
ProgExperteBHR5.2 09.03.00 en

1 of 178

SOFTWARE

KR C2 / KR C3

Expert Programming

KUKA System Software (KSS)

Release 5.2

Issued: 26 Sep 2003 Version: 00

2 of 178

ProgExperteBHR5.2 09.03.00 en

e Copyright KUKA Roboter GmbH
This documentation or excerpts therefrommay not be reproduced or disclosed to third parties without the express permission of the publishers.
Other functions not described in this documentation may be operable in the controller. The user has no claim to these functions, however, in
the case of a replacement or service work.
We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies
cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a
regular basis, however, and necessary corrections will be incorporated in subsequent editions.
Subject to technical alterations without an effect on the function.

PD Interleaf

3 of 178

ProgExperteBHR5.2 09.03.00 en

Contents

1 General information on KRL programs 7. .

1.1 Structure and creation of programs 7. .
1.1.1 Program interface 7. .
1.1.2 File concept 8. .
1.1.3 File structure 8. .

1.2 Creating and editing programs 9. .
1.2.1 Creating a new program 9. .
1.2.2 Editing, compiling and linking a program 10. .

1.3 Altering programs 11. .
1.3.1 Program correction 11. .
1.3.2 Editor 12. .
1.3.2.1 Block functions 12. .
1.3.2.2 Copy (CTRL--C) 12. .
1.3.2.3 Paste (CTRL--V) 12. .
1.3.2.4 Cut (CTRL--X) 13. .
1.3.2.5 Delete 13. .
1.3.2.6 Find 13. .
1.3.2.7 Replace 14. .

1.4 Hiding program sections 15. .
1.4.1 FOLD 15. .
1.4.1.1 Example program 16. .

1.5 Program run mode 17. .
1.5.1 Selecting the program run mode 17. .
1.5.2 Changing program run mode 18. .

1.6 Error treatment 20. .

1.7 Comments 22. .

2 Variables and declarations 23. .

2.1 Variables and names 23. .

2.2 Data objects 24. .
2.2.1 Declaration and initialization of data objects 24. .
2.2.2 Simple data types 25. .
2.2.3 Arrays 27. .
2.2.4 Character strings 29. .
2.2.5 Structures 29. .
2.2.6 Enumeration types 31. .

2.3 Data manipulation 32. .
2.3.1 Operators 32. .
2.3.1.1 Arithmetic operators 32. .
2.3.1.2 Geometric operator 33. .
2.3.1.3 Relational operators 37. .
2.3.1.4 Logic operators 37. .
2.3.1.5 Bit operators 38. .
2.3.1.6 Priority of operators 40. .
2.3.2 Standard functions 40. .

Expert Programming

4 of 178

ProgExperteBHR5.2 09.03.00 en

2.4 System variables and system files 42. .

2.5 Manipulating a string variable 46. .
2.5.1 String variable length in the declaration 46. .
2.5.2 String variable length after initialization 46. .
2.5.3 Deleting the contents of a string variable 47. .
2.5.4 Extending a string variable 47. .
2.5.5 Searching a string variable 48. .
2.5.6 Comparing the contents of string variables 48. .
2.5.7 Copying a string variable 49. .

3 Motion programming 51. .

3.1 Application of the various coordinate systems 51. .

3.2 Point--to--point motions (PTP) 57. .
3.2.1 General (Synchronous PTP) 57. .
3.2.2 Higher motion profile 57. .
3.2.3 Motion commands 58. .
3.2.3.1 Singularities 66. .

3.3 CP motions (CP = Continuous Path) 68. .
3.3.1 Velocity and acceleration 68. .
3.3.2 Orientation control 70. .
3.3.3 Linear motions 75. .
3.3.4 Circular motions 77. .

3.4 Computer advance run 79. .

3.5 Motions with approximate positioning 81. .
3.5.1 PTP--PTP approximate positioning 82. .
3.5.2 LIN--LIN approximate positioning 84. .
3.5.3 CIRC--CIRC and CIRC--LIN approximate positioning 86. .
3.5.4 PTP--CP approximate positioning 88. .
3.5.5 Tool change during approximate positioning 91. .

3.6 Teaching points 92. .

4 Program execution control 93. .

4.1 Program branches 93. .
4.1.1 Jump instruction 93. .
4.1.2 Conditional branch 93. .
4.1.3 Switch 94. .

4.2 Loops 95. .
4.2.1 Counting loop 95. .
4.2.2 Rejecting loop 96. .
4.2.3 Non--rejecting loop 97. .
4.2.4 Endless loop 98. .
4.2.5 Premature termination of loop execution 98. .

4.3 Wait instructions 99. .
4.3.1 Waiting for an event 99. .
4.3.2 Wait times 101. .

4.4 Stopping the program 102. .

4.5 Confirming messages 102. .

5 Input/output instructions 103. .

5.1 General 103. .

5 of 178

ProgExperteBHR5.2 09.03.00 en

5.2 Binary inputs/outputs 103. .

5.3 Digital inputs/outputs 105. .
5.3.1 Signal declaration 105. .
5.3.2 Reading signal numbers 106. .
5.3.3 Setting outputs at the end point 108. .

5.4 Pulse outputs 110. .

5.5 Analog inputs/outputs 112. .
5.5.1 Analog outputs 112. .
5.5.2 Analog inputs 114. .

5.6 Predefined digital inputs 117. .

6 Subprograms and functions 119. .

6.1 Declaration 119. .

6.2 Subprogram and function call and parameter transfer 121. .

7 Interrupt handling 125. .

7.1 Declaration 125. .

7.2 Activating interrupts 127. .

7.3 Stopping active motions 131. .

7.4 Canceling interrupt routines 131. .

7.5 Use of cyclical flags 133. .

8 Trigger -- path--related switching actions 135. .

8.1 Switching action at the start or end point of the path 135. .

8.2 Switching action at any point on the path 138. .

9 Data lists 143. .

9.1 Local data lists 143. .

9.2 Global data lists 144. .

10 External editor 147. .

10.1 Starting the external editor 148. .

10.2 Operator control 150. .

10.3 “File” menu 152. .
10.3.1 Open 152. .
10.3.2 Save 152. .
10.3.3 Print 152. .
10.3.4 Close file 153. .
10.3.5 Exit 153. .

10.4 “Edit” menu 154. .
10.4.1 Cut (“CTRL”--“X”) 154. .
10.4.2 Copy (“CTRL”--“C”) 154. .
10.4.3 Paste as ... 154. .
10.4.4 Delete 154. .
10.4.5 Select all (“CTRL”--“A”) 154. .

Expert Programming

6 of 178

ProgExperteBHR5.2 09.03.00 en

10.5 “Util” menu 155. .
10.5.1 Mirror 155. .
10.5.2 Manual entry 156. .
10.5.3 Block change 160. .
10.5.4 Clean file list 160. .
10.5.5 TCP and Frame adjust 161. .

10.6 “HotEdit” menu 162. .
10.6.1 Base, TCP and World 162. .
10.6.2 TTS (correction coordinate system) 164. .
10.6.2.1 Position TTS 165. .
10.6.3 Limits 167. .
10.6.3.1 Limits -- Base/World 167. .
10.6.3.2 Limits -- TTS 168. .

10.7 “ExtExtras” menu 168. .
10.7.1 File -- Mirror 168. .
10.7.2 File -- Manual entry 170. .
10.7.2.1 Use existing reference file 171. .
10.7.2.2 Create new reference file 173. .
10.7.3 Setting the software limit switches 174. .

10.8 “Options” menu 175. .
10.8.1 Output setting 175. .

10.9 “Help” menu 177. .
10.9.1 Version 177. .
10.9.2 Stay on top 177. .

1 General information on KRL programs

7 of 178

ProgExperteBHR5.2 09.03.00 en

1 General information on KRL programs

1.1 Structure and creation of programs

1.1.1 Program interface

Switching to the expert level causes the user interface to change as illustrated below:

Whereas all the system files are invisible to the user, they can be seen and also edited by
the expert in the program window. Not only the file names and comments are displayed at
expert level but also the file extensions, attributes and sizes.

As standard, the following programs and files can be found in various KRC directories after
installation.

The following file can be found in the directory “KRC:\R1\”:

CELL.SRC Program for controlling robots via a central PLC. Here, an
application program is selected by means of a program number

The following files can be found in the directory “KRC\R1\MADA\”:

File Meaning

$MASCHINE.DAT System data list with system variables for adapting the controller
and the robot

$ROBCOR.DAT System data list with data for the dynamic model of the robot

KSD... Machine--specific servo files

MACHINE.UPG System file for future upgrades

ROBCOR.UPG System file for future upgrades

Expert Programming

8 of 178

ProgExperteBHR5.2 09.03.00 en

The following files can be found in the directory “KRC:\R1\SYSTEM\”:

File Meaning

$CONFIG.DAT System data list with general configuration data

BAS.SRC Basic package for motion control

IR_STOPM.SRC Program for fault service functions in response to malfunctions

SPS.SUB Submit file for parallel monitoring

The following file can be found in the directory “KRC:\R1\TP\”:

File Meaning

P00.DAT
P00.SRC

Program package for coupling with a PLC

Programs and files for optional technology packages are generally stored in the directory
“TP”.

1.1.2 File concept

A KRL program can be made up of SRC and DAT files.

The “SRC” file contains the actual program code. There are two variants: DEF andDEFFCT
(with return value). The “DAT” file, on theother hand, contains the specific programdata. This
division is based on the KRL file concept: apart from the processing sequence, the program
contains various actions which the industrial robot is to perform. These canbe specialmotion
sequences, the opening or closing of a gripper, or complex sequences, such as the control
of a welding gun taking the related constraints into consideration.

For thepurposeof testing programs, it is helpful and/or necessary to be able to execute tasks
of this nature individually. The KRL file concept is ideally suited to the special requirements
of robot programming.

1.1.3 File structure

A file is the unit that is created by the programmer and thus corresponds to a file on the hard
disk or in the memory (RAM). Any program in KRL may consist of one or more files. Simple
programs contain exactly one file. More complex tasks can be solved better using a program
that consists of several files.

Detailed information on subprograms and functions can be found in the chapter
[Subprograms and functions].

The inner structure of a KRL file comprises the declaration section, the instruction (or
statement) section and up to 255 local subprograms and functions.

The object name without an extension is also the name of the file and is therefore prefixed
by “DEF”. The name may consist of up to 24 characters and must not be a keyword (see
chapter [Variables and declarations]). Every file begins with the declaration “DEF” and
ends with “END”.

DEF NAME(X1:IN)
Declarations
Statements
END

DEF

1 General information on KRL programs (continued)

9 of 178

ProgExperteBHR5.2 09.03.00 en

Declarations are already evaluated before program execution, i.e. during compilation. No
instructions may therefore be located in the declaration section. The first instruction is the
beginning of the instruction section.

Unlike declarations, instructions are of a dynamic nature. They are executed when the
program is processed.

A robot program can consist of just a single program file or a program file with related data
list. The data list and file are identified as belonging together by their common name. The
names differ in their extension only, e.g.:

File: PROG1.SRC
Data list: PROG1.DAT

Only value assignments with “=” are allowed in data lists. If the data list and the file
have the same name, variables declared in the data list can be used in the same way as
variables declared in the .SRC file.

Detailed information can be found in the chapter [Data lists].

1.2 Creating and editing programs

1.2.1 Creating a new program

As a robot program can also be
written without a data list, the file
and data list are not both auto-
matically created at the same
time at expert level. To create a
new program, press the softkey
“New”. The window illustrated
here is opened:

New

You are prompted to select a template. Do this using the arrow keys and
confirm it by pressing the softkey “OK” or the Enter key.

The available templates cannot be freely created in all directories.

Further information about templates can be found in the Operating Handbook, in the
documentation Operator Control, chapter [Navigator], section [Appendix].

The individual templates:
Module:
An SRC file and a DAT file are created containing a skeleton program.
Expert:
An SRC file and a DAT file are created containing merely the header DEF� and END.
Cell:
Here, only an SRC file containing a skeleton program is created. This program is used for
controlling the robot via a central PLC.
Function:
Here, a function (SRC file) is created containing the header DEF� and END.
Submit:
A SUB file with a skeleton program is created. The Submit file contains instructions and can
be used, for example, for cyclical monitoring (grippers, etc.). The Submit file works in parallel
with the robot and is processed by the controller interpreter.

Declarations

Statement

Data list

OK

Expert Programming

10 of 178

ProgExperteBHR5.2 09.03.00 en

Expert Submit:
As with the Submit template, a SUB file is created, this time containing merely the header
DEF� and END.

The header DEF� and END and the skeleton programs of the individual templates are
located, for the template Cell, for example, in “C:\KRC\ROBOTER\TEMPLATE\CellVor-
gabe.src”.

Once you have selected the corresponding template, you are prompted to enter a name for
the file to be created.

File name
(max. 24 characters)

File extension
(SRC, DAT or SUB)

Comment

Only the file name is of vital importance and may be up to 24 characters long. The file
extension is added automatically. If you wish to add a comment, move the cursor to the
corresponding box using the right arrow key and enter the desired text.

Press the softkey “OK” or the Enter key to acknowledge these entries.

The data list is mandatory if you also want to insert menu--driven commands in your SRC
file.

1.2.2 Editing, compiling and linking a program

After youhave createda file or data list bymeans of “New”, you canedit themusing theeditor.
The softkey “Open” is used for this purpose. On closing the editor, the complete program
code is compiled, i.e. the textual KRL code is translated into a machine language that can
be understood by the controller.

In order to retain the clarity of the program, branches, for example, must be indented at
several levels. In the editor, this can be done using the space--bar.

In this process, the compiler checks that the code is syntactically and semantically correct.
If errors are detected, a corresponding message is generated and an error file created with
the file extension “.ERR”.

Only programs that contain no errors can be selected and executed.

Further information on handling editing errors can be found in the section [Error
treatment].

On loading a program via the softkey “Select”, all the files and data lists required are linked
to create a program. During linking, it is checked whether all the modules are present,
compiled and free from errors. When transferring parameters, the linkage editor also checks
the type compatibility of the transfer parameters. If errors occur during linking, an error file
with the extension “.ERR” is created, as in compilation.

The following is an example of a simple program for defining axis velocities and accelera-
tions:

OK

Compiler

Linkage editor

1 General information on KRL programs (continued)

11 of 178

ProgExperteBHR5.2 09.03.00 en

DEF PROG1()

;--- Declaration section ---
INT J

;--- Instruction section ---
$VEL_AXIS[X]=100 ;Definition of the axis velocities
$VEL_AXIS[2]=100
$VEL_AXIS[3]=100
$VEL_AXIS[4]=100
$VEL_AXIS[5]=100
$VEL_AXIS[6]=100

$ACC_AXIS[1]=100 ;Definition of the axis accelerations
$ACC_AXIS[2]=100
$ACC_AXIS[3]=100
$ACC_AXIS[4]=100
$ACC_AXIS[5]=100
$ACC_AXIS[6]=100

PTP {A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

FOR J=1 TO 5
PTP {A1 4}
PTP {A2 -7,A3 5}
PTP {A1 0,A2 -9,A3 9}

ENDFOR

PTP {A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}
END

1.3 Altering programs

There are basically two methods of altering a program at the Expert level of the graphical
user interface.

G Program correction (PROCOR)

G Editor

1.3.1 Program correction

Program correction is the standard method. The PROCOR mode is automatically active
when a program is selected or a running program is stopped.

Here, you can enter or edit commands that affect just one program line – i.e. no check
structures (loops etc.) or variable declarations – using an inline form or as an ASCII text (at
Expert level).

If highlighted, incorrect entries are immediately deleted when the program line is left and
an error message appears in the message window.

Expert Programming

12 of 178

ProgExperteBHR5.2 09.03.00 en

1.3.2 Editor

Youmust open the program, whose contents you wish to change with the help of the block
functions, using the softkey “Open”.

If youwant to edit or insert certainKRLcommands or program structures, the editor therefore
has to be used. Since the complete code is compiled when the editor is closed, errors can
also be detected which only occur in the interaction of several lines (e.g. incorrectly declared
variables).

Programs which contain motion commands (e.g. PTP, LIN, CIRC) and are loaded into the
editor for editing must be located in the directory “KRC:\...”. Otherwise an error message
will be generated (when copying blocks, for example).

1.3.2.1 Block functions

These functions are only available in the editor at the “Expert” user level. You must open
a program, whose contents you wish to change with the help of the block functions, using
the softkey “Edit”. How you first switch to the “Expert” user level is described in the
documentation [Configuring the System], in the section [User levels].

First position the blinking edit cursor at the start or end of the program section that is to be
moved. Then hold down the “Shift” key on the keyboard while you move the cursor up or
down. In this way you select a program section that can then be edited using the block
functions in the next procedure. The selected section can be recognized by the color
highlight.

Press the menu key “Program” and select the desired function from the menu
that is opened.

If the keyboard and numeric keypad are used for the block functions, the NUM function
must be deactivated. This is done by pressing the “NUM” key on the keypad. The corre-
sponding display in the status line is then switched off.

1.3.2.2 Copy (CTRL--C)

The selected program section is copied to the clipboard for
further editing. It can subsequently be inserted elsewhere.

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Close

Program

Alternatively, you can hold down the CTRL key in the numeric keypad and press the C key
on the keyboard. Then release both keys.

1.3.2.3 Paste (CTRL--V)

Move the edit cursor to the position where the program
section previously “cut” or “copied” is to be reinserted.

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Close

Program

Program

1 General information on KRL programs (continued)

13 of 178

ProgExperteBHR5.2 09.03.00 en

Now select the option “Paste block”. The previously selected program section is inserted
below the edit cursor.

Alternatively, you can hold down the CTRL key in the numeric keypad and press the V key
on the keyboard. Then release both keys.

1.3.2.4 Cut (CTRL--X)

If you select the “Cut block” option from the menu, the
selected program section is copied to the clipboard and
deleted from the program listing.

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Close

Program

Alternatively, you can hold down the CTRL key in the numeric keypad and press the X key
on the keyboard. Then release both keys.

1.3.2.5 Delete

The selected area can be removed from the program. It is
not copied to the clipboard in this case. The deleted
program section is thus lost irretrievably.

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Close

Program

For this reason, a request for confirmation, which must be answered via the softkey bar, is
generated in the message window.

Date: Wednesday, July 30, 2003 17:04:46
Source FILEHANDLER No: 32

Do you really want to delete the selected file(s)?

Cancel The “Delete” function is canceled.

Yes The selected area is irrevocably deleted.

No The “Delete” function is canceled.

If you select the “Delete” option from the menu, the selected program section is deleted
from the program listing without being copied to the clipboard.

1.3.2.6 Find

Further information can be found in theOperating Handbook, in the documentationUser
Programming, chapter [Programediting], section [Workingwith the programeditor].

Expert Programming

14 of 178

ProgExperteBHR5.2 09.03.00 en

1.3.2.7 Replace

The “Find and replace” function is only available at the expert level, and there only in the
editor. This function searches the visible sections of the program (not Fold lines or opened
Folds) for one specified character string and enables it to be substituted by another defined
character string.

This is doneby selecting the option “Replace” from the
“Program” menu.

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Close

Program

The following window is opened:

Enter a character string in the Search line andmove down to theReplace line using thearrow
key. Enter here the term that is to replace the search string.

If the term being searched for occursmore than once in thedocument and you
wish to replace it in just one particular place, keep pressing the softkey “Find”
until you have found the place in question.

Then press “Replace”. The search string is then replaced by the term
specified.

If you wish to replace all occurrences of the search string in the program, or
in a highlighted section thereof, enter the replacement term in the Search/Re-
place box as described above and press the softkey “Replace all”.

Find

Replace

Repl. All

1 General information on KRL programs (continued)

15 of 178

ProgExperteBHR5.2 09.03.00 en

The following message appears in the message window “The specified or
marked region has been searched.” (confirmation that the entire program or
the marked section has been searched).

When the softkey “Cancel” is pressed, theReplace function is terminated and
thenumber of replacementsmadesince activation of this function is displayed
in the message window.

1.4 Hiding program sections

Unlike normal editors, the KCP Editor allows a requirement--specific display of the program
contents. The user, for example, only sees the important contents of a program, while at
expert level the whole program is visible.

1.4.1 FOLD

The KUKA user interface uses a special technique to display a program clearly Instructions
marked as KRL comments make it possible to suppress the display of subsequent parts of
the program. In this way the program is subdivided intomeaningful sections, called “FOLDS”
due to their folder--like nature.

“FOLDS” are “closed” by default and can only be “opened” at expert level. You then obtain
information which is invisible to the user on the KUKA graphical user interface (KUKAGUI).
At expert level you have the possibility of making a KRL block invisible at user level. This is
done by enclosing the relevant declarations or instructions within the designations “;FOLD“
and “;ENDFOLD“.

Folds in a program can be displayed or hidden by pressing the menu key
“Program” and then selecting “FOLD” and the desired command.

Program selected

Program in the editor

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Close

Program Current FOLD open/close
All FOLDs open
All FOLDs close

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Cancel program
Reset program
Modify

Program Current FOLD open/close
All FOLDs open
All FOLDs close

The following options are available:

G Current FOLD open/close opens or closes the FOLD of the line in which
the edit cursor is positioned.

Cancel

Program

Expert Programming

16 of 178

ProgExperteBHR5.2 09.03.00 en

G All FOLDs open opens all FOLDs of the program.

G All FOLDs close closes all FOLDs of the program.

If a selected program with open Folds is reset, these Folds are automatically closed.

Of the sequence...

;FOLD RESET OUT

FOR I=1 TO 16
$OUT[I]=FALSE

ENDFOR

;ENDFOLD

...only the words “RESET OUT” can be seen on the user interface with the Folds closed.
With this command, for example, you can make the declaration and initialization sections
invisible to the user.

1.4.1.1 Example program

DEF FOLDS()

;FOLD DECLARE
;------ Declaration section ------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
INT I
;ENDFOLD

;FOLD INITIAL
;---------- Initialization ---------
INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ()
INTERRUPT ON 3
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
FOR I=1 TO 16
$OUT[I]=FALSE

ENDFOR
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 30,A6 0}
;ENDFOLD

;----------- Main section ----------
PTP HOME ;BCO run
LIN {X 540,Y 630,Z 1500,A 0,B 90,C 0}
PTP HOME

END

The example program has the following appearance on the screen:

1 General information on KRL programs (continued)

17 of 178

ProgExperteBHR5.2 09.03.00 en

The same program with the Folds open:

In the closed FOLD, only the expression after the keyword “FOLD” is visible. In the opened
FOLD, on the other hand, all instructions and declarations can be seen.

“FOLD” is merely an instruction for the editor. The compiler interprets the FOLD
statements as normal comments because of the preceding semicolon.

1.5 Program run mode

1.5.1 Selecting the program run mode

The program run mode defines whether program execution is to take place

G without a program stop,

G motion instruction by motion instruction, or

G step by step.

All the program run modes are described in the following table.

Mode Description

#GO
All instructions in the program are executed up to the end of the
program without a stop.

#MSTEP Motion Step (motion block)
The program is executed one motion instruction at a time, i.e. with
a stop after each motion instruction.
The program is executed without advance processing.

#ISTEP Incremental Step (single block)
The program is executed step by step, i.e. with a stop after each
instruction (including blank lines).
The program is executed without advance processing.

Expert Programming

18 of 178

ProgExperteBHR5.2 09.03.00 en

#PSTEP Program Step
Subprograms are executed completely.
The program is executed without advance processing.

#CSTEP Continuous Step (motion instruction)
The program is executed one motion instruction at a time, i.e. with
a stop after each motion instruction with exact positioning.
The program is executed with advance processing, i.e. the points
are approximated.

