Section

---- Section 1: Program and Environment Declaration

PROGRAM DCLST_EX

%COMMENT=’DISCTRL_LIST ’
%ALPHABETIZE
%NOLOCKGROUP
%INCLUDE DCLIST -- the include file from the dictionary DCLISTEG.UTX

---- Section 2: Variable Declarations

VAR
exit_Cmnd : INTEGER
act_pending : INTEGER -- decide if any action is pending
display_data : DISP_DAT_T -- information needed for DICTRL_LIST
done : BOOLEAN -- decides when to complete execution
Kb_file : FILE -- file opened to the TPKB
i : INTEGER -- just a counter
key : INTEGER -- which key was pressed
last_line : INTEGER -- number of last line of information
list_data : ARRAY[20] OF STRING[40] -- exact string information
num_options : INTEGER -- number of items in list
old_screen : STRING[4] -- previously attached screen
status : INTEGER -- status returned from built-in call
str : STRING[1] -- string read in from teach pendant
Err_file : FILE -- err log file
Opened : BOOLEAN -- err log file open or not

B�78

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

Display List from Dictionary File - Declare Routines

---- Section 3: Routine Declaration

---- Section 3-A: Op_Err_File Declaration
---- Open the error log file.

Routine Op_Err_File
Begin

Opened = false
Write TPPROMPT(CR,’Creating Auto Error File’)
OPEN FILE Err_File (’RW’,’RD2U:\D_LIST.ERR’) -- open for output
IF (IO_STATUS(Err_File) <> 0) THEN

CLR_IO_STAT(Err_File)
Write TPPROMPT(’*** USE USER WINDOW FOR ERROR OUTPUT ***’,CR)

ELSE
Opened = TRUE

ENDIF
End Op_Err_File

---- Section 3-B: Chk_Add_Dct Declaration
---- Check whether a dictionary is loaded.
---- If not loaded then load in the dictionary.

Routine Chk_Add_Dct

Begin -- Chk_Add_Dct

-- Make sure ’DLST’ dictionary is added.

CHECK_DICT(’DLST’,TPTSSP_TITLE,STATUS)
IF STATUS <> 0 THEN

Write TPPROMPT(CR,’Loading Required Dictionary.............’)
ADD_DICT(’RD2U:\DCLISTEG’,’DLST’,DP_DEFAULT,DP_DRAM,STATUS)
IF status <> 0 THEN

WRITE TPPROMPT(’ADD_DICT failed, STATUS=’,STATUS,CR)
ABORT -- Without the dictionary this program can not continue.

ENDIF
ELSE

WRITE TPPROMPT (’Dictionary already loaded in system. ’)
ENDIF

End Chk_Add_Dct

B�79

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Display List from Dictionary File - Declare Error Routines

---- Section 3-C: Log_Errors Declaration
---- Log detected errors to a file to be reviewed later.

ROUTINE Log_Errors(Out: FILE; Err_Str:STRING;Err_No:INTEGER)
BEGIN

IF NOT Opened THEN -- If error log file not opened then write errors to
-- screen

WRITE (Err_Str,Err_No,CR)
ELSE

IF NOT UNINIT(Out) THEN
CLR_IO_STAT(Out)
WRITE Out(Err_Str,Err_No,CR,CR)

ELSE
WRITE (Err_Str,Err_No, CR)

ENDIF
ENDIF

END Log_Errors

---- Section 3-D: Chk_Stat Declaration
---- Check the global variable, status.
---- If not zero then log input parameter, err_str,
---- to error file.

ROUTINE Chk_Stat (err_str: STRING)
BEGIN -- Chk_Stat

IF(status <> 0) then
Log_Errors(Err_File, err_str,Status)

ENDIF
END Chk_Stat

---- Section 3-E: TP_CLS Declaration

ROUTINE TP_CLS FROM ROUT_EX

Display List from Dictionary File - Setup and Define Screen

---- Section 4: Main Program

BEGIN -- DCLST_EX

B�80

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

---- Section 4-A: Perform Setup operations

TP_CLS -- Call routine to clear and force the TP USER menu to be visible

Write (’ ***** Starting DISCTRL_LIST Example *****’, CR, CR)

Chk_Add_Dct -- Call routine to check and add dictionary
Op_Err_File -- Call routine open error log file

---- Section 4-B: Define and Active a screen

DEF_SCREEN(’LIST’, ’TP’, status) -- Create/Define a screen called LIST
Chk_Stat (’DEF_SCREEN LIST’) -- Verify DEF_SCREEN was successful

ACT_SCREEN(’LIST’, old_screen, status) -- activate the LIST screen that
-- that was just defined.

Chk_Stat (’ACT_SCREEN LIST’) -- Verify ACT_SCREEN was successful

---- Section 4-C: Attach windows to the screen

-- Attach the required windows to the LIST screen.
-- SEE:
-- Chapter 7.9.1 "USER Menu on the Teach Pendant,
-- for more details on predefined window names.

ATT_WINDOW_S(’ERR’, ’LIST’, 1, 1, status) -- attach the error window
Chk_Stat(’Attaching ERR’)

ATT_WINDOW_S(’T_ST’, ’LIST’, 2, 1, status) -- attach the status window
Chk_Stat(’T_ST not attached’)

ATT_WINDOW_S(’T_FU’, ’LIST’, 5, 1, status) -- attach the full window
Chk_Stat(’T_FU not attached’)

ATT_WINDOW_S(’T_PR’, ’LIST’, 15, 1, status)-- attach the prompt window
Chk_Stat(’T_PR not attached’)

ATT_WINDOW_S(’T_FK’, ’LIST’, 16, 1, status)-- attach the function window
Chk_Stat(’T_FK not attached’)

Display List from Dictionary File - Write Elements to the Screen

---- Section 4-D: Write dictionary elements to windows

-- Write dictionary element,TPTSSP_TITLE, from DLST dictionary.
-- Which will clear the status window, and display intro message in
-- reverse video.

B�81

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

WRITE_DICT(TPSTATUS, ’DLST’, TPTSSP_TITLE, status)
Chk_Stat(’TPTSSP_TITLE not written’)

-- Write dictionary element,TPTSSP_FK1, from DLST dictionary.
-- Which will display "[TYPE]" to the function line window.
WRITE_DICT(TPFUNC, ’DLST’, TPTSSP_FK1, status)

Chk_Stat(’TPTSSP_FK1 not written’)

-- Write dictionary element, TPTSSP_CLRSC, from DLST dictionary.
-- Which will clear the teach pendant display window.
WRITE_DICT(TPDISPLAY, ’DLST’, TPTSSP_CLRSC, status)

Chk_Stat(’TPTSSP_CLRSC not written’)

-- Write dictionary element, TPTSSP_INSTR, from DLST dictionary.
-- Which will display instructions to the prompt line window.
WRITE_DICT(TPPROMPT, ’DLST’, TPTSSP_INSTR, status)

Chk_Stat(’TPTSSP_INSTR not written’)

---- Section 4-E: Determine the number of menu options

-- Read the dictionary element, TPTSSP_NUM, from DLST dictionary,
-- Into the first element of list_data.
-- list_data[1] will be an ASCII representation of the number of
-- menu options. last_line will be returned with the number of
-- lines/elements used in list_data.
READ_DICT(’DLST’, TPTSSP_NUM, list_data, 1, last_line, status)

Chk_Stat(’TPTSSP_NUM not read’)

-- convert the string into the INTEGER, num_options
CNV_STR_INT(list_data[1], num_options)

Display List from Dictionary File - Initialize Display Data

---- Section 4-F: Initialize the data structure, display_data
---- Which is used to display the list of menu options.

-- Initialize the display data structure
-- In this example we only deal with window 1.
display_data.win_start[1] = 1 -- Starting row for window 1.
display_data.win_end[1] = 10 -- Ending row for window 1.
display_data.curr_win = 0 -- The current window to display, where

-- zero (0) specifies first window.
display_data.cursor_row = 1 -- Current row the cursor is on.
display_data.lins_per_pg = 10 -- The number of lines scrolled when the

B�82

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

-- user pushes SHIFT Up or Down. Usually
-- it is the same as the window size.

display_data.curs_st_col[1] = 0 -- starting column for field 1
display_data.curs_en_col[1] = 0 -- ending column for field 1, will be

-- updated a little later

display_data.curr_field = 0 -- Current field, where
-- zero (0) specifies the first field

display_data.last_field = 0 -- Last field in the list (only using one
-- field in this example).

display_data.curr_it_num = 1 -- Current item number the cursor is on.
display_data.sob_it_num = 1 -- Starting item number.
display_data.eob_it_num = num_options -- Ending item number, which is

-- the number of options read in.
display_data.last_it_num = num_options-- Last item number, also the

-- number of options read in
-- Make sure the window end is not beyond total number of elements in list.

IF display_data.win_end[1] > display_data.last_it_num THEN
display_data.win_end[1] = display_data.last_it_num --reset to last item

ENDIF
-- Read dictionary element, TPTSSP_MENU, from dictionary DLST.
-- list_data will be populated with the menu list information
-- list_data[1] will contain the first line of information from
-- the TPTSSP_MENU and list_data[last_line] will contain the last
-- line of information read from the dictionary.
READ_DICT(’DLST’, TPTSSP_MENU, list_data, 1, last_line, status)
Chk_Stat(’Reading menu list failed’)

-- Determine longest list element & reset cursor end column for first field.
FOR i = 1 TO last_line DO

IF (STR_LEN(list_data[i]) > display_data.curs_en_col[1]) THEN
display_data.curs_en_col[1] = STR_LEN(list_data[i])

ENDIF
ENDFOR

Display List from Dictionary File - Control Cursor Movement

---- Section 4-G: Display the list.

-- Initial Display the menu list.
DISCTRL_LIST(TPDISPLAY, display_data, list_data, DC_DISP, status)

Chk_Stat(’Error displaying list’)

-- Open a file to the TPDISPLAY window with PASSALL and FIELD attributes
-- and NOECHO
SET_FILE_ATR(kb_file, ATR_PASSALL) -- Get row teach pendant input

B�83

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

SET_FILE_ATR(kb_file, ATR_FIELD) -- so that a single key will
-- satisfy the reads.

SET_FILE_ATR(kb_file, ATR_NOECHO) -- don’t echo the keys back to
-- the screen

OPEN FILE Kb_file (’RW’, ’KB:TPKB’) -- open a file to the Teach pendant
-- keyboard (keys)

status = IO_STATUS(Kb_file)
Chk_Stat(’Error opening TPKB’)

act_pending = 0
done = FALSE

---- Section 4-H: Control cursor movement within the list

REPEAT -- Wait for a key input
READ Kb_file (str::1)
key = ORD(str,1)
key = key AND 255 -- Convert the key to correct value.
SELECT key OF -- Decide how to handle key inputs
CASE (KY_UP_ARW) : -- up arrow key pressed
IF act_pending <> 0 THEN -- If a menu item was selected...

-- Clear confirmation prompt
WRITE_DICT(TPPROMPT, ’DLST’, TPTSSP_CLRSC, status)

-- Clear confirmation function keys
WRITE_DICT(TPFUNC, ’DLST’, TPTSSP_CLRSC, status)

ENDIF
DISCTRL_LIST(TPDISPLAY, display_data, list_data, DC_UP, status)

Chk_Stat (’Error displaying list’)
CASE (KY_DN_ARW) : -- down arrow key pressed
IF act_pending <> 0 THEN -- If a menu item was selected...

-- Clear confirmation prompt
WRITE_DICT(TPPROMPT, ’DLST’, TPTSSP_CLRSC, status)
-- Clear confirmation function keys
WRITE_DICT(TPFUNC, ’DLST’, TPTSSP_CLRSC, status)

ENDIF
DISCTRL_LIST(TPDISPLAY, display_data, list_data,

DC_DN, status)
Chk_Stat (’Error displaying list’)

Display List from Dictionary File - Control Cursor Movement Continued
CASE (KY_ENTER) :

-- Perform later
CASE (KY_F4) : -- "YES" function key pressed

IF act_pending <> 0 THEN -- If a menu item was selected...
-- Clear confirmation prompt
WRITE_DICT(TPPROMPT, ’DLST’, TPTSSP_CLRSC, status)
-- Clear confirmation function keys

B�84

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

WRITE_DICT(TPFUNC, ’DLST’, TPTSSP_CLRSC, status)
IF act_pending = num_options THEN

-- Exit the routine
done = TRUE

ENDIF
-- Clear action pending
act_pending = 0

ENDIF

CASE (KY_F5) : -- "NO" function key pressed
-- Clear confirmation prompt

WRITE_DICT(TPPROMPT, ’DLST’, TPTSSP_INSTR, status)
-- Clear confirmation function keys

WRITE_DICT(TPFUNC, ’DLST’, TPTSSP_CLRSC, status)

-- Clear action pending
act_pending = 0

ELSE : -- User entered an actual item number. Calculate which
-- row the cursor should be on and redisplay the list.

IF ((key > 48) AND (key <= (48 + num_options))) THEN
-- Translate number to a row
key = key - 48
display_data.cursor_row = key

DISCTRL_LIST(TPDISPLAY,display_data,list_data,DC_DISP,status)
Chk_Stat (’Error displaying list’)

key = KY_ENTER
ENDIF

ENDSELECT
IF key = KY_ENTER THEN -- User has specified an action

-- Write confirmation prompt for selected item
WRITE_DICT (TPPROMPT, ’DLST’,

(TPTSSP_CNF1 - 1 + display_data.cursor_row), status)
-- Display confirmation function keys
WRITE_DICT(TPFUNC, ’DLST’, TPTSSP_FK2, status)
-- Set action pending to selected item
act_pending = display_data.cursor_row -- this is the item selected

ENDIF
UNTIL done -- repeat until the user selects the exit option

Display List from Dictionary File - Cleanup and Exit Program

---- Section 4-I: Cleanup before exiting program

-- Clear the TP USER menu windows
WRITE_DICT(TPDISPLAY, ’DLST’, TPTSSP_CLRSC, status)
WRITE_DICT(TPSTATUS, ’DLST’, TPTSSP_CLRSC, status)

B�85

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- Close the file connected to the TP keyboard.
CLOSE FILE Kb_file

-- Close the error log file if it is open.
IF opened THEN

close file Err_File
ENDIF

Write TPPROMPT (cr,’Example Finished ’)

REMOVE_DICT (’LIST’, dp_default, status) -- remove the dictionary
write (’remove dict’, status,cr)
Chk_Stat (’Removing dictionary’)

ACT_SCREEN(old_screen, old_screen, status) -- activate the previous screen
Chk_stat (’Activating old screen’)

DET_WINDOW(’ERR’, ’LIST’, status) -- Detach all the windows that were
Chk_stat (’Detaching ERR window’)

DET_WINDOW(’T_ST’, ’LIST’, status) -- previously attached.
Chk_stat (’Detaching T_ST window’)

DET_WINDOW(’T_FU’, ’LIST’, status)
Chk_stat (’Detaching T_FU window’)

DET_WINDOW(’T_PR’, ’LIST’, status)
Chk_stat (’Detaching T_PR window’)

DET_WINDOW(’T_FK’, ’LIST’, status)
Chk_stat (’Detaching T_FK window’)

END DCLST_EX

B.12.1 Dictionary Files

This ASCII dictionary file is used to create a teach pendant screen which is used with DCLST_EX.KL.
For more information on DCLST_EX.KL refer to Section B.7 .

Dictionary File
.kl dclist
*
$-,TPTSSP_TITLE &home &reverse "Karel DISCTRL_LIST Example
"
&standard
$-,TPTSSP_CLRSC &home &clear_2_eow
$-,TPTSSP_FK1 &home" [TYPE] "
$-,TPTSSP_FK2 &home" YES NO "
$-,TPTSSP_INSTR &home "Press ’ENTER’ or number key to select." &clear_2_eol

B�86

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

* Add menu options here, "Exit" must be last option
* TPTSSP_NUM specifies the number of menu options
$-,TPTSSP_NUM "14"
$-,TPTSSP_MENU
" 1 Test Cycle 1" &new_line
" 2 Test Cycle 2" &new_line
" 3 Test Cycle 3" &new_line
" 4 Test Cycle 4" &new_line
" 5 Test Cycle 5" &new_line
" 6 Test Cycle 6" &new_line
" 7 Test Cycle 7" &new_line
" 8 Test Cycle 8" &new_line
" 9 Test Cycle 9" &new_line
" 10 Test Cycle 10" &new_line
" 11 Test Cycle 11" &new_line
" 12 Test Cycle 12" &new_line
" 13 Test Cycle 13" &new_line
" 14 EXIT"
* Confirmations must be in order
$-,TPTSSP_CNF1 &home"Perform test cycle 1? [NO]" &clear_2_eol
$-,TPTSSP_CNF2 &home"Perform test cycle 2? [NO]" &clear_2_eol
$-,TPTSSP_CNF3 &home"Perform test cycle 3? [NO]" &clear_2_eol
$-,TPTSSP_CNF4 &home"Perform test cycle 4? [NO]" &clear_2_eol
$-,TPTSSP_CNF5 &home"Perform test cycle 5? [NO]" &clear_2_eol
$-,TPTSSP_CNF6 &home"Perform test cycle 6? [NO]" &clear_2_eol
$-,TPTSSP_CNF7 &home"Perform test cycle 7? [NO]" &clear_2_eol
$-,TPTSSP_CNF8 &home"Perform test cycle 8? [NO]" &clear_2_eol
$-,TPTSSP_CNF9 &home"Perform test cycle 9? [NO]" &clear_2_eol
$-,TPTSSP_CNF10 &home"Perform test cycle 10? [NO]" &clear_2_eol
$-,TPTSSP_CNF11 &home"Perform test cycle 11? [NO]" &clear_2_eol
$-,TPTSSP_CNF12 &home"Perform test cycle 12? [NO]" &clear_2_eol
$-,TPTSSP_CNF13 &home"Perform test cycle 13? [NO]" &clear_2_eol
$-,TPTSSP_CNF14 &home"Exit? [NO]" &clear_2_eol

B.13 USING THE DISCTRL_ALPHA BUILT-IN

This program shows three different ways to use the DISCTRL_ALPH built-in. The DISCTRL_ALPH
built-in displays and controls alphanumeric string entry in a specified window. Refer to Appendix A ,
"KAREL Language Alphabetic Description" for more information.

Method 1 allows a program name to be entered using the default value for the dictionary name. See
Section 4-A in Using the DISCTRL_ALPHA Built-in - Enter Data from Teach Pendant .

Method 2 allows a comment to be entered using the default value for the dictionary name. See Section
4-B in Using the DISCTRL_ALPHA Built-in - Enter Data from Teach Pendant .

B�87

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

Method 3 uses a user specified dictionary name and element to enter a program name. See Section
4-C in Using the DISCTRL_ALPHA Built-in - Enter Data from CRT/KB .

This program also posts all errors to the controller.

Using the DISCTRL_ALPHA Built-in - Overview

---- DCALP_EX.KL

---- Elements of KAREL Language Covered: In Section:
---- Actions:

---- Clauses:

---- Conditions:

---- Data types:
---- INTEGER Sec 2
---- STRING Sec 2

---- Directives:
---- COMMENT Sec 1
---- INCLUDE Sec 1
---- NOLOCKGROUP Sec 1

---- Built-in Functions & Procedures:
---- ADD_DICT Sec 4-C
---- CHR Sec 4-A,B,C
---- DISCTRL_ALPH Sec 4-A,B,C
---- FORCE_SPMENU Sec 4-A,B,C
---- POST_ERR Sec 4-A,B,C
---- SET_CURSOR Sec 4-A,B,C
---- SET_LANG Sec 4-C
---- Statements:
---- READ Sec 4-A,B
---- WRITE Sec 4-A,B,C
---- IF...THEN...ENDIF Sec 4-A,B,C
---- Reserve Words:
---- BEGIN Sec 4
---- CONST Sec 2
---- CR Sec 4-A,B,C
---- END Sec 4-C
---- PROGRAM Sec 1
---- VAR Sec 2
---- Predefined File Names:
---- OUTPUT Sec 4-C
---- TPDISPLAY Sec 4-A,B

B�88

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

---- Predefined Windows:
---- T_FU Sec 4-A,B
---- C_FU Sec 4-C

Using the DISCTRL_ALPHA Built-in - Declaration Section

---- Section 1: Program and Environment Declaration

PROGRAM DCALP_EX
%COMMENT = ’Display Alpha’
%NOLOCKGROUP
%INCLUDE KLEVKEYS -- Necessary for the KY_ENTER
%INCLUDE DCALPH -- Necessary for the ALPH_PROG Element, see section 4-C

---- Section 2: Constant and Variable Declarations

CONST

cc_home = 137
cc_clear_win = 128
cc_warn = 0 -- Value passed to POST_ERR to display warning only.
cc_pause = 1 -- value passed to POST_ERR to pause program.

VAR
status : INTEGER
device_stat : INTEGER
term_char : INTEGER
window_name : STRING[4]
prog_name : STRING[12]
comment : STRING[40]

---- Section 3: Routine Declaration

Using the DISCTRL_ALPHA Built-in - Enter Data from Teach Pendant

---- Section 4: Main Program

BEGIN -- DCALP_EX

---- Section 4-A: Enter a program name from the teach pendant USER menu

WRITE (CHR(cc_home), CHR(cc_clear_win)) -- Clear TP USER menu
FORCE_SPMENU(tp_panel, SPI_TPUSER, 1) -- Force TP USER menu to be

B�89

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- visible
SET_CURSOR(TPDISPLAY, 12, 1, status) -- reposition cursor

WRITE (’prog_name: ’)
prog_name = ’’ -- initialize program name
DISCTRL_ALPH(’t_fu’, 12, 12, prog_name, ’PROG’, 0, term_char, status)
IF status <> 0 THEN

POST_ERR(status, ’’, 0, cc_warn)
ENDIF
IF term_char = ky_enter THEN -- User pressed the ENTER key

WRITE (CR, ’prog_name was changed:’, prog_name, CR)
ELSE

WRITE (CR, ’prog_name was not changed’)
ENDIF

WRITE (CR, ’Press enter to continue’)
READ (CR)

---- Section 4-B: Enter a comment from the teach pendant

WRITE (CHR(cc_home) + CHR(cc_clear_win))-- Clear TP USER menu
SET_CURSOR(TPDISPLAY, 12, 1, status) -- reposition cursor
comment = ’ ’ -- Initialize the comment
WRITE (’comment: ’) -- Display message
DISCTRL_ALPH(’t_fu’, 12, 10, comment, ’COMM’, 0, term_char, status)
IF status <> 0 THEN -- Verify DISCTRL_ALPH was successful

POST_ERR(status, ’’, 0, cc_warn) -- Post the status as a warning
ENDIF
IF term_char = ky_enter THEN

WRITE (CR, ’comment was changed:’, comment, CR) -- Display new comment
ELSE

WRITE (CR, ’comment was not changed’, CR)
ENDIF

WRITE (CR, ’Press enter to continue’)
READ (CR)

Using the DISCTRL_ALPHA Built-in - Enter Data from CRT/KB

---- Section 4-C: This section will perform program name entry from the
---- CRT/KB. The dictionary name and element values are
---- explicitly stated here, instead of using the available
---- default values.

-- Set the dictionary language to English

B�90

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

-- This is useful if you want to use this same code for multiple
-- languages. Then any time you load in a dictionary you check
-- to see what the current language, $language, is and load the
-- correct dictionary.
-- For instance you could have a DCALPHJP.TX file which
-- would be the Japanese dictionary. If the current language, $language,
-- was set to Japanese you would load this dictionary.
SET_LANG (dp_english, status)
IF (status <> 0) THEN

POST_ERR (status, ’’, 0,cc_warn) -- Post the status as a warning
ENDIF
-- Load the dcalpheg.tx file, using ALPH as the dictionary name,
-- to the English language, using DRAM as the memory storage device.
ADD_DICT (’DCALPHEG’, ’ALPH’, dp_english, dp_dram, status)
IF (status <> 0) THEN

POST_ERR (status, ’’, 0, cc_pause) -- Post the status and pause the
-- program, since the dictionary

ENDIF -- must be loaded to continue.
device_stat = crt_panel -- Give control to the CRT/KB
WRITE OUTPUT (CHR(cc_home) + CHR(cc_clear_win))--Clear CRT/KB USER menu
FORCE_SPMENU (device_stat, SPI_TPUSER, 1) -- Force the CRT/KB USER menu

-- to be visible
SET_CURSOR(OUTPUT, 12, 1, status) -- Reposition the cursor
WRITE OUTPUT (’prog_name: ’)
prog_name = ’ ’ -- Initialize program name
DISCTRL_ALPH(’c_fu’,12,12,prog_name,’ALPH’,alph_prog,term_char,status)

--DISCTRL_ALPHA uses the ALPH dictionary and ALPH_PROG dictionary element
IF status <> 0 THEN -- Verify DISCTRL_ALPH was

-- successful.
POST_ERR(status, ’’, 0, cc_warn) -- Post returned status to the

ENDIF -- error (’err’) window.
IF term_char = ky_enter THEN

WRITE (CR, ’prog_name was changed:’, prog_name, CR)
ELSE

WRITE (CR, ’prog_name was NOT changed.’, CR)
ENDIF
device_stat = tp_panel -- Make sure to reset

END DCALP_EX

B.13.1 Dictionary Files

This ASCII dictionary file is used to write text to the specified screen. DCALPH_EG.UTX is also
used with DCAL_EX.KL. For more information on DCAL_EX.KL, refer to Section B.13 .

B�91

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

DCALPHEG.UTX Dictionary File
.KL DCALPH

$, alpha_prog
" PRG MAIN SUB TEST >"&new_line
" PROC JOB MACRO >"&new_line
" TEST1 TEST2 TEST3 TEST4 >"

Note The greater than symbol (>) in DCALPHEG.UTX Dictionary File is a reminder to use the
NEXT key to scroll through the multiple lines. Also notice that the &new_line appears only on the
first two lines. This ensures that the lines will scroll correctly.

B.14 APPLYING OFFSETS TO A COPIED TEACH PENDANT
PROGRAM

This program copies a teach pendant program and then applies an offset to the positions within the
newly created program. This is useful when you create the teach pendant program offline and then
realized that all the teach pendant positions are off by some determined amount. However, you should
be aware that the utility PROGRAM ADJUST is far more adequate for this job.

Applying Offsets to Copied Teach Pendant Program - Overview
--
---- CPY_TP.KL
--
---- Elements of KAREL Language Covered: In Section:
---- Actions:

---- Clauses:
---- FROM Sec 3-F

---- Conditions:

---- Data Types:
---- ARRAY OF REAL Sec 2
---- ARRAY OF STRING Sec 2
---- BOOLEAN Sec 2
---- INTEGER Sec 2; 3-B,C,D,E
---- JOINTPOS Sec 2
---- REAL Sec 2
---- STRING Sec 2
---- XYZWPR Sec 2
---- Directives:
---- ENVIRONMENT Sec 1
---- Built-in Functions & Procedures:
---- AVL_POS_NUM Sec 3-E
---- CHR Sec 3-B, 4

B�92

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

---- CLOSE_TPE Sec 3-E
---- CNV_REL_JPOS Sec 3-E
---- CNV_JPOS_REL Sec 3-E
---- COPY_TPE Sec 3-E
---- GET_JPOS_TPE Sec 3-E
---- GET_POS_TYP Sec 3-E
---- GET_POS_TPE Sec 3-E
---- OPEN_TPE Sec 3-E
---- PROG_LIST Sec 3-B
---- SELECT_TPE Sec 3-E
---- SET_JPOS_TPE Sec 3-E
---- SET_POS_TPE Sec 3-E

Applying Offsets to Copied Teach Pendant Program - Overview Continued
---- Statements:
---- FOR...ENDFOR Sec 3-B,D,E
---- IF ...THEN...ELSE...ENDIF Sec 3-A,B,C,E
---- READ Sec 3-B,C,D
---- REPEAT...UNTIL Sec 3-B,C,D
---- RETURN Sec 3-E
---- ROUTINE Sec 3-A,B,C,D,E,F
---- SELECT...ENDSELECT Sec 3-E
---- WRITE Sec 3-B,C,D,E,4

---- Reserve Words:
---- BEGIN Sec 3-A,B,C,D,E;
4
---- CONST Sec 2
---- CR Sec 3-B,C,D,E
---- END Sec 3-A,B,C,D,E;
4
---- PROGRAM Sec 1
---- VAR Sec 2

Applying Offsets to Copied Teach Pendant Program - Declaration Section
--
---- Section 1: Program and Environment Declaration
--
PROGRAM CPY_TP
%ENVIRONMENT TPE -- necessary for all xxx_TPE built-ins
%ENVIRONMENT BYNAM -- necessary for PROG_LIST built-in
--
---- Section 2: Constant and Variable Declaration
--
CONST

ER_WARN = 0 -- warning constant for use in POST_ERR
SUCCESS = 0 -- success constant

B�93

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

JNT_POS = 9 -- constant for GET_POS_TYP
XYZ_POS = 2 -- constant for GET_POS_TYP
MAX_AXS = 9 -- Maximum number of axes JOINTPOS has

VAR
from_prog: STRING[13] -- TP program name to be copied FROM
to_prog : STRING[13] -- TP program name to be copied TO
over_sw : BOOLEAN -- Decides whether to overwrite an existing

-- program when performing COPY_TPE
status : INTEGER -- Holds error status from the builtin calls
off_xyz : XYZWPR -- Offset amount for the XYZWPR positions
jp_off : ARRAY [9] of REAL -- Offset amount for the JOINT positions
new_xyz : XYZWPR -- XYZWPR which has offset applied
org_xyz : XYZWPR -- Original XYZWPR from to_prog
new_jpos : JOINTPOS -- JOINTPOS which as the offset applied
org_jpos : JOINTPOS -- Original JOINTPOS from to_prog
open_id : INTEGER -- Identifier for the opened to_prog
jp_org : ARRAY [9] of REAL -- REAL representation of org_jpos
jp_new : ARRAY [9] of REAL -- REAL representation of jp_new

Applying Offsets to Copied Teach Pendant Program - Declare Routines
--
---- Section 3: Routine Declaration
--
--
---- Section 3-A: CHK_STAT Declaration
---- Tests whether the status was successful or not.
---- If the status was not successful the status is posted
--
ROUTINE chk_stat (rec_stat: integer)
begin
IF (rec_stat <> SUCCESS) THEN -- if rec_stat is not SUCCESS

-- then post the error
POST_ERR (rec_stat, ’’, 0, ER_WARN) -- Post the error to the system.

ENDIF
END chk_stat

--
---- Section 3-B: GetFromPrg Declaration
---- Generate a list of loaded TPE programs.
---- Lets the user select one of these programs
---- to be the program to be copied, ie FROM_prog
--
ROUTINE GetFromPrg
VAR
tp_type : INTEGER -- Types of program to list
n_skip : INTEGER -- Index into the list of programs
format : INTEGER -- What type of format to store programs in

B�94

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

n_progs : INTEGER -- Number of programs returned in prg_name
prg_name : ARRAY [8] of STRING[20] --Program names returned from PROG_LIST
status : INTEGER -- Status of PROG_LIST call
f_index : INTEGER -- Fast index for generating the program listing.
arr_size : INTEGER -- Array size of prg_name
prg_select: INTEGER -- Users selection for which program to copy
indx : INTEGER -- FOR loop counter which displays prg_name

Applying Offsets to Copied Teach Pendant Program - Generate Program List for User
BEGIN

f_index = 0 -- Initialize the f_index
n_skip = 0 -- Initialize the n_skip
tp_type = 2 -- find any TPE program
format = 1 -- return just the program name in prg_name
n_progs = 0 -- Initialize the n_progs
arr_size = 8 -- Set equal to the declared array size of prg_name
prg_select = 0 -- Initialize the program selector

REPEAT
WRITE (chr(128),chr(137)) -- Clear the TP USER screen
-- Get a listing of all TP program which begin with "TEST"

PROG_LIST(’TEST*’,tp_type,n_skip,format,prg_name,n_progs,status,f_index)
chk_stat (status) --Check status from PROG_LIST
FOR indx = 1 to n_progs DO
WRITE (indx,’:’,prg_name[indx], CR) -- Write the list of programs out

ENDFOR

IF (n_skip > 0) OR (n_prog >0) THEN
WRITE (’select program to be copied:’,CR)
WRITE (’PRESS -1 to get next page of programs:’)
REPEAT

READ (prg_select) -- get program selection
UNTIL ((prg_select >= -1) AND (prg_select <= n_progs)

AND (prg_select <> 0))
ELSE

WRITE (’no TP programs to COPY’, CR)
WRITE (’Aborting program, since need’,CR)
WRITE (’at least one TP program to copy.’,CR)
ABORT

ENDIF

-- Check if listing is complete and user has not made a selection.
IF ((prg_select = -1) AND (n_progs < arr_size)) THEN

f_index = 0 --reset f_index to re-generate list.
n_progs = arr_size --set so the REPEAT/UNTIL will continue

ENDIF

B�95

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

-- Check if user user has made a selection
IF (prg_select <> -1) then

from_prog = prg_name[prg_select]-- Set from_prog to name selected
n_progs = 0 -- Set n_prog to stop looping.

ENDIF
UNTIL (n_progs < arr_size)

END GetFromPrg

Applying Offsets to Copied Teach Pendant Program - Overwrite or Delete Program
--
---- Section 3-C: GetOvrSw Declaration
---- Ask user whether to overwrite the copied
---- program, TO_prog, if it exists.
--
ROUTINE GetOvrSw
VAR

yesno : INTEGER
BEGIN

WRITE (CR, ’If Program already exists do you want’,CR)
WRITE (’to overwrite the file Yes:1, No:0 ? ’)
REPEAT

READ (yesno)
UNTIL ((yesno = 0) OR(yesno = 1))
IF yesno = 1 then --Set over_sw so program is overwriten if it exists

over_sw = TRUE
ELSE --Set over_sw so program is NOT overwriten if it exists

over_sw = FALSE
ENDIF

END GetOvrSw

Applying Offsets to Copied Teach Pendant Program - Input Offset Positions
--
---- Section 3-D: GetOffset Declaration
---- Have the user input the offset for both
---- XYZWPR and JOINTPOS positions.
--
ROUTINE GetOffset
VAR
yesno : INTEGER
index : INTEGER

BEGIN

--Get the XYZWPR offset, off_xyz
REPEAT

WRITE (’Enter offset for XYZWPR positions’,CR)

B�96

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

WRITE (’ X = ’)
READ (off_xyz.x)
WRITE (’ Y = ’)
READ (off_xyz.y)
WRITE (’ Z = ’)
READ (off_xyz.z)
WRITE (’ W = ’)
READ (off_xyz.w)
WRITE (’ P = ’)
READ (off_xyz.p)
WRITE (’ R = ’)
READ (off_xyz.r)
--Display the offset values the user input
WRITE (’ Offset XYZWPR position is’,CR, off_xyz,CR)
WRITE (’Is this offset correct? Yes:1, No:0 ? ’)
READ (yesno)

UNTIL (yesno = 1) -- enter offset amounts until the user
-- is satisfied.

--Get the JOINTPOS offset, jp_off
REPEAT

WRITE (’Enter offset for JOINT positions’,CR)
FOR indx = 1 TO 6 DO -- loop for number of robot axes

WRITE (’ J’,indx,’ = ’)
READ (jp_off[indx])

ENDFOR WRITE (’JOINT position offset is’, CR)
FOR indx = 1 TO 6 DO

write (jp_off[indx],CR) -- Display the values the user input
ENDFOR
WRITE (’Is this offset correct? Yes:1, No:0 ? ’)
READ (yesno)

UNTIL (yesno = 1) -- Enter offset amounts until the user
END GetOffset -- is satisfied

Applying Offsets to Copied Teach Pendant Program - Apply Offsets to Positions
--
---- Section 3-E: ModifyPrg Declaration
---- Apply the offsets to each position within the TP program
--
ROUTINE ModifyPrg
VAR

pos_typ : INTEGER --The type of position returned from GET_POS_TYP
num_axs : INTEGER -- The number of axes if position is a JOINTPOS type
indx_pos: INTEGER -- FOR loop counter, that increments through TP position
group_no: INTEGER -- The group number of the current position setting.
num_pos : INTEGER -- The next available position number within TP program
indx_axs: INTEGER -- FOR loop counter, increments through REAL array

B�97

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

BEGIN
SELECT_TPE (’’, status) -- Make sure the to_prog is currently not selected
to_prog = ’MDFY_TP’ -- Set the to_prog to desired name.

------ Copy the from_prog to to_prog -----
COPY_TPE (from_prog, to_prog, over_sw, status)
chk_stat(status) -- check status of COPY_TPE

--- If the user specified not to overwrite the TPE program and
--- the status returned is 7015, "program already exist",
--- then quit the program. This will mean not altering the already
--- existing to_prog.

IF ((over_sw = FALSE) AND (status = 7015)) THEN
WRITE (’ABORTING:: PROGAM ALREADY EXISTS!’,CR)
RETURN

ENDIF

--- Open the to_prog with the Read/Write access
OPEN_TPE (to_prog, TPE_RWACC, TPE_RDREJ, open_id, status)
chk_stat(status) -- check status of OPEN_TPE

group_no = 1

--- apply offset to each position within to_prog
--- The current number of position that the TPE program has is num_pos -1
FOR indx_pos = 1 to num_pos-1 DO

--Get the DATA TYPE of each position within the to_prog
--If it is a JOINTPOS also get the number of axes.
GET_POS_TYP (open_id, indx_pos, group_no, pos_typ, num_axs, status)
chk_stat (status)
WRITE(’get_pos_typ status’, status,cr)

Applying Offsets to Copied Teach Pendant Program - Apply Offsets to Positions Cont.
--Decide if the position, indx_pos, is a JOINTPOS or a XYZWPR

SELECT pos_typ OF
CASE (JNT_POS): -- The position is a JOINTPOS

FOR indx_axs = 1 TO MAX_AXS DO -- initialize with default values
jp_org[indx_axs] = 0.0 -- This avoids problems with the
jp_new[indx_axs] = 0.0 -- CNV_REL_JPOS

ENDFOR

-- get the JOINTPOS P[indx_pos] from to_prog -----
org_jpos = GET_JPOS_TPE (open_id, indx_pos, status)
chk_stat(status)

-- Convert the JOINTPOS to a REAL array, in order to perform offset
CNV_JPOS_REL (org_jpos, jp_org, status)

B�98

MARAIKLRF06031E REV A B. KAREL EXAMPLE PROGRAMS

chk_stat (status)

-- Apply the offset to the REAL array
FOR indx_axs = 1 to num_axs DO

jp_new[indx_axs] = jp_org[indx_axs] + jp_off[indx_axs]
ENDFOR

-- Converted back to a JOINTPOS.
-- The input array, jp_new, must not have any uninitialized values
-- or the error 12311 - "Data uninitialized" will be posted.
-- This is why we previously set all the values to zero.
CNV_REL_JPOS (jp_new, new_jpos, status)
chk_stat(status)

-- Set the new offset position, new_jpos, into the indx_pos
SET_JPOS_TPE (open_id, indx_pos, new_jpos, status)
chk_stat(status)
write (’indx_pos’, indx_pos, ’new_jpos’,cr, new_jpos,cr)

CASE (XYZ_POS): -- The position is a XYZWPR
-- Get the XYZWPR position P[indx_pos] from to_prog

org_xyz = GET_POS_TPE (open_id , indx_pos, status)
chk_stat(status) -- Check status from GET_POS_TPE

Applying Offsets to Copied Teach Pendant Program - Clears TP User Menu
-- Apply offset to the XYZWPR

new_xyz.x = org_xyz.x + off_xyz.x
new_xyz.y = org_xyz.y + off_xyz.y
new_xyz.z = org_xyz.z + off_xyz.z
new_xyz.w = org_xyz.w + off_xyz.w
new_xyz.p = org_xyz.p + off_xyz.p
new_xyz.r = org_xyz.r + off_xyz.r

--Set the new offset position, new_xyz, into the indx_pos
SET_POS_TPE (open_id, indx_pos, new_xyz, status)
chk_stat (status) -- Check status from SET_POS_TPE

ENDSELECT
ENDFOR
---Close TP program before quitting program
CLOSE_TPE (open_id, status)
chk_stat (status) --Check status from CLOSE_TPE

END ModifyPrg

---- Section 3-F: TP_CLS Declaration
---- Clears the TP USER Menu screen and forces it to
---- become visible. The actual code resides in
ROUT_EX.KL

B�99

B. KAREL EXAMPLE PROGRAMS MARAIKLRF06031E REV A

ROUTINE TP_CLS FROM rout_ex

---- Section 4: Main Program

BEGIN -- CPY_TP
tp_cls -- Clear the TP USER Menu screen
GetFromPrg -- Get the TPE program to copy FROM
GetOvrSw -- Get the TPE program name to copy TO
GetOffset -- Get the offset for modifying

-- the teach pendant program
ModifyPrg -- Modify the copied program by the offset

END CPY_TP

B�100

Appendix C
KCL COMMAND ALPHABETICAL
DESCRIPTION

Contents

Appendix C KCL COMMAND ALPHABETICAL DESCRIPTION .. C�1

C�1

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

C�2

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

This section describes each KCL command in alphabetical order. Each description includes the
purpose of the command, its syntax, and details of how to use it. Examples of each command are also
provided.

The following notation is used to describe KCL command syntax:

• < > indicates optional arguments to a command
• | indicates a choice which must be made
• { } indicates an item can be repeated
• file_spec: <device_name:><\\host_name\><path_name\>file_name.f ile_type
|<device_name:><\\host_name\>�host_specific_name�

• path_name: <file_device:\><dir\dir\. . .>
• file_name: maximum of 8 characters, no file type

device_name: is a two to five-character optional field, followed by a colon. The first character is a
letter, the remaining characters must be alphanumeric. If this field is left blank, the default device
from the system variable $DEVICE will be used.

host_name: file_name type - is a one to eight character optional field. The host_name selects the
network node that receives this command. It must be preceded by two backslashes and separated from
the remaining fields by a backslash.

path_name : file_name\<path_name> - is a recursively defined optional field consisting of a
maximum of 64 characters. It is used to select the file subdirectory. The root or source directory is
handled as a special case. It is designated by a file_name of zero length. For example, access to the
subdirectory SYS linked off of the root would have path name �\SYS�. A fully qualified file_spec
using this path_name would look like this, �C1:\HOST\SYS\FILE.KL�.

file_name: from one to eight characters

file_type: from zero to three characters

KCL commands can be abbreviated allowing you to type in fewer letters as long as the abbreviated
version remains unique among all keywords. For example, ��ABORT�� can be ��AB�� but
��CONTINUE�� must be ��CONT�� to distinguish it from ��CONDITION.��

KCL commands that have <prog_name> as part of the command syntax will use the default program
if none is specified. KCL commands that have <file_name> as part of the command syntax will use
the default program as the file name if none is specified.

C.1 ABORT command

Syntax: ABORT < (prog_name) | ALL) > <FORCE>

where:

C�3

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

prog_name : the name of any KAREL or TP program which is a task

ALL : aborts all running or paused tasks

FORCE : aborts the task even if the NOABORT attribute is set. FORCE only works with ABORT
prog_name; FORCE does not work with ABORT ALL

Purpose: Aborts the specified running or paused task. If prog_ name is not specified, the default
program is used.

Execution of the current program statement is completed before the task aborts except for the current
motion, DELAY, WAIT, or READ statements, which are canceled.

Examples: KCL> ABORT test_prog FORCE

KCL> ABORT ALL

C.2 APPEND FILE command

Syntax: APPEND FILE input_file_spec TO output_ file_spec

where:

input_file_spec : a valid file specification

output_file_spec : a valid file specification

Purpose: Appends the contents of the specified input file to the end of the specified output file. The
input_file_spec and the output_file_spec must include both the file name and the file type.

Examples: KCL> APPEND FILE flpy:test.kl TO productn.kl

KCL> APPEND FILE test.kl TO productn.kl

C.3 APPEND NODE command

Syntax: APPEND NODE <[prog_name]> var_name

where:

prog_name : the name of any KAREL or TP program

var_name : the name of any variable of type PATH

Purpose: Appends one node to the end of the specified PATH variable previously loaded in RAM.
The appended node value is uninitialized and the index number is one more than the last node index.
Execute the KCL> SAVE VARS command to make the change permanent.

C�4

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

Examples: KCL> APPEND NODE [test_prog]weld_pth

KCL> APPEND NODE weld_pth

C.4 CHDIR command

Syntax: CHDIR <device_name >\< path_name >\ or CD < device_name >\< path_nam e >

where:

device_name : a specified device

path_name : a subdirectory previously created on the memory card device using the mkdir command.
When the chdir command is used to change to a subdirectory, the entire path will be displayed on the
teach pendant screen as mc:\new_dir\new_file.

The double dot (..) can be used to represent the directory one level above the current directory.

Purpose: Changes the default device. If a device_name is not specified, displays the default device.

Examples: KCL> CHDIR rd:\

KCL> CD

KCL> CD mc:\a

KCL> CD ..

C.5 CLEAR ALL command

Syntax: CLEAR ALL <YES>

where:

YES : confirmation is not prompted

Purpose: Clears all KAREL and teach pendant programs and variable data from memory. All cleared
programs and variables (if they were saved with the KCL> SAVE VARS command) can be reloaded
into memory using the KCL> LOAD command.

Examples: KCL> CLEAR ALL

Are you sure? YES

KCL> CLEAR ALL Y

C�5

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

C.6 CLEAR BREAK CONDITION command

Syntax: CLEAR BREAK CONDITION < prog_name > (brk_pnt_no | ALL)

where:

prog_name : the name of any KAREL program in memory

brk_pnt_no : a particular condition break point

ALL : clears all condition break points

Purpose: Clears specified condition break point(s) from the specified or default program.

A condition break point only affects the program in which it is set.