The program run modes #GO, #MSTEP and #ISTEP can be selected on the KCP using a
status key or via the variable “$PRO_MODE”. #PSTEP and #CSTEP, on the other hand, can
only be set via the variable “$PRO_MODE”.

Inputs/Outputs
Rob. Position
Variable
Diagnosis
Windows
Hardware Info

Monitor Single
Overview
Cyclic Flags
Flags
Counter
Timer

More detailed information can be found in the chapter [Variables and declarations],
section [Data objects] under [Enumeration types].

1.5.2 Changing program run mode

A BCO run is not generally required after changing the program run mode. If the program
run mode is changed during a motion instruction with advance processing, at least the
current motion instruction will still be executed. In the case of a motion instruction with
approximate positioning, at least the current motion instruction and the and the next one will
still be executed.

Switching from ...STEP to GO

If the program run mode is switched from “#...STEP” to “#GO”, no block selection is carried
out so no BCO run is required. Themode is switched to “#GO” at the start of the next motion
instruction. There is no need to press the Start key again in this case.

The interpreter is not reset as this has only reached the followingmotion instruction. There
is no need to delete the main run as the buffer only contains the current motion instruction
in “#...STEP” mode.

Switching from GO to ...STEP

If the program run mode is switched from “#GO” to “#...STEP”, the robot continues to move
until the next exact positioning point or until the advance run has been processed completely.
In the case of a motion instruction with approximate positioning, at least the followingmotion
instruction will be executed. No further approximate positioning ranges will be processed
unless the end point is a point that cannot be reached by means of block selection.

Pressing the Start key carries out block selection to themotion instruction following themain
run block. The program run mode is now switched to “#...STEP”. If block selection is not
possible at this point, a corresponding status message will be displayed. In this case, the
main run including approximate positioning will be continued until block selection is possible.

1 General information on KRL programs (continued)

19 of 178

ProgExperteBHR5.2 09.03.00 en

The interpreter is reset at the end of themotion instruction. Themotion instructions already
planned in the advance run are deleted from the buffer.

1 DEF Sub1() 1 DEF TEST()
2 PTP P2 2 PTP HOME

=> 3 PTP P3 Main run 3 PTP P1
4 PTP P4 4 SUB1()
5 PTP P5 5 PTP P6
6 END => 6 PTP P7 Advance run

7 END

The main run pointer is located in the subprogram “SUB1()”, while the advance run pointer
is located in the main program on “TEST()”. If the program run mode is now switched to
“#...STEP”, a statusmessage is generated. Only when the main run pointer has reached the
point “P6” in the main program is a block selection made to the following motion instruction.
The status message is deleted and the program run mode is switched to “#...STEP”.

Special case, interrupt:
1 DEF Interrupt()
2 INT I
3 INTERRUPT DECLARE 5 WHEN $IN[10]==TRUE DO POSITION()
4 PTP HOME
5 PTP P1

=> 6 LIN P2 Main run
7 INTERRUPT ON
8 LIN P3
9 INTERRUPT OFF
10 PTP P4
11 END
12
13 DEF POSITION()
14 $OUT[12]=TRUE

=> 15 BRAKE Advance run
16 $OUT[52]=FALSE
16 END

When the program runmode is switched, the advance run pointer is situated inside an inter-
rupt subprogram. In this case, the advance run processes the interrupt subprogram step--
by--step in program run mode “#...STEP” before the main run is resumed.

Special case, CIRC instruction:

The current CIRC motion instruction is completed before the program runmode is switched
to “#...STEP”.

Expert Programming

20 of 178

ProgExperteBHR5.2 09.03.00 en

1.6 Error treatment

If an error occurs during compilation or linking, an error message is displayed and the file
containing errors is indicated in the Navigator.

The file “ERROR.SRC”, which was
(incorrectly) created, serves as an
example:

When the editor is closed, a notification message with the number of errors appears in the
message window.

At the same time, the affected files are
marked with a red cross.

The following softkey bar is available:

DeleteEdit DATOpenView ERRNew

The softkey “Open” loads the file into the editor, while the softkey “Edit DAT” opens the Dat
file in the editor. If you wish to delete the files containing errors, press “Delete”; you can then
create a new file by pressing “New”.

Name of the file

Short description

Error number

Line and column numbers of
the lines with errors

Source text line containing
errors
Description of error

*1

View ERR

The softkey bar changes:

1 General information on KRL programs (continued)

21 of 178

ProgExperteBHR5.2 09.03.00 en

RefreshMonitor Close

NOTE *1
The line numbers displayed correspond to the absolute line numbers in the pro-
gram as a normal ASCII editor would display them. In order for the line numbers
in the error display to agree with those in the KCP, all Folds must be open and
Detail view and the DEF lines must be active. This display, however, is somew-
hat lacking in clarity, as all information is available even though it is not required.
Further information on ASCII Mode (detail view) and DEF lines can be found in
the section [Hiding program sections].

It is evident from the error display that the following errors have occurred:

G 3 lines in the SRC file contain errors;

G the line numbers of the lines with errors are 24, 25 and 28;

G in line 24 the error numbers

-- 2263: type of loop variable not equal to INT;

G in line 25 the error number

-- 2249: expression not equal to INT;

G in line 28 the error message

-- 2309: “(“ character expected.

From error message “2263” it is readily evident that variable I has not been declared as an
integer. Error message “2249” is also a result of the missing declaration, as the counter for
a counting loopmust always be of type INT. Message “2309” means: The compiler interprets
the line as a subprogram call, in which the brackets are missing, however.

You can also display the meaning of the error
numbers online using themenu function “Variable”
--> “Single”. To do this, enter the character “&”
followed by the error number in the input box
“Name” in the status window. In this case, for
example, enter “&2263” and press the Enter key.

Inputs/Outputs
Rob. Position
Variable
Diagnosis
Windows
Hardware Info

Monitor Single
Overview
Cyclic Flags
Flags
Counter
Timer

If you now load the SRC file (in this case “ERROR.SRC”) into the editor, you
can make the appropriate corrections. This is made easier by the blinking
cursor which positions itself in the first line containing errors. Make sure that
limited visibility is deactivated and that the DEF line is visible. Details can be
found in the section [Hiding program sections].

In the present example, the Folds do not have to be open. If you wish to open them, use the
menu command “Program” --> “FOLD” --> “All FOLDs open”.

The line “INT I”, missing in the program initially created, must be inserted before the line
“INI”. This is only possible if the line “DEF ERROR ()” is visible.

Correct the errors in the example on page 20 by inserting the line

INT I

before the INI line and deleting one of the duplicated equals signs.

I = I + 1

Monitor

Expert Programming

22 of 178

ProgExperteBHR5.2 09.03.00 en

Insert this line here

Delete an equals sign

After closing the editor and saving the corrected file, you canpress the softkey
“Refresh” in the error list; if all errors have been eliminated, the error list disap-
pears.

1.7 Comments

Comments are an important part of any computer program. This enables you to make your
program transparent and also understandable for others. The execution speed of the pro-
gram is not affected by comments.

Comments canbe insertedat any point in a program. They are always precededby asemico-
lon “;”, e.g.:

�
PTP P1 ;Motion to start point
�
;---------- Reset outputs ----------
FOR I = 1 TO 16

$OUT[I] = FALSE
ENDFOR
�

Refresh

2 Variables and declarations

23 of 178

ProgExperteBHR5.2 09.03.00 en

2 Variables and declarations

2.1 Variables and names

Besides the use of constants, in other words the direct specification of values in the form of
numbers, symbols, etc., it is also possible to use variables and other forms of data in a KRL
program.

In the programming of industrial robots, variables are required for the purpose of sensor
processing, for example. They enable the value supplied by the sensor to be saved and
evaluated at various points in the program. Arithmetic operations can also be performed in
order to calculate a new position.

A variable is represented by a name in the program, this designation being freely selectable
subject to certain restrictions.

Names in KRL

S can have a maximum length of 24 characters,

S can consist of letters (A--Z), numbers (0--9) and the signs ’_’ and ’$’,

S must not begin with a number,

S must not be a keyword.

As all systemvariables (seeSection 2.4) beginwith the ’$’ sign, this sign should not beused
as the first character in self--defined names.

Examples of valid KRL names are

SENSOR_1

NOZZLE13

P1_TO_P12

A variable is to be regarded as a fixed memory area, whose contents can be addressed via
the variable name. When the program is executed, the variable is therefore represented by
a memory location (place) and a memory content (value).

Values are then assigned to the variables using the equals sign (=). The instruction

QUANTITY = 5

thus means that the value 5 is entered in the memory area with the address of QUANTITY.
The exact address is of no interest to the programmer and is therefore assigned automati-
cally by the compiler. It is only important that the memory content can be addressed in the
program at all times with the aid of its name.

As different data objects (seeSection 2.2) also havedifferentmemory requirements, thedata
type of a variable must be declared (see Section 2.2.1) before it is used.

The lifetime of a variable is the time during which the variable is allocated memory. This
depends on whether the variable is declared in an SRC file or a data list:

G Variable declared in an SRC file

The lifetime is limited to the run time of the program. The memory area is deallocated
again on completion of execution. The value of the variable is thus lost.

G Variable declared in a data list (see chapter Data lists)

The lifetime is independent of the run time of the program. The variable exists as long as
the data list exists. Such variables are therefore permanent (until the system is next
switched off).

Names

Value assign-
ment

Lifetime

Expert Programming

24 of 178

ProgExperteBHR5.2 09.03.00 en

2.2 Data objects

Data objects are namable memory units of a particular data type. The memory units may
consist of a different number of memory units (bytes, words, etc.). If such a data object is
declared under a name by the programmer, a variable is created. The variable now occupies
one or more memory locations, in which data can be written and read by the program. The
symbolic naming of the memory locations with a freely selectable designation makes
programming easier and more transparent and enhances the readability of the program.

The following example is intended to illustrate the term ”data type”: A memory location with
8 bits contains the bit combination

00110101

How is this bit combination to be interpreted? Is it the binary notation of the number 53 or
the ASCII character “5”, which is represented by the same bit pattern?

An important item of information is required in order to answer this question unambiguously,
namely the specification of the data type of a data object. In the above case, this could be
the type “INTEGER” or “CHARACTER”, for example.

Besides this computer--related reason for introducing data types, the programmer also
benefits from the use of data types since it is possible to work with exactly the types that are
particularly well suited to the specific application.

2.2.1 Declaration and initialization of data objects

Assignment of a variable name to a data type and reservation of the memory space are
accomplished in KRL with the aid of the DECL declaration. Using

DECL INT QUANTITY,NUMBER

you can declare, for example, two variables QUANTITY and NUMBER of the data type
“INTEGER”.

The compiler thus knows these two variables and the associated data type and, when the
variables are used, can check whether this data type permits the intended operation.

The declaration begins, as shown in the example, with the keyword DECL, followed by the
data type and the list of variables that are to be assigned this data type.

When declaring variables and arrays of a predefined data type, the keyword DECL can be
omitted. Besides the simple data types INT, REAL, CHAR and BOOL (see Section 2.2.2),
the structure data types POS, E6POS, FRAME, AXIS and E6AXIS (see Section 2.2.5) are
predefined, among others.
The declaration can be entirely omitted for variables (not arrays!) of the data type POS. The
data type POS is the standard data type for variables.
The keyword DECL is indispensable in the declaration of freely definable structure or
enumeration types (see Section 2.2.5 and 2.2.6).

After a variable has been declared, its value is first set to invalid since it would otherwise
depend on the random memory allocation. To make it possible to work with the variable, it
must therefore be preallocated a specific value. This first value assignment to a variable is
called initialization.

When creating new files by means of the softkey “New” on the KUKA user interface, an
INI sequence is also automatically generated. The declaration of variables must always
take place before this sequence.

A value assignment to a variable is an instruction andmust therefore never be located in the
declaration section. Initialization, however, can take place in the instruction section at any
time. All declared variables should nevertheless ideally be initialized in an initialization
section directly after the declaration section (see Fig. 1).

Data type

DECL

Initialization

2 Variables and declarations (continued)

25 of 178

ProgExperteBHR5.2 09.03.00 en

Only in data lists is it permissible to initialize variables directly in the declaration line.

DEF NAME()

;--- Declaration section ---
�

;-- Initialization section --
�

;--- Instruction section ---
�

END

Fig. 1 Basic structure of a robot program

Further information can be found in the chapter [Data lists].

2.2.2 Simple data types

By simple data types, we mean a number of basic data types that are available in most
programming languages. In contrast to the structured data types (see Sections 2.2.3--2.2.6),
simple data types contain just one single value. The data types known in KRL are listed in
Table 1 together with their respective ranges of values.

Data type Integer Real Boolean Character

Keyword INT REAL BOOL CHAR

Meaning Integer Floating--point
number

Logic state 1 character

Range of values -231�231-1 �1.1E-38�
�3.4E+38

TRUE, FALSE ASCII character

Table 1 Simple data type

The data type Integer is a subset of the set of integers. It can only be a subset because no
computer can render the theoretically infinite set of integers. The 32 bits provided in the
KR C... for integer types therefore result in 231 integers plus signs. The number 0 counts as
a positive number.
Using

NUMBER = -23456

the variable NUMBER is assigned the value -23456.

If you assign an INTEGER variable a REAL value, the value will be rounded according to
general rules (x.0 to x.49 rounded down, x.5 to x.99 rounded up). By means of the statement

NUMBER = 45.78

the INTEGER variable NUMBER is assigned the value 46.

INT

Expert Programming

26 of 178

ProgExperteBHR5.2 09.03.00 en

Exception: The result of integer division is cut off at the decimal point, e.g.: 7/4 = 1.

Whereas people calculate and think in the decimal system, a computer only knows zeros and
ones, which are represented by the two states off and on. A state (off or on) is thus
represented by a bit. For reasons of speed, the computer generally accesses awhole bundle
of such zeros and ones. Typical bundle sizes are 8 bits (= 1 byte), 16 bits or 32 bits. For
computer--oriented operations, representation in the binary system (number system to the
base two using the digits 0 and 1) or in the hexadecimal system (number system to the base
16 using the characters 0--9 and A--F) is useful. Binary or hexadecimal integers can be
specified in KRL with the aid of inverted commas (’) and the prefix B for binary notation or
H for hexadecimal notation.

D 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

H 0 1 2 3 4 5 6 7 8 9 A B C D E F 10

Table 2 The first 17 numbers in the decimal and hexadecimal systems

In KRL, you can therefore assign the number 90 to an integer variable in three different ways:

INTEG = 90 ;Decimal system

INTEG = ’B1011010’ ;Binary system

INTEG = ’H5A’ ;Hexadecimal system

Binary numbers are converted to the decimal system as follows:

1 0 1 1 0 1 0
= 1S26+0S25+1S24+1S23+0S22+1S21+0S20= 90

26 25 24 23 22 21 20
= 1S26+0S25+1S24+1S23+0S22+1S21+0S20= 90

To transfer numbers from the hexadecimal system to the decimal system, proceed as
follows:

5 A
=5S161+10S160=90

161 160
=5S161+10S160=90

In floating--point representation, a number is divided into a fixed--point part and an exponent
and represented in standardized form. This results in the following representations, for
example:

5.3 as 0.53000000 E+01
-100 as -0.10000000 E+03

0.0513 as 0.51300000 E-01

When calculating with real values, it must be borne in mind that because of the limited
number of places after the floating point and the inherent inaccuracy, theusual algebraic laws
are no longer applicable in all cases. By the laws of algebra, for example:
1
3
× 3= 1

If a computer performs this calculation, it could produce a result of just 0.99999999 E+00.
A logic comparison of this number with the number 1 would result in the value FALSE. For
practical applications in the field of robot control, however, this accuracy is generally
adequate, considering that the logic test for the equality of real numbers can sensibly be
carried out only within a small tolerance range.

Examples of permissible assignments to real variables:

REALNO1 = -13.653

REALNO2 = 10

REALNO3 = 34.56 E-12

Binary system
Hexadecimal
system

Bin � Dec

Hex � Dec

REAL

2 Variables and declarations (continued)

27 of 178

ProgExperteBHR5.2 09.03.00 en

If a REAL variable is assigned an INTEGER value, automatic type conversion to REAL is
carried out. According to the above assignment, the variable REALNO2 therefore has the
value 10.0!

The Boolean variables are used to describe logic states (e.g. input/output states). They can
only have the value TRUE or FALSE:

STATE1 = TRUE

STATE2 = FALSE

Character variables can represent exactly 1 character from the ASCII set of characters. In
the assignment of an ASCII character to a CHAR variable, the assigned character must be
placed between quotation marks (”).

CHAR1 = “G”

CHAR2 = “?”

For information on storing entire character strings, see Section 2.2.4.

2.2.3 Arrays

The term “arrays” refers to the combination of objects of the same data type to form a data
object; the individual components of an array can be addressed via indices. Bymeans of the
declaration

DECL INT OTTO[7]

you can store, for example, 7 different integers in the array OTTO[]. You can access each
individual component of the array by specifying theassociated index (the first index is always
the number 1).

OTTO[1] = 5 ; The first element is assigned the number 5
OTTO[2] = 10 ; The second element is assigned the number 10
OTTO[3] = 15 ; The third element is assigned the number 15
OTTO[4] = 20 ; The fourth element is assigned the number 20
OTTO[5] = 25 ; The fifth element is assigned the number 25
OTTO[6] = 30 ; The sixth element is assigned the number 30
OTTO[7] = 35 ; The seventh element is assigned the number 35

It is helpful to imagine the array with the name OTTO[] as a rack with 7 compartments. In
accordance with the above assignments, the compartments would then be filled as follows:

5 10 15 20 25 30 35

[1] [2] [3] [4] [5] [6] [7]OTTO

Fig. 2 Representation of a one--dimensional array

If all the elements of an array are now to be initialized with the same number, e.g. 0, you do
not have to program each assignment explicitly but can “automate” the preassignment with
the aid of a loop and a counting variable.

FOR I = 1 TO 7
OTTO[I] = 0

ENDFOR

Further information can be found in the chapter [Program execution control], section
[Loops].

In this case the counting variable is the integer variable I. It must be declared before being
used as an integer.

BOOL

CHAR

Array index

Expert Programming

28 of 178

ProgExperteBHR5.2 09.03.00 en

S An array may be of any data type. The individual elements can thus in turn consist of
composite data types (e.g. an array made up of arrays).

S Only integer data types are allowed for the index.
S Besides constants and variables arithmetic expressions are also allowed for the index

(see Section 2.3.1).
S The index always starts at 1.

Besides the one--dimensional arrays already discussed, i.e. arrays with only one index, you
can also use two-- or three--dimensional arrays in KRL. Using

DECL REAL MATRIX[5,4]

you can declare a two--dimensional 5×4 array with 5×4=20 REAL elements. It is helpful to
represent this array as a matrix with 5 columns and 4 rows. With the program sequence

I[3] = 0
FOR COLUMN = 1 TO 5

FOR ROW = 1 TO 4
I[3] = I[3] + 1
MATRIX[COLUMN,ROW] = I[3]

ENDFOR
ENDFOR

the elements of the matrix are assigned a value according to their sequence in the matrix.
The following matrix assignment is thus obtained:

Row 3

3

Row 2

Row 1

Plane 1

Row 4

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

C
ol
um

n
2

C
ol
um

n
3

C
ol
um

n
4

C
ol
um

n
5

C
ol
um

n
1

Fig. 3 Representation of a two--dimensional array

Three--dimensional arrays can be envisaged as several two--dimensional matrices one
behind the other. The third dimension indicates, as it were, the level at which the matrix is
located (see Fig. 4). A three--dimensional array is declared similarly to the one-- or two--
dimensional arrays, e.g.:

DECL BOOL ARRAY_3D[3,5,4]

The initialization sequence could then be as follows:

FOR PLANE = 1 TO 3
FOR COLUMN = 1 TO 5

FOR ROW = 1 TO 4
ARRAY_3D[PLANE,COLUMN,ROW] = FALSE

ENDFOR
ENDFOR

ENDFOR

2D arrays

3D arrays

2 Variables and declarations (continued)

29 of 178

ProgExperteBHR5.2 09.03.00 en

Row 3

3

Row 2

Row 1

Plane 3

Plane 2

Plane 1

Row 4

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
25

26
29

30
33

34

35

36

37

38

39

40

41

42
45

46
49

50
53

54

55

56

57

58

59

60

C
ol
um

n
2

C
ol
um

n
3

C
ol
um

n
4

C
ol
um

n
5

C
ol
um

n
1

Fig. 4 Representation of a three--dimensional array

2.2.4 Character strings

Using the data type CHAR, you can only store individual characters, as described. For the
purpose of using entire strings of characters, e.g. words, you simply define a one--
dimensional array of type CHAR:

DECL CHAR NAME[8]

As usual, you can address each individual element of the array NAME[], e.g.:

NAME[3] = “G”

G

However, you can also enter entire strings straight away:

NAME[] = “ABCDEFG”

assigns to the first seven elements of the array NAME[] the letters A, B, C, D, E, F
and G:

A B C D E F G

2.2.5 Structures

If different data types are to be combined, the array is not suitable and themore general form
of linkage must be used. Using the declaration statement STRUC, different data types which
have been previously defined or are predefined data types are combined to form a new
composite data type. In particular, other composites and arrays can also form part of a
composite.

A typical example of the use of composites is the standard data type POS. It consists of 6
REAL values and 2 INT values and has been defined in the file $OPERATE.SRC as follows:

STRUC POS REAL X, Y, Z, A, B, C, INT S, T

If, for example, you now use a POSITION variable of the structure data type POS, you can
assign values to the elements either individually with the aid of the point separator, e.g.:

POSITION.X = 34.4
POSITION.Y = -23.2

STRUC

Point separa-
tor

Expert Programming

30 of 178

ProgExperteBHR5.2 09.03.00 en

POSITION.Z = 100.0
POSITION.A = 90
POSITION.B = 29.5
POSITION.C = 3.5
POSITION.S = 2
POSITION.T = 6

or jointly by means of a so--called aggregate:

POSITION={X 34.4,Y -23.2,Z 100.0,A 90,B 29.5,C 3.5,S 2,T 6}

Further information can be found in the chapter [Variables and declarations], section
[Declaration and initialization of data objects].

Aggregates are subject to the following conditions:

S The values of an aggregate can be simple constants or themselves aggregates.
S Not all components of the structure have to be specified in an aggregate.
S The components do not need to be specified in the order in which they have been

defined.
S Each component may only be contained once in an aggregate.
S In the case of arrays consisting of structures, an aggregate defines the value of an

individual array element.
S The name of the structure type can be specified at the beginning of an aggregate --

separated by a colon.

The following assignments are thus also permissible for POS variables, for instance:

POSITION={B 100.0,X 29.5,T 6}
POSITION={A 54.6,B -125.64,C 245.6}
POSITION={POS: X 230,Y 0.0,Z 342.5}

In the case of POS, E6POS, AXIS, E6AXIS and FRAME structures, missing
components are not altered. In all other aggregates, missing components are set
to invalid.

The procedure for creating your own structure variables will be explained with the aid of the
following example:

In a subprogram for arc welding, the following information is to be transferred in a variable
S_PARA:

REAL V_WIRE Wire velocity
INT CHARAC Characteristic 0�100%
BOOL LIBO with/without arc (for simulation)

The variable S_PARA must consist of 3 elements of a different data type. First of all, a new
data type meeting these requirements must be created:

STRUC WELDTYPE REAL V_WIRE, INT CHARAC, BOOL ARC

A new data type with the designation WELDTYPE is thus created (WELDTYPE is not a
variable!). WELDTYPE consists of the 3 components V_WIRE, CHARAC and ARC. You can
now declare any variable of the new data type, e.g.:

DECL WELDTYPE S_PARA

You have thus created a variable S_PARA of the data type WELDTYPE. The individual
elements can be addressed with the aid of the point separator or the aggregate -- as already
described.

Aggregate

2 Variables and declarations (continued)

31 of 178

ProgExperteBHR5.2 09.03.00 en

S_PARA.V_WIRE = 10.2
S_PARA.CHARAC = 66
S_PARA.ARC = TRUE

or

S_PARA = {V_WIRE 10.2,CHARAC 50, ARC TRUE}

To make it easier to distinguish between self--defined data types of variables, the names
of the new data types should end with �TYPE.

The following structures are predefined in the file $OPERATE.SRC:

STRUC AXIS REAL A1,A2,A3,A4,A5,A6

STRUC E6AXIS REAL A1,A2,A3,A4,A5,A6,E1,E2,E3,E4,E5,E6

STRUC FRAME REAL X,Y,Z,A,B,C

STRUC POS REAL X,Y,Z,A,B,C, INT S,T

STRUC E6POS REAL X,Y,Z,A,B,C,E1,E2,E3,E4,E5,E6, INT S,T

The components A1�A6 of the structure AXIS are angle values (rotational axes) or transla-
tion values (translational axes) for the axis--specific movement of robot axes 1�6.

Using the additional components E1�E6 in the structure E6AXIS, external axes can be ad-
dressed.

In the structure FRAME you can define 3 position values in space (X,Y and Z) and 3 orienta-
tions in space (A,BandC). A point in space is thus unambiguously defined in terms of position
and orientation.

As there are robots that can address one and the same point in space with several axis
positions, the integer variables S and T in the structure POS are used to define an
unambiguous axis position.

Further information can be found in the chapter [Motion programming], section [Motion
commands] Status (S) and Turn (T).

Using the components E1�E6 in the structure E6POS, external axes can be addressed.

The types AXIS, E6AXIS, POS, E6POS and FRAME are also called geometric data types
because they provide the programmer with a simple means of describing geometric
relations.

Further information can be found in the chapter [Motion programming] section
[Application of the various coordinate systems].

2.2.6 Enumeration types

An enumeration data type consisting of a limited set of constants. The constants are freely
selectable names and can be defined by the user. A variable of this data type (enumeration
variable) can only take on the value of one of these constants.

This will be explained on the basis of the system variable $MODE_OP, in which the operating
mode currently selected is stored. ThemodesT1, T2,AUT andEX areavailable for selection.

One could declare $MODE_OP as an integer variable, assign each mode a number and then
store this number in $MODE_OP. That would not be very clear, however.

Predefined
structures

Geometric
data types

Expert Programming

32 of 178

ProgExperteBHR5.2 09.03.00 en

A much more elegant solution is provided by the enumeration type. In the file
$OPERATE.SRC an enumeration data type with the name MODE_OP has been generated:

ENUM MODE_OP T1, T2, AUT, EX, INVALID

The command for declaring enumeration types is therefore called ENUM. Variables of the
enumeration type MODE_OP can only have the values T1, T2, AUT, EX or INVALID. The
variables are again declared using the keyword DECL:

DECL MODE_OP $MODE_OP

You can now allocate one of the four values of the data type MODE_OP to the enumeration
variable $MODE_OP by means of a normal assignment. As a means of distinguishing them
from simple constants, the self--defined enumeration constants are preceded by a “#” sign
in initializations or queries, e.g.:

$MODE_OP = #T1

By means of ENUM, you can now generate any number of self--defined enumeration data
types.

2.3 Data manipulation

For manipulating the various data objects, there are a host of operators and functions avail-
able, with the aid of which formulae can be established. The power of a robot programming
language depends equally on the permissible data objects and their manipulation capabili-
ties.

2.3.1 Operators

The term “operators” refers to the usual mathematical operators as opposed to functions
such as SIN(30), which supplies the sine of the angle 30_. In the operation 5+7, 5 and 7
are therefore called operands and + the operator.

In each operation, the compiler checks the legitimacy of the operands. For example, 7 -- 3
is a legitimate operation as the subtraction of two integers, whereas 5+ “A” is an inadmissible
operation as the addition of an integer and a character.

Inmany operations, suchas 5+ 7.1, i.e. the addition of integer and real values, typematching
is carried out, the integer value 5 being converted to the real value 5.0. This topic is dealt with
in greater detail in the discussion of the individual operators.

2.3.1.1 Arithmetic operators

Arithmetic operators concern the data types INTEGER and REAL. All 4 basic arithmetic
operations are allowed in KRL (see Table 3).

Operator Description

+ Addition or positive sign

-- Subtraction or negative sign

* Multiplication

/ Division

Table 3 Arithmetic operators

The result of an arithmetic operation is only INT if both operands are of the data type IN-
TEGER. If the result of an integer division is not an integer, it is cut off at the decimal point.
If at least one of the two operands is REAL, the result too will be of the data type REAL (see
Table 4).

ENUM

sign

Operand

2 Variables and declarations (continued)

33 of 178

ProgExperteBHR5.2 09.03.00 en

Operands INT REAL

INT INT REAL

REAL REAL REAL

Table 4 Result of an arithmetic operation

The following program example is intended to illustrate this:

DEF ARITH()

;------- Declaration section -------
INT A,B,C
REAL K,L,M

;---------- Initialization ---------
;All variables are invalid prior to initialization!
A = 2 ;A=2
B = 9.8 ;B=10
C = 7/4 ;C=1
K = 3.5 ;K=3.5
L = 0.1 E01 ;L=1.0
M = 3 ;M=3.0

;------------- Main section ------------
A = A * C ;A=2
B = B - ’HB’ ;B=-1
C = C + K ;C=5
K = K * 10 ;K=35.0
L = 10 / 4 ;L=2.0
L = 10 / 4.0 ;L=2.5
L = 10 / 4. ;L=2.5
L = 10./ 4 ;L=2.5
C = 10./ 4. ;C=3
M = (10/3) * M ;M=9.0

END

2.3.1.2 Geometric operator

The geometric operator is symbolized by a colon “:” in KRL. It performs a frame linkage (logic
operation) on operands of the data types FRAME and POS.

The linkage of two frames is the usual transformation of coordinate systems. The linkage of
a FRAME structure and a POS structure therefore only affects the frame within the POS
structure. The components S and T remain unaffected by the transformation and therefore
do not have to be assigned a value. The values X, Y, Z, A, B and C must, however, always
be assigned a value in both POS operands and FRAME operands.

A frame operation is evaluated from left to right. The result always has the data type of the
operand on the far right (see Table 5).

Left operand
(reference CS)

Operator Right operand
(target CS)

Result

POS : POS POS

POS : FRAME FRAME

Frame
linkage

Expert Programming

34 of 178

ProgExperteBHR5.2 09.03.00 en

FRAME : POS POS

FRAME : FRAME FRAME

Table 5 Data type combinations with the geometric operator

If the left--hand operand has the data type POS, type matching takes place. The position
specified by the POS structure is transformed into a frame. That means the system
determines the tool frame for this position.

A simple example will be used in order to explain the mode of functioning of the geometric
operator (see Fig. 5):

In a room there is a table. The ROOM coordinate system is defined as a fixed coordinate
system with its origin at the front left corner of the room.

The table is locatedparallel to thewalls of the room. The front left corner of the table is located
exactly 600 mm from the front wall and 450mm from the lefthand wall of the room. The table
is 800 mm high.

On the table is a cuboidal workpiece. The WORKPIECE coordinate system has its origin at
one corner of the workpiece, as shown in Fig. 5. To allow the part to be optimally handled
in later operation, the Z--axis of the WORKPIECE coordinate system points downwards. The
workpiece is rotated by 40_ in relation to the Z--axis of the TABLE coordinate system. The
position of the WORKPIECE coordinate system with reference to the TABLE coordinate
system is X = 80 mm, Y = 110 mm and Z = 55 mm.

ZR

XR

YR

ZT

XB

YB

Base=Table:Workpiece

Base

Table

Workpiece

XT

ZB

YT

Fig. 5 Mode of functioning of the geometric operator

The task is now to define the WORKPIECE coordinate system in relation to the ROOM
coordinate system. For this purpose, the following frame variables must first be defined:

FRAME TABLE, WORKPIECE, BASE

The ROOM coordinate system is already defined specifically to the system. The TABLE and
WORKPIECE coordinate systemsare now initialized in accordancewith the given constraints.

2 Variables and declarations (continued)

35 of 178

ProgExperteBHR5.2 09.03.00 en

TABLE = {X 450,Y 600,Z 800,A 0,B 0,C 0}
WORKPIECE = {X 80,Y 110,Z 55,A -40,B 180,C 0}

The WORKPIECE coordinate system in relation to the ROOM coordinate system is now
obtained with the aid of the geometric operator as

BASE = TABLE:WORKPIECE

In our case, BASE is then defined as follows:

BASE = {X 530,Y 710,Z 855,A 140,B 0,C -180}

Another possibility would be:

BASE = {X 530,Y 710,Z 855,A -40,B 180,C 0}

Only in this specific case do the components of BASE result from the addition of
the components of TABLE and WORKPIECE. This is due to the fact that the TABLE
coordinate system is not rotated in relation to the ROOM coordinate system.
In general, though, simple addition of the components is not possible!
Frame linking is not commutative either, meaning that if the reference frame and
the target frame are interchanged, the result too will normally change!

Further information can be found in the chapter [Motion programming], section
[Application of the various coordinate systems].

Another example illustrating application of the geometric operator: Various coordinate
systems and linkages of coordinate systems are addressed in this example. In order to
illustrate changes in orientation, the tool center point is moved in each coordinate system first
a short distance in the X direction, then in the Y direction and finally in the Z direction.

Expert Programming

36 of 178

ProgExperteBHR5.2 09.03.00 en

DEF GEOM_OP ();

------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME ;Variable HOME of type AXIS
DECL FRAME MYBASE[2] ;Array of type FRAME;

---------- Initialization ---------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 30,A6 0}; Set base coordi-
nate system
$BASE={X 1000,Y 0,Z 1000,A 0,B 0,C 0}
REF_POS_X={X 100,Y 0,Z 0,A 0,B 0,C 0} ;Reference position
REF_POS_Y={X 100,Y 100,Z 0,A 0,B 0,C 0}
REF_POS_Z={X 100,Y 100,Z 100,A 0,B 0,C 0};Define own

coordinate systems
MYBASE[1]={X 200,Y 100,Z 0,A 0,B 0,C 180}
MYBASE[2]={X 0,Y 200,Z 250,A 0,B 90,C 0};

------------- Main section ------------
PTP HOME ; BCO run; Motion in relation to $BASE coordinate sys-
tem
PTP $Base ;Direct positioning to origin of $BASE coordi-
nate system
WAIT SEC 2 ;Wait 2 seconds
PTP REF_POS_X ;Move 100 mm in x direction
PTP REF_POS_Y ;Move 100 mm in y direction
PTP REF_POS_Z ;Move 100 mm in z direction; Motion in rela-
tion to $BASE-CS offset by MYBASE[1]
PTP MYBASE[1]
WAIT SEC 2
PTP MYBASE[1]:REF_POS_X
PTP MYBASE[1]:REF_POS_Y
PTP MYBASE[1]:REF_POS_Z; Motion in relation to $BASE-CS offset
by MYBASE[2]
PTP MYBASE[2]
WAIT SEC 2
PTP MYBASE[2]:REF_POS_X
PTP MYBASE[2]:REF_POS_Y
PTP MYBASE[2]:REF_POS_Z; Motion in relation to $BASE-CS offset
by MYBASE[1]:MYBASE[2]
PTP MYBASE[1]:MYBASE[2]
WAIT SEC 2
PTP MYBASE[1]:MYBASE[2]:REF_POS_X
PTP MYBASE[1]:MYBASE[2]:REF_POS_Y
PTP MYBASE[1]:MYBASE[2]:REF_POS_Z; Motion in relation to
$BASE-CS offset by MYBASE[2]:MYBASE[1]
PTP MYBASE[2]:MYBASE[1]
WAIT SEC 2
PTP MYBASE[2]:MYBASE[1]:REF_POS_X
PTP MYBASE[2]:MYBASE[1]:REF_POS_Y
PTP MYBASE[2]:MYBASE[1]:REF_POS_Z
PTP HOME
END

2 Variables and declarations (continued)

37 of 178

ProgExperteBHR5.2 09.03.00 en

2.3.1.3 Relational operators

Using the relational operators listed in Table 6, it is possible to form logic expressions. The
result of a comparison is therefore always of the data type BOOL, since a comparison can
only ever be (TRUE) or (FALSE).

Operator Description Permissible data types

== equal to INT, REAL, CHAR, ENUM, BOOL

<> not equal to INT, REAL, CHAR, ENUM, BOOL

> greater than INT, REAL, CHAR, ENUM

< less than INT, REAL, CHAR, ENUM

>= greater than or
equal to

INT, REAL, CHAR, ENUM

<= less than or
equal to

INT, REAL, CHAR, ENUM

Table 6 Relational operators

Comparisons can be used in program execution instructions, and the result of a comparison
can be assigned to a Boolean variable.

The test for equality or inequality is of only limited use with real numbers since
algebraically identical formulae can supply unequal values due to rounding errors
in the calculation of the values to be compared (see 2.2.2).

S Operand combinations of INT, REAL, and CHAR are possible.
S An ENUM type may only be compared with the same ENUM type.
S A BOOL type may only be compared with a BOOL type.

The comparison of numeric values (INT, REAL) and character values (CHAR) is possible
because each ASCII character is assigned an ASCII code. This code is a number defining
the order of the characters in the character set.

In their declaration, the individual constants of an enumeration type are numbered in the
order of their occurrence. The relational operators refer to these numbers.

Both simple and multiple comparisons are permitted. Some examples to illustrate this:

�
BOOL A,B
�
B = 10 < 3 ;B=FALSE
A = 10/3 == 3 ;A=TRUE
B = ((B == A) <> (10.00001 >= 10)) == TRUE ;B=TRUE
A = “F” < “Z” ;A=TRUE
�

2.3.1.4 Logic operators

These operators are used for performing logic operations on Boolean variables, constants
and simple logic expressions, as are formedwith the aid of relational operators. For example,
the expression

(A > 5) AND (A < 12)

has the value TRUE only if A lies in the range between 5 and 12. Such expressions are
frequently used in instructions serving the purpose of checking program execution (see
Section 4). The logic operators are listed in Table 7.

Expert Programming

38 of 178

ProgExperteBHR5.2 09.03.00 en

Operator Operand number Description

NOT 1 Inversion

AND 2 Logic AND

OR 2 Logic OR

EXOR 2 Exclusive OR

Table 7 Logic operators

The operands of a logic operation must be of type BOOL, and the result too is always of type
BOOL. The possible results of the various logic operations are shown in Table 8 as a function
of the value of the operands.

Operation NOT A A AND B A OR B A EXOR B

A = TRUE B = TRUE FALSE TRUE TRUE FALSE

A = TRUE B = FALSE FALSE FALSE TRUE TRUE

A = FALSE B = TRUE TRUE FALSE TRUE TRUE

A = FALSE B = FALSE TRUE FALSE FALSE FALSE

Table 8 Truth table for logic operations

Some examples of logic operations:

�
BOOL A,B,C
�
A = TRUE ;A=TRUE
B = NOT A ;B=FALSE
C = (A AND B) OR NOT (B EXOR NOT A) ;C=TRUE
A = NOT NOT C ;A=TRUE
�

2.3.1.5 Bit operators

Using the bit operators (see Table 9), whole numbers can be combined by performing logic
operations on the individual bits of the numbers. The bit operators combine individual bits
just as the logic operators combine twoBoolean values if the bit value 1 is regarded as TRUE
and the value 0 as FALSE.

Bit--by--bitANDing of the numbers 5 and12 thus produces thenumber 4, for example, bit--by--
bit ORing the number 13 and bit--by--bit exclusive ORing the number 9:

0 1 0 1 = 5

1 1 0 0 = 12

AND 0 1 0 0 = 4

OR 1 1 0 1 = 13

EXOR 1 0 0 1 = 9

Bit--by--bit inversion does not simply involve all the bits being inverted. Instead, when B_NOT
is used, 1 is added to the operand and the sign is changed, e.g.:

B_NOT 10 = -11
B_NOT -10 = 9

Bit operators are used, for example, to combine digital I/O signals (see 5.3).

2 Variables and declarations (continued)

39 of 178

ProgExperteBHR5.2 09.03.00 en

Operator Operand number Description

B_NOT 1 Bit--by--bit inversion

B_AND 2 Bit--by--bit ANDing

B_OR 2 Bit--by--bit ORing

B_EXOR 2 Bit--by--bit exclusive ORing

Table 9 Logic bit operators

As ASCII characters can also be addressed via the integer ASCII code, the data type of
the operands may also be CHAR besides INT. The result is always of type INT.

Examples illustrating the use of bit operators:

�
INT A
�
A = 10 B_AND 9 ;A=8
A = 10 B_OR 9 ;A=11
A = 10 B_EXOR 9 ;A=3
A = B_NOT 197 ;A=-198
A = B_NOT ’HC5’ ;A=-198
A = B_NOT ’B11000101’ ;A=-198
A = B_NOT “E” ;A=-70
�

Let us assume you have defined an 8--bit digital output. You can address the output via the
INTEGER variable DIG. To set bits 0, 2, 3 and 7, you can now simply program

DIG = ’B10001101’ B_OR DIG

All the other bits remain unaffected, regardless of their value.

If you want to mask out bits 1, 2 and 6, program

DIG = ’B10111001’ B_AND DIG

All the other bits remain unaltered.

You can just as easily use the bit operators to check whether individual bits of the output are
set. The expression

(’B10000001’ B_AND DIG) == ’B10000001’

becomes TRUE if bits 0 and 7 are set, otherwise it is FALSE.

If you only want to test whether at least one of the two bits 0 and 7 is set, the result of the
bit--by--bit ANDing merely has to be greater than zero:

(’B10000001’ B_AND DIG) > 0

Setting bits

Masking out
bits

Filtering out
bits

Expert Programming

40 of 178

ProgExperteBHR5.2 09.03.00 en

2.3.1.6 Priority of operators

If you use complex expressions with several operators, youmust take into account thediffer-
ent priorities of the individual operators (see Table 10), as the various expressions are exe-
cuted in the order of their priorities.

Priority Operator

1 NOT B_NOT

2 * /

3 + -

4 AND B_AND

5 EXOR B_EXOR

6 OR B_OR

7 == <> < > >= <=

Table 10 Priority of operators

General rules:

G Bracketed expressions are processed first.

G Non--bracketed expressions are evaluated in the order of their priority.

G Logic operations with operators of the same priority are executed from left to
right.

Examples:

�
INT A,B
BOOL E,F
�
A = 4
B = 7
E = TRUE
F = FALSE
�
E = NOT E OR F AND NOT (-3 + A * 2 > B) ;E=FALSE
A = 4 + 5 * 3 - B_NOT B / 2 ;A=23
B = 7 B_EXOR 3 B_OR 4 B_EXOR 3 B_AND 5 ;B=5
F = TRUE == (5 >= B) AND NOT F ;F=TRUE
�

2.3.2 Standard functions

For calculating certain mathematical problems, a number of standard functions are prede-
fined in KRL (see Table 11). They can be used directly without further declaration.

Descrip-
tion

Function Data type
of

argument

Range of
values of
argument

Data
type of
function

Range of
values of
result

Absolute
value

ABS(X) REAL --∞�+∞ REAL 0�+∞

Square
root

SQRT(X) REAL 0�+∞ REAL 0�+∞

Priority

2 Variables and declarations (continued)

41 of 178

ProgExperteBHR5.2 09.03.00 en

Sine SIN(X) REAL --∞�+∞ REAL -1�+1

Cosine COS(X) REAL --∞�+∞ REAL -1�+1

Tangent TAN(X) REAL --∞�+∞* REAL --∞�+∞
Arc cosine ACOS(X) REAL -1�+1 REAL 0_�180_

Arc tan-
gent

ATAN2(Y,X) REAL --∞�+∞ REAL -90_�+90_

* no odd multiple of 90_, i.e. X¸ (2k-1)*90_, k�8

Table 11 Mathematical standard functions

The function ABS(X) calculates the absolute value X, e.g.:

B = -3.4
A = 5 * ABS(B) ;A=17.0

SQRT(X) calculates the square root of the number X, e.g.:

A = SQRT(16.0801) ;A=4.01

The trigonometric functions SIN(X), COS(X) and TAN(X) calculate the sine, cosine or
tangent of the angle X, e.g.:

A = SIN(30) ;A=0.5
B = 2*COS(45) ;B=1.41421356
C = TAN(45) ;C=1.0

The tangent of �90_ and odd multiples of �90_ (�270_, �450_, �630_�) is infinite. An
attempt to calculate one of these values therefore generates an error message.

ACOS(X) is the inverse function of COS(X):

A = COS(60) ;A=0.5
B = ACOS(A) ;B=60

There is no standard function predefined for arc sine, the inverse function of SIN(X).
However, this can be very easily calculated on the basis of the relationship SIN(X) =
COS(90_--X):

A = SIN(60) ;A=0.8660254
B = 90-ACOS(A) ;B=60

The tangent of an angle is defined as the opposite side (Y) divided by the adjacent side (X)
of a right triangle. Knowing the length of the two legs of the triangle, it is therefore possible
to calculate the angle between the adjacent side and the hypotenuse by means of the arc
tangent.

If we now consider a full circle, the sign of the components X and Y is of decisive importance.
If wewere only to consider the quotient, it would only bepossible to calculate angles between
0_ and 180_ by means of the arc tangent. This is also the case with all customary pocket
calculators: The arc tangent of positive values gives an angle between 0_ and 90_, the arc
tangent of negative values an angle between 90_ and 180_.

By theexplicit specification ofXandY, the quadrant inwhich theangle is located is unambigu-
ously definedby their signs (seeFig. 6). You can therefore also calculate angles in quadrants
III and IV. For calculating the arc tangent in the function ATAN2(Y,X), these two specifica-
tions are therefore also necessary, e.g.:

A = ATAN2(0.5,0.5) ;A=45
B = ATAN2(0.5,-0.5) ;B=135
C = ATAN2(-0.5,-0.5) ;C=225
D = ATAN2(-0.5,0.5) ;D=315

Absolute
value

Square root

Sine
Cosine
Tangent

Arc cosine

Arc sine

Arc tangent

Expert Programming

42 of 178

ProgExperteBHR5.2 09.03.00 en

�

0

Y=SIN(�)

X=COS(�)

II

III IV

I

Fig. 6 Use of X and Y in the function ATAN2(Y,X)

Further information can be found in the chapter [Subprograms and functions].

2.4 System variables and system files

An important precondition for processing complex robotic applications is a freely and easily
programmable controller.

To meet this requirement, the functionality of the robot controller must be programmable in
the robot language. The full functionality of a robot controller can only be utilized if the control
parameters can be completely and yet easily integrated into a robot program. This is
optimally solved in the KR C... by means of the concept of predefined system variables and
files.

Examples of predefined variables are $POS_ACT (current robot position), $BASE (base
coordinate system) or $VEL.CP (CP velocity).

A list of all the predefined variables may be found in the separate documentation System
variables.

System variables are completely integrated into the variables concept of KRL. They possess
a corresponding data type and can be read and written by you like any other variable in the
program provided there are no restrictions due to the type of data. The current robot position,
for example, cannot be written but only read. Restrictions of this nature are checked by the
controller.

As far as is permitted by the safety concept, you evenhavewrite access to system data. This
creates a wide range of diagnostic capabilities since a large number of system data can be
loaded or influenced from the KCP or programming system.

Examples of useful system variables with write access are $TIMER[] and $FLAG[].