Examples: KCL> CLEAR BREAK CONDITION test_prog 3

KCL> CLEAR BREAK COND ALL

C.7 CLEAR BREAK PROGRAM command

Syntax: CLEAR BREAK PROGRAM < prog_name > (brk_pnt_no | ALL)

where:

prog_name : the name of any KAREL program in memory

brk_pnt_no : a particular program break point

ALL : clears all break points

Purpose: Clears specified break point(s) from the specified or default program.

A break point only affects the program in which it is set.

Examples: KCL> CLEAR BREAK PROGRAM test_prog 3

KCL> CLEAR BREAK PROG ALL

C.8 CLEAR DICT command

Syntax: CLEAR DICT dict_name <(lang_name | ALL)>

where:

dict_name : the name of any dictionary to be cleared

C�6

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

lang_name : the name of the language. The available choices are ENGLISH, JAPANESE, FRENCH,
GERMAN, SPANISH or DEFAULT.

ALL : clears the dictionary from all languages

Purpose: Clears a dictionary from the specified language or from all languages. If no language is
specified, it is cleared from the DEFAULT language only.

Examples: KCL> CLEAR DICT tpsy ENGLISH

KCL> CLEAR DICT tpsy

C.9 CLEAR PROGRAM command

Syntax: CLEAR PROGRAM < prog_name > <YES>

where:

prog_name : the name of any KAREL or teach pendant program in memory

YES : confirmation is not prompted

Purpose: Clears the program data from memory for the specified or default program.

Examples: KCL> CLEAR PROGRAM test_prog

Are you sure? YES

KCL> CLEAR PROG test_prog Y

C.10 CLEAR VARS command

Syntax: CLEAR VARS <prog_name > <YES>

where:

prog_name : the name of any KAREL or teach pendant program with variables

YES : confirmation is not prompted

Purpose: Clears the variable and type data associated with the specified or default program from
memory.

Variables and types that are referenced by a loaded program are not cleared.

Examples: KCL> CLEAR VARS test_prog

C�7

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Are you sure? YES

KCL> CLEAR VARS test_prog Y

C.11 COMPRESS DICT command

Syntax: COMPRESS DICT file_name

where:

file_name : the file name of the user dictionary you want to compress.

Purpose: Compresses a dictionary file from the default storage device, using the specified dictionary
name. The file type of the user dictionary must be ��.UTX��. The compressed dictionary file will have
the same file name as the user dictionary, and be of type ��.TX��.

See Also: Chapter 10 DICTIONARIES AND FORMS

Example: KCL> COMPRESS DICT tphcmneg

C.12 COMPRESS FORM command

Syntax: COMPRESS FORM < file_name >

where:

file_name : the file name of the form you want to compress.

Purpose: Compresses a form file from the default storage device using the specified form name. The
file type of the form must be ��.FTX��. A compressed dictionary file and variable file will be created.
The compressed dictionary file will have the same file name as the form file and be of type ".TX".
The variable file will have a four character file name, that is extracted from the form file name, and be
of type ��.VR��. If no form file name is specified, the name ��FORM�� is used.

See Also:Chapter 10 DICTIONARIES AND FORMS

Examples: KCL> COMPRESS FORM

KCL> COMPRESS FORM mnpalteg

C.13 CONTINUE command

Syntax: CONTINUE <(prog_name) | ALL)>

where:

C�8

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

prog_name : the name of any KAREL or teach pendant program which is a task

ALL : continues all paused tasks

Purpose: Continues program execution of the specified task that has been paused by a hold,
pause, or test run operation. If the program is aborted, the program execution is started at the first
executable line.

When a task is paused, the CYCLE START button on the operator panel has the same effect as
the KCL> CONTINUE command.

CONTINUE is a motion command; therefore, the device from which it is issued must have motion
control.

See Also: Refer to the $RMT_MASTER description in the FANUC Robotics SYSTEM R-J3iB
Controller Software Reference Manual for more information about assigning motion control to a
remote device.

Examples: KCL> CONTINUE test_prog

KCL> CONT ALL

C.14 COPY FILE command

Syntax: COPY <FILE> from_file_spec TO to_file_spec <OVERWRITE>

where:

from_file_spec : a valid file specification

to_file_spec : a valid file specification

OVERWRITE : specifies copy over (overwrite) an existing file

Purpose: Copies the contents of one file to another with overwrite option. Allows file transfers
between different devices and between the controller and a host system.

The wildcard character (*) can be used to replace from_file_spec �s entire file name, the first part of
the file name, the last part of the file name, or both the first and last parts of the file name. The file
type can also use the wildcard in the same manner. The wildcard character in the to_file_spec can
only replace the entire file name or the entire file type.

Examples: KCL> COPY flpy:\test.kl TO rdu:newtest.kl

KCL> COPY mc:\test_dir\test.kl TO mc:\test_dir\newtest.kl

KCL> COPY FILE flpy:*.kl TO rd:*.kl

C�9

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

KCL> COPY *.* TO fr:

KCL> COPY FILE *.kl TO rd:*.bak OVERWRITE

KCL> COPY FILE flpy:*main*.kl TO rd:* OV

KCL> COPY mdb:*.tp TO mc:

C.15 CREATE VARIABLE command

Syntax: CREATE VARIABLE <[prog_name]> var_name <IN (CMOS | DRAM)> : data_type

where:

prog_name : the name of any KAREL or TP program

var_name:data_type : a valid variable name and data type

Purpose: Allows you to declare a variable that will be associated with the specified or default
program. You must specify a valid identifier for the var_name and a valid data_type.

Only one variable can be declared with the CREATE VAR command. You must enter the KCL>
SAVE VARS command to save the declared variable with the program variable data. Use the KCL>
SET VARIABLE command to assign a value to a variable.

The following data types are valid (user types are also supported): ARRAY OF BYTE, JOINTPOS,
ARRAY OF SHORT, JOINTPOS1 to JOINTPOS9, BOOLEAN, POSITION, COMMON_ASSOC,
REAL, CONFIG, VECTOR, FILE, XYZWPR, GROUP_ASSOC, XYZWPREXT, INTEGER

You can create multi-dimensional arrays of the above type. A maximum of 3 dimensions may be
specified. Paths may only be created from a user defined type.

By default, the variable will be created in temporary memory (in DRAM), and must be recreated
every power up. The value will always be reset to uninitialized.

If IN CMOS is specified the variable will be created in permanent memory. The variable�s value will
be recovered every time the controller is turned on.

See Also: SET VARIABLE command

Examples: KCL> CREATE VAR [test_prog]count IN CMOS: INTEGER

KCL> CREATE VAR vec:ARRAY[3,2,4] OF VECTOR

C.16 DELETE FILE command

Syntax: DELETE FILE file_spec <YES>

C�10

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

where:

file_spec : a valid file specification

YES : confirmation is not prompted

Purpose: Deletes the specified file from the specified storage device. The wildcard character (*) can
be used to replace the entire file name, the first part of the file name, the last part of the file name, or
both the first and last parts of the file name. The file type can also use the wildcard in the same manner.

Examples: KCL> DELETE FILE testprog.pc

Are you sure? YES

KCL> DELETE FILE rd:\testprog.pc YES

KCL> DELETE FILE rd:*.* Y

C.17 DELETE NODE command

Syntax: DELETE NODE <[prog_name]> var_name [node_index]

where:

prog_name : the name of any KAREL or TP program

var_name : the name of any variable of type PATH

[node_index] : a node in the path

Purpose: Deletes the specified node from the specified PATH variable. The PATH variable must be
loaded in memory. Enter the KCL> SAVE VARS command to make the change permanent.

Examples: KCL> DELETE NODE [test_prog]weld_pth[4]

KCL> DELETE NODE weld_pth[3]

C.18 DELETE VARIABLE command

Syntax: DELETE VARIABLE <[prog_name]> var_name

where:

prog_name : the name of any KAREL or TP program with variables

var_name : the name of any program variable

C�11

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Purpose: Deletes the specified variable from memory. A variable that is linked with loaded p-code
cannot be deleted. Enter the KCL> SAVE VARS command to make the change permanent.

Examples: KCL> DELETE VARIABLE [test_prog]weld_pth

KCL> DELETE VAR weld_pth

C.19 DIRECTORY command

Syntax: DIRECTORY <file_spec >

where:

file_spec : a valid file specification

Purpose: Displays a list of the files that are on a storage device. If file_spec is not specified,
directory information is displayed for all of the files stored on a specified device. The directory
information displayed includes the following:

The volume name of the device (if specified when the device was initialized)

The name of the subdirectory, if available

The names and types of files currently stored on the device and the sizes of the files in bytes

The number of files, the number of bytes left, and the number of bytes total, if available

The wildcard character (*) can be used to replace the entire file name, the first part of the file name,
the last part of the file name, or both the first and last parts of the file name. The file type can also
use the wildcard in the same manner.

Examples: KCL> DIRECTORY rd:

KCL> DIR *.kl

KCL> DIR *SPOT*.kl

KCL> CD MC: \test_dir

Use the CD command to change to the KCL> DIR subdirectory before you use the DIR commandor
KCL> DIR \test_dir*.* display the subdirectory contents without using the CD command.

C.20 DISABLE BREAK PROGRAM command

Syntax: DISABLE BREAK PROGRAM < prog_name > brk_pnt_no

where:

C�12

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

prog_name : the name of any KAREL or TP program in memory

brk_pnt_no : a particular program break point

Purpose: Disables the specified break point in the specified or default program.

Examples: KCL> DISABLE BREAK PROGRAM test_prog 3

KCL> DISABLE BREAK PROG 3

C.21 DISABLE CONDITION command

Syntax: DISABLE CONDITION < prog_name > condition_no

where:

prog_name : the name of any KAREL program in memory

condition_no : a particular condition

Purpose: Disables the specified condition in the specified or default program.

Examples: KCL> DISABLE CONDITION test_prog 3

KCL> DISABLE COND 3

C.22 DISMOUNT command

Syntax: DISMOUNT device_name:

where:

device_name : device to be dismounted

Purpose: Dismounts a mounted storage device and indicates to the controller that a storage device is
no longer available for reading or writing data.

Example: KCL> DISMOUNT rd:

C.23 EDIT command

Syntax: EDIT <file_spec >

where:

file_spec : a valid file specification

C�13

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Purpose: Provides an ASCII text editor which can be used for editing dictionary files, command
files and KAREL source files.

If file_spec is not specified, the default program name is used as the file name and the default file
type is .KL (KAREL source code).

If a previous editing session exists, then file_spec is ignored and the editing session is resumed.

See Also : Chapter 11 FULL SCREEN EDITOR , for more information on KCL> EDIT and the
editor commands.

Examples: KCL> EDIT startup.cf

KCL> ED

C.24 ENABLE BREAK PROGRAM

Syntax: ENABLE BREAK PROGRAM < prog_name > brk_pnt_no

where:

prog_name : the name of any KAREL or TP program in memory

brk_pnt_no : a particular program break point

Purpose: Enables the specified break point in the specified or default program.

Examples: KCL> ENABLE BREAK PROGRAM test_prog 3

KCL> ENABLE BREAK PROG 3

C.25 ENABLE CONDITION command

Syntax: ENABLE CONDITION < prog_name > condition_no

where:

prog_name : the name of any KAREL program in memory

condition_no : a particular condition

Purpose: Enables the specified condition in the specified or default program.

Examples: KCL> ENABLE CONDITION test_prog 3

KCL> ENABLE COND 3

C�14

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

C.26 FORMAT command

Syntax: FORMAT device_name: < volume_name > <YES>

where:

device_name : the specified device to be initialized

volume_name : label for the device

YES : confirmation is not prompted

Purpose: Formats a specified device. A device must be formatted before storing files on it.

Examples: KCL> FORMAT rd:

Are you sure? YES

KCL> FORMAT rd: Y

C.27 HELP command

Syntax: HELP <command_name >

where:

command_name : a KCL command

Purpose: Displays on-line help for KCL commands. If you specify a command_name argument, the
required syntax and a brief description of the specified command is displayed.

Examples: KCL> HELP LOAD PROG

KCL> HELP

C.28 HOLD command

Syntax: HOLD <(prog_name | ALL)>

where:

prog_name : the name of any KAREL or TP program

ALL : holds all executing programs

C�15

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Purpose: Pauses the specified or default program that is being executed and holds motion at the
current position (after a normal deceleration).

Use the KCL> CONTINUE command or the CYCLE START button on the operator panel to resume
program execution.

Examples: KCL> HOLD test_prog

KCL> HO ALL

C.29 INSERT NODE command

Syntax: INSERT NODE <[prog_name]> var_name [node_index]

where:

prog_name : the name of any KAREL or TP program

var_name : the name of any variable of type PATH

node_index: : a node in the path

Purpose: Inserts a node in front of the specified node in the PATH variable. The PATH variable
must be loaded in memory.

The inserted node index number is the node_index you specify and the inserted node value is
uninitialized. The index numbers for subsequent nodes are incremented by one. You must enter the
KCL> SAVE VARS command to make the change permanent.

Examples: KCL> INSERT NODE [test_prog]weld_pth[2]

KCL> INSERT NODE weld_pth[3]

C.30 LOAD ALL command

Syntax: LOAD ALL <file_name > <CONVERT>

where:

file_name : a valid file name

CONVERT : converts variables to system definition

Purpose: Loads a p-code and variable file from the default storage device and default directory into
memory using the specified or default file name. The file types for the p-code and variable files are
assumed to be ��.PC�� and ��.VR�� respectively.

C�16

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

If file_name is not specified, the default program is used. If the default has not been set, then the
message, ��Default program name not set,�� will be displayed.

Examples: KCL> LOAD ALL test_prog

KCL> LOAD ALL

C.31 LOAD DICT command

Syntax: LOAD DICT file_name dict_name < lang_name >

where:

file_name : the name of the file to be loaded

dict_name : the name of any dictionary to be loaded. The name will be truncated to 4 characters.

lang_name : a particular language. The available choices are ENGLISH, JAPANESE, FRENCH,
GERMAN, SPANISH or DEFAULT.

Purpose: Loads a dictionary file from the default storage device and default directory into memory
using the specified file name. The file type is assumed to be ��.TX.��

See Also: Chapter 10 DICTIONARIES AND FORMS

Examples: KCL> LOAD DICT tpaleg tpal FRENCH

KCL> LOAD DICT tpaleg tpal

C.32 LOAD FORM command

Syntax: LOAD FORM <form_name >

where:

form_name : the name of the form to be loaded

Purpose: Loads the specified form, from the default storage device, into memory. A form consists
of a compressed dictionary file and a variable file. If no name is specified, �FORM.TX� and
�FORM.VR� are loaded.

If the specified form_name is greater than four characters, the first two characters are not used for
the dictionary name or the variable file name.

See Also: For more information on creating and using forms, refer to Chapter 10 DICTIONARIES
AND FORMS

C�17

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: KCL> LOAD FORM

Loading FORM.TX with dictionary name FORM

Loading FORM.VR

KCL> LOAD FORM tpexameg

Loading TPEXAMEG.TX with dictionary name EXAM

Loading EXAM.VR

C.33 LOAD MASTER command

Syntax: LOAD MASTER < file_name > <CONVERT>

where:

file_name : a valid file name

CONVERT : converts variables to system definition

Purpose: Loads a mastering data file from the default storage device and default directory into
memory using the specified or default file name. The file type is assumed to be ��.SV.��

If file_name is not specified, the default file name, ��SYSMAST.SV,�� is used.

Example: KCL> LOAD MASTER

C.34 LOAD PROGRAM command

Syntax: LOAD PROGRAM < file_name >

where:

file_name : a valid file name

Purpose: Loads a p-code file from the default storage device and default directory into memory using
the specified or default file name. The file type is assumed to be ��.PC.��

If file_spec is not specified, the default program is used. If the default has not been set, then the
message, ��Default program name not set,�� will be displayed.

Examples: KCL> LOAD PROGRAM test_prog

KCL> LOAD PROG

C�18

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

C.35 LOAD SERVO command

Syntax: LOAD SERVO < file_name > <CONVERT>

where:

file_name : a valid file name

CONVERT : converts variables to system definition

Purpose: Loads a servo parameter file from the default storage device and default directory into
memory using the specified or default file name. The file type is assumed to be ��.SV.��

If file_name is not specified, the default file name, ��SYSSERVO.SV,�� is used.

Example: KCL> LOAD SERVO

C.36 LOAD SYSTEM command

Syntax: LOAD SYSTEM < file_name > <CONVERT>

where:

file_name : a valid file name

CONVERT : converts variables to system definition

Purpose: Loads the specified system variable file into memory, assigning values to all of the saved
system variables. The default storage device and default directory are used with the specified or
default file name. The file type is assumed to be ��.SV.��

If file_name is not specified, the default file name, ��SYSVARS.SV,�� is used.

Examples: KCL> LOAD SYSTEM awdef

KCL> LOAD SYSTEM CONVERT

The following rules are applicable for system variables:

• If an array system variable that is not referenced by a program already exists when a .SV file is
loaded, the size in the .SV file is used and the contents are loaded. No errors are posted.

• If an array system variable that is referenced by a program already exists when a .SV file with a
LARGER size is loaded, the size in the .SV file is ignored, and NONE of the array values are
loaded. The following errors are posted; " var_name memory not updated", "Array len creation
mismatch".

C�19

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

• If an array system variable that is referenced by a program already exists when a .SV file with
a SMALLER size is loaded, the size in the .SV file is ignored but ALL the array values are
loaded. No errors are posted.

• If a .SV file with a different type definition is loaded, the .SV file will stop loading and detect
the error. The following errors are posted; "Create type - var_name failed", "Duplicate creation
mismatch".

• If a .SV. file with a different type definition is loaded, but the CONVERT option is specified,
it tries to load as much as it can. For example, the controller has a SCR_T type which has the
field $NEW but not the field $OLD. When an old .SV file is loaded that has $OLD but not
$NEW, the load procedure creates the SCR_T type based on what is in the .SV file and posts a
"Create type - var_name failed", "Duplicate creation mismatch" error. It then creates the type
SCR_! which has the field $OLD but not the field $NEW. It then does a field by field copy of
all of the old valid fields into the new type. Therefore, since there is not $NEW information in
the old type that field is not updated and the $OLD information is discarded. Any fields whose
types don�t match are discarded from the loaded type. So if a field was changed from integer
to real, the integer field in the loaded data would be discarded. Any fields that are arrays will
follow the same rules as array system variables.

C.37 LOAD TP command

Syntax: LOAD TP <file_name > <OVERWRITE>

where:

file_name : a valid file name

OVERWRITE : If specified, may overwrite a previously loaded TP program with the same name

Purpose: Loads a TP program from the default storage device and default directory into memory
using the specified or default file name. The file type is assumed to be ��.TP.��

If file_name is not specified, the default program is used. If the default has not been set, then the
message, ��Default program name not set,�� will be displayed.

Examples: KCL> LOAD TP testprog

KCL> LOAD TP

C.38 LOAD VARS command

Syntax: LOAD VARS <file_name > <CONVERT>

where:

file_name : a valid file name

C�20

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

CONVERT : converts variables to system definition

Purpose: Loads the specified or default variable data file from the default storage device and
directory into memory. The file type is assumed to be ��.VR.��

If file_name is not specified, the default program is used. If the default has not been set then the
message, ��Default program name not set,�� will be displayed.

Examples: KCL> LOAD VARS test_prog

KCL> LOAD VARS

The following rules are applicable for array variables:

• If an array variable that is not referenced by a program already exists when a .VR file is loaded,
the size in the .VR file is used and the contents are loaded. No errors are posted.

• If an array variable already exists when a program is loaded, the size in the .PC file is ignored
and the program is loaded anyway. The following errors are posted: " var_name PC array length
ignored", and "Array len creation mismatch".

• If an array variable that is referenced by a program already exists when a .VR file with a LARGER
size is loaded, the size in the .VR file is ignored and NONE of the array values are loaded. The
following errors are posted; " var_name memory not updated," "Array len creation mismatch."

• If an array variable that is referenced by a program already exists when a .VR file with a
SMALLER size is loaded, the size in the .VR file is ignored but ALL the array values are loaded.
The following errors are posted; " var_name array length updated," "Array len creation mismatch."

The following rules are applicable for user-defined types in KAREL programs:

• Once a type is created it can never be changed, regardless of whether a program references it
or not. If all the variables referencing the type are deleted, the type will also be deleted. A new
version can then be loaded.

• If a type already exists when a program with a different type definition is loaded, the .PC file
will not be loaded. The following errors are posted; "Create type - var_name failed," "Duplicate
creation mismatch."

• If a type already exists when a .VR file with a different type definition is loaded, the .VR file will
stop loading when it detects the error. The following errors are posted; "Create type -var_name
failed," "Duplicate creation mismatch".

C.39 LOGOUT command

Syntax: LOGOUT

Purpose: Logs the current user from the KCL device out of the system. The password level reverts
to the OPERATOR level. If passwords are not enabled, an error message will be displayed by KCL
such as, "No user currently logged in".

C�21

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Example: KCL>LOGOUT

(The alarm message: "Logout (SAM) SETUP from KCL")

KCL Username>

C.40 MKDIR command

Syntax: MKDIR <device_name>\path_name

where:

device_name : a valid storage device

path_name : a subdirectory previously created on the memory card device using the mkdir command.

Purpose: MKDIR creates a subdirectory on the memory card (MC:) device. FANUC Robotics
recommends you nest subdirectories only to 8 levels.

Example: KCL> MKDIR mc:\test_dir

KCL> MKDIR mc:\prog_dir\tpnx_dir

C.41 MOUNT command

Syntax: MOUNT device_name

where:

device_name : a valid storage device

Purpose: MOUNT indicates to the controller that a storage device is available for reading or writing
data.

A device must be formatted with the KCL> FORMAT command before it can be mounted successfully.

Example: KCL> MOUNT rd:

C.42 MOVE FILE command

Syntax: MOVE <FILE> file_spec

where:

file_spec : a valid file specification.

C�22

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

Purpose: Moves the specified file from one memory file device to another. The file should exist
on the FROM or RAM disks. If file_spec is a file on the FROM disk, the file is moved to the RAM
disk, and vice versa.

The wildcard character (*) can be used to replace the entire file name, the first part of the file name,
the last part of the file name, or both the first and last parts of the file name. The file type can also
use the wildcard in the same manner. If file_spec specifies multiple files, then they are all moved
to the other disk.

Examples: KCL> MOVE FILE fr:*.kl

KCL> MOVE rd:*.*

C.43 PAUSE command

Syntax: PAUSE <(prog_name | ALL)> <FORCE>

where:

prog_name : the name of any KAREL or TP program which is a task

ALL : pauses all running tasks

FORCE : pauses the task even if the NOPAUSE attribute is set

Purpose: Pauses the specified running task. If prog_name is not specified, the default program is
used.

Execution of the current motion segment and the current program statement is completed before the
task is paused.

Condition handlers remain active. If the condition handler action is NOPAUSE and the condition
is satisfied, task execution resumes.

If the statement is a WAIT FOR and the wait condition is satisfied while the task is paused, the
statement following the WAIT FOR is executed immediately when the task is resumed.