The 16 timer variables $TIMER[1]�$TIMER[16] serve the purpose of measuring time
sequences and can thus be used as a “stopwatch“. A timing process is started and stopped
by means of the system variables
$TIMER_STOP[1]�$TIMER_STOP[16]:

$TIMER_STOP[4]=FALSE

starts timer 4, for example.

Timer

2 Variables and declarations (continued)

43 of 178

ProgExperteBHR5.2 09.03.00 en

$TIMER_STOP[4]=TRUE

stops timer 4 again. The timer variable concerned can be reset at any time using a normal
value assignment, e.g.:

$TIMER[4]=0

If the valueof a timer variable changes fromminus to plus, a corresponding flag is set toTRUE
(timer--out condition), e.g.:

$TIMER_FLAG[4] = TRUE

When the controller is booted, all the timer variables are preset to 0, the flags
$TIMER_FLAG[1]�$TIMER_FLAG[16] to FALSE and the variables
$TIMER_STOP[1]�$TIMER_STOP[16] to TRUE.

The unit of the timer variables is milliseconds (ms).
$TIMER[1]�$TIMER[16] and $TIMER_FLAG[1]�$TIMER_FLAG[16]
are updated in a 12 ms cycle.

The 1024 flags $FLAG[1]�$FLAG[1024] are used as global markers. These Boolean
variables are preset to FALSE. You can view the current values of the markers on the user
interface at any time by means of the “Monitor” menu item.

There are also 32 cyclical flags
$CYCFLAG[1]�$CYCFLAG[32] available in the KRC.... They are all preset to FALSEafter
the controller has booted.

The flags are cyclically active at the robot level only. Cyclical flags are permissible in a submit
file, but they are not cyclically evaluated.

Cyclical flags can also be defined and activated in subprograms, functions and interrupt
subprograms.

$CYCFLAG[1]�$CYCFLAG[32] have the data type BOOL. Any Boolean expression canbe
used in an assignment to a cyclical flag.

The following are allowed:

G Boolean system variables

G Boolean variables which have been declared and initialized in a data list.

Not allowed on the other hand are

G functions that return a Boolean value.

The instruction

$CYCFLAG[10] = $IN[2] AND $IN[13]

has the effect that the Boolean expression “$IN[2] AND $IN[13]” is cyclically
evaluated, for example. This means that as soon as input 2 or input 13 changes,
$CYCFLAG[10] changes too, regardless of the location of the program pointer after the
above expression has been executed.

All the cyclical flags defined remain valid until a module is deselected or block selection is
carried out bymeans of reset. All the cyclical flags remain active when the endof theprogram
is reached.

Further information can be found in the chapter [Interrupt handling], section [Use of
cyclical flags].

Thenamesof thepredefined variables havegenerally been chosen to allow them to beeasily
remembered. They all begin with a $ sign and then consist of a meaningful English
abbreviation. As they are treated like normal variables, you do not have remember any
unusual commands or rare options.

To avoid any risk of confusion, you should not declare any variables yourself
which begin with a $ sign.

Flags

Cyclical flags

$ sign

Expert Programming

44 of 178

ProgExperteBHR5.2 09.03.00 en

Some of the predefined variables refer to the overall KR C... controller (e.g. $ALARM_STOP
for defining the output for the Emergency Stop signal to the PLC). Others, however, are of
relevance to the robot only (e.g. $BASE for the base coordinate system).

The robot drive on which the control--relevant data are stored in the directory “STEU” and
the robot--relevant data are stored in the directory “R1” is displayed in the KUKA GUI.

Fig. 7 Various levels on the KUKA graphic user interface

When programming the KR C..., you can create program files and data lists. Located in the
program files are data definitions andexecutable instructions, while thedata lists only contain
data definitions and possibly initializations.

Further information can be found in the chapter [Data lists].

In addition to the data lists that you create during programming, there are also data lists in
the KRC... that are defined by KUKA and suppliedwith the control software. These data lists
are called predefined data lists and mainly contain the predefined variables.

You can neither delete nor generate the predefined data lists yourself. They are generated
when the software is installed and are then always available. Like the names of the
predefined data, the names of the predefined data lists also begin with a $ sign.

The following predefined data lists exist in the KR C...:

G $MACHINE.DAT
is a predefineddata list with exclusively predefined system variables. Themachinedata
serve the purpose of adapting the controller to the connected robot (kinematic
information, control parameters, etc.). There is a $MACHINE.DAT in both the control
system and the robot system. You cannot create new variables or delete existing ones.

Examples:
$ALARM_STOP Signal for Emergency Stop (controller--specific)
$NUM_AXT Number of robot axes (robot--specific)

G $CUSTOM.DAT
is a data list that only exists in the control system. It contains data with which you can
configure or parameterize certain control functions. The programmer is only able to
alter the values of the predefined variables. You cannot create new variables or delete
existing ones.

2 Variables and declarations (continued)

45 of 178

ProgExperteBHR5.2 09.03.00 en

Examples:
$PSER_1 Protocol parameters of serial interface 1
$IBUS_ON Activation of alternative Interbus groups

G $CONFIG.DAT
is a data list predefined by KUKA which does not contain any system variables,
however. There is a $CONFIG.DAT available at both the control level and the robot
level. Variables, structures, channels and signals can be defined in it which are valid
over a long time and are of general significance for a lot of programs.
The data list at robot level is divided into the following blocks:

-- BAS

-- AUTOEXT

-- GRIPPER

-- PERCEPT

-- SPOT

-- A10

-- A50

-- A20

-- TOUCHSENSE

-- USER

Global declarations by the user should always be entered in the USER block since
only here will the declarations be transferred in a later software upgrade.

G $ROBCOR.DAT
The file $ROBCOR.DAT contains robot--specific data for the dynamic model of the
robot. These data are required for path planning. You cannot create new variables or
delete existing ones in this file either.

Table 12 provides a summary of the predefined data lists.

Data list System Value assignment

Data list Control Robot at by

$MACHINE.DAT n n commissioning KUKA/user

$CUSTOM.DAT n commissioning user/KUKA

$CONFIG.DAT n n cell installation or
conversion

user/KUKA

$ROBCOR.DAT n delivery KUKA

Table 12 Predefined data lists in the KR C...

Expert Programming

46 of 178

ProgExperteBHR5.2 09.03.00 en

2.5 Manipulating a string variable

The following functions are available for editing string variables; they can be used in *.SRC
and *.SUB modules and in the variable display.

2.5.1 String variable length in the declaration

This function determines the length of a string variable according to its declaration in the
declaration section of a program.

StrDeclLen(StrVar[])

The determined length is output as the return value.

Argument Data
type

Meaning

StrDeclLen INT Length of the string variable as declared in the
declaration section

StrVar[] CHAR String variable whose length is to be determined

Examples

S CHAR $ProName[24] -> StrDeclLen($ProName[]) = 24

S CHAR ab[12] = “xyz” -> StrDeclLen(ab[]) = 12

Since the string variable “StrVar[]” is an array of type CHAR, individual characters and
constants are not permissible for length determination.

2.5.2 String variable length after initialization

This function determines the length of the character string of a string variable as defined in
the initialization section of the program.

StrLen(StrVar)

The determined length is output as the return value.

Argument Data
type

Meaning

StrLen INT Number of characters currently assigned to the
string variable

StrVar CHAR Character string or variable whose length is to be
determined

Examples

S StrLen(“abcd”) -> StrLen = 4

S CHAR a = “y” -> StrLen(a) = 1

S CHAR ab[12] = “xyz” -> StrLen(ab[]) = 3

2 Variables and declarations (continued)

47 of 178

ProgExperteBHR5.2 09.03.00 en

2.5.3 Deleting the contents of a string variable

If the contents of the specified string variable are to be deleted, this can be done using the
command “StrClear”.

StrClear(StrVar[])

The return value, once the contents of the variable have been successfully deleted, is
“TRUE”.

Argument Data
type

Meaning

StrClear BOOL Deletes the character string in the relevant string va-
riable

StrVar[] CHAR Variable whose character string is to be deleted

Example

IF (NOT StrClear($Loop_Msg[]) THEN
HALT

ENDIF

The string variable “StrVar[]” may only be an array of type CHAR.

2.5.4 Extending a string variable

The contents of a string variable can be extended by inserting another string variable.

StrAdd(StrDest[], StrToAdd[])

The return value that is output is the sum of the character lengths of “StrDest[]” and
“StrToAdd[]”. If this sum exceeds the maximum of 470 characters, the return value “0” is
output.

Argument Data
type

Meaning

StrAdd INT Extends the specified string variable

StrDest[] CHAR The string variable to be extended

StrToAdd[] CHAR The character string by which the variable is to be
extended

Example

$Loop_Msg[] = “Folge1 ”
StrAdd($Loop_Msg[], “Folge2” -> $Loop_Msg[] = “Folge1 Folge2”

Since the string variable “StrDest[]” is an array of type CHAR, individual characters and
constants are not permissible.

Expert Programming

48 of 178

ProgExperteBHR5.2 09.03.00 en

2.5.5 Searching a string variable
It is possible to search the string variable for a particular character string. This search can
be case--sensitive.

StrFind(StartAt, StrVar[], StrFind[], CaseSens)

The position of the first character found is output as the return value.

Argument Data type Meaning

StrFind INT Searches the specified string variable

StartAt INT Starts the search from this position

StrVar[] CHAR The string variable to be searched

StrFind[] CHAR The character string that is being looked for

CaseSens #CASE_SENS

#NOT_CASE_SENS

A distinction is made between upper-- and
lower--case letters
No distinction is made between upper-- and
lower--case letters

Examples

StrFind(1, ”ABCDE”, “BC”, #CASE_SENS) -> 2

StrFind(1, ”ABCDE”, “bc”, #NOT_CASE_SENS) -> 2

StrFind(1, ”ABCDE”, “AC”, #NOT_CASE_SENS) -> 0

StrFind(1, ”ABCDE”, “A”, #NOT_CASE_SENS) -> 1

2.5.6 Comparing the contents of string variables
The character strings of two string variables can be compared with one another. It is also
possible to distinguish between upper-- and lower--case letters.

StrComp(StrComp1[], StrComp2[], CaseSens)

If the two character strings match, the return value is “TRUE”, otherwise this value is
“FALSE”.

Argument Data type Meaning

StrComp BOOL Compares two string variables

StrComp1[] CHAR String variable is compared with
“StrComp2[]”

StrComp2[] CHAR String variable is compared with
“StrComp1[]”

CaseSens #CASE_SENS

#NOT_CASE_SENS

A distinction is made between upper-- and
lower--case letters
No distinction is made between upper-- and
lower--case letters

Examples

StrComp(”ABCDE”, “ABCDE”, #CASE_SENS) -> TRUE

StrComp(”ABCDE”, “abcde”, #NOT_CASE_SENS) -> TRUE

StrComp(”ABCDE”, “abcde”, #CASE_SENS) -> FALSE

StrComp(”ABCDE”, “acbde”, #NOT_CASE_SENS) -> FALSE

2 Variables and declarations (continued)

49 of 178

ProgExperteBHR5.2 09.03.00 en

2.5.7 Copying a string variable

The contents of a string variable are copied to another string variable.

StrCopy(StrDest[], StrSource[])

If the copying is successful, the return value is “TRUE”, otherwise this value is “FALSE”.

Argument Data
type

Meaning

StrAdd BOOL Copies a character string to a specified string
variable

StrDest[] CHAR The character string is assigned to this string
variable

StrSource[] CHAR The contents of this string variable are copied

Example

$Loop_Msg[] = “”
StrCopy($Loop_Msg[], “Example” -> $Loop_Msg[] = “Example”

Since the string variable “StrDest[]” is an array of type CHAR, individual characters and
constants are not permissible.

Expert Programming

50 of 178

ProgExperteBHR5.2 09.03.00 en

3 Motion programming

51 of 178

ProgExperteBHR5.2 09.03.00 en

3 Motion programming

One of the most important tasks of the robot controller is moving the robot. The programmer
controls themovements of the industrial robot bymeans of specialmotion commands.These
are also the main features which distinguish robot languages from conventional computer
programming languages such as C or Pascal.

Depending on the type of controller, these motion instructions can be subdivided into
commands for simple point--to--point motions and commands for path movements.
Whereas, with continuous--pathmovements, the end effector (e.g. gripper or tool) describes
a precise, geometrically defined path in space (straight line or arc), the motion path in
point--to--point movements is dependent on the robot’s kinematic system and cannot,
therefore, be accurately predicted. Common to both these types of motion is that
programming takes place from the current position to a new position. For this reason, a
motion instruction generally only requires the specification of the end position (exception:
circular motions, see 3.3.4).

Position coordinates canbe specified either as text, by entering numeric values, or bymoving
the robot to themandsaving theactual values (teaching). Thepossibility exists, in each case,
of relating the entries to various coordinate systems.

Further motion properties, such as velocity and acceleration, and orientation control, can be
set using system variables. The approximation of auxiliary points is initiated with the aid of
optional parameters in themotion instruction. In order to carry out approximation, a computer
advance run must be set.

3.1 Application of the various coordinate systems

Various coordinate systems are used in order to be able to specify the position or orientation
of the point in space. A fundamental distinction can be made between joint (axis--specific)
and Cartesian coordinate systems:

In the joint coordinate system, the linear shifts (for translational axes) or the rotational
offsets (for rotational axes) are specified for each robot axis. In the caseof a jointed arm robot
with 6 axes, all 6 robot joint angles must therefore be entered in order to define the position
and orientation unambiguously (see Fig. 8).

Fig. 8 Joint coordinate system for a jointed--arm robot with 6 axes

Motion
instructions

Coordinate
system

Joint
(axis--specific)

Expert Programming

52 of 178

ProgExperteBHR5.2 09.03.00 en

An axis--specific position is defined in the KR C... using the predefined structure type AXIS,
the components of which signify angles or lengths depending on the type of axis.

Further information can be found in the chapter [Variables and declarations], section
[Structures].

Axis--specific positions can only be used in conjunction with PTPmotion commands. If a CP
motion is programmed with an axis--specific robot position, a fault situation will arise.

Since the programmer is human, and therefore thinks in Cartesian coordinates,
programming in the joint coordinate system is usually highly impractical. For this reason, the
controller offers several Cartesian coordinate systems for programming purposes, the
coordinates of which are then automatically converted for use in the joint coordinate system
before the motion is executed (see Fig. 9).

x

A1, A2, A3, A4, A5, A6

X, Y, Z, A, B, C (, S, T)

Reverse transformation

Forward transformation

Fig. 9 Coordinate transformation

In aCartesian coordinate system, the X, Y and Z coordinate axes lie perpendicular to one
another and constitute, in this order, a rectangular system.

The position of a point in space in the Cartesian coordinate system is unambiguously
determined by specifying the X, Y and Z coordinates. These are derived from the
translational distance of each coordinate value from the coordinate origin.

Coordinate
transforma-
tion

Cartesian

3 Motion programming (continued)

53 of 178

ProgExperteBHR5.2 09.03.00 en

P

Y

X

P(X1=5, Y1=2, Z1=4)

Z1

Z

Y1

X1

Fig. 10 Translational description of the position of a point

In order to be able to position the robot to each point in space, whatever orientation it has,
three rotational specifications are required in addition to the three translational values:

Theangles designatedA, B andC in theKRC... describe rotations about the coordinate axes
Z, Y and X. The order of the rotations must be retained.

1. Rotation through angle A about the Z axis

2. Rotation through angle B about the new Y axis

3. Rotation through angle C about the new X axis

This rotation sequence corresponds to the well--known roll--pitch--yaw angles in the field of
aviation. Angle C corresponds in this case to the roll, angle B to the pitch and angle A to the
yaw (see Fig. 11).

Z ’

X

Y

X

Y

Z
Z’ Y’

X’

X’’

Y

Z

A B C

’’

’’

’’

’’’

’’’

A
B

C

Fig. 11 Rotational description of the orientation of a point

TranslationsX, Y andZ, alongwith the rotationsA, B andC, allow the unambiguous definition
of the position and orientation of a point in space. The KRC... does this using the predefined
structure FRAME.

With continuous--path motions, the specification of FRAME coordinates is always sufficient
and unambiguous. In the case of PTP motions, however, and with certain robot kinematic
systems (e.g. jointed armwith 6 axes), a point in space (position andorientation defined) can

Expert Programming

54 of 178

ProgExperteBHR5.2 09.03.00 en

be reached with several different axis positions. This ambiguity can be rectified by means
of the two additional entries “S” and “T”. The extension of a frame to include “S” and “T” is
catered for in the KR C... by the structure POS.

Further information can be found in the chapter [Variables and declarations], sections
[Structures] and [Motion commands].

The following Cartesian coordinate systems are predefined in the KR C...:

Coordinate system System variable State

World coordinate system $WORLD write--protected

Robot coordinate system $ROBROOT write--protected
(can be changed
in R1\MADA\$MA-
SCHINE.DAT)

Tool coordinate system $TOOL writable

Base (workpiece) coordinate system $BASE writable

Table 1 Predefined coordinate systems

z

x

y

z

x

y

z

x

y

z

x

y

World CS
Robot CS

Tool CS

Base CS

Fig. 12 Cartesian coordinate systems for robots

World coordinate system

The world coordinate system is a fixed (= does not move when the robot moves) coordinate
system, which serves as the underlying coordinate system for a robot system (robot,
component support or tool). It represents the reference system for both the robot systemand
the peripheral equipment of the cell.

Robot coordinate system

This coordinate system is located in the base of the robot and serves as the reference
coordinate system for themechanical construction of the robot. It, in turn, is derived from the
world coordinate system and is identical to it when the robot system is delivered. An offset
of the robot in relation to $WORLD can thus be defined using $ROBROOT.

Tool coordinate system

The tool coordinate system has its origin at the tip of the tool (Tool Center Point: TCP). The
orientation can be selected in such a way that its X axis is identical to the tool direction and
points out of the tool. If the tool center point is moved, the tool coordinate system is moved
with it.

3 Motion programming (continued)

55 of 178

ProgExperteBHR5.2 09.03.00 en

X

Z

Y

On delivery of the robot, the tool coordinate
system is located in the robot flange (the Z
axis is identical to axis 6). It is derived, by
transformation, from the robot coordinate
system.

If a tool change takes place, the original program can still be used after re--calibration since
the coordinates of the TCP are known to the computer.

Base coordinate system

The base coordinate system is used as the reference system to define the position of the
workpiece. The robot is programmed in the base coordinate system. It has the world
coordinate system as its reference coordinate system. At time of delivery, $BASE=$WORLD.
By altering $BASE, it is possible to work, for example, on several identical workpieces in
different places using the same program.

When interpolating the motion path, the robot controller calculates, under normal
circumstances (tool mounted on the robot flange), the current position ($POS_ACT) in
relation to the $BASE coordinate system (see Fig. 13).

$BASE

$TOOL

$POS_ACT

x

y

z

z

x

y

$WORLD

$ROBROOT

z

y

x

x

y

z

Fig. 13 Kinematic chain with base--related interpolation

In industrial practice, however, a gradual switch is being made to anchoring the tool (e.g.
welding torch) at a fixed point in space and guiding the workpiece itself, by means of a
suitable gripper, along the fixed tool.

The variable $TOOL always refers to the tool or workpiece mounted on the robot. The
variable $BASE, on the other hand, always refers to the external tool or workpiece.

Base--related
interpolation

Fixed tool

Expert Programming

56 of 178

ProgExperteBHR5.2 09.03.00 en

Since the tool and workpiece have now changed position, but the motion is still to be
executed relative to the workpiece, the interpolation of the motion path must now be
calculated in the $TOOL coordinate system. This assignment of the interpolation mode
occurs implicitly when using a normal or external TCP. This type of interpolation can be
defined in the system variable $IPO_MODE. The program line

$IPO_MODE = #TCP

makes gripper--related interpolation possible in the $TOOL coordinate system. The current
position $POS_ACT is thus now calculated relative to $TOOL (see Fig. 14). With

$IPO_MODE = #BASE

you reset the interpolation mode to base--related interpolation for normal operation. This is
also the default setting when the controller is run up.

z

x
$BASE

$TOOL

$POS_ACT

y

x

y

z

y

x
z z

x

y

$WORLD

$ROBROOT

Fig. 14 Kinematic sequence with gripper--related interpolation

An example of the shifting of coordinate systems can be found in the chapter [Variables
and declarations], section [Geometric operator].

Gripper--rela-
ted interpola-
tion

3 Motion programming (continued)

57 of 178

ProgExperteBHR5.2 09.03.00 en

3.2 Point--to--point motions (PTP)

3.2.1 General (Synchronous PTP)

The point--to--point motion (PTP) is the quickest way of moving the tip of the tool (ToolCenter
Point: TCP) from the current position to a programmed end position. To do this, the controller
calculates the necessary angle differences for each axis.

The following system variables are used

G $VEL_AXIS[axis number]: to program maximum axis--specific velocities,

and

G $ACC_AXIS[axis number]: to program maximum axis--specific acceleration rates.

All entries are given as percentages of the maximum value defined in the machine data. If
these twosystemvariables havenot beenprogrammed for all axes, executionof theprogram
will cause a corresponding error message to be generated.

The motions of the axes are synchronized in such a way (synchronous PTP) that all of the
axes start and stop moving at the same time. This means that only the axis with the longest
trajectory, the so--called leading axis, is actually moved with the programmed acceleration
and velocity limits. All other axes move only with the velocity and acceleration rates
necessary for them to reach the end point of the motion at the same moment, irrespective
of the values programmed in $VEL_AXIS[No] and $ACC_AXIS[No].
If acceleration adaptation or the higher motion profile is activated ($ADAP_ACC=#STEP1,
$OPT_MOVE=#STEP1), axis traversing is also phase--synchronous, i.e. all axes enter the
acceleration, constant motion and deceleration phases together.

Since it is generally unknown, in the case of PTPmotions with Cartesian end coordinates,
which is the leading axis, it is usually sensible to set acceleration and velocity values which
are identical for all axes.

Synchronous motion control diminishes mechanical stress on the robot since the motor and
gear torques are reduced for all axes with shorter trajectories.
Phase--synchronous motion control gives (additionally) a motion path which, irrespective of
the programmed velocity and acceleration, always follows the same course.

Further information canbe found in the chapter [Motionprogramming], section [Motions
with approximate positioning].

3.2.2 Higher motion profile

The higher motion profile is used as standard for PTP motions. This model brings about a
time--optimized motion from the start point to the end point with individual PTP
instructionsandPTPapproximation instructions. In otherwords, it is impossible tomove
faster with the gears and motors available. The permissible torque range is optimally used
for every point along the path, and in particular in the constant velocity phase. The velocity
is always adapted in such a way that the torques are not exceeded.

Even with approximation instructions, the only effect of a change to the values for velocity
or acceleration is a change to the velocity profile along the path. The geometric curve in
space remains unchanged.
The velocity assignments and acceleration limit values (given as percentages) can be set
individually for each axis. This limit value relates, however, to the acceleration torque of the
axis and not directly to the acceleration itself, i.e. an axis acceleration value of 50% does not
necessarily halve the acceleration.

PTP

Expert Programming

58 of 178

ProgExperteBHR5.2 09.03.00 en

3.2.3 Motion commands

The following program example PTP_AXIS.SRC represents the smallest KRL program that
can be run.

DEF PTP_AXIS() ;the name of the program is PTP_AXIS

$VEL_AXIS[1]=100 ;definition of the axis velocities
$VEL_AXIS[2]=100
$VEL_AXIS[3]=100
$VEL_AXIS[4]=100
$VEL_AXIS[5]=100
$VEL_AXIS[6]=100

$ACC_AXIS[1]=100 ;definition of the axis accelerations
$ACC_AXIS[2]=100
$ACC_AXIS[3]=100
$ACC_AXIS[4]=100
$ACC_AXIS[5]=100
$ACC_AXIS[6]=100

PTP {AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

END

First of all in this program, the axis velocity and acceleration rates are defined. These
assignments must be made before a point--to--point motion can be executed.