If the statement is a DELAY, timing will continue while the task is paused. If the delay time is finished
while the task is paused, the statement following the DELAY is immediately executed when the task
is resumed. If the statement is a READ, it will accept input even though the task is paused.

The KCL> CONTINUE command resumes execution of a paused task. When a task is paused, the
CYCLE START button on the operator panel has the same effect as the KCL> CONTINUE command.

Examples: KCL> PAUSE test_prog FORCE

KCL> PAUSE ALL

C�23

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

C.44 PURGE command

Syntax: PURGE device_name

where:

device_name : the name of the memory file device to be purged

Purpose: Purges the specified memory file device by freeing any used blocks that are no longer
needed. The device should be set to "FR:" for FROM disk, "RD:" for RAM disk, or "MF:" for
both disks.

The purge operation is only necessary when the device does not have enough memory to perform an
operation. The purge operation will erase file blocks that were previously used, but are no longer
needed. These are called garbage blocks. The FROM disk can contain many garbage blocks if files
are deleted or overwritten. The RAM disk will not normally contain garbage blocks, but they may
occur when power is removed during a file copy.

The device must be mounted and no files can be open on the device or an error will be displayed.

Examples: KCL> PURGE fr:

KCL> PURGE mf:

C.45 PRINT command

Syntax: PRINT file_spec

where:

file_spec : a valid file specification

Purpose: Allows you to print the contents of an ASCII file using a serial printer. A serial printer
can connect to the RS-232-C port on the operator panel. Use the SET comm_port BAUD command
to set the printer baud rate.

Example: KCL> PRINT testprog.kl

C.46 RECORD command

Syntax: RECORD <[prog_name]> var_name

where:

prog_name : the name of any KAREL or TP program

C�24

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

var_name : the name of any POSITION, XYZWPR, or JOINTPOS variable

Purpose: Records the position of the TCP and/or auxiliary or extended axes. The robot must be
calibrated before the RECORD command is issued. The variable can be a system variable or a program
variable that exists in memory. The position is recorded relative to the user frame of reference.

You must enter the KCL> SAVE command to permanently assign the recorded position. The Record
function key, F3, under the teach pendant TEACH menu also allows you to record positions.

Example: KCL> RECORD [paint_prog]start_pos

KCL> RECORD $GROUP[1].$uframe

C.47 RENAME FILE command

Syntax: RENAME FILE old_file_spec TO new_file_ spec

where:

old_file_spec : a valid file specification

new_file_spec : a valid file specification

Purpose: Changes the old_file_spec to the new_file_spec . The file will no longer exist under the
old_file_spec . The old_file_spec and the new_file_spec must include both the file name and the file
type. The same file type must be used in both file_specs but they cannot be the same file.

Use the KCL> COPY FILE command to change the device name of a file.

Examples: KCL> RENAME FILE test.kl TO productn.kl

KCL> RENAME FILE mycmd.cf TO yourcmd.cf

C.48 RENAME VARIABLE command

Syntax: RENAME VARIABLE <[prog_name]> old_var_ name new_var_name

where:

prog_name : the name of any KAREL or TP program

old_var_name : the name of any program variable

new_var_name : a valid program variable name

C�25

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Purpose: Changes the old_var_name to the new_var_name in the program specified with the
old_var_name . The variable will no longer exist under the old_var_name . The variable must exist
in memory under the old_var_name in the specified program.

The new_var_name cannot already exist in memory. The variable still belongs to the same program.
You cannot specify a prog_name with the new_var_name.

You must enter the KCL> SAVE VARS command to make the change permanent.

Examples: KCL> RENAME VARIABLE [test_prog]count part_count

KCL> RENAME VAR count part_count

C.49 RENAME VARS command

Syntax: RENAME VARS old_prog_name new_prog_name

where:

old_prog_name : the name of any KAREL or TP program

new_prog_name : the name of any KAREL or TP program

Purpose: Changes the name of the variable data associated with the old_prog_name to the
new_prog_name. The variable data will no longer exist under the old_prog_name.

Before you use the RENAME VARS command, the variable data must exist in memory under the
old_prog_name . Variable data cannot already exist in memory under the new_prog_name.

The command does not rename the program. To rename a KAREL program, use the KCL> RENAME
FILE to rename the .KL file, edit the program name in the .KL file, translate the program, and load
the new C file. To rename a TP program, use the SELECT menu.

You must enter the KCL> SAVE VARS command to make the change permanent.

Example: KCL> RENAME VARS test_1 test_2

Use this sequence of KCL commands to copy the variable data of one program (prog_1) into
a variable file that is then used by another program (prog_2):

LOAD VARS prog_1

RENAME VARS prog_1 prog_2

SAVE VARS prog_2

LOAD ALL prog_2

C�26

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

The effect of this sequence of commands cannot be accomplished with the KCL> COPY FILE
command.

The name of the program to which the variable data belongs is stored in the variable file. The KCL>
COPY FILE command does not change that stored program name, so the data cannot be used with
another program.

C.50 RESET command

Syntax: RESET

Purpose: Enables servo power after an error condition has shut off servo power, provided the cause
of the error has been cleared. The command also clears the message line on the CRT/KB display. The
error message remains displayed if the error condition still exists.

The RESET command has no effect on a program that is being executed. It has the same effect as
the FAULT RESET button on the operator panel and the RESET function key on the teach pendant
RESET screen.

Example: KCL> RESET

C.51 RMDIR command

Syntax: RMDIR <device_name>\path_name

where:

device_name : a valid storage device

path_name : a subdirectory previously created on the memory card device using the mkdir command.

Purpose: RMDIR deletes a subdirectory on the memory card (MC:) device. The directory must be
empty before it can be deleted.

Example: KCL> RMDIR mc:\test_dir

KCL> RMDIR mc:\test_dir\prog_dir

C.52 RUN command

Syntax: RUN <prog_name >

where:

prog_name :the name of any KAREL or TP program

C�27

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Purpose: Executes the specified program. The program must be loaded in memory. If no program is
specified the default program is run. If uninitialized variables are encountered, program execution
is paused.

Execution begins at the first executable line. RUN is a motion command; therefore, the device from
which it is issued must have motion control. If a RUN command is issued in a command file, it is
executed as a NOWAIT command. Therefore, the statement following the RUN command will be
executed immediately after the RUN command is issued without waiting for the program, specified by
the RUN command, to end.

See Also: Refer to the $RMT_MASTER description in the FANUC Robotics SYSTEM R-J3iB
Controller Software Reference Manual for more information about assigning motion control to a
remote device.

Example: KCL> RUN test_prog

C.53 RUNCF command

Syntax: RUNCF input_file_spec < output_file_spec >

where:

input_file_spec : a valid file specification

output_file_spec : a valid file specification

Purpose: Executes the KCL command procedure that is stored in the specified input file and displays
the output to the specified output file. The input file type is assumed to be .CF. The output file type is
assumed to be .LS if no file type is supplied.

If output_file_spec is not specified, the output will be displayed to the KCL output window.

The RUNCF command can be nested within command files up to four levels. Use %INCLUDE
input_file_spec to include another .CF file into the command procedure. RUNCF command itself is
not allowed inside a command procedure.

If the command file contains motion commands, the device from which the RUNCF command is
issued must have motion control.

See Also: Refer to Section 13.4, ��Command Procedures,�� for more information

Examples: KCL> RUNCF startup output

KCL> RUNCF startup

C�28

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

C.54 SAVE MASTER command

Syntax: SAVE MASTER < file_name >

where:

file_name : a valid file name

Purpose: Saves the mastering data file from the default storage device and default directory into
memory using the specified or default file name. The file type will be ��.SV.��

If file_name is not specified, the default file name, ��SYSMAST.SV,�� is used.

Example: KCL> SAVE MASTER

C.55 SAVE SERVO command

Syntax: SAVE SERVO < file_name >

where:

file_name :a valid file name

Purpose: Saves the servo parameters into the default storage device using the specified or default file
name. The file type will be ��.SV.��

If file_name is not specified, the default file name, ��SYSSERVO.SV,�� is used.

Example: KCL> SAVE SERVO

C.56 SAVE SYSTEM command

Syntax: SAVE SYSTEM < file_name >

where:

file_name :a valid file name

Purpose: Saves the system variable values into the default storage device and default directory
using the specified system variable file (.SV). If you do not specify a file_spec the default name,
��SYSVARS.SV,��is used. For example:

SAVE SYSTEM file_1

In this case, the system variable data is saved in a variable file called file_1.SV .

C�29

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

SAVE SYSTEM

In this case, the system variable data is saved in a system variable file ��SYSVARS.SV.��

Examples: KCL> SAVE SYSTEM file_1

KCL> SAVE SYSTEM

C.57 SAVE TP command

Syntax: SAVE TP <file_name > <= prog_name >

where:

file_name : a valid file name

prog_name : the name of any TP program

Purpose: Saves the specified TP program to the specified file (.TP). If you do not specify a file_name
or a prog_name , the default program name is used. If only a file_name is specified, that name
will also be used for prog_name. For example:

SAVE TP file_1

In this case, the TP program file_1 is saved in a file called file_1.TP .

SAVE TP = prog_1

In this case, the TP program prog_1 is saved in a file whose name is the default program name.

If you specify a program name, it must be preceded by an equal sign (=).

Examples: KCL> SAVE TP file_1 = prog_1

KCL> SAVE TP file_1

KCL> SAVE TP = prog_1

KCL> SAVE TP

C.58 SAVE VARS command

Syntax: SAVE VARS <file_name > <= prog_name >

where:

file_name : a valid file name

C�30

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

prog_name : the name of any KAREL or TP program

Purpose: Saves variable data from the specified program, including the currently assigned values,
to the specified variable file (.VR). If you do not specify a file_name or a prog_name, the default
program name is used. If only a file_name is specified, that name will also be used for prog_name.
For example:

SAVE VARS file_1

In this case, the variable data for the program file_1 is saved in a variable file called file_1.VR.

SAVE VARS = prog_ 1

In this case, the variable data for prog_ 1 is saved in a variable file whose name is the default
program name.

If you specify a program name, it must be preceded by an equal sign (=).

Any variable data that is not saved is lost when an initial start of the controller is performed.

Examples: KCL> SAVE VARS file_1 = prog_1

KCL> SAVE VARS file_1

KCL> SAVE VARS = prog_1

KCL> SAVE VARS

C.59 SET BREAK CONDITION command

Syntax: SET BREAK CONDITION < prog_name > condition_no

where:

prog_name : the name of any running or paused KAREL program

condition_no : a particular condition

Purpose: Allows you to set a break point on the specified condition in the specified program or
default program. The specified condition must already exist so the program must be running or
paused. When the break point is triggered, a message will be posted to the error log and the break
point will be cleared.

Examples: KCL> SET BREAK CONDITION test_prog 1

KCL> SET BREAK COND 2

C�31

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

C.60 SET BREAK PROGRAM command

Syntax: SET BREAK PROGRAM < prog_name > brk_pnt_no line_no <(PAUSE | DISPLAY |
TRACE ON | TRACE OFF)>

where:

prog_name : the name of any KAREL or TP program in memory

brk_pnt_no : a particular program break point

line_no : a line number

PAUSE : task is paused when break point is executed

DISPLAY : message is displayed on the teach pendant USER menu when break point is executed

TRACE ON : trace is enabled when break point is executed

TRACE OFF : trace is disabled when break point is executed

Purpose: Allows you to set a break point at a specified line in the specified or default program.
The specified line must be an executable line of source code. Break points will be executed before
the specified line in the program. By default the task will pause when the break point is executed.
DISPLAY, TRACE ON, and TRACE OFF will not pause task execution.

Break points are local only to the program in which the break points were set. For example, break
point #1 can exist among one or more loaded programs with each at a unique line number. If you
specify an existing break point number, the existing break point is cleared and a new one is set
in the specified program at the specified line.

Break points in a program are cleared if the program is cleared from memory. You also use the KCL>
CLEAR BREAK PROGRAM command to clear break points from memory.

Use the KCL> CONTINUE command or the operator panel CYCLE START button to resume
execution of a paused program.

Examples: KCL> SET BREAK PROGRAM test_prog 1 22 DISPLAY

KCL> SET BREAK PROG 3 30

C.61 SET CLOCK command

Syntax: SET CLOCK ’dd-mmm-yy hh:mm’

where:

C�32

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

The date is specified using two numeric characters for the day, a three letter abbreviation for the
month, and two numeric characters for the year; for example, 01-JAN- 00.

The time is specified using two numeric characters for the hour and two numeric characters for the
minutes; for example, 12:45.

Purpose: Sets the date and time of the internal controller clock.

The date and time are included in directory and translator listings.

See Also: SHOW CLOCK command

Example: KCL> SET CLOCK �02-JAN-xx 21:45�

C.62 SET DEFAULT command

Syntax: SET DEFAULT prog_name

where:

prog_name : the name of any KAREL or TP program

Purpose: Sets the default program name to be used as an argument default for program and file
names. The default program name can also be set at the teach pendant.

See Also: Section 13.1.1, ��Default Program��

Examples: KCL> SET DEFAULT test_prog

KCL> SET DEF test_prog

C.63 SET GROUP command

Syntax: SET GROUP group_no

where:

group_no : a valid group number

Purpose: Sets the default group number to use in other commands.

Example: KCL> SET GROUP 1

C.64 SET LANGUAGE command

Syntax: SET LANGUAGE lang_name

C�33

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

where:

lang_name : a particular language. The available choices are ENGLISH, JAPANESE, FRENCH,
GERMAN, SPANISH or DEFAULT.

Purpose: Sets the $LANGUAGE system variable which determines the language to use.

Example: KCL> SET LANG ENGLISH

C.65 SET LOCAL VARIABLE command

Syntax: SET LOCAL VARIABLE var_name <IN rout_name > <FROM prog_name >
<task_name > = value <{, value }>

where:

var_name :a local variable or parameter name

rout_name :the name of any KAREL routine

prog_name :the name of any KAREL program

task_name : the name of any KAREL task

value : new value for variable

Purpose: Assigns the specified value to the specified local variable or routine parameter. You can
assign constant values or variable values, but the value must be of the data type that has been declared
for the variable.

Please use the HELP SET VAR command for more information on assigning data types.

If the IN clause is omitted, the routine at the top of the stack is assumed. If the FROM clause is
omitted, the default program is assumed. If the task_name is omitted, the stack of the KCL default
task is searched.

Note The file RD: prog_name.rs is required to obtain local variable information.

Example: See SHOW LOCAL VARIABLE command.

See Also: SHOW LOCAL VARIABLE and TRANSLATE command.

C.66 SET PORT command

Syntax: SET PORT port_name [index] = value

where:

C�34

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

port_name[index] : a valid I/O port value : a new value for the port

Purpose: Assigns the specified value to a specified input or output port. SET PORT can be used with
either physical or simulated output ports, but only with simulated input ports.

The valid ports are:

DIN, DOUT, RDO, OPOUT, TPOUT, WDI, WDO (BOOLEAN)-AIN, AOUT, GIN, GOUT
(INTEGER)

See Also: SIMULATE, UNSIMULATE command, Chapter 14 INPUT/OUTPUT SYSTEM , FANUC
Robotics SYSTEM R-J3iB Controller HandlingTool Setup and Operations Manual.

Example: KCL> SET PORT DOUT [1] = ON

KCL> SET PORT GOUT [2] = 255

KCL> SET PORT AIN [1] = 1000

C.67 SET TASK command

Syntax: SET TASK <[prog_name]> attr_name = value

where:

prog_name : the name of any KAREL or TP program which is a task

attr_name : PRIORITY or TRACELEN

value : new integer value for attribute

Purpose: Sets the specified task attribute. PRIORITY sets the task priority. The lower the number,
the higher the priority. 1 to 89 is lower than motion, but higher than the user interface. 90 to 99 is
lower than the user interface. The default is 50. TRACELEN sets the trace buffer length. The default
is 10 lines.

C.68 SET TRACE command

Syntax: SET TRACE (OFF | ON) <[prog_name]>

where:

prog_name : the name of any KAREL or TP program loaded in memory

Purpose: Turns the trace function ON or OFF (default is OFF). The program statement currently
being executed and its line number are stored in a buffer when TRACE is ON. TRACE should only

C�35

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

be set to ON during debugging operations because it slows program execution. To see the trace
data, SHOW TRACE command must be used.

See Also: SHOW TRACE command

C.69 SET VARIABLE command

Syntax: SET VARIABLE <[prog_name]> var_name = value <{, value }>

where:

prog_name : the name of any KAREL or TP program

var_name : a valid program variable

value : new value for variable or a program or system variable

Purpose: Assigns the specified value to the specified variable. You can assign constant values or
variable values, but the value must be of the data type that has been declared for the variable.

You can assign values to system variables with KCL write access, to program variables, or to standard
and user-defined variables and fields. You can assign only one ARRAY element. Use brackets ([])
after the variable name to specify an element.

Certain data types like positions and vectors might have more than one value specified.

KCL> SET VAR position_var = 0,0,0,0,0,0

The SET VARIABLE command displays the previous value of the specified variable followed by the
value which you have just assigned, providing you with an opportunity to check the assignment. The
DATA key on the teach pendant also allows you to assign values to variables.

When you use SET VARIABLE to define a position you can use one of the following formats:

KCL> SET VARIABLE var_name.X = value

KCL> SET VARIABLE var_name.Y = value

KCL> SET VARIABLE var_name.Z = value

KCL> SET VARIABLE var_name.W = value

KCL> SET VARIABLE var_name = value

where X,Y,Z,W,P, and R specify the location and orientation, c_str is a string value representing
configuration in terms of joint placement and turn numbers. Refer to Section 8.1, ��Positional Data.��
For example, to set X=200.0, W=60.0 and the turn numbers for axes 4 and 6 to 1 and 0 you would
type the following lines:

C�36

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

KCL> SET VARIABLE var_name.X = 200

KCL> SET VARIABLE var_name.W = 60

KCL> SET VARIABLE var_name.C = ’1,0’

You must enter the KCL>SAVE VARS command to make the changes permanent.

See Also: Section 2.3, ��Data Types��

Examples: KCL> SET VARIABLE [prog1] scale = $MCR.$GENOVERRIDE

KCL> SET VAR weld_pgm.angle = 45.0

KCL> SET VAR v[2,1,3].r = -0.897

KCL> SET VAR part_array[2] = part_array[1]

KCL> SET VAR weld_pos.x = 50.0

KCL> SET VAR pth_b[3].nodepos = pth_a[3].nodepos

C.70 SET VERIFY command

Syntax: SET VERIFY (ON | OFF)

Purpose: This turns the display of KCL commands ON or OFF during execution of a KCL command
procedure (default is ON, meaning each command is displayed as it is executed). Only the RUNCF
command is displayed when VERIFY is OFF.

C.71 SHOW BREAK command

Syntax: SHOW BREAK < prog_name >

where:

prog_name : the name of any KAREL or TP program in memory

Purpose: Displays a list of program break points for the specified or default program. The following
information is displayed for each break point:

• Break point number

• Line number of the break point in the program

Examples: KCL> SHOW BREAK test_prog

C�37

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

KCL> SH BREAK

C.72 SHOW BUILTINS command

Syntax: SHOW BUILTINS

Purpose: Displays all the softpart built-ins that are loaded on the controller.

Example: KCL> SHOW BUILTINS

C.73 SHOW CONDITION command

Syntax: SHOW CONDITION < prog_name > < condition_no >

where:

prog_name : the name of any running or paused KAREL program

condition_no : a particular condition

Purpose: Displays the specified condition handler or a list of condition handlers for the specified or
default program. Also displays enabled/disabled status and whether a break point is set. Condition
handlers only exist when a program is running or paused.

Examples: KCL> SHOW CONDITION test_prog 5

KCL> SH COND

C.74 SHOW CLOCK command

Syntax: SHOW CLOCK

Purpose: Displays the current date and time of the controller clock.

See Also: SET CLOCK command

Example: KCL> SHOW CLOCK

C.75 SHOW CURPOS command

Syntax: SHOW CURPOS

Purpose: Displays the position of the TCP relative to the current user frame of reference with an
x, y, and z location in millimeters; w, p, and r orientation in degrees; and the current configuration
string. Be sure the robot is calibrated.

C�38

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

Example: KCL> SHOW CURPOS

C.76 SHOW DEFAULT command

Syntax: SHOW DEFAULT

Purpose: Shows the current default program name.

Example: KCL> SHOW DEFAULT

C.77 SHOW DEVICE command

Syntax: SHOW DEVICE device_name:

where:

device_name : device to be shown

Purpose: Shows the status of the device.

Example: KCL> SHOW DEVICE rd:

C.78 SHOW DICTS command

Syntax: SHOW DICTS

Purpose: Shows the dictionaries loaded in the system for the language specified in the system
variable $LANGUAGE.

Example: KCL> SHOW DICTS

C.79 SHOW GROUP command

Syntax: SHOW GROUP

Purpose: Shows the default group number.

Example: KCL> SHOW GROUP

C.80 SHOW HISTORY command

Syntax: SHOW HISTORY

C�39

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

Purpose: Shows the nesting information of the routine calls. To display the source lines of KAREL
programs, the .KL programs must exist on the RAM disk.

Example: KCL> SHOW HIST

C.81 SHOW LANG command

Syntax: SHOW LANG

Purpose: Shows the language specified in the system variable $LANGUAGE.

Example: KCL> SHOW LANG

C.82 SHOW LANGS command

Syntax: SHOW LANGS

Purpose: Shows all language currently available in the system.

Example: KCL> SHOW LANGS

C.83 SHOW LOCAL VARIABLE command

Syntax: SHOW LOCAL VARIABLE var_name <(HEXADECIMAL | BINARY)> <IN rout_name
> <FROM prog_name > < task_name >

where:

var_name : a local variable or parameter name

rout_name : the name of any KAREL routine

prog_name : the name of any KAREL program

task_name : the name of any KAREL task

Purpose: Displays the name, type, and value of the specified local variable or routine parameter. Use
brackets ([]) after the variable name to specify a specific ARRAY element. If you do not specify a
specific element the entire variable is displayed.

If the IN clause is omitted, the routine at the top of the stack is assumed. If the FROM clause is
omitted, the default program is assumed. If the task_name is omitted, the stack of the KCL default
task is searched.

Note The file RD: prog_name.rs is required to obtain local variable information.

C�40

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

Example: Generate a .rs file from the KAREL translator.

KCL> TRANS testprog RS

Copy the .rs file to the RD device.

This is done automatically when you load the program from the KCL.

KCL> SET DEF testprog

KCL> LOAD PROG

Copied testprog.rs to RD:testprog.rs

To show local variables, the program must be running, paused, or aborted in the routine specified.

KCL> RUN

KCL> SHOW LOCAL VARS

KCL> SHOW LOCAL VARS IN testprog VALUES

KCL> SHOW LOCAL VAR var_1 IN rout_1 FROM testprog testtask

KCL> SHOW LOCAL VAR param_1

To set local variables, the program must be paused.

KCL> pause

KCL> set local var int_var = 12345

KCL> set local var strparam = "This is a string parameter"

See Also: TRANSLATE command.