The robot then moves each axis into position with the angles specified in the AXIS structure.
Example: axis 1 to 0_, axis 2 to --90_, axis 3 to 90_, axis 4 to 0_, axis 5 to 0_ and axis 6 to
0_.

Fig. 15 Mechanical zero position

3 Motion programming (continued)

59 of 178

ProgExperteBHR5.2 09.03.00 en

If individual components are omitted when the axis coordinates are entered, the robot only
moves the axes that have been specified; the others do not change position. With

PTP {A3 45}

for example, only axis 3 is moved to 45_. Please note that the angle specifications in the PTP
instruction are absolute values. The robot does not, therefore, rotate the axis 45_ further, but
to the absolute axis position of 45_.

For relative motion, the instruction PTP_REL is used. In order to rotate each of the axes 1
and 4 by 35_, for example, simply program:

PTP_REL {A1 35,A4 35}

PTP {A3 45}

PTP_REL {A3 45}

A3 = 0_

A3 = 90_

Fig. 16 Difference between absolute and relative axis--specific coordinates

Bear in mind, however, with relative motion, that there is no easy way to
resume a motion which has been stopped during execution. After a restart
and renewed line selection or change of program run mode, the controller
is unable to take the distance already covered into account and moves the
robot again by the full relative distance programmed, leading ultimately to
an incorrect end point.

Movement using axis--specific coordinates is usually impractical, however, as the human
programmer thinks and works in terms of Cartesian space. What is more useful, therefore,
is the entry of Cartesian coordinates via a POS structure, as demonstrated in the following
example:

PTP

PTP_REL

Expert Programming

60 of 178

ProgExperteBHR5.2 09.03.00 en

DEF PTP_POS()

$BASE = $WORLD ;setting of the base coordinate system
$TOOL = $NULLFRAME ;setting of the tool coordinate system

$VEL_AXIS[X]=100 ;definition of the axis velocities
$VEL_AXIS[2]=100
$VEL_AXIS[3]=100
$VEL_AXIS[4]=100
$VEL_AXIS[5]=100
$VEL_AXIS[6]=100

$ACC_AXIS[1]=100 ;definition of the axis accelerations
$ACC_AXIS[2]=100
$ACC_AXIS[3]=100
$ACC_AXIS[4]=100
$ACC_AXIS[5]=100
$ACC_AXIS[6]=100

PTP {POS:X 1025,Y 0,Z 1480,A 0,B 90,C 0,S ’B 010’,T ’B 000010’}

END

Bear in mind now, when entering end points in Cartesian coordinates, that along-
side the entries for velocity and acceleration the base coordinate system and tool
coordinate system must also be defined.

In our example, the base coordinate system ($BASE) has been set identical to the world
coordinate system ($WORLD), which is located as standard in the base of the robot
($ROBROOT). The tool coordinate system ($TOOL) has been assigned the null frame
($NULLFRAME = {FRAME: X 0, Y 0, Z 0,A 0,B 0,C 0}), meaning that all entries
relate to the flange center point. The tool center point (TCP) is thus, so to speak, also located
at the flange center point. If a tool is fitted to the flange, the values must be corrected
accordingly. For more information, refer to the documentation on the calibration of tools.

The above PTP instruction now moves the robot in such a way that at the end point of the
motion the TCP is shifted 1025 mm in the X direction, 0 mm in the Y direction and 1480mm
in the Z direction from the robot base. Entries “A”, “B” and “C” define the orientation of the
TCP. Status “S” and Turn “T” define the position of the axes.

Testing this example with a KR 6 robot will produce the same result as in the previous
example. The robot moves to the mechanical zero position. Both instructions are thus
identical for this model of robot.

It is also possible to omit individual components of the geometrical specification when
entering the end point using Cartesian coordinates. The instruction

PTP {Z 1300, B 180}

moves the TCP in the direction of the Z axis to the absolute position 1300 mm and “tilts” the
TCP by 180_.

For relative motion of the robot the PTP_REL command is used again. With

PTP_REL {Z 180, B -90}

the robot can thenbe returned to its original position. Bear inmind again that relativemotions,
once interrupted, cannot be reselected.

Coordinate
systems

3 Motion programming (continued)

61 of 178

ProgExperteBHR5.2 09.03.00 en

200

150

50

100

PTP {X 50, Y 50} PTP_REL {X 50, Y 50}

ZBASE

YBASE

XBASE20015010050

Fig. 17 Difference between absolute and relative Cartesian coordinates

With Cartesian coordinates it is possible to carry out a frame linkage directly in the motion
command using the geometric operator. In this way, it is possible, for example, to initiate
an offset in relation to the base coordinate system without modifying the variable $BASE.

Furthermore, specifying a base offset via the colon operator has a decisive
advantage over redefining $BASE:
The offset occurs in the motion instruction, whereas a $BASE setting must be
made before the motion instruction. In this way, even if the program is stopped
and a subsequent block selection made, the correct base for the motion is always
selected.

Repeated modification of $BASE, as shown in the following sequence,

�
$BASE = $WORLD
�
PTP POS_1
$BASE = {X 100,Y -200,Z 1000,A 0, B 180,C 45)
PTP POS_2
�

on theother hand, would lead to an incorrect endpoint after cancellation of thePOS_2motion
instruction and reselection of the POS_1 instruction, because the POS_1motion instruction
would now also relate to the new base. This also occurs, incidentally, in the event of the first
motion instruction being stopped if a corresponding computer advance run is set.

Further information can be found in the chapter [Motion programming], section
[Computer advance run].

For this reason, where possible, $BASE and $TOOL should only be set once,
e.g. in the initialization section of the program. Subsequent offsets can then be
carried out using the geometric operator.

When teaching points with the basic package supplied as standard, $BASE and $TOOL for
each point are automatically stored in the data list.

In the following example, the end point coordinates are shifted 300 mm in the X direction,
--100mm in the Y direction, and rotatedby 90_ about theZ axis in the second PTP command.

Expert Programming

62 of 178

ProgExperteBHR5.2 09.03.00 en

DEF FR_VERS ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME ;Variable HOME of type AXIS
DECL FRAME BASE1 ;Variable BASE1 of type FRAME

;----------- Initialization ----------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}
BASE1={FRAME: X 300,Y -100,Z 0,A 90,B 0,C 0}

;----------- Main section ----------
PTP HOME ;BCO run
; Motion relative to the $BASE coordinate system
PTP {POS: X 540,Y 630,Z 1500,A 0,B 90,C 0,S 2,T 35}
; Motion relative to the $BASE-CS offset by BASE1
PTP BASE1:{POS: X 540,Y 630,Z 1500,A 0,B 90,C 0,S 2,T 35}
PTP HOME
END

In this example,moreover, the necessary assignments of velocities and accelera-
tions as well as $BASE and $TOOL coordinate systems are no longer carried out
“by hand”. Instead, “BAS.SRC”, which comes as standard, is used for this. To do
this, it must first be made known to the program using the EXT instruction.

The initialization command

BAS (#INITMOV, 0)

then assigns default values to all the important system variables.

Further information can be found in the chapter [Subprograms and functions],
section [Declarations].

Before a program can be executed, block coincidence (BCO) must be established, i.e.
correspondence between the current robot position and the programmed position. Since the
BCO rundoes not represent a programmed, testedmotion, it must be executedwith theStart
key held down (“dead man” function) and at automatically reduced velocity. When the robot
has reached the programmed path, themotion is stopped and the program can be continued
by pressing the Start key again.

No BCO run is carried out in “Automatic External” mode!

It is thus advisable to program a “Home” run as the first motion instruction; this
moves the robot to an unambiguously defined and uncritical initial position in
which block coincidence is then also established. The robot should be brought
into this position again at the end of the program.

The entries “S” and “T” in a POS specification serve to select a specific, unambiguously
defined robot position where several different axis positions are possible for the same point
in space (because of kinematic singularities).

INI

BCO

S and T

3 Motion programming (continued)

63 of 178

ProgExperteBHR5.2 09.03.00 en

When using Cartesian coordinates it is thus very important also to program “Status” and
“Turn” for the first motion instruction in order to define an unambiguous initial position. Since
“S” and “T” are not taken into consideration in continuous--path motions (see 3.3), the first
motion instruction of a program (home run) must always be a complete PTP instruction with
“Status” and “Turn” specified (or a complete PTP instruction with axis coordinates).

In subsequent PTP instructions, the entries “S” and “T” can be omitted so long as no specific
axis position is required, e.g. because of obstacles. The robot retains the old value for S and
selects the T value which gives the shortest possible axis trajectory, which always remains
the same, each time the program is run, because of the one--off programming of “S” and “T”
in the first PTP instruction.

Status and Turn both require integer entries, which should ideally be made in binary form.

Expanding a Cartesian position specification to include the ”Turn” specification makes it
possible to move axes through angles greater than +180_ or less than --180_ without the
need for special motion strategies (e.g. auxiliary points). With rotational axes, the individual
bits determine the sign before the axis value in the following way:

Bit x = 0: angle of axis x � 0_
Bit x = 1: angle of axis x � 0_

Value Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 A6 � 0_ A5 � 0_ A4 � 0_ A3 � 0_ A2 � 0_ A1 � 0_

1 A6 � 0_ A5 � 0_ A4 � 0_ A3 � 0_ A2 � 0_ A1 � 0_

Table 2 Meaning of the Turn bits

The entry T ’B 10011’ thus means that the angles of axes 1, 2 and 5 are negative whereas
those of axes 3, 4 and 6 are positive (all high--order 0 bits can be omitted).

Status S is used to deal with ambiguities in the axis position (see Fig. 18). S is thus
dependent on the current robot kinematic system.

Axis 2
Axis 3

Axis 5

Axis 4 Axis 6

Axis 5

Ambiguities

Fig. 18 Examples of ambiguous robot kinematics

Turn

State

Expert Programming

64 of 178

ProgExperteBHR5.2 09.03.00 en

Details onambiguities in the robot kinematic systemcanbe found in the section [Singulari-
ties].

The meaning of the individual bits is:

Bit 0: Position of the wrist root point (basic/overhead area)
Bit 1: Arm configuration
Bit 2: Wrist configuration

The bits for all jointed--arm robots with 6 axes are set as shown in the following table:

Value Bit 2 Bit 1 Bit 0

0 0_ � A5 � 180_
A5 � --180_

A3 � 	

(depends on robot model)
Basic area

1 --180_ � A5 � 0_
A5 � 180_

A3 � 	

(depends on robot model)
Overhead area

Table 3 Status bits for 6--axis jointed--arm robots

The basic/overhead areas can be visualized in Cartesian terms. To do this, the following
terms are defined:

Wrist root point: Intersection of the wrist axes

A1 coordinate system: If axis 1 is at 0_, it is identical to the $ROBROOT coordinate
system. For values not equal to 0_, it moves with axis 1.

The basic/overhead areas can thus be defined as follows:

G If the x--value of thewrist root point, expressed in the A1 coordinate system, is positive,
the robot is in the basic area.

G If the x--valueof thewrist root point, expressed in theA1 coordinate system, is negative,
the robot is in the overhead area.

Bit 1 specifies the position of the arm. The setting of the bit is dependent on the robot model
in use. For robots whose axes 3 and 4 intersect, the following applies: Bit 1 has the value
0, if axis 3 < 0_, otherwise bit 1 = 1. For robots with an offset between axis 3 and axis 4 (e.g.
KR 30, see Fig. 19), the angle at which the value of bit 1 changes depends on the size of this
offset.

Offset

Fig. 19 Offset between axes 3 and 4 of a KR 30

3 Motion programming (continued)

65 of 178

ProgExperteBHR5.2 09.03.00 en

The effects of the status bits on the robot configuration are illustrated in Fig. 20. The robot
has been moved to the same point in space with the axes in four different positions. In the
first configuration the robot is in a basic position; axis 5 has a value of approx. 45_, axis 3
approx. 80_.

The second robot configuration is barely distinguishable from the first. Axis 4 has simplybeen
rotated by 180_ and the other axes realigned accordingly. So, while the configuration of the
arm remains the same, that of the wrist has changed: Axis 5 is now at approx. --45_, status
bit 2 is therefore 1.

From position 2 to position 3 the arm configuration now changes. Axis 3 rotates to a position
with an angle of approx. --50_, status bit 1 takes the value 0.

In the fourth configuration, the robot is finally in the overhead position. To get here, axis
1, in particular, has been rotated by 180_. Status bit 0 becomes 1.

Fig. 20 Effects of the status bits on the position of the robot

Expert Programming

66 of 178

ProgExperteBHR5.2 09.03.00 en

3.2.3.1 Singularities

In the standard KUKA kinematic system, a distinction is made between 3 different singularity
positions. These are the overhead singularity, the extended position and the wrist axis
singularity. One characteristic of a singularity is that unambiguous reverse transformation
(conversion of Cartesian coordinates to axis--specific values) is not possible, even though
Status and Turn are specified. Small Cartesian changes in the immediate vicinity of a
singularity give rise to major changes in the axis angles.

Overhead singularity (�������� position)

Here, the wrist root point, located at the intersection of axes A4, A5 and A6, is positioned
directly on axis 1.

Wrist root point

The position of axis 1 cannot be determined unambiguously by means of the reverse
transformation and can thus take any value.

If the end point of a PTP motion results in the overhead singularity, the controller offers the
following options:

G Axis 1 is moved to “0” degrees (default position) during the PTP motion.

G The axis angle for axis 1 remains the same for both the start point and the end point.

The system variable “$SINGUL_POS[1]”, which can be modified by editing the machine
data, is available for this.

Further information about “$SINGUL_POS[1]” can be found in the separate documenta-
tion [System Variables].

3 Motion programming (continued)

67 of 178

ProgExperteBHR5.2 09.03.00 en

Extended position (�������� position)

The extension of A2--A3 intersects the wrist root point.

Wrist root point

In this case the robot is at the limit of itswork envelope. Although reverse transformationdoes
provide unambiguous axis angles, low Cartesian velocities result in high axis velocities for
axes 2 and 3.

Wrist axis singularity (����5 position)

In this case, axes 4 and 6 are parallel. It is not possible to determine the positions of these
two axes unambiguously by means of reverse transformation as there is an infinite number
of axis positions for A4 and A6 for which the sum of the axis angles is identical.

Expert Programming

68 of 178

ProgExperteBHR5.2 09.03.00 en

¦0.01812_

Wrist root point

If the end point of a PTP motion more--or--less results in this singularity (--0.01812_ ± A5
± +0.01812_), the controller offers the following possible solutions:

G Axis 4 is moved to “0” degrees (default position) during the PTP motion.

G The axis angle for axis 4 remains the same for both the start point and the end point.

The system variable “$SINGUL_POS[3]”, which can be modified by editing the machine
data, is available for this.

Further information about “$SINGUL_POS[3]“ can be found in the separate documenta-
tion [System Variables].

In exceptional cases, it may not be possible to move to a point outside this singularity with
exactly the same axis angles with which the point was originally taught.

3.3 CP motions (CP = Continuous Path)

3.3.1 Velocity and acceleration

Unlike with PTP motions, it is not just start and end positions that are predefined in the case
of continuous--path motions. Additionally, movement of the TCP along a linear or circular
path between these points is also required.

The velocities and rates of acceleration to be entered do not relate any longer, therefore, to
the individual axes, but to the motion of the TCP. The TCP is thereby moved at a precisely
defined velocity. Table 4provides anoverviewof the systemvariables to beprogrammedand
their units.

Variable name Data
type

Unit Function

$VEL.CP REAL m/s Travel speed (path velo-
city)

Velocities
$VEL.ORI1 *1 REAL _/s Swivel velocity

Velocities
$VEL.ORI2 *1 REAL _/s Rotational velocity

$VEL_AXIS[4]--[6]
*2

INT % Axis velocities of the
wrist axes

3 Motion programming (continued)

69 of 178

ProgExperteBHR5.2 09.03.00 en

$ACC.CP REAL m/s2 Path acceleration

$ACC.ORI1 *1 REAL _/s2 Swivel acceleration

Accelerations $ACC.ORI2 *1 REAL _/s2 Rotational acceleration

$ACC_AXIS[4]--[6]
*2

INT % Axis accelerations of the
wrist axes

*1 Required information for $ORI_TYPE = #CONSTANT or #VAR
*2 Required information for $ORI_TYPE = #JOINT

Table 4 System variables for velocities and accelerations

At any givenmoment duringexecution of themotion, at least oneof themotioncomponents
-- translation, swiveling, rotation or Axis[4]...[6] -- is being carried out with programmed
acceleration and velocity. The non--dominant components are adapted phase--synchro-
nously.

When the initialization sequence of the basic package is called, the default settings for the
velocities and rates of acceleration of CP motions are also preset to the maximum values
defined in the machine data or $CONFIG.DAT.

The axis velocity and acceleration are still monitored for CPmotions and, in the event of the
monitoring limit values defined in the system variables $ACC_ACT_MA and $VEL_ACT_MA
being exceeded, a braking reaction is triggered and an error message is generated. The
limits for axis acceleration and velocity depend on the individual robot type and the operating
mode used.

The robot is stopped as soon as one of the maximum permissible values for velocity or
acceleration is exceeded. This can happen, for example, in the case of a robot motion near
the wrist singularity (extended wrist axis position).

The wrist singularity is the position in
which axes A 4 and A 6 are parallel.Wrist root point

Fig. 21 Wrist singularity

It is possible, using the system variable $CP_VEL_TYPE, to reduce the axis feed rates, and
thus the acceleration and velocity, in order to prevent a response from the monitoring limits
(braking reaction). The default setting for this variable is #CONSTANT, i.e. reduction is not
active in program mode. The value #VAR_T1 must be set if this function is required in T1
mode (lower axis velocities and accelerations are used in T1) and the value #VAR_ALL for
all other operating modes. Reduction is always active in jog mode.

The system variable $CPVELREDMELD causes a message to be generated, in both test
modes, if the path velocity is reduced. In order to do so, the variable must be assigned the
value “1”.

Expert Programming

70 of 178

ProgExperteBHR5.2 09.03.00 en

3.3.2 Orientation control

If the orientation in space of the tool is to change during the path motion, the orientation
control mode can be set using the system variable $ORI_TYPE. The value of this variable
remains valid until a new value is assigned or the program is reset.

$ORI_TYPE = #CONSTANT

The orientation remains constant during the CP motion. The programmed orientation is
disregarded for the end point and that of the start point is used.

Fig. 22 No change in orientation

$ORI_TYPE = #VAR (default)

During the path motion, the orientation of the tool changes continuously from the start
position to the end position. This is achieved by rotating and pivoting the tool direction. This
option is thus recommended in cases where the tool direction is of particular interest.

If, near a singularity, it is not possible tomaintain theprogrammedvelocity, the $ORI_TYPE
option “#JOINT” should be used for the motion block in question.

The value “#VAR” is also set during initialization, by BAS(#INITMOV,0).

Fig. 23 Change of orientation with a linear motion

3 Motion programming (continued)

71 of 178

ProgExperteBHR5.2 09.03.00 en

$ORI_TYPE = #JOINT

During the path motion, the orientation of the tool changes continuously from the start
position to the end position. This is doneby linear transformation of thewrist axis angles. The
problem of the wrist singularity can be avoided using this option as there is no orientation
control by rotating and pivoting the tool direction.

When thepath is planned, theBaseandTool frame forboth thestart andendpositionsmust
be known as these are required for calculating the position of the wrist axes.
If the Base or Tool frame positions change during execution of the motion,
ORI_TYPE = #JOINT must not be used.

Unlike with the orientation types “#Constant” and “#Var”, it is not the wrist root point
(intersection of the wrist axes) that is of importance, but the TCP (tool reference point).

In exceptional cases, it may not be possible to address certain end positions using the
orientation type “#JOINT”. This is the case if a change in status would occur when the end
point is calculated. A change in status occurs when the TCP passes from one area delimited
by the extension of the line A 2 – A 3, to the other (see Fig. 24 and Fig. 25). For this reason,
the robot is stopped at the start of the main run and a corresponding error message is
displayed in the message window. In such a case, select a different orientation type
(e.g. “#VAR”).

Fig. 24 and Fig. 25 show a point in space being addressed with identical Cartesian
coordinates, but a different status. The wrist axis angles are absolutely identical in both
illustrations, but the orientation of the TCP is different.

Status “A” of the robot position

Fig. 24 TCP below the straight line A 2 – A 3

Expert Programming

72 of 178

ProgExperteBHR5.2 09.03.00 en

Status “B” of the robot position

Fig. 25 TCP above the straight line A 2 – A 3

If explicit assignments have been made in an existing KRL program at Expert level
(e.g. “$ORI_TYPE=#CONSTANT”), these must be adapted manually. The reason for this
is that a corresponding assignment is automatically made in everymotion fold, overwriting
the previous definition.

For circular motions, in addition to constant (#CONST) and variable (#VAR) orientation, there
is a choice between space--related or path--related orientation. The variable “$CIRC_TYPE”
is used for this.

The variable “$CIRC_TYPE” is meaningless in the case of a linear transformation of the
wrist axis angles with “$ORI_TYPE = #JOINT”.

$CIRC_TYPE = #BASE

Space--related orientation control during the circular motion. This value is also set during
initialization, by BAS(#INITMOV,0).

With space--related orientation control, the orientation is controlled relative to the current
base system ($BASE).

Constant, space--related orientation control is especially useful for applications where the
emphasis is on the pathmotion, i.e. guiding the TCP along a circular path. This is particularly
the case for applications with very little change in orientation between start and end point or
applications where the orientation in space remains exactly constant (see Fig. 26) during a
circular motion (e.g. adhesive application with rotationally symmetrical adhesive nozzle).

Constant +
space--related

3 Motion programming (continued)

73 of 178

ProgExperteBHR5.2 09.03.00 en

Fig. 26 Constant space--related orientation control with circular motions

A space--related change in orientation ($ORI_TYPE=#VAR) between the start and end
positions is again carried out by the superposition of swiveling and rotational motions (see
Fig. 27).

Fig. 27 Variable space--related orientation control with circular motions

Variable +
space--related

Expert Programming

74 of 178

ProgExperteBHR5.2 09.03.00 en

$CIRC_TYPE = #PATH

Path--related orientation control during the circular motion.

With path--related orientation control, the longitudinal axis of the tool is moved relative to the
plane and tangent of the circle. This interrelation can be explained using the so--called tool--
based moving frame (see Fig. 28).

Fig. 28 Constant path--related orientation control with circular motions

The tool--basedmoving frame comprises the circle tangent vector t, the normal vector n and
the binormal vector b. The tool orientation is kept aligned on the circle segment in Fig. 28
by the tool--basedmoving frame. Relative to the tool--basedmoving frame, the tool positions
undergo no change of orientation. This is an important requirement in arc welding, for
example.

In the illustrated example, the tool orientation relative to the tool--based moving frame
remains unchanged throughout the motion from the start point to the end point
($ORI_TYPE=#CONST).

If a path--related change in orientation between the start and end points is desired
($ORI_TYPE=#VAR), this is carried out relative to the tool--based moving frame by means
of overlapped rotation and swiveling (see Fig. 29). Orientation control in the tool--based
moving frame with circular motions is thus perfectly analogous to orientation control with
linear motions.

Constant +
path--related

Variable +
path--related

3 Motion programming (continued)

75 of 178

ProgExperteBHR5.2 09.03.00 en

Fig. 29 Variable path--related orientation control with circular motions

The default settings for the system variables used for orientation control with path motions
are listed again in Table 5:

in the system by BAS(#INITMOV,0)

$ORI_TYPE #VAR

$CIRC_TYPE #PATH #BASE

Table 5 Default settings of $ORI_TYPE and $CIRC_TYPE

3.3.3 Linear motions

In the case of a linear motion, the KR C... calculates a straight line from the current position
(the last point programmed in the program) to the position specified in the motion command.

A linear motion is programmed using LIN or LIN_REL keywords in connection with the
specification of the endpoint, i.e. analogous toPTP programming. The endposition for linear
motions is entered with Cartesian coordinates. Only the data types FRAME or POS are thus
permissible.

In the case of linear motions, the status of the end point is the same as that of the
start point. Specification of Status and Turn for an end point of the data type POS
will thus be ignored. A PTP motion (e.g. HOME run) with complete position
specification (coordinate specification including status) must therefore be
programmed before the first LIN instruction.

The assignment of velocity and acceleration variables necessary for continuous--path
motions, as well as the setting of tool and base coordinate systems, is again carried out, in
the following sample program, using the initialization routine BAS.SRC.

LIN

Expert Programming

76 of 178

ProgExperteBHR5.2 09.03.00 en

DEF LIN_BEW ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND: IN, REAL: IN)
DECL AXIS HOME ;Variable HOME of type AXIS

;----------- Initialization ----------
BAS (#INITMOV, 0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME = {AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

;----------- Main section ----------
PTP HOME ;BCO run
PTP {A5 30}

; Linear motion to the specified position, the orientation
; is continuously changed to the end orientation
LIN {X 1030,Y 350,Z 1300,A 160,B 45,C 130}

; Linear motion in the Y-Z plane, S and T are ignored
LIN {POS: Y 0,Z 800,A 0,S 2,T 35}

; Linear motion to the specified position, the orientation
; is not changed
$ORI_TYPE=#CONST
LIN {FRAME: X 700,Y -300,Z 1000,A 23,B 230,C -90}

; The orientation is still not changed
LIN {FRAME: Z 1200,A 90,B 0,C 0}

; Relative motion along the X axis
LIN_REL {FRAME: X 300}

PTP HOME
END

3 Motion programming (continued)

77 of 178

ProgExperteBHR5.2 09.03.00 en

3.3.4 Circular motions

To define a circle or arc in space unambiguously, three points are neededwhich are different
from one another and do not lie on a straight line.

The start point of a circular motion is again formed, as with PTP or LIN, by the current
position.

In order to program a circular motion with the instructions CIRC or CIRC_REL, therefore,
an auxiliary point must be defined in addition to the end point. When the controller
calculates the motion path, only the translational components (X, Y, Z) of the auxiliary
point are evaluated. Depending on the orientation control mode, the orientation of the
TCP either changes continuously from the start point to the end point or remains
constant.

In addition to the auxiliary and end positions it is also possible to program a circular angle
using the option CA (Circular Angle). The geometry of the arc is defined, as always, by
means of start, auxiliary andendpoints. Theactual endposition on thearc, however,where
themotionends, is determinedby theprogrammedcircular angle. This is particularly useful
for reprogramming the end position without changing the geometry of the circle.

The arc to be covered can be lengthened or shortened according to the circular angle. The
programmed end orientation is then reached at the actual end point. The rotation direction,
i.e. the direction in which the TCP should move round the arc, can be defined by the sign
before the circular angle (see Fig. 30):

CA > 0_ in the programmed direction (start point � auxiliary point � end point)

CA < 0_ against the programmed direction (start point � end point � auxiliary
point)

The value for the circular angle is unlimited. In particular, full circles (> 360_) can be
programmed.

Start point

Auxiliary
point

Programmed
end point

�

�

Actual end point

CA = 235

CA > 0�

Start point

Auxiliary point

Programmed
end point

�

�

Actual end point

CA = --235

CA < 0�

Fig. 30 Effect of the CA option in the CIRC or CIRC_REL command

Relative specifications for auxiliary and end positions (CIRC_REL) relate to the respective
start position. As in the case of LIN motions, axis--specific position specifications are not
permissible. In the same way, $BASE and $TOOL must be fully assigned before executing
a circular motion.

CIRC

CA

Expert Programming

78 of 178

ProgExperteBHR5.2 09.03.00 en

DEF CIRC_BEW ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME

;----------- Initialization ----------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

;----------- Main section ----------
PTP HOME ;BCO run
PTP {POS: X 980,Y -238,Z 718,A 133,B 66,C 146,S 6,T 50}

; Space-related variable orientation control (default setting)
CIRC {X 925,Y -285,Z 718},{X 867,Y -192,Z 718,A 155,B 75,C 160}

; Space-related constant orientation control
; End point defined by angle specification
$ORI_TYPE=#CONST
CIRC {X 982,Y -221,Z 718,A 50,B 60,C 0},{X 1061,Y -118,Z 718,
A -162,B 60,C 177}, CA 300.0

; Path-related constant orientation control
; End point defined by angle specification (backwards)
$CIRC_TYPE=#PATH
CIRC {X 867,Y -192,Z 718},{X 982,Y -221,Z 718,A 0}, CA -150

$ORI_TYPE=#VAR
LIN {A 100} ; Reorientation of the TCP

; Path-related variable orientation control
CIRC {X 963.08,Y -85.39,Z 718},{X 892.05,Y 67.25,Z 718.01,
A 97.34,B 57.07,C 151.11}

; Relative circular motion
CIRC_REL {X -50,Y 50},{X 0,Y 100}

PTP HOME
END

3 Motion programming (continued)

79 of 178

ProgExperteBHR5.2 09.03.00 en

3.4 Computer advance run

A highly important performance feature of an industrial robot is the rapidity with which it can
complete its work. The efficacy with which the robot can process the application program,
comprising not only motions, but also arithmetic and peripheral--controlling instructions, is,
along with the robot dynamics, of major significance in this respect.

Faster processing of programs can be achieved

G by reducing the duration of robot motions and

G by shortening the idle time between motions.

Where constraints exist, such as maximum axis velocities and acceleration rates, the first
of these can be achieved by the time--optimized approximation of motions.

Further information canbe found in the chapter [Motionprogramming], section [Motions
with approximate positioning].

The idle time between motions can be shortened by executing the time--consuming
arithmetic and logic instructions between motion commands while the robot is moving, i.e.
processing them during the advance run (the instructions “run” in “advance” of the motion).

Using the system variable $ADVANCE, it is possible to define themaximumnumber ofmotion
blocks the advance runmay process ahead of themain run (the motion block currently being
executed). The main run pointer, which can be seen on the graphical user interface when
the program is running, always indicates the motion command currently being processed.

The advance run indicator, on the other hand, is not visible and can indicate both instructions
which are executed completely by the controller and motion blocks which are only prepared
by the controller and executed later in the main run. (see Fig. 31).

Advance run pointer is located here;
$ADVANCE = 1

Main run pointer

Fig. 31 Main run and advance run pointers

In the program extract shown above, the advance run is set to 1 and the main run pointer
is positioned in line 16 (i.e. the LINmotion is currently being executed). A computer advance
run of 1means that the instructions in lines 16 to 22have beencompletely processedparallel
to the execution of the motion and that the motion data for the PTP motion in line 24 are
currently being prepared.

$ADVANCE

Expert Programming

80 of 178

ProgExperteBHR5.2 09.03.00 en

Tomakeanapproximationpossible, a computer advance run of at least 1must be set. (The
variable $ADVANCE has the value “3” by default. A maximum of 5 advance run steps is
possible.)
No computer advance run is possible in an interrupt subprogram. The controller always
processes interrupt programs line by line; for this reason approximation is not possible in
interrupt programs.

Default settings of $ADVANCE:

in the system by BAS (#INITMOV, 0)

$ADVANCE 0 3

Instructions and data which affect the peripheral equipment (e.g. I/O instructions),
or which are based on the current state of the robot, trigger an advance run stop
(see Table 6). This is necessary in order to guarantee the correct sequence of
instructions and robot motions.

Statements ANOUT ON ANOUT OFF

ANIN ON ANIN OFF

DIGIN ON DIGIN OFF

PULSE

HALT WAIT

CREAD CWRITE COPEN CCLOSE

SREAD SWRITE

CP-PTP combination without approximate positioning

Instructions
combined with

END (if a non--global interrupt has been defined in the module)
combined with
an interrupt INTERRUPT DECL (if the interrupt has already been declared)an interrupt

RESUME without BRAKE

Customary
system

$ANOUT[No] $ANIN[No]
system
variables $DIGIN1 $DIGIN2 � $DIGIN6variables

$OUT[No] $IN[No]

$AXIS_ACT $AXIS_BACK $AXIS_FOR $AXIS_RET

$POS_ACT $POS_BACK $POS_FOR $POS_RET

$AXIS_INC $AXIS_INT $POS_ACT_MES $POS_INT

$TORQUE_AXIS $ASYNC_AXIS

$TECH[X].MODE, $TECH[X].CLASS for certain operations

$LOAD, $LOAD_A1, $LOAD_A2, $LOAD_A3 (in the case of an
absolutely accurate robot with a change of load)

Further system
variables

$ALARM_STOP
$EM_STOP
$ACT_TOOL
$OV_PRO
$ASYNC_EX_AX
_DECOUPLE

$AXIS_ACTMOD
$EXTSTARTTYP
$PAL_MODE
$WORKSPACE

$INHOME_POS
$REVO_NUM
$ACT_BASE
$IBUS_OFF

$ON_PATH
$SAFETY_SW
$ACT_EX_AX
$IBUS_ON

Automatic
advance run
stop

3 Motion programming (continued)

81 of 178

ProgExperteBHR5.2 09.03.00 en

Imported
variables

all, when
accessed

Other In the event of a change of filter between approximated blocks, an
advance run stop is triggered.

Table 6 Instructions and variables which automatically stop the advance run

In applications where this advance run stop should be prevented, the command CONTINUE
must be programmed immediately before the relevant instruction. The controller then allows
the advance run to continue. The effect of this command is limited to the next program line
(even if this line is empty!!).

If, on the other hand, you want to stop the advance run at a specific point, without having
to alter the system variable $ADVANCE, you can make use of a little trick: Simply program
await timeof 0 seconds at this point. The instructionWAIT automatically stops theadvance
run, but does nothing else:

WAIT SEC 0

Further information can be found in the chapter [Program execution control], section
[Wait times].

3.5 Motions with approximate positioning
In order to increase velocity, points for which exact positioning is not necessary can be
approximated. The robot takes a shortcut as illustrated in Fig. 32.

The approximate positioning contour is automatically generated by the controller. The
programmer can only influence the beginning and the end of approximate positioning. To
calculate the approximation instruction, the controller needs the data for the start point, the
approximate positioning point and the end point.

To make approximate positioning possible, a computer advance run ($ADVANCE)
of at least 1 must be set. If the computer advance run is too small, the message
“Approximation not possible” appears and the robot is positioned exactly at each
point.

If, after an approximate positioning instruction, you program an instruction which automati-
cally stops the advance run, approximate positioning is not possible.

Further information on the TRIGGER instruction as a remedy can be found in the chapter
[Trigger and path--related switching actions].

Auxiliary point

Start point

End point

Approximate
positioning

Fig. 32 Approximate positioning at auxiliary points

CONTINUE

Approximate
positioning
contour

Expert Programming

82 of 178

ProgExperteBHR5.2 09.03.00 en

3.5.1 PTP--PTP approximate positioning

For the purposes of PTP approximate positioning, the controller calculates the distances the
axes are to move in the approximate positioning range and plans velocity profiles for each
axis which ensure tangential transition from the individual instructions to the approximate
positioning contour.

Approximate positioning begins when the last (= leading) axis falls below a specified angle
to the approximate positioning point. An angle is predefined for each axis in the machine
data.

$APO_DIS_PTP[1] = 90

$APO_DIS_PTP[6] = 90

In the program, $APO.CPTP enables the start of approximate positioning to be specified as
a percentage of these maximum values. For example:

$APO.CPTP = 50

In this example, approximate positioning is begun when the first axis has a residual angle
of 45_ (50% of 90_) to cover to the approximate positioning point. Approximate positioning
ends at the exact moment the first axis has covered an angle of 45_ from the approximate
positioning point.

� The greater the value of $APO.CPTP, the more the path is rounded.

Approximate positioning can never take place over the middle of the block! In such a case,
the system independently limits itself to the middle of the block.

The approximate positioning of a point is displayed in the PTP command by adding the key
word C_PTP:

PTP POINT4 C_PTP

The PTP approximate positioning instruction too is executed in a time--optimized manner,
i.e. during approximate positioning, there is always at least one axis moving with the
programmed acceleration or velocity limits. The system simultaneously ensures that the
permissible gear andmotor torques for each axis are not exceeded. Furthermore, the higher
motion profile, set by default, ensures motion that is optimized in terms of velocity and
acceleration.

Further information can be found in the chapter [Motion programming], section [Higher
motion profile].

From the following example, you can see the effects of the approximate positioning
instruction and the variable $APO.CPTP. The path covered is illustrated in the x--y plane in
Fig. 33. Particularly apparent in this diagram is the fact that the TCP does not move in a
straight line between the end points in PTP motions.

Start of
approximate
positioning

C_PTP

3 Motion programming (continued)

83 of 178

ProgExperteBHR5.2 09.03.00 en

DEF UEBERPTP ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME

;----------- Initialization ----------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

;----------- Main section ----------
PTP HOME ;BCO run

PTP {POS:X 1159.08,Y -232.06,Z 716.38,A 171.85,B 67.32,C
162.65,S 2,T 10}

;Approximate positioning of the point
PTP {POS:X 1246.93,Y -98.86,Z 715,A 125.1,B 56.75,C 111.66,S 2,T
10} C_PTP

PTP {POS:X 1109.41,Y -0.51,Z 715,A 95.44,B 73.45,C 70.95,S 2,T
10}

;Approximate positioning of two points
$APO.CPTP=20
PTP {POS:X 1296.61,Y 133.41,Z 715,A 150.32,B 55.07,C 130.23,S
2,T 11} C_PTP
PTP {POS:X 988.45,Y 238.53,Z 715,A 114.65,B 50.46,C 84.62,S 2,T
11} C_PTP

PTP {POS:X 1209.5,Y 381.09,Z 715,A -141.91,B 82.41,C -159.41,S
2,T 11}

PTP HOME
END

x=1159.08
y=--232.06

x=1246.93
y=--98.86

x=1109.41
y=--0.51

x=1296.61
y=133.41

x=988.45
y=238.53

x=1209.5
y=381.09

y

x

Fig. 33 Example of PTP--PTP approximate positioning

Expert Programming

84 of 178

ProgExperteBHR5.2 09.03.00 en

Since the path of a PTP motion is generally neither a straight line nor situated in a plane
in space, it should not actually, strictly speaking, be represented as in Fig. 33. Despite the
fact that the z value for all points in the example is identical, not every point on the motion
path lies in the plane z=715 mm. The illustrated path is thus only a projection, in the x--y
plane, of the actual path.

3.5.2 LIN--LIN approximate positioning

In order to achieve continuous motion along complex paths, approximate positioning be-
tween individual linear blocks is also necessary. The various orientation motions in the LIN
blocks must succeed one another smoothly here also

The controller calculates a parabolic path for the approximate positioning contour as this
contour form provides a very close approximation of the path of the individual blocks with
optimal use of acceleration reserves in the approximate positioning range.

Three predefined variables are available for specifying the start of approximate positioning:

Variable Data
type

Unit Meaning Keyword in
the command

$APO.CDIS REAL mm Translational distance criterion C_DIS

$APO.CORI REAL _ Orientation distance C_ORI

$APO.CVEL INT % Velocity criterion C_VEL

Table 7 System variables for defining the start of approximate positioning

A translational distance can be assigned to the variable $APO.CDIS. If the approximate
positioning is triggered by this variable, the controller leaves the individual block contour, at
the earliest, when the distance from the end point falls below the value in $APO.CDIS.

An orientation distance can be assigned to the variable $APO.CORI. In this case, the
individual block contour is left, at the earliest, when the dominant orientation angle (swiveling
or rotation of the longitudinal tool axis) falls below theangle distance, defined in$APO.CORI,
from the programmed approximate positioning point.

A percentage value can be assigned to the variable $APO.CVEL. This value specifies the
percentageof theprogrammedvelocity ($VEL) at which theapproximate positioningprocess
is started, at the earliest, in the deceleration phase of the individual block. The component
which, during themotion, reaches or comes closest to theprogrammedvelocity value, is then
evaluated in terms of translation, swivel and rotation.

� The larger the values in $APO.CDIS, $APO.CORI or $APO.CVEL, the earlier
the approximate positioning begins.
In certain circumstances, the system may shorten approximate positioning
(middle of the block, symmetry criterion), but will never lengthen it.

Approximate positioning is activated by inserting one of the keywords C_DIS, C_ORI or
C_VEL into the LIN or LIN_REL instruction.

The following example serves to illustrate this in conjunction with Fig. 34:

Start of
approximate
positioning

Distance
criterion

Orientation
criterion

Velocity
criterion

C_DIS
C_ORI
C_VEL

3 Motion programming (continued)

85 of 178

ProgExperteBHR5.2 09.03.00 en

DEF UEBERLIN ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME

;----------- Initialization ----------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

;----------- Main section ----------
PTP HOME ;BCO run

PTP {POS: X 1159.08,Y -232.06,Z 716.38,A 171.85,B 67.32,C
162.65,S 2,T 10}

;Approximate positioning of the point using distance criterion
$APO.CDIS=20
LIN {X 1246.93,Y -98.86,Z 715,A 125.1,B 56.75,C 111.66} C_DIS
LIN {X 1109.41,Y -0.51,Z 715,A 95.44,B 73.45,C 70.95}

;Approximate positioning of two points
LIN {X 1296.61,Y 133.41,Z 714.99,A 150.32,B 55.07,C 130.23}
C_ORI
LIN {X 988.45,Y 238.53,Z 714.99,A 114.65,B 50.46,C 84.62} C_VEL

LIN {X 1209.5,Y 381.09,Z 715,A -141.91,B 82.41,C -159.41}

PTP HOME
END

x=1159.08
y=--232.06

x=1246.93
y=--98.86

x=1109.41
y=--0.51

x=1296.61
y=133.41

x=988.45
y=238.53

x=1209.5
y=381.09

y

x

Fig. 34 Example of LIN--LIN approximate positioning

The position at which the approximate positioning contour joins the subsequent LIN block
is automatically calculated by the controller. If $ACC and $VEL are identical for both
individual blocks and the lengths of the blocks are sufficient, the approximate positioning
parabola is symmetrical with the bisector of the angle between the two individual blocks.
With short blocks, the start of approximate positioning is limited to half the length of the
block. The velocity is here reduced in such a way that any subsequent exact positioning
can always be carried out.

Expert Programming

86 of 178

ProgExperteBHR5.2 09.03.00 en

The transitions between individual blocks and the approximate positioning contour are con-
tinuous and tangential. This guarantees a “smooth” transition,minimizingmechanical stress,
since the velocity components are always continuous.

The contour generated by the controller in the approximate positioning range is independent
of override alterations which are permissible at any stage of the motion.

3.5.3 CIRC--CIRC and CIRC--LIN approximate positioning

Approximate positioning between CIRC blocks and other CP blocks (LIN or CIRC) is almost
identical to approximate positioning between two LIN blocks. The orientationmotion and the
translational motion should pass smoothly, from one individual block contour to the next,
without sudden changes in velocity. The start of approximate positioning is again defined by
the variables $APO.CDIS, $APO.CORIor $APO.CVEL, the evaluation of which is carried out
in exactly the same way as for LIN blocks. The desired approximate positioning criterion is
again set with the aid of the key words C_DIS, C_ORI or C_VEL.

Further information canbe found in the chapter [Motion programming], section [LIN--LIN
approximate positioning].

CIRC--CIRC approximate positioning is also explained with the help of an example and illus-
trated motion path:

DEF UEBERCIR ();------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME;----------- Initialization ----------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0};----------- Main
section ----------
PTP HOME ;BCO run
PTP {POS: X 980,Y -238,Z 718,A 133,B 66,C 146,S 6,T 50}
; Space-related variable orientation control
; Approximate positioning using distance criterion
$APO.CDIS=20
CIRC {X 925,Y -285,Z 718},{X 867,Y -192,Z 718,A 155,B 75,C 160}
C_DIS

; Space-related constant orientation control
; End point defined by angle specification
; Approx. pos. not possible because of adv. run stop due to $OUT
$ORI_TYPE=#CONST
CIRC {X 982,Y -221,Z 718,A 50,B 60,C 0},{X 1061,Y -118,Z 718,A
-162,B 60,C 177}, CA 150 C_ORI
$OUT[3]=TRUE

; Path-related variable orientation control
; Approximate positioning using orientation criterion
$ORI_TYPE=#VAR
$CIRC_TYPE=#PATH
CIRC {X 963.08,Y -85.39,Z 718},{X 892.05,Y 67.25,Z 718.01,A
97.34,B 57.07,C 151.11} C_ORI

3 Motion programming (continued)

87 of 178

ProgExperteBHR5.2 09.03.00 en

; Relative circular motions

; Approximate positioning using velocity criterion
$APO.CVEL=50
CIRC_REL {X -50,Y 50},{X 0,Y 100} C_VEL

; Approximate positioning using distance criterion
$APO.CDIS=40
CIRC_REL {X -50,Y 50},{X 0,Y 100} C_DIS

CIRC_REL {X -50,Y 50},{X 0,Y 100}

PTP HOME
END

150_

x=980
y=--238

x=867
y=--192

y=100y=100y=100

y

x

Fig. 35 Example of CIRC--CIRC approximate positioning

In the case of approximate positioning with CIRC blocks, it is not generally possible to cal-
culate a symmetrical approximate positioning contour because of the need for tangential
transitions. The approximate positioning path thus consists of two parabolic segments,
which have a tangential transition between each other and also to the individual blocks.

Start of approximate
positioning

End of approximate positioning

LIN--CIRC
Approximate
positioning

Fig. 36 Approximate positioning contour with LIN--CIRC blocks

In the case of CIRC approximate positioning, interpolation is always space--
related. The start orientation is always the orientation reached at the approximate
positioning point. If two approximate positioning blocks with path--related orienta-
tion are executed, the change in orientation is nonetheless space--related in the
approximate positioning range.

Expert Programming

88 of 178

ProgExperteBHR5.2 09.03.00 en

3.5.4 PTP--CP approximate positioning

It is possible to approximate axis--specific PTP and Cartesian path motion instructions. The
PTP motion offers the following advantages:

G It is fundamentally quicker than its Cartesian counterpart, particularly near singularity
positions.

G Unlike Cartesian interpolation, it enables a change of configuration, e.g. a transition
from the basic area to the overhead area or a complete swivel through the outstretched
wrist position.

The precise path of a PTP motion cannot be predicted exactly as the robot uses the
quickest path it can. This path is influenced slightly by a number of factors (e.g. the jog
velocity).

The advantages of axis--specific interpolation can only be used to the full if a continuous
transition between axis--specific and Cartesian blocks is possible, because the time won
elsewhere is to a large extent lost again in the event of exact positioning.

The programming of PTP--CP approximate positioning is perfectly analogous to the
procedures already described. The approximate positioning range is defined in the following
manner:

PTP � CP approximate positioning

Thebeginningof theapproximate positioning is determinedby thePTP criterion$APO.CPTP
in the customary way. An approximate positioning criterion (C_DIS, C_ORI, C_VEL),
defining entry into the CP block, can be explicitly specified for the followingCPmotion block.