C.84 SHOW LOCAL VARS command

Syntax: SHOW LOCAL VARS <VALUES> <IN rout_name > <FROM prog_name > < task_name
>

where:

VALUES: :specifies values should be displayed

rout_name :the name of any KAREL routine

prog_name :the name of any KAREL program

C�41

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

task_name :the name of any KAREL task

Purpose: Displays a list including the name, type, and if specified, the current value of each local
variable and each routine parameter.

If the IN clause is omitted, the routine at the top of the stack is assumed. If the FROM clause is
omitted, the default program is assumed. If the task_name is omitted, the stack of the KCL default
task is searched

Note The file RD: prog_name.rs is required to obtain local variable information.

Example: See SHOW LOCAL VARIABLE command.

See Also: TRANSLATE command and SHOW LOCAL VARIABLE.

C.85 SHOW MEMORY command

Syntax: SHOW MEMORY

Purpose: Displays current memory status. The command displays the following status information
for memory and lists each memory pool separately:

Total number of bytes in the pool

Available number of bytes in the pool

Example: KCL> SHOW MEMORY

C.86 SHOW PROGRAM command

Syntax: SHOW PROGRAM < prog_name >

where:

prog_name : the name of any KAREL or TP program in memory

Purpose: Displays the status information of the specified or default program being executed.

Example: KCL> SHOW PROGRAM test_prog

KCL> SH PROG

C.87 SHOW PROGRAMS command

Syntax: SHOW PROGRAMS

C�42

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

Purpose: Shows a list of programs and variable data that are currently loaded in memory.

Examples: KCL> SHOW PROGRAMS

KCL> SH PROGS

C.88 SHOW SYSTEM command

Syntax: SHOW SYSTEM < data_type > <VALUES>

where:

data_type : any valid KAREL data type

Purpose: Displays a list including the name, type, and if specified, the current value of each system
variable. If you specify a data_type , only the system variables of that type are listed.

See Also: SHOW VARIABLE command

Examples: KCL> SHOW SYSTEM REAL VALUES

KCL> SH SYS

C.89 SHOW TASK command

Syntax: SHOW TASK <prog_name >

where:

prog_name : the name of any KAREL or TP program which is a task

Purpose: Displays the task control data for the specified task. If prog_name is not specified, the
default program is used.

Examples: KCL> SHOW TASK test_prog

KCL> SH TASK

C.90 SHOW TASKS command

Syntax: SHOW TASKS

Purpose: Displays the status of all known tasks running KAREL programs or TP programs.

C�43

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

You may see extra tasks running that are not yours. If the teach pendant is displaying a menu that
was written using KAREL, such as Program Adjustment or Setup Passwords, you will see the status
for this task also.

Examples: KCL> SHOW TASKS

C.91 SHOW TRACE command

Syntax: SHOW TRACE < prog_name >

where:

prog_name : the name of any KAREL or TP program which is a task

Purpose: Shows all the program statements and line numbers that have been executed since TRACE
has been turned on.

The number of lines that are shown depends on the trace buffer length, which can be set with the
SET_TASK command or the SET_TSK_ATTR built-in routine. To display the source lines of
KAREL programs, the .KL files must exist on the RAM disk.

See Also: SET TRACE command

Example: KCL> SHOW TRACE

C.92 SHOW TYPES command

Syntax: SHOW TYPES < prog_name > < FIELDS >

where:

prog_name : the name of any KAREL or TP program

FIELDS : specifies fields should be displayed

Purpose: Displays a list including the name, type, and if specified, the fields of each user-defined
type in the specified or default program. The actual array dimensions and string sizes are not shown.

See Also: SHOW VARS command, SHOW VARIABLE command

Examples: KCL> SHOW TYPES test_prog FIELDS

KCL> SH TYPES

C�44

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

C.93 SHOW VARIABLE command

Syntax: SHOW VARIABLE <[prog_name]> var_name <(HEXADECIMAL | BINARY)>

where:

prog_name : the name of any KAREL or TP program

var_name : a valid program variable

Purpose: Displays the name, type, and value of the specified variable.

You can display the values of system variables that allow KCL read access or the values of program
variables. Use brackets ([]) after the variable name to specify a specific ARRAY element. If you do
not specify a specific element the entire variable is displayed.

See Also: SHOW VARS command, SHOW SYSTEM command

Examples: KCL> SHOW VARIABLE $UTOOL

KCL> SH VAR [test_prog]group_mask HEX

KCL> SH VAR [test_prog]group_mask BINARY

KCL> SH VAR weld_pth[3]

C.94 SHOW VARS command

Syntax: SHOW VARS <prog_name > <VALUES>

where:

prog_name : the name of any KAREL or TP program

VALUES : specifies values should be displayed

Purpose: Displays a list including the name, type and, if specified, the current value of each variable
in the specified or default program.

See Also: SHOW VARIABLE command, SHOW SYSTEM command, SHOW TYPES command

Example: KCL> SHOW VARS test_prog VALUES

KCL> SH VARS

C�45

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

C.95 SHOW data_type command

Syntax: SHOW data_type < prog_name > <VALUES>

where:

data_type : any valid KAREL data type

prog_name : the name of any KAREL or TP program

VALUES : specifies values should be displayed

Purpose: Displays a list of variables in the specified or default program (prog_name) of the
specified data type (data_type). The list includes the name, type, and if specified, the current
value of each variable.

See Also: SHOW VARS command, SHOW VARIABLE command

Examples: KCL> SHOW REAL test_prog VALUES

KCL> SH INTEGER

C.96 SIMULATE command

Syntax: SIMULATE port_name[index] < = value >

where:

port_name[index] : a valid I/O port

value : a new value for the port

Purpose: Simulating I/O allows you to test a program that uses I/O. Simulating I/O does not actually
send output signals or receive input signals.

Warning

Depending on how signals are used, simulating signals might alter
program execution. Do not simulate signals that are set up for safety
checks. If you do, you could injure personnel or damage equipment.

When simulating a port value, you can specify its initial simulated value or allow the initial value to
be the same as the physical port value. If no value is specified, the current physical port value is used.

The valid ports are:

C�46

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

DIN, DOUT, WDI, WDO (BOOLEAN)AIN, AOUT, GIN, GOUT (INTEGER)

See Also: UNSIMULATE command

Examples: KCL> SIMULATE DIN[17]

KCL> SIM DIN[1] = ON

KCL> SIM AIN[1] = 100

C.97 SKIP command

Syntax: SKIP <prog_name >

where:

prog_name : the name of any KAREL or TP program which is a task

Purpose: Skips execution of the current statement in the specified task. If prog_name is not
specified, the default program is used. It has no effect when a task is running or when the system
is in a READY state.

Entire motion statements are skipped with this command. You cannot skip single motion segments.
The KCL> CONTINUE command resumes execution of the paused task with the statement following
the last skipped statement. END statements cannot be skipped.

If you skip the last RETURN statement in a function routine, there is no way to return the value of the
function to the calling program. Therefore, when executing the END statement of the routine, the
task will abort.

If you skip into a FOR loop, you have skipped the statement that initializes the loop counter. When
the ENDFOR statement is executed the program will try to remove the loop counter from the stack. If
the FOR loop was nested in another FOR loop, the loop counter for the previous FOR loop will be
removed from the stack, causing potentially invalid results. If the FOR loop was not nested, a stack
underflow error will occur, causing the task to abort.

READ, MOVE, DELAY, WAIT FOR, and PULSE statements can be paused after they have begun
execution. In these cases, when the task is resumed, execution of the paused statement must be
finished before subsequent statements are executed. Subsequent skipped statements will not be
executed. In particular, READ and WAIT FOR statements often require user intervention, such as
entering data, before statement execution is completed.

Step mode operation and step mode type have no effect on the KCL> SKIP command.

Examples: KCL> SKIP test_prog

KCL> SKIP

C�47

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

C.98 STEP OFF command

Syntax: STEP OFF

Purpose: Disables single stepping for the program in which it was enabled.

Example: KCL> STEP OFF

C.99 STEP ON command

Syntax: STEP ON <prog_name >

where:

prog_name : the name of any KAREL or TP program which is a task

Purpose: Enables single stepping for the specified or default program.

Examples: KCL> STEP ON test_prog

KCL> STEP ON

C.100 TRANSLATE command

Syntax: TRANSLATE <file_spec > <DISPLAY> <LIST> <RS>

where:

file_spec : a valid file specification

DISPLAY : display source during translation

LIST : create listing file

RS : create routine stack (.rs) file for local var access

Purpose: Translates KAREL source code (.KL type files) into p-code (.PC type files), which can be
loaded into memory and executed.

Translation of a program can be canceled using the CANCEL COMMAND key, CTRL-C, or CTRL-Y
on the CRT/KB.

Examples: KCL> TRANSLATE testprog DISPLAY LIST

KCL> TRAN

C�48

MARAIKLRF06031E REV A C. KCL COMMAND ALPHABETICAL DESCRIPTION

C.101 TYPE command

Syntax: TYPE file_spec

where:

file_spec : a valid file specification

Purpose: This command allows you to display the contents of the specified ASCII file on the
CRT/KB. You can specify any type of ASCII file.

Examples: KCL> TYPE rd:testprog.kl

KCL> TYPE testprog.kl

C.102 UNSIMULATE command

Syntax: UNSIMULATE (port_name[index] | ALL)

where:

port_name[index] : a valid I/O port

ALL : all simulated I/O ports

Purpose: Discontinues simulation of the specified input or output port. When a port is unsimulated,
the physical value replaces the simulated value.

Warning

Depending on how signals are used, unsimulating signals might alter
program execution or activate peripheral equipment. Do not unsimulate
a signal unless you are sure of the result. If you do, you could injure
personnel or damage equipment.

If you specify ALL instead of a particular port, simulation on all the simulated ports is discontinued.

The valid ports are:

DIN, DOUT, WDI, WDOAIN, AOUT, GIN, GOUT

See Also: SIMULATE command

Examples: KCL> UNSIMULATE DIN[17]

KCL> UNSIM ALL

C�49

C. KCL COMMAND ALPHABETICAL DESCRIPTION MARAIKLRF06031E REV A

C.103 WAIT command

Syntax: WAIT <prog_name > (DONE | PAUSE)

where:

prog_name : the name of any KAREL or TP program which is a task

DONE : specifies that the command procedure wait until execution of the current task is completed
or aborted

PAUSE : specifies that the command procedure wait until execution of the current task is paused,
completed, or aborted.

Purpose: Defers execution of the commands that follow the KCL> WAIT command in a command
procedure until a task pauses or completes execution.

The command procedure waits until the condition specified with the DONE or PAUSE argument
is met.

See Also: Section 13.4, ��Command Procedures��

Example: The following is an example of an executable command procedure:
> SET DEF testprog
> LOAD ALL
> RUN -- execute program
> WAIT PAUSE
> SHOW CURPOS -- display position of TCP when program pauses
> CONTINUE
> WAIT DONE
> CLEAR ALL YES -- clear after execution

C�50

Appendix D
CHARACTER CODES

Contents

Appendix D CHARACTER CODES ... D�1
D.1 CHARACTER CODES ... D�2

D�1

D. CHARACTER CODES MARAIKLRF06031E REV A

D.1 CHARACTER CODES

This appendix lists the ASCII numeric decimal codes and their corresponding ASCII, Multinational,
graphic, and European characters as implemented on the KAREL system. The ASCII character set is
the default character set for the KAREL system. Use the CHR Built-In Function, in Appendix A, to
access the Multinational and Graphics character sets.

Table D�1. ASCII Character Codes

Decimal
Code

Character
Value

Decimal
Code

Character Value Decimal
Code

Character
Value

Decimal
Code

Character
Value

000 (NUL) 032 SP 064 @ 096 �

001 (SOH) 033 ! 065 A 097 a

002 (STX) 034 " 066 B 098 b

003 (ETX) 035 # 067 C 099 c

004 (EOT) 036 $ 068 D 100 d

005 (ENQ) 037 % 069 E 101 e

006 (ACK) 038 & 070 F 102 f

007 (BEL) 039 � 071 G 103 g

008 (BS) 040 (072 H 104 h

009 (HT) 041) 073 I 105 i

010 (LF) 042 * 074 J 106 j

011 (VT) 043 + 075 K 107 k

012 (FF) 044 � 076 L 108 l

013 (CR) 045 - 077 M 109 m

014 (SO) 046 . 078 N 110 n

D�2

MARAIKLRF06031E REV A D. CHARACTER CODES

Table D�1. ASCII Character Codes (Cont�d)

Decimal
Code

Character
Value

Decimal
Code

Character Value Decimal
Code

Character
Value

Decimal
Code

Character
Value

015 (SI) 047 / 079 O 111 o

016 (DLE) 048 0 080 P 112 p

017 (DC1) 049 1 081 Q 113 q

018 (DC2) 050 2 082 R 114 r

019 (DC3) 051 3 083 S 115 s

020 (DC4) 052 4 084 T 116 t

021 (NAK) 053 5 085 U 117 u

022 (SYN) 054 6 086 V 118 v

023 (ETB) 055 7 087 W 119 w

024 (CAN) 056 8 088 X 120 x

025 (EM) 057 9 089 Y 121 y

026 (SUB) 058 : 090 Z 122 z

027 (ESC) 059 ; 091 [123 {

028 (FS) 060 < 092 \ 124 |

029 (GS) 061 = 093] 125 }

030 (RS) 062 > 094 ^ 126 ~

031 (US) 063 ? 095 � 127 (DEL)

D�3

D. CHARACTER CODES MARAIKLRF06031E REV A

Table D�2. Special ASCII Character Codes

Decimal Code Character Value Decimal Code Character Value

128 Clear window 139 Reverse video attribute

129 Clear to end of line 140 Bold video attribute

130 Clear to end of window 141 Underline video attribute

131 Set cursor position 142 Wide video size

132 Carriage return 143 Normal video attribute

133 Line feed 146 Turn Graphics mode on

134 Reverse line feed 147 Turn ASCII mode on

135 Carriage return & line
feed

148 High/wide video size

136 Back Space 153 Normal video size

137 Home cursor in window 154 Turn Multinational mode on

138 Blink video attribute

Table D�3. Multinational Character Codes

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character Value

000 032 064 À 096 à

001 033 ¡ 065 Á 097 á

002 034 © 066 Â 098 â

003 035 £ 067 Ã 099 ã

004 (IND) 036 068 Ä 100 ä

005 (NEL) 037 ¥ 069 Å 101 å

006 (SSA) 038 070 Æ 102 æ

007 (ESA) 039 § 071 Ç 103 ç

D�4

MARAIKLRF06031E REV A D. CHARACTER CODES

Table D�3. Multinational Character Codes (Cont�d)

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character Value

008 (HTS) 040 ¤ 072 È 104 è

009 (HTJ) 041 © 073 É 105 é

010 (VTS) 042 a 074 Ê 106 ê

011 (PLD) 043 « 075 Ë 107 ë

012 (PLU) 044 076 Ì 108 ì

013 (RI) 045 077 Í 109 í

014 (SS2) 046 078 Î 110 î

015 (SS3) 047 079 Ï 111 ï

016 (DCS) 048 080 112

017 (PU1) 049 ± 081 Ñ 113 ñ

018 (PU2) 050 2 082 Ò 114 ò

019 (STS) 051 3 083 Ó 115 ó

020 (CCH) 052 084 Ô 116 ô

021 (MW) 053 µ 085 Õ 117 õ

022 (SPA) 054 ¶ 086 Ö 118 ö

023 (EPA) 055 � 087 � 119 �

024 056 088 Ø 120 ø

025 057 l 089 Ù 121 ù

026 058 090 Ú 122 ú

027 (CSI) 059 » 091 Û 123 û

028 (ST) 060 ¼ 092 Ü 124 ü

029 (OSC) 061 ½ 093 Y 125 ÿ

030 (PM) 062 094 126

031 (APC) 063 ¿ 095 ß 127

D�5

D. CHARACTER CODES MARAIKLRF06031E REV A

Table D�4. Graphics Character Codes

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character Value

000 (NUL) 032 SP 064 @ 096 ♦

001 (SOH) 033 ! 065 A 097

002 (STX) 034 " 066 B 098 H
T

003 (ETX) 035 # 067 C 099 F
F

004 (EOT) 036 $ 068 D 100 C
R

005 (ENQ) 037 % 069 E 101 L
F

006 (ACK) 038 & 070 F 102

007 (BEL) 039 � 071 G 103 ±

008 (BS) 040 (072 H 104 N
L

009 (HT) 041) 073 I 105 V
T

010 (LF) 042 * 074 J 106 ┘
011 (VT) 043 + 075 K 107 ┐
012 (FF) 044 � 076 L 108 ┌
013 (CR) 045 - 077 M 109 └
014 (SO) 046 . 078 N 110 +

015 (SI) 047 / 079 O 111 -

016 (DLE) 048 0 080 P 112 -

017 (DC1) 049 1 081 Q 113 -

018 (DC2) 050 2 082 R 114 -

019 (DC3) 051 3 083 S 115 _

D�6

MARAIKLRF06031E REV A D. CHARACTER CODES

Table D�4. Graphics Character Codes (Cont�d)

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character
Value

Decimal
Codes

Character Value

020 (DC4) 052 4 084 T 116

021 (NAK) 053 5 085 U 117

022 (SYN) 054 6 086 V 118

023 (ETB) 055 7 087 W 119

024 (CAN) 056 8 088 X 120 |

025 (EM) 057 9 089 Y 121 ≤

026 (SUB) 058 : 090 Z 122 ≥

027 (ESC) 059 ; 091 [123 Π

028 (FS) 060 < 092 124 ≠

029 (GS) 061 = 093] 125 £

030 (RS) 062 > 094 ^ 126 �

031 (US) 063 ? 095 (blank) 127 (DEL)

D�7

D. CHARACTER CODES MARAIKLRF06031E REV A

Table D�5. Teach Pendant Input Codes

Code Value Code Value

0 48 174 USER KEY 2

1 49 175 USER KEY 3

2 50 176 USER KEY 4

3 51 177 USER KEY 5

4 52 178 USER KEY 6

5 53 185 FWD

6 54 186 BWD

7 55 187 COORD

8 56 188 +X

9 57 189 +Y

128 PREV 190 +Z

129 F1 191 +X rotation

131 F2 192 +Y rotation

132 F3 193 +Z rotation

133 F4 194 -X

134 F5 195 -Y

135 NEXT 196 -Z

143 SELECT 197 -X rotation

D�8

MARAIKLRF06031E REV A D. CHARACTER CODES

Table D�5. Teach Pendant Input Codes (Cont�d)

Code Value Code Value

144 MENUS 198 -Y rotation

145 EDIT 199 -Z rotation

146 DATA 210 USER KEY

147 FCTN 212 Up arrow

148 ITEM 213 Down arrow

149 +% 214 Right arrow

150 -% 215 Left arrow

151 HOLD 147 DEADMAN switch, left

152 STEP 248 DEADMAN switch, right

153 RESET 249 ON/OFF switch

173 USER KEY 1 250 EMERGENCY STOP

Table D�6. European Character Codes

Code Value Code Value Code Value

192 A� 213 O~ 234 e^

193 A� 214 O: 235 e:

194 A^ 215 OE 236 i�

195 A~ 216 O/ 237 i�

196 A: 217 U� 238 i^

D�9

D. CHARACTER CODES MARAIKLRF06031E REV A

Table D�6. European Character Codes (Cont�d)

Code Value Code Value Code Value

197 Ao 218 U� 239 i:

198 AE 219 U^ 240

199 CC 220 U: 241 n~

200 E� 221 Y: 242 o�

201 E� 222 243 o�

202 E^ 223 Bb 244 o^

203 E: 224 a� 245 o~

204 I� 225 a� 246 o:

205 I� 226 a^ 247 oe

206 I^ 227 a~ 248

207 I: 228 a: 249 u�

208 229 ao 250 u�

209 N~ 230 ae 251 u^

210 O� 231 252 u:

211 O� 232 e� 253 y:

212 O^ 233 e� 254

A^ = A with ^ on top

A� = A with � on top

Ao = A with o on top

D�10

MARAIKLRF06031E REV A D. CHARACTER CODES

A~ = A with ~ on top

A: = A with .. on top

AE = A and E run together

OE = A and E run together

Bb = Beta

Table D�7. Graphics Characters

Decimal Value ASCII Character Graphic Character

97 a solid box

102 f diamond

103 g plus/minus

106 j lower-right box corner

107 k upper-right box corner

108 l upper-left box corner

109 m lower-left box corner

110 n intersection lines

111 o pixel row 1 horizontal line

112 p pixel row 2 horizontal line

113 q pixel row 3 horizontal line

114 r pixel row 4 horizontal line

115 s pixel row 5 horizontal line

116 t T from right

D�11

D. CHARACTER CODES MARAIKLRF06031E REV A

Table D�7. Graphics Characters (Cont�d)

Decimal Value ASCII Character Graphic Character

117 u T from left

119 v T from above

119 w T from below

120 x Vertical Line

121 y Less than or equal

122 z Greater than or equal

123 { Pi

124 | Not equal

125 } British pound symbol

D�12

Appendix E
SYNTAX DIAGRAMS

Contents

Appendix E SYNTAX DIAGRAMS ... E�1

E�1

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

KAREL syntax diagrams use the following symbols:

Rectangle

A rectangle encloses elements that are defined in another syntax diagram or in
accompanying text.

Oval

An oval encloses KAREL reserved words that are entered exactly as shown.

Circle

A circle encloses special characters that are entered exactly as shown.

Dot

A dot indicates a mandatory line–end (; or ENTER key) before the next syntax element.

Caret

A caret indicates an optional line–end.

Arrows

Arrows indicate allowed paths and the correct sequence in a diagram.

Branch

Branches indicate optional paths or sequences.

^

E�2

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�1.

PROGRAM identifier
VAR declaration

CONST declaration

directive list

^

ROUTINE definition

TYPE declaration

BEGIN statement END identifier

program body program name

ROUTINE declaration

line-end

^ -- 0 or more line-ends

--newline

line-end

;

PROGRAM– –module definition

list

program name

E�3

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�2.

directive list

directive
^

directive

%COMMENT = quoted
string

%ALPHABETIZE

%CRTDEVICE

= (integer)
constant

%DEFGROUP

%ENVIRONMENT identifier

= (integer)
constant

%LOCKGROUP

,
^

=%NOABORT +ERROR COMMAND

%NOBUSYLAMP

=%NOPAUSE +ERROR COMMAND + TPENABLE

%NOLOCKGROUP

%NOPAUSESHFT

=%PRIORITY (integer)
constant

=%STACKSIZE (integer)
constant

=%TIMESLICE (integer)
constant

%TPMOTION

= (integer)
constant

%DELAY

%CMOSVARS

E�4

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�3.