This is done by means of the instruction sequence:

PTP POINT1 C_PTP C_DIS
LIN POINT2

If there is no specification in the PTP block for the approximate positioning criterion desired
in the CP block, C_DIS is taken as the default value for determining entry into the CP block.

The approximate positioning contour of a PTP--CP or CP--PTP approximation is a PTP
motion. It is thus not possible to determine the approximation path exactly.

P1 P2

P3
Program:
...
LIN P1
LIN P2 C_DIS
PTP P3
...
The problem here is that the approximate
positioning motion is unpredictable. There is
the possibility of a collision with the table.

Table

CP--PTP

If a precise path is required, e.g. a CP motion parallel to the table, caution must be
exercised in leaving this path by means of a CP--PTP combination with approximate
positioning. The same applies to a PTP--CP motion to reach this path.

PTP�CP
approximate
positioning

3 Motion programming (continued)

89 of 178

ProgExperteBHR5.2 09.03.00 en

P3

P2

P1

P2_AUX

In order to counter the above problem, while
avoiding exact positioning, an additional CP
motion (P2_AUX) must be inserted.

Program:
...
LIN P1
LIN P2 C_DIS
LIN P2_AUX C_DIS
PTP P3
...

CP--CP--PTP

Table

CP � PTP approximate positioning

Theprogrammedapproximate positioning criterion counts for theCP block, while the system
reverts to $APO.CPTP for the PTP block.

An instruction sequence could thus look like this:

CIRC AUX_POINT1 C_VEL
PTP POINT2

CP--PTP approximate positioning can only be ensured, however, if none of the robot axes
rotatesmore than 180_ in the CP block and if status S remains unchanged, because these
position changes cannot be predicted when the approximate positioning contour is
planned. If such a change in configuration arises before approximate positioning in theCP
block (change in S or T), the path block is executed as an individual block to the
programmed end point and the error message “CP/PTP approximation not possible”,
which must be acknowledged, is displayed. The user should then break up the CP block
into several individual blocks, so that the individual block before the CP--PTP approximate
positioning is short enough to be able to preclude, for all robot axes, a change in S or T.

Further information can be found in the chapter [Motion programming], section [Motion
commands].

In the following example, PTP--LIN, LIN--CIRC and CIRC--PTP approximate positioning
have been programmed.

CP�PTP
approximate
positioning

Expert Programming

90 of 178

ProgExperteBHR5.2 09.03.00 en

DEF UEBERB_P ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME

;----------- Initialization ----------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

;----------- Main section ----------
PTP HOME ;BCO run
PTP {POS: X 1281.55,Y -250.02,Z 716,A 79.11,B 68.13,C 79.73,S
6,T 50}

PTP {POS: X 1209.74,Y -153.44,Z 716,A 79.11,B 68.13,C 79.73,S
6,T 50} C_PTP C_ORI
LIN {X 1037.81,Y -117.83,Z 716,A 79.11,B 68.13,C 79.73}

$APO.CDIS=25
LIN {X 1183.15,Y -52.64,Z 716,A 79.11,B 68.13,C 79.73} C_DIS
CIRC {POS: X 1134,Y 53.63,Z 716},{X 1019.21,Y 124.02,Z 716,A
79.11,B 68.12,C 79.73}

CIRC {POS: X 1087.47,Y 218.67,Z 716},{X 1108.78,Y 267.16,Z 716,A
79.11,B 68.12,C 79.73} C_ORI
PTP {POS: X 1019.31,Y 306.71,Z 716,A 80.8,B 68,C 81.74,S 6,T
59}

PTP HOME
END

y

x

x=1281.55
y=--250.02

x=1209.74
y=--153.44

x=1037.81
y=--117.83

x=1183.15
y=--52.64

x=1019.21
y=124.02

x=1108.78
y=267.16

x=1019.31
y=306.71

x=1087.47
y=218.67

y=53.63
x=1134

PTP

CIRC
(C_ORI)

CIRC

LIN
(C_DIS)

LIN

PTP
(_PTP C_ORI)

AUX

AUX

Fig. 37 PTP--CP and CP--CP approximate positioning

3 Motion programming (continued)

91 of 178

ProgExperteBHR5.2 09.03.00 en

3.5.5 Tool change during approximate positioning

This function is available for all combinations of individual PTP, LIN and CIRC instructions.
Even during approximate positioning it is possible to carry out a virtual tool change, i.e. a tool
is taught twice anddifferently each time, e.g. the distancebetween aspray gunand thework-
piece is 5 cm as “TOOL1” and 10 cm as “TOOL2”.

Example
In this example, a tool change from TOOL_DATA1[1] to TOOL_DATA[2] is desired
between points P1 and P2 at the start of the approximate positioning motion.
$TOOL=TOOL_DATA[1]
PTP P0_TOOL1; Point taught with tool TOOL_DATA[1]
LIN P1_TOOL1 C_DIS; Point taught with tool TOOL_DATA[1]
$TOOL=TOOL_DATA[2]
LIN P2_TOOL2; Point taught with tool TOOL_DATA[2]

P0_TOOL1 P1_TOOL1

P0_TOOL2

P2_TOOL2

P1_TOOL2

Flange

Approximation start 1

Approximation end 2

Approximation start 2

TOOL1

TOOL2

TOOL1

TOOL2

The tool change is carried out, in this example, during the approximate positioning, i.e. the
Cartesian position jumps at the start of the intermediate block from Approximation start 1 to
Approximation start 2; the axis angle and the Cartesian position and velocity of the flange are
controlled continuously throughout theentiremotion. The jump in theCartesian TCPposition
is not eliminated until the motion from Approximation end 2 to P2_TOOL2, so the path follows
not the linear course from P1_TOOL1 to P2_TOOL2, but a section of the path programmed
for TOOL2 with exact positioning.

Expert Programming

92 of 178

ProgExperteBHR5.2 09.03.00 en

3.6 Teaching points

Integration of the teaching procedure is an important quality feature of a robot programming
language.

In KRL you simply program a ! sign as a placeholder for the coordinates to be taught later:

PTP !

LIN ! C_DIS

CIRC ! ,CA 135.0

The relevant robot coordinates can then be saved in the program by pressing the softkey
“Change” followedby the softkey “TouchUp”. The current coordinates arewritten directly into
the selected structure in the SRC file, e.g.:

PTP {POS:X 145.25,Y 42.46,Z 200.5,A -35.56,B 0.0,C 176.87,S 2,T 2}

LIN {X -23.55,Y 0.0,Z 713.56,A 0.0,B 34.55,C -90.0} C_DIS

CIRC {X -56.5,Y -34.5,Z 45.56,A 35.3,B 0.0,C 90.0},{X 3.5,Y 20.30,
Z 45.56,A 0.0,B 0.0,C 0.0}, CA 135.0

When teaching Cartesian coordinates, the base coordinate system ($BASE)
currently valid in the robot system is taken as the reference system. Pleasealways
make sure, therefore, when teaching, that the base coordinate system used for
the subsequent motion is set.

TheKRC... allows for another kindof teaching: programamotion instructionwith avariable
that you do NOT declare in the declaration section, e.g.:

PTP STARTPOINT

After pressing the softkeys “Change” and “Var”, you are now prompted to select the desired
structure. Once this is done, aSTARTPOINT variable is automatically declared in the relevant
data list and assigned the current actual coordinates relative to the current $BASE, e.g.:

DECL FRAME STARTPOINT={X 15.2,Y 2.46,Z 20.5,A -35.5,B 9.0,C 16.87}

If the data list has not been created, the corresponding error message appears.

Further information about “data lists” can be found in the chapter [Data lists].

As longas youhave created amotion instruction bymeans of the inline forms, you can later
use the points taught with the inline form in a KRL motion instruction as well:
The points are stored in the relevant data lists with the name given in the inline form and
the prefix X (this is also why a maximum of 11 instead of 12 characters is permissible for
point names in inline forms).
The point P7 in the inline form

can thus later be addressed as XP7 in a KRL instruction:

LIN XP7

Bear in mind, here also, that the same base coordinate system must be used in both cases,
in order that the robot is positioned to the same point!!

! sign

4 Program execution control

93 of 178

ProgExperteBHR5.2 09.03.00 en

4 Program execution control

4.1 Program branches

4.1.1 Jump instruction

The simplest form of programbranch is the unconditionalGOTO command. This is executed
in every case without having to fulfill any conditions. By means of the statement

GOTO MERKER

the program pointer moves to the position MERKER. However, this position must also be
defined using the format

MERKER:

somewhere in the program. The GOTO statement itself does not allow any conclusions to
be drawn about the program structure thus created. The name of the GOTO mark should
therefore be chosen so as to indicate more clearly the jump it entails. It thus makes a
difference whether you write, for example,

GOTO MARK_1

or

GOTO GLUESTOP

Since GOTO statements very quickly lead to a loss of structure and clarity within
a program, and since, moreover, every GOTO statement can be replaced by a
different loop instruction, GOTO statements should be used as little as possible.

An example for“ GOTO ”can be found in this chapter, section [Loops], under “Non--
rejecting loop”.

4.1.2 Conditional branch

The structured IF statement allows instructions to be formulated conditionally with a choice
of two alternatives. The general form for these instructions is:

IF Execution condition THEN

Instructions

ELSE

Instructions

ENDIF

The execution condition is a Boolean expression. If the execution condition is fulfilled,
the THEN block is executed. If it is not fulfilled, the ELSE block can be either executed or dis-
pensed with. If it is dispensed with, the branch is left immediately.

An unlimited number of statements canbe used. In particular, further IF statements canalso
be used. Nesting of IF blocks is thus possible. Each IF statement must, however, be con-
cluded with its own ENDIF.

GOTO

IF

Expert Programming

94 of 178

ProgExperteBHR5.2 09.03.00 en

�
INT A,B
�
IF $IN[10]==FALSE THEN

PTP HOME
ELSE

IF A>B THEN
$OUT[1]=TRUE
LIN PUNKT1

ENDIF
A=A+1
PTP HOME

ENDIF
�

In the adjacent program sequence, the robot will
move to the HOME position if input 10 is FALSE.
If input 10 is set, and if the value of variable A is
greater than that of variableB, thenoutput 10 is set
and the robot moves to point 1.

Irrespective of A and B, if input 10 is set, the value
of variable A is increased by 1 in any case and the
robot is moved to the HOME position:

4.1.3 Switch

If more than 2 alternatives are available, this can either be programmed using a nested IF
construction or, much more conveniently, using the SWITCH multi--way branch.

The SWITCH statement is a selection instruction for various program branches. A selection
criterion is assigned a certain value ahead of the SWITCH statement. If this value agrees with
a block identifier, the corresponding branch is executed and the program jumps straight to
the ENDSWITCH statement without taking subsequent block identifiers into consideration. If
no block identifier agrees with the selection criterion, the DEFAULT statement block is
executed, if there is one. Otherwise, the program resumes at the instruction after
ENDSWITCH statement.

Several block identifiers can be assigned to one program branch. On the other hand, it is not
sensible to useoneblock identifier several times, as only the first branchwith thecorrespond-
ing identifier will ever be taken into consideration.

Permissible data types for the selection criterion are INT, CHAR and ENUM. The data types
for the selection criterion and the block identifier must correspond.

The DEFAULT statement can be omitted and may only appear once within a SWITCH state-
ment.

TheSWITCH statement canbeused, for example, to call up varioussubprogramsbyprogram
number. The program number could, for example, be applied to the digital inputs of the KRC
by the PLC. In this way it is available as a selection criterion in the form of an integer value.

DEF MAIN()
�
SIGNAL PROG_NR $IN[1] TO $IN[4]

;The desired program number is now stored in the
� ;INT variable PROG_NO by the PLC
SWITCH PROG_NO

CASE 1 ;if PROG_NO=1
PART_1()

CASE 2 ;if PROG_NO=2
PART_2()
PART_2A()

CASE 3,4,5 ;if PROG_NO=3, 4 or 5
$OUT[3]=TRUE
PART_345()

DEFAULT ;if PROG_NO<>1,2,3,4,5
ERROR_UP()

ENDSWITCH
�
END

SWITCH

Block
identifier

4 Program execution control (continued)

95 of 178

ProgExperteBHR5.2 09.03.00 en

The program CELL (CELL.SRC), available as standard in the controller, is formed in a
similar way.

4.2 Loops

The next basic structure for program execution control is the loop; these cause one or more
instructions to be repeated until a certain condition is fulfilled. Loops can be distinguished by
the form the condition takes, and by the position at which interrogation takes place to see
if program execution can be resumed.

A jump into a loop fromoutside is not allowedand is refused by the controller (error
message).

4.2.1 Counting loop

Counting loops are executed until a counting variable either exceeds or falls below a certain
end value by counting up or down. The FOR statement is available for this in KRL. Using

FOR Counter = Start TO End STEP Increment

Instructions

ENDFOR

a specified number of runs can be very clearly programmed.

Enter integer type expressions as Start and End values for the counter. The expressions
are evaluated once at the start of the loop. TheINT variable Counter (which must be
declared in advance) is preset with the start value and then increased or decreased by the
programmed increment after each loop execution.

The incrementmust be neither a variable nor zero. If no increment is specified, it has the
default value 1. Negative values can also be used for the increment.

There must be an ENDFOR statement for every FOR statement. After completion of the last
loop execution, the program is resumed with the first instruction after ENDFOR.

The counter value can be used either inside or outside the loop. Within the loop, it serves,
for example, as an up--to--date index for the processing of arrays. After leaving the loop, the
counter retains its final value (i.e. End+Increment).

DEF FOR_PROG()
�
INT I,J
INT ARRAY[10,6]
�
FOR I=1 TO 6

$VEL_AXIS[I] = 100 ;all axis velocities to 100%
ENDFOR
�
FOR I=1 TO 9 STEP 2

FOR J=6 TO 1 STEP -1
ARRAY[I,J] = I*2 + J*J
ARRAY[I+1,J] = I*2 + I*J

ENDFOR
ENDFOR

;I now has the value 11, J the value 0
�
END

In the adjacent example, the axis velocities
$VEL_AXIS[1]�$VEL_AXIS[6]are first set to 100%. The
components of a 2--dimensional array are then initializedwith
the calculated values.

FOR

Expert Programming

96 of 178

ProgExperteBHR5.2 09.03.00 en

Index I =

1 2 3 4 5 6 7 8 9 10

6 38 8 42 24 46 40 50 56 54 72

5 27 7 31 21 35 35 39 49 43 63

J =
4 18 6 22 18 26 30 30 42 34 54

J =
3 11 5 15 15 19 25 23 35 27 45

2 6 4 10 12 14 20 18 28 22 36

1 3 3 7 9 11 15 15 21 19 27

Table 8 Result of the calculation in the example

4.2.2 Rejecting loop

The WHILE loop requests an execution condition at the start of the repetition. It is a rejecting
loop, because it will not run a single time unless the execution condition is satisfied from the
outset. The WHILE loop has the following syntax:

WHILE Execution condition

Instructions

ENDWHILE

The execution condition is a logic expression which can be a Boolean variable, a
Boolean function call, or a logic operation with a Boolean result.

The instruction block is executed if the logic condition has the value TRUE, i.e. the execution
condition is fulfilled. If the logic condition has the value FALSE, the program is resumed with
the next instruction after ENDWHILE. Each WHILE statement must therefore be ended with
an ENDWHILE statement.

DEF WHILE_PR()
�
INT X,W
�
WHILE $IN[4] == TRUE ;Runs as long as input 4 is set

PTP PALLET
$OUT[2] = TRUE
PTP POS_2
$OUT[2] = FALSE
PTP HOME

ENDWHILE
�
X = 1
W = 1
WHILE W < 5; ;Runs as long as W is less than 5

X = X * W
W = W + 1

ENDWHILE
;W is now 5

� ;X is now 1S2S3S4 = 24
W = 100
WHILE W < 100 ;Runs as long as W is less than 100

$OUT[15] = TRUE
W = W + 1

ENDWHILE
� ;Loop never runs, W remains 100
END

WHILE

4 Program execution control (continued)

97 of 178

ProgExperteBHR5.2 09.03.00 en

4.2.3 Non--rejecting loop

The counterpart of the WHILE loop is the REPEAT loop. With REPEAT, the termination
condition is not checked until the end of the loop. For this reason, REPEAT loops always run
once, even if the termination condition is already fulfilled before the loop begins.

REPEAT

Instructions

UNTIL Termination condition

The termination condition, similarly to the execution condition of a WHILE loop, is a
logic expressionwhich canbeaBoolean variable, aBoolean function call, or a logicoperation
with a Boolean result:

DEF REPEAT_P()
�
INT W
�
REPEAT

PTP PALLET
$OUT[2] = TRUE
PTP POS_2
$OUT[2] = FALSE
PTP HOME

UNTIL $IN[4] == TRUE ;Runs until input 4 is set
�
X = 1
W = 1
REPEAT

X = X * W
W = W + 1

UNTIL W == 4 ;Runs until W equals 4
;W is now 4

� ;X is now 1S2S3S4 = 24
W = 100
REPEAT

$OUT[15] = TRUE
W = W + 1

UNTIL W > 100 ;Runs until W is greater than 100
� ;at least one loop execution, i.e.

;W is now 101, output 15 is set
END

With WHILE and REPEAT, you now have a very powerful tool for structured programming at
your disposal with which you can replace most GOTO commands. The instruction sequence

�
X = 0
G = 0
MERKER:
X = X + G
G = G + 1

IF G > 100 THEN
GOTO READY

ENDIF
GOTO MERKER:
READY:
�

�
X = 0
G = 0
REPEAT
X = X + G

G = G + 1
UNTIL G > 100
�

REPEATGOTO

REPEAT

Expert Programming

98 of 178

ProgExperteBHR5.2 09.03.00 en

4.2.4 Endless loop

You can program endless loops using the LOOP statement:

LOOP

Instructions

ENDLOOP

The repeated execution of the instruction block can only be terminated using the EXIT state-
ment.

Further information on the Exit instruction can be found in the next section.

4.2.5 Premature termination of loop execution

Any loop can be terminated prematurely by using the EXIT statement. By calling EXITwithin
the instruction block of a loop, the loop run is immediately terminated and the program
resumed after the ENDLOOP statement.

Skillful selection of termination and execution conditions renders the EXIT statement mostly
unnecessary in REPEAT and WHILE loops. With the endless loop, however, EXIT offers the
only possibility for terminating execution of the loop. The following example illustrates this:

DEF EXIT_PRO()
PTP HOME
LOOP ;Start of endless loop

PTP POS_1
LIN POS_2
IF $IN[1] == TRUE THEN

EXIT ;Terminate when input 1 set
ENDIF
CIRC HELP_1,POS_3
PTP POS_4

ENDLOOP ;End of endless loop
PTP HOME
END

LOOP

EXIT

4 Program execution control (continued)

99 of 178

ProgExperteBHR5.2 09.03.00 en

4.3 Wait instructions

Using the WAIT statement, you can cause the program to stop until a certain situation arises.
A distinction is made between waiting for the occurrence of a certain event and waiting for
a wait time to elapse.

4.3.1 Waiting for an event

Using the instruction

WAIT FOR condition

you can stop program execution until the event specified under condition arises.

G If the logic expression condition is already TRUE when WAIT is called, program
execution is not stopped (an advance run stop is triggered, however).

G If condition FALSE, program execution is stopped until the expression takes the
value TRUE.

Examples: The condition WAIT FOR can be applied to the variables $IN[], $OUT[],
$CYCFLAG[], $TIMER_FLAG[] and $FLAG[].

If, due to incorrect formulation, the expression can never take the value TRUE, the
compiler does not recognize this. In this case, program execution is permanently
stopped, because the interpreter is waiting for fulfillment of a condition that cannot
be satisfied.

Numerical values

A number is assigned to each variable.

WAIT FOR ... Message in message
window

Meaning

$IN[5] Waiting for input 5 Waiting until input 5 is TRUE

$OUT[5]==FALSE Waiting for not output 5 Waiting until output 5 is FALSE

$TIMER_FLAG[5] Waiting for Timer_Flag 5 Waiting until Timer_Flag 5 is
TRUE

$FLAG[5]==FALSE Waiting for not flag 5 Waiting until flag 5 is FALSE

$CYCFLAG[5] Waiting for cyclical flag 5 Waiting until cyclical flag 5 is
TRUE

I[5]==9 Waiting for counter 5 = = 9 Waiting until timer 5 has the value
“9”

WAIT

Expert Programming

100 of 178

ProgExperteBHR5.2 09.03.00 en

Variable values

A variable is transferred instead of a number. For this, the variable must be declared in the
data list (*.dat). A declaration in the source file (*.src) defines the value of the variable.

DEFDAT PROG1
...
DECL INT INT_VAR
...

DEF PROG1()
...
INT_VAR=7
...

Data list: Source file:

In the example, the variable INT_VAR is assigned the value “7”.

WAIT FOR ... Message in message
window

Meaning

$IN[INT_VAR] Waiting for input 7 Waiting until input 7 is TRUE

$OUT[INT_VAR]
=FALSE

Waiting for not output 7 Waiting until output 7 is FALSE

$TIMER[INT_VAR]
>=300

Waiting until timer 7 >= 300 Waiting until timer 7 has reached
at least 300 ms

$TIMER_FLAG
[INT_VAR]

Waiting for Timer_Flag 7 Waiting until Timer_Flag 7 is
TRUE

$FLAG[INT_VAR]
==FALSE

Waiting for not flag 7 Waiting until flag 7 is FALSE

$CYC-
FLAG[INT_VAR]

Waiting for cyclical flag 7 Waiting until cyclical flag 7 is
TRUE

I[INT_VAR]==9 Waiting for counter 7 = = 9 Waiting until timer 5 has the value
“9”

Expressions can also be calculated. In the example, the variableX is assigned the value “1”,
Y is assigned the value “2” and Z is assigned the value “3”.

WAIT FOR ... Message in message
window

Meaning

$IN[x+y+z] Waiting for input 6 Waiting until input 6 is TRUE

$CYCLAG[Z--X]
==FALSE

Waiting for not cyclical flag 2 Waiting until cyclical flag 2 is
FALSE

Return value of a function

Example: Wait for “GHOST_OUT”

DEF Globals()
...
END

;FOLD GHOST_OUT (INT_PARAM:IN)
GLOBAL DEFFCT BOOL GHOST_OUT (INT_PARAM:IN)

INT INT_PARAM
IF $OUT[INT_PARAM] = = TRUE THEN

RETURN TRUE
ELSE

RETURN FALSE
ENDIF

ENDFCT
;ENDFOLD

4 Program execution control (continued)

101 of 178

ProgExperteBHR5.2 09.03.00 en

Long text

If a long text has been assigned to a variable, the numerical index specification is not dis-
played.

Wait condition
WAIT FOR ...

Assigned long text Message in message window

$IN[5] MyInput5 Waiting for MyInput5

$OUT[3] MyOutput3 Waiting for MyOutput3

$TIMER[8]>150 MyTimer8 Waiting until MyTimer8 > 150

$FLAG[16]==FALSE MyFlag16 Waiting for not MyFlag16

$CYCFLAG[4] MyCycflag4 Waiting for MyCycflag4

I[7]==9 MyCounter7 Waiting for MyCounter7 == 9

Signal declarations

In the case of a signal declaration consisting of several inputs or outputs, only the signal
name is output. In the example, the signals “IN_NAME $IN[7] TO $IN[17]” and “OUT_NAME
$OUT[7] TO $OUT[17]” are defined.

Wait condition
WAIT FOR ...

Message in message
window

Meaning

IN_NAME Waiting for IN_NAME Waiting until all inputs of the
signal declaration are TRUE

OUT_NAME==FALSE Waiting for not OUT_NAME Waiting until all outputs of the
signal declaration are FALSE

4.3.2 Wait times

The WAIT SEC statement allows wait times to be programmed in seconds:

WAIT SEC time

Time is an arithmetic REAL expression which can be used to specify the number of seconds
for which program execution is to be interrupted. If the value is negative, the program does
not wait.