–^
+

CONST --constant declaration

CONST identifier = constant

constant

identifier

literal

^

constant name

constant name value

TYPE -- type declaration

TYPE ^
identifierFROM

program name
identifier

type name
= user type^

E�5

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�4.

user type

data type

STRUCTURE field list ENDSTRUCTURE
^

field list

identifier

field name

:

structure array type

data type

structure array
type

SHORT

BYTE

E�6

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�5.

data type

INTEGER

REAL

BOOLEAN

VECTOR

VIS_PROCESS

MODEL

CAM_SETUP

FILE

CONFIG

PATH

COMMON_ASSOC

identifier

type name

system identifier

system type name

PATH HEADER = identifier

structure type name

^

NODE DATA = identifier

structure type name

^

,

E�7

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�6.

data type continued

STRING

position type IN GROUP (integer)
constant

[]

(integer)
constant

[]

ARRAY OF structure array
type

,

(integer)
constant

[]

string size

E�8

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�7.

position type

JOINTPOS1

JOINTPOS2

JOINTPOS3

JOINTPOS4

JOINTPOS5

JOINTPOS6

JOINTPOS

XYZWPREXT

POSITION

XYZWPR

JOINTPOS7

JOINTPOS8

JOINTPOS9

GROUP_ASSOC

E�9

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�8.

ROUTINE -- routine declaration

ROUTINE identifier

routine name

identifier

parameter name

(parameter
type :): return data

type ^

FROM identifier

program name

VAR declaration

local variables

CONST declaration

local constants

BEGIN statement
list

routine body

END identifier

routine name

,^

VAR data
type

identifier

VAR -- variable declaration

variable name

^
,

:

FROM identifier

program nameCMOS

DRAM

E�10

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�9.

return data type

INTEGER

REAL

BOOLEAN

VECTOR

CONFIG

COMMON_ASSOC

identifier

type name

system identifier

system type name

IN (integer)position type GROUP
constant

[]

STRING

[]

ARRAY structure array
type

*

,

OF

E�11

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�10.

parameter type

INTEGER

REAL

BOOLEAN

VECTOR

VIS_PROCESS

MODEL

CAM_SETUP

FILE

CONFIG

PATH

COMMON_ASSOC

identifier

type name

system identifier

system type name

= identifier

structure type name

^

= identifier

structure type name

^

,

PATHHEADER

NODEDATA

E�12

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�11.

parameter type continued

STRING

position type IN GROUP (integer)
constant

[]

ARRAY OF structure array
type

[]*

,

E�13

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�12.

statement list

ABORT statement

assignment statement

ATTACH statement

call statement routine

CANCEL statement

CANCEL FILE statement

CLOSE FILE statement

CLOSE HAND statement

CONDITION statement

CONNECT TIMER statement

DELAY statement

DISABLE statement

DISCONNECT TIMER statement

ENABLE statement

FOR statement

GO TO statement

HOLD statement

IF statement

MOVE statement

OPEN FILE statement

OPEN HAND statement

PAUSE statement

PULSE statement

PURGE statement

READ statement

RELAX statement

RELEASE statement

REPEAT statement

RESUME statement

RETURN statement
SELECT statement

SIGNAL statement

STOP statement

UNHOLD statement

WAIT statement

WHILE statement

WRITE statement

USING statement

statement
^

identifier

statement

label name
::

E�14

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�13.

(integer)
expression

[]

variable
access

ATTACH

ABORT PROGRAM
task number

= expression

ATTACH –- statement

CALL –- routine

identifier (expression

assignmemnt –- statement

ABORT –- statement

)

,

^
routine name

actual parameter

CANCEL –- statement

CANCEL GROUP (integer)
contstant

]

,

CANCEL FILE –- statement

CANCEL FILE variable
access

file variable

[

CLOSE FILE –- statement

CLOSE FILE variable
access

file variable

CLOSE HAND –- statement

CLOSE HAND (integer)
expression

hand spec

^

^

E�15

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�14.

^

(integer)
expression

[]

WITH

CONDITION

condition handler-
number

CONDITION statement

AND

CONNECT TIMER –- statement

CONNECT TIMER (integer)
identifier

clock variable

DELAY –- statement

DELAY (integer)
expression

time spec (ms)

DISABLE –- statement

DISABLE CONDITION (integer)
expression

condition handle
number

:

^

system identifier

system var name

= expression

value

,
^

[(integer)
constant

group number
] .

system identifier

field name

WHEN global condition DO

^
action

,

OR

ENDCONDITION

TO

[]

^

global condition

^

E�16

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�15.

GOTO

DISCONNECT TIMER –- statement

DISCONNECT TIMER (integer)
identifier

clock variable

ENABLE –- statement

ENABLE CONDITION (integer)
expression

condition handler-
number

[]

FOR –- statement

FOR (integer)
identifier

count variable

=

^

TO

DOWNTO

(integer)
expression

final value

DO

^
statement

list

loop body
ENDFOR

GO TO –- statement

GO TO identifier

label name
(destination)

statement label

HOLD –- statement

HOLD GROUP (integer)
contstant

]

,

[

IF THEN –- statement

IF THEN(boolean)
expression

statement
list

ELSE

true alternative
statement

list

false alternative

ENDIF

(integer)
expression

initial value

^

^

^

E�17

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�16.

MOVE –- statement

WITH system
identifier

system var name

MOVE

ABOUT (vector)
expression

=

^

BY

(integer)
contstant

]

,

[
expression

value
. system

identifier

field name

(real)
expression

angle spec

AWAY (real)
expression

distance spec

AXIS (integer)
expression

axis number
BY (real)

expression

angle/distance
spec

ALONG identifier

path var
name

(integer)
expression

start path node

RELATIVE (vector or position)
expression

[]

end path node
(integer)

expression
.. COORDINATED

NEAR (position)
expression

BY (real)
expression

distance spec

TO (position)
expression

VIA (position)
expression

identifier

path var
name [

path node
spec(integer)

expression]

ALSO

^
NOWAIT local condition

handler clause

COORDINATED

INDEPENDENT

^

^

group number

GROUP (integer)
constant

[]

,

^

E�18

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�17.

OPEN FILE –- statement

OPEN FILE (string)
expression

usage spec

OPEN HAND –- statement

(integer)
identifier

hand spec

PULSE –- statement

PURGE –- statement

PURGE CONDITION (integer)
expression

[

(,

^

(string)
expression

file spec

variable
access

file variable

OPEN HAND

PAUSE –- statement

(integer)
expression

[]PAUSE PROGRAM
task number

(integer)
identifier

port number
PULSE DOUT

RDO

[] FOR (integer)
expression

time spec (ms)

NOWAIT

^

condition handler
number

]

)

^

E�19

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�18.

READ –- statement

READ read
item

read item –- statement

RELAX –- statement

RELEASE –- statement

RELEASE

)variable
access

file variable

CR

(integer)
hand spec

RELAX HAND

(

,

^

variable
access :: (integer)

expression

1st format spec

:: (integer)
expression

2nd format spec

REPEAT –- statement

REPEAT statement
loop body

list
UNTIL boolean

expression

RESUME –- statement

expression

RESUME GROUP (integer)
contstant

]

,

[

E�20

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�19.

USING

USING –- statement

SIGNAL –- statement

SIGNAL EVENT (integer)
expression

]

(integer)
expression

SELECT –- statement

SELECT (integer)
constant

case value

UNHOLD –- statement

variable

structure
variable

access

,

^

DO statement
list

ENDUSING

[

RETURN –- statement

RETURN expression

return value
()

^

OF CASE () : statement
list

case alternative

^
,

ELSE : statement
list

else alternative
ENDSELECT

^

STOP –- statement

event number

STOP GROUP (integer)
contstant

]

,

[

UNHOLD GROUP (integer)
contstant

]

,

[

E�21

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�20.

WRITE

WRITE –- statement

write item

CR

WHILE –- statement

WHILE (boolean)
expression

variable
file variable

access ^

WAIT –- statement

WAIT FOR global
condition

AND

OR

statement
list

loop body

^
DO ENDWHILE

(write
item)

,

expression :: (integer)

1st format
spec

expression ::
(integer)

2nd format
spec

expression

^

E�22

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�21.

global condition

global
condition

*

(
^

ERROR

EVENT

)

[(integer)

error/event/sema-
phore number

expression]

* only allowed on error condition

SEMAPHORE

ABORT

PAUSE PROGRAM (integer)
task number

expression
[]

CONTINUE

POWERUP

variable
access

<>

=

<

<=

>

>=

variable
access

EVAL

()

constant

exp

port array
nameidentifier [](integer)

port index

expression

–

+

NOT

^

E�23

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�22.

condition handler action

HOLD

UNHOLD

RESUME

STOP

NOABORT

NOPAUSE

UNPAUSE

NOMESSAGE

CANCEL

RESTORE

SIGNAL

ENABLE

DISABLE

GROUP (integer)
contstant]

,

[

CONDITION (integer)
condition handler num-

ber
expression

[]

EVENT

SEMAPHORE

(integer)

event/semaphore num-
ber

expression

[]

PULSE DOUT

RDO

(integer)
port index

expression
[] FOR (integer)

time spec (ms)

expression

procedure name

identifier

^

E�24

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�23.

condition handler action continued

port variable name

identifier

port index
(integer)

expression
[]

variable
access

EVAL ()^
constant

^

variable
access

=

=
^

port variable name

identifier

port index
(integer)

expression
[]

ABORT

CONTINUE

PAUSE

(integer)
expression

[]PROGRAM
task number

(integer)
expression

exp

E�25

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�24.

local condition handler clause

local
condition

DO

,

^

WHEN

^^
action

ENDMOVE

AND

OR

,

local
condition

THENUNTIL

^^
AND

OR

,

^

action

^

local condition

NODE

^
AT

(
local

condition
^

)

[(integer or *)
expression

]

NODETIME [(integer)
expression

]

time spec

BEFORE

AFTER

(integer)
expression

path node index

global
condition

GROUP [(integer)
constant

]

,

^

GROUP [(integer)
constant

]

,

E�26

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�25.

variable access

identifier

var/port/field/param name

system identifier

system var or field name

]

variable access .
identifier

field name

system identifier

field name

variable access [(integer)

array index

expression

,

. .variable access [(integer)

start node index

expression

path name

(integer)

end node index

expression

sum

<>

=

<

<=

>

>=

expression

>=<

^

]

E�27

E. SYNTAX DIAGRAMS MARAIKLRF06031E REV A

Figure E�26.

product

sum

+

–

+

–

OR

^

^

factor

product

/

^
*

AND

DIV

MOD

primary

factor

@

^
:

#

NOT

^

E�28

MARAIKLRF06031E REV A E. SYNTAX DIAGRAMS

Figure E�27.

primary

character

literal

variable access

constant

)

identifier

(

actual parameter

expression

function name

(

^ expression)

,

^

’ ’

unsigned
numeric

value

E�29

	toc
	FANUC Robotics SYSTEM R-J3 i B Controller KAREL Reference Manual
	About This Manual
	Copyrights and Trademarks
	Patents
	Conventions

	Contents
	List of Figures
	List of Tables
	Safety
	CONSIDERING SAFETY FOR YOUR ROBOT INSTALLATION
	Keeping People and Equipment Safe
	Using Safety Enhancing Devices
	Setting Up a Safe Workcell
	Staying Safe While Teaching or Manually Operating the Robot
	Staying Safe During Automatic Operation
	Staying Safe During Inspection
	Staying Safe During Maintenance

	KEEPING MACHINE TOOLS AND EXTERNAL DEVICES SAFE
	Programming Safety Precautions
	Mechanical Safety Precautions

	KEEPING THE ROBOT SAFE
	Operating Safety Precautions
	Programming Safety Precautions

	ADDITIONAL SAFETY CONSIDERATIONS FOR PAINT ROBOT INSTALLATIONS
	Paint System Safety Features
	Staying Safe While Operating the Paint Robot
	Staying Safe While Operating Paint Application Equipment
	Staying Safe During Maintenance

	Chapter 1 KAREL LANGUAGE OVERVIEW
	1.1 OVERVIEW
	1.2 KAREL PROGRAMMING LANGUAGE
	1.2.1 Overview
	1.2.2 Entering a Program
	1.2.3 Translating a Program
	1.2.4 Loading Program Logic and Data
	1.2.5 Executing a Program
	1.2.6 Execution History
	1.2.7 Program Structure
	Structure of a KAREL Program

	1.3 SYSTEM SOFTWARE
	1.3.1 Software Components
	1.3.2 Supported Robots

	1.4 CONTROLLERS
	1.4.1 Memory
	Figure 1 1. Controller Memory

	1.4.2 Input/Output System
	1.4.3 User Interface Devices
	Figure 1 2. R-J3iB Controller

	Chapter 2 LANGUAGE ELEMENTS
	2.1 LANGUAGE COMPONENTS
	2.1.1 Character Set
	2.1.2 Operators
	2.1.3 Reserved Words
	2.1.4 User-Defined Identifiers
	Declaring Identifiers

	2.1.5 Labels
	Using Labels

	2.1.6 Predefined Identifiers
	2.1.7 System Variables
	2.1.8 Comments
	Comments From Within a Program

	2.2 TRANSLATOR DIRECTIVES
	%INCLUDE Directive in a KAREL Program
	Include File mover_decs for a KAREL Program

	2.3 DATA TYPES
	2.4 USER-DEFINED DATA TYPES AND STRUCTURES
	2.4.1 User-Defined Data Types
	User-Defined Data Type Example

	2.4.2 User-Defined Data Structures
	Defining a Data Type as a User-Defined Structure
	Accessing Elements of a User-Defined Structure in a KAREL Progra
	Defining a Range of Executable Statements
	Valid STRUCTURE Definitions
	Defining a Variable as a Type Previously Defined as a Structure

	2.5 ARRAYS
	2.5.1 Multi-Dimensional Arrays
	Declaring Variables as Arrays with Two or Three Dimensions
	Accessing Elements of Multi-Dimensional Arrays in KAREL Statemen
	Declaring Routine Parameters as Multi-Dimensional Arrays
	Using a Subarray

	2.5.2 Variable-Sized Arrays
	Indicates that the Size of an Array is

	Chapter 3 USE OF OPERATORS
	3.1 EXPRESSIONS AND ASSIGNMENTS
	3.1.1 Rule for Expressions and Assignments
	3.1.2 Evaluation of Expressions and Assignments
	3.1.3 Variables and Expressions

	3.2 OPERATIONS
	3.2.1 Arithmetic Operations
	3.2.2 Relational Operations
	3.2.3 Boolean Operations
	3.2.4 Special Operations
	Relational Operator
	Figure 3 1. Determining w_handle Relative to WORLD Frame
	Figure 3 2. Determining b_handle Relative to BUMPER Frame
	Vector Operations
	Specifying a KAREL Routine to Return a STRING Value
	Using an Operator to Concatenate Strings
	Using a STRING Expression in a WRITE Statement
	String Comparison
	Building a String from Another String

	Chapter 4 MOTION AND PROGRAM CONTROL
	4.1 MOTION CONTROL STATEMENTS
	4.1.1 Extended Axis Motion
	4.1.2 Group Motion

	4.2 PROGRAM CONTROL STRUCTURES
	4.2.1 Alternation Control Structures
	4.2.2 Looping Control Statements
	4.2.3 Unconditional Branch Statement
	4.2.4 Execution Control Statements
	4.2.5 Condition Handlers

	Chapter 5 ROUTINES
	5.1 ROUTINE EXECUTION
	5.1.1 Declaring Routines
	Defining Local Routines Using a FROM Clause
	Local and External Procedure Declarations
	Function Declarations

	5.1.2 Invoking Routines
	Procedure Calls
	Function Calls
	Recursive Function

	5.1.3 Returning from Routines
	Procedure RETURN Statements
	Function RETURN Statements

	5.1.4 Scope of Variables
	5.1.5 Parameters and Arguments
	Corresponding Parameters and Arguments
	Passing Variable Arguments
	Correct Passage of an ARRAY
	Incorrect Passage of an ARRAY

	5.1.6 Stack Usage

	5.2 BUILT- IN ROUTINES

	Chapter 6 CONDITION HANDLERS
	6.1 CONDITION HANDLER OPERATIONS
	6.1.1 Global Condition Handlers
	Global Condition Handler Definitions
	Using Global Condition Handlers

	6.1.2 Local Condition Handlers
	Local Condition Handler Examples

	6.2 CONDITIONS
	6.2.1 Port_Id Conditions
	6.2.2 Relational Conditions
	6.2.3 System and Program Event Conditions
	6.2.4 Local Conditions
	6.2.5 Synchronization of Local Condition Handlers
	Figure 6 1. Timing of BEFORE, AT and AFTER Conditions

	6.3 ACTIONS
	6.3.1 Assignment Actions
	6.3.2 Motion Related Actions
	6.3.3 Routine Call Actions
	6.3.4 Miscellaneous Actions

	Chapter 7 FILE INPUT/OUTPUT OPERATIONS
	7.1 FILE VARIABLES
	Using FILE in a KAREL Program

	7.2 OPEN FILE STATEMENT
	7.2.1 Setting File and Port Attributes
	7.2.2 File String
	7.2.3 Usage String
	File String Examples

	7.3 CLOSE FILE STATEMENT
	CLOSE FILE Example

	7.4 READ STATEMENT
	READ Statement Examples

	7.5 WRITE STATEMENT
	WRITE Statement Examples

	7.6 INPUT/OUTPUT BUFFER
	7.7 FORMATTING TEXT (ASCII) INPUT/OUTPUT
	7.7.1 Formatting INTEGER Data Items
	7.7.2 Formatting REAL Data Items
	7.7.3 Formatting BOOLEAN Data Items
	7.7.4 Formatting STRING Data Items
	7.7.5 Formatting VECTOR Data Items
	7.7.6 Formatting Positional Data Items

	7.8 FORMATTING BINARY INPUT/OUTPUT
	7.8.1 Formatting INTEGER Data Items
	7.8.2 Formatting REAL Data Items
	7.8.3 Formatting BOOLEAN Data Items
	7.8.4 Formatting STRING Data Items
	7.8.5 Formatting VECTOR Data Items
	7.8.6 Formatting POSITION Data Items
	7.8.7 Formatting XYZWPR Data Items
	7.8.8 Formatting XYZWPREXT Data Items
	7.8.9 Formatting JOINTPOS Data Items

	7.9 USER INTERFACE TIPS
	7.9.1 USER Menu on the Teach Pendant
	Figure 7 1.
	Figure 7 2.

	7.9.2 USER Menu on the CRT/KB
	Figure 7 3.
	Figure 7 4.

	Chapter 8 MOTION
	8.1 POSITIONAL DATA
	8.2 FRAMES OF REFERENCE
	Figure 8 1. Referencing Positions in KAREL
	8.2.1 World Frame
	8.2.2 User Frame (UFRAME)
	8.2.3 Tool Definition (UTOOL)
	8.2.4 Using Frames in the Teach Pendant Editor (TP)

	8.3 JOG COORDINATE SYSTEMS
	8.4 MOTION CONTROL
	Figure 8 2. Motion Terms
	Figure 8 3. Motion Characteristics
	8.4.1 Motion Trajectory
	Figure 8 4. Interpolation Rates
	Figure 8 5. Location Interpolation of the TCP
	Figure 8 6. CIRCULAR Interpolated Motion
	Figure 8 7. Two-Angle Orientation Control
	Figure 8 8. Three-Angle Orientation Control

	8.4.2 Motion Trajectories with Extended Axes
	8.4.3 Acceleration and Deceleration
	Figure 8 9. Acceleration and Velocity Profile with Stage_1 = Sta
	Figure 8 10. Acceleration and Velocity Profile with Stage_2 = 0
	Figure 8 11. Acceleration and Velocity Profile with Stage_1 = 2*

	8.4.4 Motion Speed
	8.4.5 Motion Termination
	8.4.6 Multiple Segment Motion
	Figure 8 12. Effect of $TERMTYPE on Timing
	Figure 8 13. Effect of $TERMTYPE on Path
	Figure 8 14. NOWAIT Example
	Figure 8 15. NODECEL Example
	Figure 8 16. NOSETTLE Example
	Figure 8 17. COARSE Example
	Figure 8 18. Local Condition Handler When Timer Before Example
	Figure 8 19. Effect of Speed on Path

	8.4.7 Path Motion
	8.4.8 Motion Times
	Figure 8 20. Short Motions and Long Motions

	8.4.9 Correspondence Between Teach Pendant Program Motion and KA

	Chapter 9 FILE SYSTEM
	9.1 FILE SPECIFICATION
	9.1.1 Device Name
	9.1.2 File Name
	9.1.3 File Type

	9.2 STORAGE DEVICE ACCESS
	9.2.1 Memory File Devices
	9.2.2 Virtual Devices
	9.2.3 File Pipes
	Program

	9.3 FILE ACCESS
	9.4 MEMORY DEVICE

	Chapter 10 DICTIONARIES AND FORMS
	10.1 CREATING USER DICTIONARIES
	10.1.1 Dictionary Syntax
	10.1.2 Dictionary Element Number
	10.1.3 Dictionary Element Name
	10.1.4 Dictionary Cursor Positioning
	10.1.5 Dictionary Element Text
	10.1.6 Dictionary Reserved Word Commands
	10.1.7 Character Codes
	10.1.8 Nesting Dictionary Elements
	10.1.9 Dictionary Comment
	10.1.10 Generating a KAREL Constant File
	10.1.11 Compressing and Loading Dictionaries on the Controller
	Figure 10 1. Dictionary Compressor and User Dictionary File

	10.1.12 Accessing Dictionary Elements from a KAREL Program

	10.2 CREATING USER FORMS
	10.2.1 Form Syntax
	Form Syntax

	10.2.2 Form Attributes
	10.2.3 Form Title and Menu Label
	10.2.4 Form Menu Text
	10.2.5 Form Selectable Menu Item
	10.2.6 Edit Data Item
	10.2.7 Non-Selectable Text
	10.2.8 Display Only Data Items
	10.2.9 Cursor Position Attributes
	10.2.10 Form Reserved Words and Character Codes
	10.2.11 Form Function Key Element Name or Number
	10.2.12 Form Help Element Name or Number
	10.2.13 Teach Pendant Form Screen
	Figure 10 2. Teach Pendant Form Screen

	10.2.14 CRT/KB Form Screen
	Figure 10 3. CRT/KB Form Screen

	10.2.15 Form File Naming Convention
	10.2.16 Compressing and Loading Forms on the Controller
	Figure 10 4. Dictionary Compressor and Form Dictionary File

	10.2.17 Displaying a Form
	Figure 10 5. Example of Selectable Menu Items
	Example Form Dictionary for Selectable Menu Items
	Example Program for Selectable Menu Items
	Figure 10 6. Example of Edit Data Items
	Example Dictionary for Edit Data Items
	Example Program for Edit Data Items
	Figure 10 7. Example of Display Only Data Items
	Example Dictionary for Display Only Data Items
	Example Program for Display Only Data Items

	Chapter 11 FULL SCREEN EDITOR
	11.1 SCREEN LAYOUT
	11.1.1 Edit Windows
	Figure 11 1. KAREL Editor Screen, One Edit Window
	Figure 11 2. KAREL Editor Screen, Two Edit Windows

	11.1.2 Function Key Line

	11.2 EDITOR COMMAND SUMMARY
	Procedure 11-1 Using the KAREL Editor
	11.2.1 Cursor Manipulation
	11.2.2 Text Scrolling
	11.2.3 Text Insertion and Editing Modes
	11.2.4 Text Deletion
	11.2.5 Text Find and Replace
	11.2.6 Text Block Manipulation
	11.2.7 Window Manipulation
	11.2.8 KAREL Program Translation
	11.2.9 Miscellaneous Editor Commands
	11.2.10 File Save and Exit

	Chapter 12 SYSTEM VARIABLES
	12.1 ACCESS RIGHTS
	12.1.1 System Variables Accessed by KAREL Programs
	Specifying a Motion Group with System Variables

	12.2 STORAGE

	Chapter 13 KAREL COMMAND LANGUAGE (KCL)
	13.1 COMMAND FORMAT
	13.1.1 Default Program
	13.1.2 Variables and Data Types

	13.2 MOTION CONTROL COMMANDS
	13.3 ENTERING COMMANDS
	13.3.1 Abbreviations
	13.3.2 Error Messages
	13.3.3 Subdirectories

	13.4 COMMAND PROCEDURES
	13.4.1 Command Procedure Format
	Confirmation in a Command Procedure

	13.4.2 Creating Command Procedures
	13.4.3 Error Processing
	13.4.4 Executing Command Procedures

	Chapter 14 INPUT/OUTPUT SYSTEM
	14.1 USER-DEFINED SIGNALS
	14.1.1 DIN and DOUT Signals
	14.1.2 GIN and GOUT Signals
	14.1.3 AIN and AOUT Signals
	Figure 14 1. KAREL Logic for Converting Input to a Real Value Re

	14.1.4 Hand Signals

	14.2 SYSTEM-DEFINED SIGNALS
	14.2.1 Robot Digital Input and Output Signals (RDI/RDO)
	14.2.2 Operator Panel Input and Output Signals (OPIN/OPOUT)
	Figure 14 2. RSR Timing Diagram
	Figure 14 3. PNS Timing Diagram

	14.2.3 Teach Pendant Input and Output Signals (TPIN/TPOUT)

	14.3 HARDWARE CONFIGURATIONS
	14.3.1 Modular I/O
	Figure 14 4. Modular (Model A) I/O Hardware Layout For Digital I

	14.3.2 PROCESS I/O
	Figure 14 5. Process I/O Board Hardware Layout for Group I/O

	14.3.3 External Operator Panel Signals
	Figure 14 6. External ON/OFF Buttons
	Figure 14 7. External Emergency Stop
	Figure 14 8. Emergency Stop Outputs
	Figure 14 9. Emergency Stop Through a Safety Fence

	14.3.4 Serial Input/Output
	Figure 14 10. Location of Ports on the Controller

	Chapter 15 MULTI - TASKI NG
	15.1 MULTI-TASKING TERMINOLOGY
	15.2 INTERPRETER ASSIGNMENT
	15.3 MOTION CONTROL
	15.4 TASK SCHEDULING
	15.4.1 Priority Scheduling
	15.4.2 Time Slicing

	15.5 STARTING TASKS
	15.5.1 Running Programs from the User Operator Panel (UOP) PNS S
	15.5.2 Child Tasks

	15.6 TASK CONTROL AND MONITORING
	15.6.1 From TPP Programs
	15.6.2 From KAREL Programs
	15.6.3 From KCL

	15.7 USING SEMAPHORES AND TASK SYNCHRONIZATION
	Figure 15 1. Task Synchronization Using a Semaphore
	Main Task
	Server Task
	Semaphore and Task Synchronization Program Example - MAIN TASK
	Semaphore and Task Synchronization Program Example - TASK A 				
	Semaphore and Task Synchronization Program Example - TASK B 				

	15.8 USING QUEUES FOR TASK COMMUNICATIONS
	Requester
	Server

	Appendix A KAREL LANGUAGE ALPHABETICAL DESCRIPTION
	A.1 - A - KAREL LANGUAGE DESCRIPTION
	A.1.1 ABORT Action
	A.1.2 ABORT Condition
	A.1.3 ABORT Statement
	A.1.4 ABORT_TASK Built-In Procedure
	A.1.5 ABS Built-In Function
	A.1.6 ACOS Built-In Function
	ACOS Built-In Function
	ACOS Built-In Function

	A.1.7 ACT_SCREEN Built-In Procedure
	A.1.8 ADD_BYNAMEPC Built-In Procedure
	ADD_BYNAMEPC Built-In Procedure

	A.1.9 ADD_DICT Built-In Procedure
	A.1.10 ADD_INTPC Built-In Procedure
	A.1.11 ADD_REALPC Built-In Procedure
	A.1.12 ADD_STRINGPC Built-In Procedure
	A.1.13 %ALPHABETIZE Translator Directive
	A.1.14 APPEND_NODE Built-In Procedure
	A.1.15 APPEND_QUEUE Built-In Procedure
	A.1.16 APPROACH Built-In Function
	APPROACH Function

	A.1.17 ARRAY Data Type
	A.1.18 ARRAY_LEN Built-In Function
	A.1.19 ASIN Built-In Function
	ASIN Built-In Function
	ASIN Built-In Function

	A.1.20 Assignment Action
	Assignment Action

	A.1.21 Assignment Statement
	Assignment Statement
	Assignment Statement
	Assignment Statement

	A.1.22 AT NODE Condition
	A.1.23 ATAN2 Built-In Function
	ATAN2 Built-In Function

	A.1.24 ATTACH Statement
	A.1.25 ATT_WINDOW_D Built-In Procedure
	A.1.26 ATT_WINDOW_S Built-In Procedure
	A.1.27 AVL_POS_NUM Built-In Procedure

	A.2 - B - KAREL LANGUAGE DESCRIPTION
	A.2.1 BOOLEAN Data Type
	A.2.2 BYNAME Built-In Function
	A.2.3 BYTE Data Type
	BYTE Data Type

	A.2.4 BYTES_AHEAD Built-In Procedure
	BYTES_AHEAD Built-In Procedure

	A.2.5 BYTES_LEFT Built-In Function
	BYTES_LEFT Built-In Function

	A.3 - C - KAREL LANGUAGE DESCRIPTION
	A.3.1 CALL_PROG Built-In Procedure
	A.3.2 CALL_PROGLIN Built-In Procedure
	A.3.3 CANCEL Action
	CANCEL Action

	A.3.4 CANCEL Statement
	CANCEL Statement

	A.3.5 CANCEL FILE Statement
	CANCEL FILE Statement

	A.3.6 CHECK_DICT Built-In Procedure
	A.3.7 CHECK_EPOS Built-In Procedure
	A.3.8 CHECK_NAME Built-In Procedure
	A.3.9 CHR Built-In Function
	A.3.10 CLEAR Built-In Procedure
	CLEAR Built-In Procedure

	A.3.11 CLEAR_SEMA Built-In Procedure
	A.3.12 CLOSE FILE Statement
	A.3.13 CLOSE HAND Statement
	CLOSE HAND Statement

	A.3.14 CLOSE_TPE Built-In Procedure
	A.3.15 CLR_IO_STAT Built-In Procedure
	A.3.16 CLR_PORT_SIM Built-In Procedure
	A.3.17 CLR_POS_REG Built-In Procedure
	CLR_POS_REG Built-In Procedure

	A.3.18 %CMOSVARS Translator Directive
	A.3.19 CNC_DYN_DISB Built-In Procedure
	A.3.20 CNC_DYN_DISE Built-In Procedure
	A.3.21 CNC_DYN_DISI Built-In Procedure
	A.3.22 CNC_DYN_DISP Built-In Procedure
	A.3.23 CNC_DYN_DISR Built-In Procedure
	A.3.24 CNC_DYN_DISS Built-In Procedure
	A.3.25 CNCL_STP_MTN Built-In Procedure
	CNCL_STP_MTN Built-In Procedure

	A.3.26 CNV_CONF_STR Built-In Procedure
	CNV_CONF_STR Built-In Procedure

	A.3.27 CNV_INT_STR Built-In Procedure
	A.3.28 CNV_JPOS_REL Built-In Procedure
	A.3.29 CNV_REAL_STR Built-In Procedure
	CNV_REAL_STR Built-In Procedure

	A.3.30 CNV_REL_JPOS Built-In Procedure
	A.3.31 CNV_STR_CONF Built-In Procedure
	CNV_STR_CONF Built-In Procedure

	A.3.32 CNV_STR_INT Built-In Procedure
	A.3.33 CNV_STR_REAL Built-In Procedure
	CNV_STR_REAL Built-In Procedure

	A.3.34 CNV_STR_TIME Built-In Procedure
	CNV_STR_TIME Built-In Procedure

	A.3.35 CNV_TIME_STR Built-In Procedure
	A.3.36 %COMMENT Translator Directive
	A.3.37 COMMON_ASSOC Data Type
	A.3.38 CONDITION...ENDCONDITION Statement
	A.3.39 CONFIG Data Type
	CONFIG Data Type

	A.3.40 CONNECT TIMER Statement
	A.3.41 CONTINUE Action
	A.3.42 CONTINUE Condition
	CONTINUE Condition

	A.3.43 CONT_TASK Built-In Procedure
	CONT_TASK Built-In Procedure

	A.3.44 COPY_FILE Built-In Procedure
	A.3.45 COPY_PATH Built-In Procedure
	A.3.46 COPY_QUEUE Built-In Procedure
	COPY_QUEUE Built-In Procedure

	A.3.47 COPY_TPE Built-In Procedure
	A.3.48 COS Built-In Function
	A.3.49 CR Input/Output Item
	A.3.50 CREATE_TPE Built-In Procedure
	A.3.51 CREATE_VAR Built-In Procedure
	A.3.52 %CRTDEVICE
	A.3.53 CURJPOS Built-In Function
	CURJPOS Built-In Function

	A.3.54 CURPOS Built-In Function
	A.3.55 CURR_PROG Built-In Function

	A.4 - D - KAREL LANGUAGE DESCRIPTION
	A.4.1 DAQ_CHECKP Built-In Procedure
	DAQ_CHECKP Built-In Procedure
	DAQ_CHECKP Built-In Procedure

	A.4.2 DAQ_REGPIPE Built-In Procedure
	DAQ_REGPIPE Built-In Procedure
	DAQ_REGPIPE Built-In Procedure

	A.4.3 DAQ_START Built-In Procedure
	DAQ_START Built-In Procedure
	DAQ_START Built-In Procedure
	DAQ_START Built-In Procedure
	DAQ_START Built-In Procedure

	A.4.4 DAQ_STOP Built-In Procedure
	DAQ_STOP Built-In Procedure
	DAQ_STOP Built-In Procedure
	DAQ_STOP Built-In Procedure

	A.4.5 DAQ_UNREG Built-In Procedure
	DAQ_UNREG Built-In Procedure
	DAQ_UNREG Built-In Procedure

	A.4.6 DAQ_WRITE Built-In Procedure
	DAQ_WRITE Built-In Procedure
	DAQ_WRITE Built-In Procedure
	DAQ_WRITE Built-In Procedure

	A.4.7 %DEFGROUP Translator Directive
	A.4.8 DEF_SCREEN Built-In Procedure
	A.4.9 DEF_WINDOW Built-In Procedure
	A.4.10 %DELAY Translator Directive
	A.4.11 DELAY Statement
	A.4.12 DELETE_FILE Built-In Procedure
	A.4.13 DELETE_NODE Built-In Procedure
	A.4.14 DELETE_QUEUE Built-In Procedure
	A.4.15 DEL_INST_TPE Built-In Procedure
	A.4.16 DET_WINDOW Built-In Procedure
	A.4.17 DISABLE CONDITION Action
	DISABLE CONDITION Action

	A.4.18 DISABLE CONDITION Statement
	DISABLE CONDITION Statement

	A.4.19 DISCONNECT TIMER Statement
	DISCONNECT TIMER Statement

	A.4.20 DISCTRL_ALPH Built_In Procedure
	A.4.21 DISCTRL_FORM Built_In Procedure
	A.4.22 DISCTRL_LIST Built-In Procedure
	A.4.23 DISCTRL_PLMN Built-In Procedure
	DISCTRL_PLMN Built-In Procedure

	A.4.24 DISCTRL_SBMN Built-In Procedure
	DISCTRL_SBMN Built-In Procedure

	A.4.25 DISCTRL_TBL Built-In Procedure
	A.4.26 DISMOUNT_DEV Built-In Procedure
	A.4.27 DISP_DAT_T Data Type

	A.5 - E - KAREL LANGUAGE DESCRIPTION
	A.5.1 ENABLE CONDITION Action
	A.5.2 ENABLE CONDITION Statement
	A.5.3 %ENVIRONMENT Translator Directive
	A.5.4 ERR_DATA Built-In Procedure
	A.5.5 ERROR Condition
	A.5.6 EVAL Clause
	EVAL Clause

	A.5.7 EVENT Condition
	A.5.8 EXP Built-In Function
	EXP Built-In Function

	A.6 - F - KAREL LANGUAGE DESCRIPTION
	A.6.1 FILE Data Type
	A.6.2 FILE_LIST Built-In Procedure
	A.6.3 FOR...ENDFOR Statement
	A.6.4 FORCE_SPMENU Built-In Procedure
	A.6.5 FORMAT_DEV Built-In Procedure
	A.6.6 FRAME Built-In Function
	Figure A 1. FRAME Built-In Function
	FRAME Built-In Function

	A.6.7 FROM Clause

	A.7 - G - KAREL LANGUAGE DESCRIPTION
	A.7.1 GET_ATTR_PRG Built-In Procedure
	A.7.2 GET_FILE_POS Built-In Function
	GET_FILE_POS Built-In Function

	A.7.3 GET_JPOS_REG Built-In Function
	A.7.4 GET_JPOS_TPE Built-In Function
	A.7.5 GET_PORT_ASG Built-in Procedure
	GET_PORT_ASG Built-In Procedure

	A.7.6 GET_PORT_ATR Built-In Function
	GET_PORT_ATR Built-In Function

	A.7.7 GET_PORT_CMT Built-In Procedure
	A.7.8 GET_PORT_MOD Built-In Procedure
	GET_PORT_MOD_Built-In Procedure

	A.7.9 GET_PORT_SIM Built-In Procedure
	A.7.10 GET_PORT_VAL Built-In Procedure
	A.7.11 GET_POS_FRM Built-In Procedure
	A.7.12 GET_POS_REG Built-In Function
	A.7.13 GET_POS_TPE Built-In Function
	A.7.14 GET_POS_TYP Built-In Procedure
	A.7.15 GET_PREG_CMT Built-In-Procedure
	A.7.16 GET_QUEUE Built-In Procedure
	GET_QUEUE Built-In Procedure

	A.7.17 GET_REG Built-In Procedure
	A.7.18 GET_REG_CMT
	A.7.19 GET_TIME Built-In Procedure
	A.7.20 GET_TPE_CMT Built-in Procedure
	A.7.21 GET_TPE_PRM Built-in Procedure
	GET_TPE_PRM Built-In Procedure

	A.7.22 GET_TSK_INFO Built-In Procedure
	A.7.23 GET_VAR Built-In Procedure
	GET_VAR Built-In Procedure

	A.7.24 GO TO Statement
	GO TO Statement

	A.7.25 GROUP_ASSOC Data Type

	A.8 - H - KAREL LANGUAGE DESCRIPTION
	A.8.1 HOLD Action
	HOLD Action

	A.8.2 HOLD Statement
	HOLD Statement

	A.9 - I - KAREL LANGUAGE DESCRIPTION
	A.9.1 IF ... ENDIF Statement
	A.9.2 IN Clause
	A.9.3 %INCLUDE Translator Directive
	A.9.4 INDEX Built-In Function
	INDEX Built-In Function

	A.9.5 INI_DYN_DISB Built-In Procedure
	A.9.6 INI_DYN_DISE Built-In Procedure
	A.9.7 INI_DYN_DISI Built-In Procedure
	A.9.8 INI_DYN_DISP Built-In Procedure
	A.9.9 INI_DYN_DISR Built-In Procedure
	A.9.10 INI_DYN_DISS Built-In Procedure
	A.9.11 INIT_QUEUE Built-In Procedure
	INIT_QUEUE Built-In Procedure

	A.9.12 INIT_TBL Built-In Procedure
	INIT_TBL Built-In Procedure

	A.9.13 IN_RANGE Built-In Function
	IN_RANGE Built-In Function

	A.9.14 INSERT_NODE Built-In Procedure
	INSERT_NODE Built-In Procedure

	A.9.15 INSERT_QUEUE Built-In Procedure
	INSERT_QUEUE Built-In Procedure

	A.9.16 INTEGER Data Type
	A.9.17 INV Built-In Function
	INV Built-In Function

	A.9.18 IO_MOD_TYPE Built-In Procedure
	IO_MOD_TYPE Built-In Procedure

	A.9.19 IO_STATUS Built-In Function

	A.10 - J - KAREL LANGUAGE DESCRIPTION
	A.10.1 J_IN_RANGE Built-In Function
	A.10.2 JOINTPOS Data Type
	A.10.3 JOINT2POS Built-In Function

	A.11 - K - KAREL LANGUAGE DESCRIPTION
	A.11.1 KCL Built-In Procedure
	KCL Built-In Procedure

	A.11.2 KCL_NO_WAIT Built-In Procedure
	KCL_NO_WAIT Built-In Procedure

	A.11.3 KCL_STATUS Built-In Procedure

	A.12 - L - KAREL LANGUAGE DESCRIPTION
	A.12.1 LN Built-In Function
	LN Built-In Function

	A.12.2 LOAD Built-In Procedure
	A.12.3 LOAD_STATUS Built-In Procedure
	A.12.4 LOCK_GROUP Built-In Procedure
	LOCK_GROUP Built-In Procedure

	A.12.5 %LOCKGROUP Translator Directive

	A.13 - M - KAREL LANGUAGE DESCRIPTION
	A.13.1 MIRROR Built-In Function
	MIRROR Built-In Function

	A.13.2 MODIFY_QUEUE Built-In Procedure
	MODIFY_QUEUE Built-In Procedure

	A.13.3 MOTION_CTL Built-In Function
	A.13.4 MOUNT_DEV Built-In Procedure
	A.13.5 MOVE ABOUT Statement
	MOVE ABOUT Statement

	A.13.6 MOVE ALONG Statement
	A.13.7 MOVE AWAY Statement
	MOVE AWAY Statement

	A.13.8 MOVE AXIS Statement
	MOVE AXIS Statement

	A.13.9 MOVE_FILE Built-In Procedure
	MOVE_FILE Built-In Procedure

	A.13.10 MOVE NEAR Statement
	A.13.11 MOVE RELATIVE Statement
	MOVE RELATIVE Statement

	A.13.12 MOVE TO Statement
	A.13.13 MSG_CONNECT Built-In Procedure
	MSG_CONNECT Built-In Procedure

	A.13.14 MSG_DISCO Built-In Procedure
	A.13.15 MSG_PING
	MSG_PING Built-In Procedure

	A.14 - N - KAREL LANGUAGE DESCRIPTION
	A.14.1 NOABORT Action
	NOABORT Action

	A.14.2 %NOABORT Translator Directive
	A.14.3 %NOBUSYLAMP Translator Directive
	A.14.4 NODE_SIZE Built-In Function
	NODE_SIZE Built-In Function

	A.14.5 %NOLOCKGROUP Translator Directive
	KAREL Motion Initialization

	A.14.6 NOMESSAGE Action
	A.14.7 NOPAUSE Action
	NOPAUSE Action

	A.14.8 %NOPAUSE Translator Directive
	A.14.9 %NOPAUSESHFT Translator Directive
	A.14.10 NOWAIT Clause
	NOWAIT Clause

	A.15 - O - KAREL LANGUAGE DESCRIPTION
	A.15.1 OPEN FILE Statement
	A.15.2 OPEN HAND Statement
	OPEN HAND Statement

	A.15.3 OPEN_TPE Built-In Procedure
	A.15.4 ORD Built-In Function
	A.15.5 ORIENT Built-In Function
	ORIENT Built-In Function

	A.16 - P - KAREL LANGUAGE DESCRIPTION
	A.16.1 PATH Data Type
	PATH Data Type
	PATH Data Type

	A.16.2 PATH_LEN Built-In Function
	A.16.3 PAUSE Action
	A.16.4 PAUSE Condition
	PAUSE Condition

	A.16.5 PAUSE Statement
	PAUSE Statement

	A.16.6 PAUSE_TASK Built-In Procedure
	PAUSE_TASK Built-In Procedure

	A.16.7 PEND_SEMA Built-In Procedure
	A.16.8 PIPE_CONFIG Built-In Procedure
	A.16.9 POP_KEY_RD Built-In Procedure
	A.16.10 Port_Id Action
	A.16.11 Port_Id Condition
	A.16.12 POS Built-In Function
	POS Built-In Function

	A.16.13 POS2JOINT Built-In Function
	A.16.14 POS_REG_TYPE Built-In Procedure
	POS_REG_TYPE Built-In Procedure

	A.16.15 POSITION Data Type
	POSITION Data Type

	A.16.16 POST_ERR Built-In Procedure
	A.16.17 POST_SEMA Built-In Procedure
	A.16.18 PRINT_FILE Built-In Procedure
	A.16.19 %PRIORITY Translator Directive
	%PRIORITY Translator Directive

	A.16.20 PROG_LIST Built-In Procedure
	A.16.21 PROGRAM Statement
	A.16.22 PULSE Action
	A.16.23 PULSE Statement
	PULSE Statement

	A.16.24 PURGE CONDITION Statement
	PURGE CONDITION Statement

	A.16.25 PURGE_DEV Built-In Procedure
	A.16.26 PUSH_KEY_RD Built-In Procedure

	A.17 - Q - KAREL LANGUAGE DESCRIPTION
	A.17.1 QUEUE_TYPE Data Type

	A.18 - R - KAREL LANGUAGE DESCRIPTION
	A.18.1 READ Statement
	A.18.2 READ_DICT Built-In Procedure
	A.18.3 READ_DICT_V Built-In-Procedure
	READ_DICT_V Built-In Procedure

	A.18.4 READ_KB Built-In Procedure
	READ_KB Built-In Procedure

	A.18.5 REAL Data Type
	A.18.6 Relational Condition
	A.18.7 RELAX HAND Statement
	RELAX HAND Statement

	A.18.8 RELEASE Statement
	A.18.9 REMOVE_DICT Built-In Procedure
	A.18.10 RENAME_FILE Built-In Procedure
	A.18.11 RENAME_VAR Built-In Procedure
	A.18.12 RENAME_VARS Built-In Procedure
	A.18.13 REPEAT ... UNTIL Statement
	A.18.14 RESET Built-In Procedure
	A.18.15 RESUME Action
	A.18.16 RESUME Statement
	RESUME Statement

	A.18.17 RETURN Statement
	A.18.18 ROUND Built-In Function
	A.18.19 ROUTINE Statement
	A.18.20 RUN_TASK Built-In Procedure

	A.19 - S - KAREL LANGUAGE DESCRIPTION
	A.19.1 SAVE Built-In Procedure
	A.19.2 SAVE_DRAM Built-In Procedure
	A.19.3 SELECT ... ENDSELECT Statement
	A.19.4 SELECT_TPE Built-In Procedure
	A.19.5 SEMA_COUNT Built-In Function
	A.19.6 SEMAPHORE Condition
	A.19.7 SEND_DATAPC Built-In Procedure
	SEND_DATAPC Built-In Procedure

	A.19.8 SEND_EVENTPC Built-In Procedure
	SEND_EVENTPC Built-In Procedure

	A.19.9 SET_ATTR_PRG Built-In Procedure
	A.19.10 SET_CURSOR Built-In Procedure
	A.19.11 SET_EPOS_REG Built-In Procedure
	SET_EPOS_REG Built-In Procedure

	A.19.12 SET_EPOS_TPE Built-In Procedure
	A.19.13 SET_FILE_ATR Built-In Procedure
	A.19.14 SET_FILE_POS Built-In Procedure
	SET_FILE_POS Built-In Procedure

	A.19.15 SET_INT_REG Built-In Procedure
	A.19.16 SET_JPOS_REG Built-In Procedure
	A.19.17 SET_JPOS_TPE Built-In Procedure
	A.19.18 SET_LANG Built-In Procedure
	A.19.19 SET_PERCH Built-In Procedure
	SET_PERCH Built-In Procedure

	A.19.20 SET_PORT_ASG Built-In Procedure
	A.19.21 SET_PORT_ATR Built-In Function
	A.19.22 SET_PORT_CMT Built-In Procedure
	A.19.23 SET_PORT_MOD Built-In Procedure
	A.19.24 SET_PORT_SIM Built-In Procedure
	A.19.25 SET_PORT_VAL Built-In Procedure
	SET_PORT_VAL Built-In Procedure

	A.19.26 SET_POS_REG Built-In Procedure
	A.19.27 SET_POS_TPE Built-In Procedure
	A.19.28 SET_PREG_CMT Built-In-Procedure
	A.19.29 SET_REAL_REG Built-In Procedure
	A.19.30 SET_REG_CMT Built-In-Procedure
	A.19.31 SET_TIME Built-In Procedure
	SET_TIME Built-In Procedure

	A.19.32 SET_TPE_CMT Built-In Procedure
	A.19.33 SET_TRNS_TPE Built-In Procedure
	A.19.34 SET_TSK_ATTR Built-In Procedure
	A.19.35 SET_TSK_NAME Built-In Procedure
	A.19.36 SET_VAR Built-In Procedure
	A.19.37 SHORT Data Type
	A.19.38 SIGNAL EVENT Action
	A.19.39 SIGNAL EVENT Statement
	A.19.40 SIGNAL SEMAPHORE Action
	A.19.41 SIN Built-In Function
	A.19.42 SQRT Built-In Function
	SQRT Built-In Function

	A.19.43 %STACKSIZE Translator Directive
	A.19.44 STD_PTH_NODE Data Type
	A.19.45 STOP Action
	A.19.46 STOP Statement
	STOP Statement

	A.19.47 STRING Data Type
	A.19.48 STR_LEN Built-In Function
	A.19.49 STRUCTURE Data Type
	A.19.50 SUB_STR Built-In Function

	A.20 - T - KAREL LANGUAGE DESCRIPTION
	A.20.1 TAN Built-In Function
	TAN Built-In Function

	A.20.2 TIME Condition
	A.20.3 %TIMESLICE Translator Directive
	A.20.4 %TPMOTION Translator Directive
	A.20.5 TRANSLATE Built-In Procedure
	TRANSLATE Built-In Procedure

	A.20.6 TRUNC Built-In Function
	TRUNC Built-In Function

	A.21 - U - KAREL LANGUAGE DESCRIPTION
	A.21.1 UNHOLD Action
	UNHOLD Action

	A.21.2 UNHOLD Statement
	UNHOLD Statement

	A.21.3 UNINIT Built-In Function
	A.21.4 UNLOCK_GROUP Built-In Procedure
	KAREL Motion Initialization
	UNLOCK_GROUP Built-In Procedure

	A.21.5 UNPAUSE Action
	A.21.6 UNPOS Built-In Procedure
	UNPOS Built-In Procedure

	A.21.7 UNTIL Clause
	A.21.8 USING ... ENDUSING Statement

	A.22 - V - KAREL LANGUAGE DESCRIPTION
	A.22.1 VAR_INFO Built-In Procedure
	VAR_INFO Built-In Procedure

	A.22.2 VAR_LIST Built-In Procedure
	A.22.3 VECTOR Data Type
	VECTOR Data Type
	VECTOR Data Type

	A.22.4 VIA Clause
	A.22.5 VOL_SPACE Built-In Procedure
	VOL_SPACE Built-In Procedure

	A.23 - W - KAREL LANGUAGE DESCRIPTION
	A.23.1 WAIT FOR Statement
	A.23.2 WHEN Clause
	A.23.3 WHILE...ENDWHILE Statement
	A.23.4 WITH Clause
	A.23.5 WRITE Statement
	A.23.6 WRITE_DICT Built-In Procedure
	A.23.7 WRITE_DICT_V Built-In Procedure
	WRITE_DICT_V Built-In Procedure

	A.24 - X - KAREL LANGUAGE DESCRIPTION
	A.24.1 XYZWPR Data Type
	XYZWPR Data Type

	A.24.2 XYZWPREXT Data Type
	XYZWPREXT Data Type

	A.25 - Y - KAREL LANGUAGE DESCRIPTION
	A.26 - Z - KAREL LANGUAGE DESCRIPTION

	Appendix B KAREL EXAMPLE PROGRAMS
	B.1 SETTING UP DIGITAL OUTPUT PORTS FOR PROCESS MONITORING
	Setting Up Digital Output Ports for Process Monitoring - Overvie
	Setting Up Digital Output Ports for Monitoring Teach Pendant Pro
	Setting Up Digital Output Ports for Process Monitoring - Declara
	Setting Up Digital Output Ports for Process Monitoring - Declare
	Setting Up Digital Output Ports for Process Monitoring - Declara
	Setting Up Digital Output Ports for Process Monitoring - Declara
	Setting Up Digital Output Ports for Process Monitoring - Main
	Setting Up Digital Output Ports for Process Monitoring - Main
	Setting Up Digital Output Ports for Process Monitoring - Main
	Setting Up Digital Output Ports for Process Monitoring - Main
	Setting Up Digital Output Ports for Process Monitoring - Main
	Setting Up Digital Output Ports for Process Monitoring - Main
	Setting Up Digital Output Ports for Process Monitoring - Main

	B.2 COPYING PATH VARIABLES
	Copy Path Variables Program - Overview
	Copy Path Variables Program - Overview and Declaration Section
	Copy Path Variables Program - Declaration Section
	Copy Path Variables Program - Storing Variables in Memory
	Copy Path Variables Program - Monitor User Response
	Copy Path Variables Program - Copying Path Variables
	Copy Path Variables Program - Opens CRT/KB & Sends Data to Defau
	Copy Path Variables Program - Checks Path Initialization
	Copy Path Variables Program - Path Initialization
	Copy Path Variables Program - Copy User Defined Paths
	Copy Path Variables Program - Copy User Defined Paths Continued

	B.3 SAVING DATA TO THE DEFAULT DEVICE
	Saving Data Program - Overview
	Saving Data Program - Declarations Section
	Saving Data Program - Create File Spec
	Saving Data Program - Delete/Overwrite

	B.4 STANDARD ROUTINES
	Standard Routines - Overview
	Standard Routines - Declaration Section
	Standard Routines - Clears Screen and Displays Menu

	B.5 USING REGISTER BUILT-INS
	Using Register Built-ins Program - Overview
	Using Register Built-ins Program - Declaration Section
	Using Register Built-ins - Storing and Manipulating Positions
	Using Register Built-ins - Executing Program and Checking Regist

	B.6 PATH VARIABLES AND CONDITION HANDLERS PROGRAM
	Path Variables and Condition Handlers Program - Overview
	Path Variables and Condition Handlers Program - Overview Continu
	Path Variables and Condition Handlers Program - Declaration Sect
	Path Variables and Condition Handlers Program - Declare Routines
	Path Variables and Condition Handlers Program - Declare Conditio
	Path Variables and Condition Handlers Program - Teach and Move A
	Path Variables and Condition Handlers Program - Move Along Path

	B.7 LISTING FILES AND PROGRAMS AND MANIPULATING STRINGS
	Listing Files and Programs and Manipulating Strings - Overview
	Listing Files and Programs and Manipulating Strings - Overview C
	Listing Files and Programs and Manipulating Strings - Declaratio
	Listing Files and Programs and Manipulating Strings - Declare Ro
	Listing Files and Programs and Manipulating Strings - Main Progr
	Listing Files and Programs and Manipulating Strings - Create and
	Listing Files and Programs and Manipulating Strings - List Progr

	B.8 GENERATING AND MOVING ALONG A HEXAGON PATH
	Generate and Move Along Hexagon Path - Overview
	Generate and Move Along Hexagon Path - Declaration Section
	Generate and Move Along Hexagon Path - Declare Routines
	Generate and Move Along Hexagon Path - Declare Routines
	Generate and Move Along Hexagon Path - Main Program

	B.9 USING THE FILE AND DEVICE BUILT-INS
	File and Device Built-ins Program - Overview
	File and Device Built-ins Program - Overview Continued
	File and Device Built-ins Program - Declaration Section, Declare
	File and Device Built-ins Program - Mount and Copy to RAM Disk
	File and Device Built-ins Program - Mount and Copy to RAM Disk C

	B.10 USING DYNAMIC DISPLAY BUILT-INS
	Using Dynamic Display Built-ins - Overview
	Using Dynamic Display Built-ins - Overview Continued
	Using Dynamic Display Built-ins - Declaration Section
	Using Dynamic Display Built-ins - Declare Routines
	Using Dynamic Display Built-ins - Declare Routines Continued
	Using Dynamic Display Built-ins - Declare Routines Continued
	Using Dynamic Display Built-ins - Declare Routines Continued
	Using Dynamic Display Built-ins - Declare Routines Continued
	Using Dynamic Display Built-ins - Declare Routines Continued
	Using Dynamic Display Built-ins - Initiate Dynamic Displays
	Using Dynamic Display Built-ins - Initiate Dynamic Displays
	Using Dynamic Display Built-ins - Execute Subordinate Task
	Using Dynamic Display Built-ins - User Response Cancels Dynamic

	B.11 MANIPULATING VALUES OF DYNAMICALLY DISPLAYED VARIABLES
	Manipulate Dynamically Displayed Variables - Overview
	Manipulate Dynamically Displayed Variables - Declaration Section
	Manipulate Dynamically Displayed Variables - Main Program

	B.12 DISPLAYING A LIST FROM A DICTIONARY FILE
	Display List from Dictionary File - Overview
	Display List from Dictionary File - Overview Continued
	Display List from Dictionary File - Declaration Section
	Display List from Dictionary File - Declare Routines
	Display List from Dictionary File - Declare Error Routines
	Display List from Dictionary File - Setup and Define Screen
	Display List from Dictionary File - Write Elements to the Screen
	Display List from Dictionary File - Initialize Display Data
	Display List from Dictionary File - Control Cursor Movement
	Display List from Dictionary File - Control Cursor Movement Cont
	Display List from Dictionary File - Cleanup and Exit Program
	B.12.1 Dictionary Files
	Dictionary File

	B.13 USING THE DISCTRL_ALPHA BUILT-IN
	Using the DISCTRL_ALPHA Built-in - Overview
	Using the DISCTRL_ALPHA Built-in - Declaration Section
	Using the DISCTRL_ALPHA Built-in - Enter Data from Teach Pendant
	Using the DISCTRL_ALPHA Built-in - Enter Data from CRT/KB
	B.13.1 Dictionary Files
	DCALPHEG.UTX Dictionary File

	B.14 APPLYING OFFSETS TO A COPIED TEACH PENDANT PROGRAM
	Applying Offsets to Copied Teach Pendant Program - Overview
	Applying Offsets to Copied Teach Pendant Program - Overview Cont
	Applying Offsets to Copied Teach Pendant Program - Declaration S
	Applying Offsets to Copied Teach Pendant Program - Declare Routi
	Applying Offsets to Copied Teach Pendant Program - Generate Prog
	Applying Offsets to Copied Teach Pendant Program - Overwrite or
	Applying Offsets to Copied Teach Pendant Program - Input Offset
	Applying Offsets to Copied Teach Pendant Program - Apply Offsets
	Applying Offsets to Copied Teach Pendant Program - Apply Offsets
	Applying Offsets to Copied Teach Pendant Program - Clears TP Use

	Appendix C KCL COMMAND ALPHABETICAL DESCRIPTION
	C.1 ABORT command
	C.2 APPEND FILE command
	C.3 APPEND NODE command
	C.4 CHDIR command
	C.5 CLEAR ALL command
	C.6 CLEAR BREAK CONDITION command
	C.7 CLEAR BREAK PROGRAM command
	C.8 CLEAR DICT command
	C.9 CLEAR PROGRAM command
	C.10 CLEAR VARS command
	C.11 COMPRESS DICT command
	C.12 COMPRESS FORM command
	C.13 CONTINUE command
	C.14 COPY FILE command
	C.15 CREATE VARIABLE command
	C.16 DELETE FILE command
	C.17 DELETE NODE command
	C.18 DELETE VARIABLE command
	C.19 DIRECTORY command
	C.20 DISABLE BREAK PROGRAM command
	C.21 DISABLE CONDITION command
	C.22 DISMOUNT command
	C.23 EDIT command
	C.24 ENABLE BREAK PROGRAM
	C.25 ENABLE CONDITION command
	C.26 FORMAT command
	C.27 HELP command
	C.28 HOLD command
	C.29 INSERT NODE command
	C.30 LOAD ALL command
	C.31 LOAD DICT command
	C.32 LOAD FORM command
	C.33 LOAD MASTER command
	C.34 LOAD PROGRAM command
	C.35 LOAD SERVO command
	C.36 LOAD SYSTEM command
	C.37 LOAD TP command
	C.38 LOAD VARS command
	C.39 LOGOUT command
	C.40 MKDIR command
	C.41 MOUNT command
	C.42 MOVE FILE command
	C.43 PAUSE command
	C.44 PURGE command
	C.45 PRINT command
	C.46 RECORD command
	C.47 RENAME FILE command
	C.48 RENAME VARIABLE command
	C.49 RENAME VARS command
	C.50 RESET command
	C.51 RMDIR command
	C.52 RUN command
	C.53 RUNCF command
	C.54 SAVE MASTER command
	C.55 SAVE SERVO command
	C.56 SAVE SYSTEM command
	C.57 SAVE TP command
	C.58 SAVE VARS command
	C.59 SET BREAK CONDITION command
	C.60 SET BREAK PROGRAM command
	C.61 SET CLOCK command
	C.62 SET DEFAULT command
	C.63 SET GROUP command
	C.64 SET LANGUAGE command
	C.65 SET LOCAL VARIABLE command
	C.66 SET PORT command
	C.67 SET TASK command
	C.68 SET TRACE command
	C.69 SET VARIABLE command
	C.70 SET VERIFY command
	C.71 SHOW BREAK command
	C.72 SHOW BUILTINS command
	C.73 SHOW CONDITION command
	C.74 SHOW CLOCK command
	C.75 SHOW CURPOS command
	C.76 SHOW DEFAULT command
	C.77 SHOW DEVICE command
	C.78 SHOW DICTS command
	C.79 SHOW GROUP command
	C.80 SHOW HISTORY command
	C.81 SHOW LANG command
	C.82 SHOW LANGS command
	C.83 SHOW LOCAL VARIABLE command
	C.84 SHOW LOCAL VARS command
	C.85 SHOW MEMORY command
	C.86 SHOW PROGRAM command
	C.87 SHOW PROGRAMS command
	C.88 SHOW SYSTEM command
	C.89 SHOW TASK command
	C.90 SHOW TASKS command
	C.91 SHOW TRACE command
	C.92 SHOW TYPES command
	C.93 SHOW VARIABLE command
	C.94 SHOW VARS command
	C.95 SHOW data_type command
	C.96 SIMULATE command
	C.97 SKIP command
	C.98 STEP OFF command
	C.99 STEP ON command
	C.100 TRANSLATE command
	C.101 TYPE command
	C.102 UNSIMULATE command
	C.103 WAIT command

	Appendix D CHARACTER CODES
	D.1 CHARACTER CODES

	Appendix E SYNTAX DIAGRAMS
	Figure E 1.
	Figure E 2.
	Figure E 3.
	Figure E 4.
	Figure E 5.
	Figure E 6.
	Figure E 7.
	Figure E 8.
	Figure E 9.
	Figure E 10.
	Figure E 11.
	Figure E 12.
	Figure E 13.
	Figure E 14.
	Figure E 15.
	Figure E 16.
	Figure E 17.
	Figure E 18.
	Figure E 19.
	Figure E 20.
	Figure E 21.
	Figure E 22.
	Figure E 23.
	Figure E 24.
	Figure E 25.
	Figure E 26.
	Figure E 27.

	tables
	Table 2 1. ASCII Character Set
	Table 2 2. Multinational Character Set
	Table 2 3. Graphics Character Set
	Table 2 4. KAREL Operators
	Table 2 5. KAREL Operator Precedence
	Table 2 6. Reserved Word List
	Table 2 7. Predefined Identifier and Value Summary
	Table 2 8. Port and File Predefined Identifier Summary
	Table 2 9. Translator Directives
	Table 2 10. Simple and Structured Data Types
	Table 3 1. Summary of Operation Result Types
	Table 3 2. KAREL Operators
	Table 3 3. Arithmetic Operations Using +, -, and * Operators
	Table 3 4. Arithmetic Operations Examples
	Table 3 5. Arithmetic Operations Using Bitwise Operands
	Table 3 6. KAREL Operator Precedence
	Table 3 7. Relational Operation Examples
	Table 3 8. BOOLEAN Operation Summary
	Table 3 9. BOOLEAN Operations Using AND, OR, and NOT Operators
	Table 3 10. Examples of Vector Operations
	Table 5 1. Stack Usage
	Table 5 2. KAREL Built-In Routine Summary
	Table 6 1. Conditions
	Table 6 2. Actions
	Table 6 3. Condition Handler Operations
	Table 6 4. Interval Between Global Condition Handler Scans
	Table 6 5. Port_Id Conditions
	Table 6 6. Relational Conditions
	Table 6 7. System and Program Event Conditions
	Table 6 8. Error Facility Codes
	Table 6 9. Local Conditions
	Table 6 10. Assignment Actions
	Table 6 11. Motion Related Actions
	Table 6 12. Miscellaneous Actions
	Table 7 1. Predefined File Variables
	Table 7 2. Predefined Attribute Types
	Table 7 3. Attribute Values
	Table 7 4. Usage Specifiers
	Table 7 5. Text (ASCII) Input Format Specifiers
	Table 7 6. Text (ASCII) Output Format Specifiers
	Table 7 7. Examples of INTEGER Input Data Items
	Table 7 8. Examples of INTEGER Output Data Items
	Table 7 9. Examples of REAL Input Data Items
	Table 7 10. Examples of REAL Output Data Items
	Table 7 11. Examples of BOOLEAN Input Data Items
	Table 7 12. Examples of BOOLEAN Output Data Items
	Table 7 13. Examples of STRING Input Data Items
	Table 7 14. Examples of STRING Output Data Items
	Table 7 15. Examples of VECTOR Output Data Items
	Table 7 16. Examples of POSITION Output Data Items (p = POS(2.0,
	Table 7 17. Binary Input/Output Format Specifiers
	Table 7 18. Defined Windows for t_sc
	Table 7 19. Defined Windows for c_sc
	Table 8 1. Turn Number Definitions
	Table 8 2. Motion Time Symbols
	Table 8 3. Correspondence between $GROUP System Variables and Te
	Table 9 1. File Type Descriptions
	Table 9 2. Virtual Devices
	Table 9 3. System Variable Field Descriptions
	Table 9 4. File Listings for the MD Device
	Table 9 5. Testing Restrictions when Using the MD: Device
	Table 10 1. Conversion Characters
	Table 10 2. Reserved Words
	Table 10 3. Conversion Characters
	Table 10 4. Reserved Words
	Table 10 5. Reserved Words for Scrolling Window
	Table 11 1. Size of Edit Windows
	Table 11 2. Alternate Key Sequences for ^Q, ^S, and ^W
	Table 11 3. Editor Function Key Summary
	Table 11 4. Cursor Manipulation
	Table 11 5. Text Scrolling
	Table 11 6. Text Insertion and Editing Modes
	Table 11 7. Text Deletion
	Table 11 8. Text Find and Replace
	Table 11 9. Find/Replace Options
	Table 11 10. Editing Search Strings
	Table 11 11. Text Block Manipulation
	Table 11 12. Window Manipulation
	Table 11 13. KAREL Program Translation
	Table 11 14. Miscellaneous Editor Commands
	Table 11 15. File Save and Exit
	Table 12 1. Access Rights for System Variables
	Table 12 2. System Variables Accessed by Programs
	Table 14 1. Analog Input Module Configuration
	Table 14 2. Analog Output Module Configuration
	Table 14 3. Standard Operator Panel Input Signals
	Table 14 4. Standard Operator Panel Output Signals
	Table 14 5. User Operator Panel Input Signals
	Table 14 6. User Operator Panel Output Signals
	Table 14 7. Teach Pendant Input Signal Assignments
	Table 14 8. Digital Input Modules
	Table 14 9. Digital Output Modules
	Table 14 10. Analog Input Module Configuration
	Table 14 11. Analog Output Module Configuration
	Table 14 12. Process I/O Board Configurations
	Table 14 13. Ports P1, P2, P3, and P4
	Table 14 14. Default Communications Settings for Devices
	Table 15 1. System Function Priority Table
	Table A 1. Syntax Notation
	Table A 2. Actions
	Table A 3. Clauses
	Table A 4. Conditions
	Table A 5. Data Types
	Table A 6. Directives
	Table A 7. BuiltIn Functions and Procedures
	Table A 8. Items
	Table A 9. Statements
	Table A 10. Valid and Invalid BOOLEAN Values
	Table A 11. INTEGER Representation of Current Time
	Table A 12. Conversion Characters
	Table A 13. Conversion Characters
	Table A 14. Valid and Invalid INTEGER Literals
	Table A 15. IO_STATUS Errors
	Table A 16. Group_mask Setting
	Table A 17. Group_mask Setting
	Table A 18. Valid and Invalid REAL operators
	Table A 19. Group_mask setting
	Table A 20. Attribute Values
	Table A 21. 32–Bit INTEGER Format of Time
	Table A 22. Example STRING Literals
	Table A 23. Group_mask Settings
	Table A 24. Valid Data Types
	Table A 25. Valid Data Types
	Table B 1. KAREL Example Programs
	Table D 1. ASCII Character Codes
	Table D 2. Special ASCII Character Codes
	Table D 3. Multinational Character Codes
	Table D 4. Graphics Character Codes
	Table D 5. Teach Pendant Input Codes
	Table D 6. European Character Codes
	Table D 7. Graphics Characters