Examples: WAIT SEC 17.542

WAIT SEC TIME*4+1

Expert Programming

102 of 178

ProgExperteBHR5.2 09.03.00 en

4.4 Stopping the program

If you want to interrupt program execution and stop processing, program the instruction

HALT

The last motion instruction to be executed will, however, be completed. Program execution
may only be restarted by pressing the Start key. The next instruction after HALT is then
executed.

Special case:In the event of a HALT instruction in an interrupt routine,
program execution is only stopped after the advance run has been
completely executed.
Exception: If a BRAKE instruction is programmed, the robot is stopped immediately.

4.5 Confirming messages

Using the instruction

CONFIRM V_Number

you can confirm acknowledgeable messages under program control. After successful
confirmation (acknowledgement), the message specified with the administration number
V_Number is no longer available.

After cancelling a stop signal, for example, an acknowledgement message is always
generated. This must be acknowledged first before you can work any further. The following
subprogram identifies and acknowledges this message automatically, as long as the right
operating mode (not manual mode) is selected and the stop status really has been canceled
(since a robot program cannot be started if an acknowledgement message is present, the
subprogram has to run in a submit file).

DEF AUTO_QUIT()
INT M
DECL STOPMESS MESSAGE ;Predefined structure type for stop
messages
IF $STOPMESS AND $EXT THEN ;Check stop message and opera-
ting mode

M=MBX_REC($STOPMB_ID,MESSAGE) ;Read current state into
MESSAGE

IF M==0 THEN ;Check that message may be acknowledged
IF ((MESSAGE.GRO==2) AND (MESSAGE.STATE==1)) THEN

CONFIRM MESSAGE.CONFNO; Acknowledgement of this message
ENDIF

ENDIF
ENDIF
END

HALT

CONFIRM

5 Input/output instructions

103 of 178

ProgExperteBHR5.2 09.03.00 en

5 Input/output instructions

5.1 General

The KRC recognizes 1026 inputs and 1024 outputs. In the standard KUKA control cabinet,
the following inputs andoutputs are available to theuser at the X11connector (MFCmodule):

Inputs 1 �16
Outputs 1 �16 (with max. capacity 100 mA; 100% simultaneity)
Outputs 17 �20 (with max. capacity 2 A; 100% simultaneity)

Other inputs/outputs can optionally be configured, using field buses for example.

Inputs can be read, outputs read and written. They are addressed by means of the system
variable $IN[No] or $OUT[No]. Unused outputs can be used as flags.

The inputs/outputs of the MFC module can be reassigned to other areas in the file
“IOSYS.INI”.

The controller type “KR C2” is supplied as standard without I/Os.

For safety reasons, all input/output instructions and access to inputs/outputs via
system variables trigger an advance run stop.
Accessing input/output system variables preceded by a CONTINUE instruction does not
trigger an advance run stop.

Further information can be found in the chapter [Motion programming], section
[Computer advance run].

5.2 Binary inputs/outputs

If inputs/outputs are addressed individually, they are referred to as binary inputs/outputs.
Binary outputs canonly have2 states: Low orHigh. They are therefore treated asBOOL--type
variables.

With the following system variables, outputs can be

$OUT[No] = TRUE set, and
$OUT[No] = FALSE reset.

The state of an $IN[No] input can be read into a Boolean variable or used as a Boolean
expression in program execution, interrupt or trigger instructions.

Further information can be found in the chapters [Program execution control],
[Interrupt handling], [Path--related switching actions].

The instruction sequences

BOOL SWITCH
⋮
IF SWITCH == FALSE THEN
⋮
ENDIF

IF $IN[6] == FALSE THEN
⋮
ENDIF

and

thus have the same meaning.

Expert Programming

104 of 178

ProgExperteBHR5.2 09.03.00 en

It is also possible, in the KRC, to assign names to individual inputs or outputs. The signal
declaration is used for this purpose. This, as indeed all declarations, must be situated in the
declaration section of the program. The following:
SIGNAL SWITCH $IN[6]
⋮
IF SWITCH == FALSE THEN
⋮
ENDIF
can thus also be programmed. The variable Switch is again internally declared as BOOL.

System inputs and outputs can also be addressed using $IN and $OUT. System outputs,
however, are write--protected.
Input 1025 is always TRUE, input 1026 is always FALSE. These inputs are used in the
machine data, for example, as “Dummy” variables. Repeated use is permissible.

DEF BINSIG ()
;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
SIGNAL TERMINATE $IN[16]
SIGNAL LEFT $OUT[13]
SIGNAL MIDDLE $OUT[14]
SIGNAL RIGHT $OUT[15]
;---------- Initialization ---------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

;------------- Main section ------------
PTP HOME ;BCO run
LEFT=FALSE
MIDDLE=TRUE ;in the middle position
RIGHT=FALSE
WHILE TERMINATE==FALSE ;terminate if input 16 is set

IF $IN[1] AND NOT LEFT THEN ;input 1 set
PTP {A1 45}
LEFT=TRUE ;in the left-hand position
MIDDLE=FALSE
RIGHT=FALSE

ELSE
IF $IN[2] AND NOT MIDDLE THEN ;input 2 set

PTP {A1 0}
LEFT=FALSE
MIDDLE=TRUE ;in the middle position
RIGHT=FALSE

ELSE
IF $IN[3] AND NOT RIGHT THEN ;input 3 set

PTP {A1 -45}
LEFT=FALSE
MIDDLE=FALSE
RIGHT=TRUE ;in the right-hand position

ENDIF
ENDIF

ENDIF
ENDWHILE
PTP HOME
END
By setting input 1, 2 or 3, the robot can bemoved to three different positions.When the robot
has reached the desired position, this is shown by setting the corresponding output 13, 14
or 15.

SIGNAL

5 Input/output instructions (continued)

105 of 178

ProgExperteBHR5.2 09.03.00 en

Since theseoutputs thus always display the current position of the robot, the following check:
IF $IN[1] AND NOT $OUT[13] THEN
⋮
ENDIF

can also be used to prevent the robot from trying, each time theWhile loop is re--run, tomove
to the position it is already in. The robot thus only moves if an input is set (i.e. instruction to
move to the desired position) and the relevant output is not set (i.e. the robot is not yet in
this position).

By setting input 16, the While loop and the program are terminated.

$IN [No] AND NOT $OUT[No]
$OUT[No]

$IN [No] AND NOT $OUT[No]
TRUE FALSE

$IN[No]
TRUE FALSE TRUE

$IN[No]
FALSE FALSE FALSE

Table 9 Truth table for an “AND NOT” logic operation

5.3 Digital inputs/outputs

5.3.1 Signal declaration

With the signal declaration, it is possible not only to provide individual inputs/outputs with
names, but also to group several binary inputs or outputs together as a digital signal. The
declaration

SIGNAL OUT $OUT[10] TO $OUT[20]

can be used, for example, to address the outputs 10 to 20 as an 11--bit word via the variable
OUT, declared internally as an integer.

The digital output thus declared can be defined using any permissible integer assignment
to the variable OUT, e.g.

OUT = 35
OUT = ’B100011’
OUT = ’H23’

G Inputs/outputsmust be specified in the signal declarationwithout gaps and in ascending
sequence.

G A maximum of 32 inputs or outputs can be grouped together under one digital signal.

G An output may appear in more than one signal declaration.

If outputs 13 to 15 from the example shown are grouped together under the variable
POSITION, this results in the following modified program:

Expert Programming

106 of 178

ProgExperteBHR5.2 09.03.00 en

DEF BINSIG_D ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
SIGNAL TERMINATE $IN[16]
SIGNAL POSITION $OUT[13] TO $OUT[15]

;---------- Initialization ---------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

;------------- Main section ------------
PTP HOME ;BCO run
POSITION=’B010’ ;in the middle position
WHILE TERMINATE==FALSE ;terminate if input 16 is set

IF $IN[1] AND (POSITION<>’B001’) THEN ;input 1 set
PTP {A1 45}
POSITION=’B001’ ;in left-hand position

ELSE
IF $IN[2] AND (POSITION<>’B010’) THEN ;input 2 set

PTP {A1 0}
POSITION=’B010’ ;in the middle position

ELSE
IF $IN[3] AND (POSITION<>’B100’) THEN;input 3 set

PTP {A1 -45}
POSITION=’B100’ ;in right-hand position

ENDIF
ENDIF

ENDIF
ENDWHILE
PTP HOME
END

Further information can be found in this chapter, in the section [Predefined digital
inputs].

5.3.2 Reading signal numbers

The inputs and outputs assigned to a signal declaration can be viewed using the variable
overview function or KRL (*.SRC or *.SUB programs).

Variable overview

Here, only the entry “GET_SIG_INF” followed by the name of the variable/signal is required.

Variable name/signal name

Structure components

5 Input/output instructions (continued)

107 of 178

ProgExperteBHR5.2 09.03.00 en

KRL

First of all, a variable of type “SIGINF” is declared in the declaration section of the program.

DECL SIGINF Variable

This variable can then be used to read the signal declaration.

Variable = GET_SIG_INF(Signal_Name)

Argument Data
type

Meaning

Variable SIGINF Any name, maximum length 24 ASCII characters

Signal name CHAR Name of the signal declaration, maximum length 24
ASCII characters

Table 10 Arguments in the GET_SIG_INF statement

Structure components

The data type “SIGINF” contains the following structure components:

SIGINF Value Meaning

.TYP #IN Signal is declared for inputs

#OUT Signal is declared for outputs

#INV Signal is not declared

#IN0 Reserved for future use

#OUT0 Signal for system outputs set to “FALSE”

.DTYP #SYSI Systemsignal of data type “Integer” (whole number)

#SYSB System signal of data type “Boolean” (logic state)

#USRI User--defined global signal of data type “Integer”

#USRB User--defined global signal of data type “Boolean”

.IDX 0 Signal number invalid or set to “FALSE”

1 ... 4096 Valid signal numbers

.LEN 0 Signal length is invalid or set to “FALSE”

1 Signal length for data type “Boolean”

1 ... 32 Signal length for data type “Integer”

Table 11 Structure components of data type “SIGINF”

Expert Programming

108 of 178

ProgExperteBHR5.2 09.03.00 en

DEF SIGTEST ()
DECL SIGINF S_INF
CHAR S_NAME[24]
S_NAME[] = “$EXT_START”
...
S_INF = GET_SIG_INF(”$MOVE_ENABLE”)

IF (S_INF.IDX == 1025) OR (S_INF.IDX == 0) THEN
ERROR()

ENDIF
...
S_INF = GET_SIG_INF(S_NAME[])

IF (S_INF.TYP == #INV) OR (S_INF.IDX == 0) THEN
ERROR()

ENDIF
...
END

In most cases, it is sufficient to poll the “.IDX” structure components, as an invalid signal
or a signal set to “FALSE” is detected immediately.
Detailed information, however, is provided by the structure component “.LEN”.

5.3.3 Setting outputs at the end point
As soon as the robot has reached the end point of a motion command, up to 8 outputs can
be set, with reference to the main run, and without triggering an advance run stop. The
following instruction is used for this:

$OUT_C[Output] = Boolean expression

Argument Data
type

Meaning

Output INT Arithmetical expression defining the number of the output
to be set. Outputs 1 ... 1024 are available

Boolean ex-
pression

BOOL Logic expression specifying whether the corresponding
output is set to “TRUE” or “FALSE”

Outputs 1 ... 1024 can usually be used. If the variable “$SET_IO_SIZE” has been set
accordingly, 2048 or 4096 outputs are available.

When the advance run pointer reaches the instruction, the Boolean expression is interpreted
first. The expression concerned is converted to a constant. The interpreted outputs are then
set when the main run pointer reaches this point.

An assignment might look like this:
$OUT_C[TOOL[ex]+WELD[y]] = ((NOT(x==100)) AND (SAFE==TRUE))

Once interpreting has been completed (advance run pointer), the instruction
might then internally look like this:
$OUT_C[5] = TRUE

When the end point is reached (main run pointer), output 5 is set to the value
”TRUE”.

When the main run pointer reaches the end point, the output is set to the Boolean value
which was valid when the interpreting took place, even if this value has subsequently
changed in the meantime.

5 Input/output instructions (continued)

109 of 178

ProgExperteBHR5.2 09.03.00 en

An “$OUT_C[x]” instruction, unlike “$OUT[x]”, has no effect on the computer advance run.
$OUT_C[x] can only be written; in order to read an output, “$OUT[x]” must be used.

Block selection deletes all “$OUT_C[x]” assignments that have been interpreted, but not
yet set. This occurs when block selection is carried out or when a program is reset.

PTP P1
$OUT_C[10] = TRUE
$OUT_C[11]=FALSE
$OUT_C[12] = TRUE
LIN P2

If exact positioning is carried out at point “P1”, outputs 10 ... 12 are set here in accordance
with the way they have been defined.
If, on the other hand, “P1” is approximated, outputs 10 ... 12 are only set when the center
of the approximate positioning range has been reached. If approximate positioning is not
possible, the outputs are set at point “P1”.

In the case of absolute and relative PTP, LIN and
CIRC commands, the output is set immediately
after the corresponding motion command.

In program runmodes “Single--Step” (MSTEP) and “I--Step” (ISTEP), an advance run stop
occurs at point P1, but the outputs are not set here. The defined outputs are only set once
the Start key has been released and pressed again.

A BCO run also triggers an advance run stop. The outputs are only set as defined once
the program has been restarted.

Comparison with trigger

Outputs can be set, with reference to the main run, and without an advance run stop, using
either “$OUT_C[x]” or “Trigger”.

$OUT_C[x]:

PTP P1 C_PTP
$OUT_C[5] = TRUE
PTP P2

Trigger:
TRIGGER WHEN DISTANCE=1 DELAY=0 DO $OUT[5]=TRUE
PTP P1 C_PTP
PTP P2

In both cases, output 5 is set as soon as the center of the approximate positioning range of
“P1” is reached.

Main run pointer

If the advance run andmain run pointers are identical, i.e. the robot is not currently executing
a motion command, the assignment is made immediately the “$OUT_C[]” instruction is
reached.

PTP P1
WAIT FOR $IN[22]==TRUE
$OUT_C[12]=FALSE
PTP P2

Expert Programming

110 of 178

ProgExperteBHR5.2 09.03.00 en

In the example, an advance run stop is triggered in the line “WAIT...” if input 22 is “FALSE”.
As soon as input 22 has the value “TRUE”, output 12 is set accordingly.

Signal

An output can also be set by means of a 1--bit signal declaration.

SIGNAL Test $OUT_C[7]

PTP P1
Test = TRUE
PTP P2

In the example, output 7 is set to “TRUE” as soon as the main run pointer has reached the
motion command “P1”.

“$OUT_C[x]” is not permitted in the following situations:

G Within interrupt programs or interrupt declarations

G In a Submit program

G In conjunction with “$CYCFLAG[x]”

G Within a Trigger command

G In conjunction with the variable correction function

5.4 Pulse outputs
Individual outputs can be set or reset for a specified period using the PULSE statement. The
instruction

PULSE($OUT[4],TRUE,0.7)

sets output 4, for example, toHigh level for a periodof 0.7 seconds. Thepulse can runparallel
to the robot program (the interpreter is not stopped).

Instead of direct specification of the output using $OUT[No], a signal variable can also be
used.

Further information can be found in this chapter, in the section [Binary inputs/outputs].

Feasible pulse durations lie between 0.012 and 231 seconds. The increment is 0.1

seconds. The controller rounds all values to the nearest tenth of a second.

G A maximum of 16 pulse outputs may be programmed simultaneously.

G High pulses and Low pulses can both be programmed.

G “Program RESET” and “Program CANCEL” both terminate the pulse.

G An active pulse can be influenced by interrupts.

G Pulse outputs can also be programmed at the controller level.

G The PULSE statement triggers an advance run stop. Only in the TRIGGER statement
is it executed concurrently with robot motion.

A pulse is NOT terminated by

G an EMERGENCY STOP, operator stop or error--induced stop,

G reaching the end of the program (END statement),

G releasing the Start key if the pulse has been programmed before the first motion
instruction and the robot has not yet reached BCO.

PULSE

5 Input/output instructions (continued)

111 of 178

ProgExperteBHR5.2 09.03.00 en

In the next program you will find several examples illustrating the use of the PULSE state-
ment:

DEF PULSIG ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
INT I
SIGNAL OTTO $OUT[13]

;---------- Initialization ---------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

FOR I=1 TO 16
$OUT[I]=FALSE ;Set all outputs to LOW
ENDFOR

;------------- Main section ------------
PULSE ($OUT[1],TRUE,2.1) ;Pulse comes direct for 2.1s
PTP HOME ;BCO run

OTTO=TRUE ;Set output 13 to TRUE
PTP {A3 45,A5 30}
PULSE (OTTO,FALSE,1.7) ;LOW pulse for 1.7s at output 13

;Pulse only comes after motion
WAIT SEC 2
FOR I=1 TO 4
PULSE ($OUT[I],TRUE,1) ;Outputs 1-4 in sequence
WAIT SEC 1 ;for 1s to High
ENDFOR
;Path-related generation of a pulse
TRIGGER WHEN DISTANCE=0 DELAY=50 DO PULSE ($OUT[8],TRUE,1.8)
LIN {X 1391,Y -319,Z 1138,A -33,B -28,C -157}
PTP HOME
CONTINUE ;Prevent advance run stop for output 15
PULSE ($OUT[15],TRUE,3) ;Pulse comes direct (in the

advance run)
;at output 16

PULSE ($OUT[16],TRUE,3) ;Pulse only comes after HOME run
END ;and is still set after END

In these examples, please note exactly when the programmed pulses are present at the out-
puts: In principle, the PULSE statement always stops the computer advance run. The pulse
is thus not assigned until after completion of the motion.

There are two ways to prevent the advance run stop:

G by programming a CONTINUE statement immediately before the PULSE statement

G by using the PULSE statement in a TRIGGER statement (path--related switching action)

Further information can be found in the chapter [Motion programming], section
[Computer advance run] (CONTINUE) and in the chapter [Trigger – path--related
switching actions] (TRIGGER).

Expert Programming

112 of 178

ProgExperteBHR5.2 09.03.00 en

5.5 Analog inputs/outputs

Alongside binary inputs/outputs, the KRC also recognizes analog inputs/outputs. Using
optional bus systems, the KRC makes 32 analog inputs and 32 analog outputs available.
Outputs can be read or written using system variables $ANOUT[1]� $ANOUT[32]; inputs
can only be read using the variables $ANIN[1] � $ANIN[32].

Analog inputs and outputs can be addressed either statically or dynamically, i.e. by
continuous polling at the interpolation cycle rate (currently 12 ms). Whereas static reading
and writing, as in the case of binary signals, is simply carried out by assigning values, the
special instructions ANIN and ANOUT are used for cyclical processing.

5.5.1 Analog outputs

The output values for the KRC’s 32 analog outputs lie between --1.0� +1.0 and are scaled
to an output voltage of �10.0 V. If the output value exceeds the �1.0 limits, the value is cut
off.

To set an analog channel a value is simply assigned to the corresponding $ANOUT variable:

$ANOUT[2] = 0.5 ;Analog channel 2 is set to +5 V

or

REAL V_ADHESIVE
⋮
V_ADHESIVE = -0.9
$ANOUT[15] = V_ADHESIVE ;Analog channel 15 is set to -9 V

These assignments are static because the value of the channel concerned does not change
until a new value is explicitly assigned to the relevant $ANOUT[No] system variable.

It is often desirable, however, for a specific analog output to be continuously recalculated at
a defined cycle rate duringprogramexecution. This dynamic analogoutput function is carried
out using the ANOUT statement. Using the instruction

ANOUT ON WIRE = 0.8 * V_WIRE

you can alter the analog output specified with the signal variable WIRE, for example, by
simply assigning a value to the variable V_WIRE. The voltage at the corresponding output
is determined by the variable V_WIRE.
The variable WIRE must first, of course, be declared in the SIGNAL declaration, e.g.:

SIGNAL WIRE $ANOUT[2]

Using

ANOUT OFF WIRE

the cyclical analog output function is terminated again.

The cyclically updated expression, which must be specified for calculating the value of the
analog output, must not exceed a certain degree of complexity. The permissible syntax is
therefore restricted and technology--oriented. The complete syntax is

ANOUT ON Signal name = Factor * Control element �± offset�

�DELAY=t� �MINIMUM=U1� �MAXIMUM=U2�

to start the cyclical analog output function, or

ANOUT OFF Signal name

to terminate it. The meaning of the individual arguments may be noted from Table 12.

ANIN
ANOUT

ANOUT ON

ANOUT OFF

5 Input/output instructions (continued)

113 of 178

ProgExperteBHR5.2 09.03.00 en

Argument Data
type

Meaning

Signal name REAL Signal variable which specifies the analog output (must be
declared with SIGNAL). Direct specification of
$ANOUT[No] is not permissible.

Factor REAL Any factor, which can be a variable, signal name or
constant.

Control
element

REAL The control element affects the analog output. It can be a
variable or a signal name.

Offset REAL An offset can optionally be programmed as a control
element. The offset must be a constant.

t REAL By using the keyword DELAY and entering a positive or
negative amount of time in seconds, the cyclically
calculated output signal can optionally be either delayed
(+) or set early (--).

U1 REAL The keyword MINIMUM defines the minimum voltage
present at the output. Permissible values are --1.0 ... 1.0
(corresponding to –10 V ... +10 V). The minimum value
must be less than the maximum value if both values are
used.

The value may also be a variable, a structure component
or an array element.

U2 REAL The keyword MAXIMUM defines the maximum voltage that
may be sent to the output. Permissible values are --1.0 ...
1.0 (corresponding to –10V ... +10 V). Themaximumvalue
must be greater than the minimum value if both values are
used.

The value may also be a variable, a structure component
or an array element.

Table 12 Arguments in the ANOUT statement

The optional parameters “Minimum” and “Maximum” are not available in the inline forms
as these are used exclusively for the technology “Adhesive bonding”.

Expert Programming

114 of 178

ProgExperteBHR5.2 09.03.00 en

In this example, both a minimum and a maximum value have been defined. The corre-
sponding entries are “MINIMUM=0.3” and “MAXIMUM=0.95”.

CP velocity [mm/s]

A
na
lo
g
vo
lta
ge

[m
V
]

10 000

8 000

6 000

4 000

2 000

0 200100 300 400 500

UWire [mV]

UStandard [mV]

Maximum

Minimum

Fig. 38 Analog voltage dependent on the CP velocity

5.5.2 Analog inputs

The KRC’s 32 analog inputs can be read using the variables $ANIN[1] to $ANIN[32] by
simply assigning a value to a REAL variable:

REAL PART
⋮
PART = $ANIN[3]

or

SIGNAL SENSOR3 $ANIN[3]
REAL PART
⋮
PART = SENSOR3

The values in $ANIN[No] range between +1.0 and --1.0 and represent an input voltage of
+10 V to --10 V.

The ANIN statement is used for the cyclical reading of analog inputs. Using it, up to 3 analog
inputs can be read simultaneously. They are read at the interpolation cycle rate.

Using the instruction sequence

SIGNAL SENSOR3 $ANIN[3]
REAL PART
⋮
ANIN ON PART = 1 * SENSOR3

you can thus cyclically read analog input 3, and using the instruction

ANIN OFF SENSOR3

you can end the reading again.

Bear in mind that a maximum of 3 ANIN ON statements may be active at the same time.

It is permissible to access the same analog interface or to define the same variable in both

statements.

The complete syntax for cyclically reading an analog input is:

ANIN

5 Input/output instructions (continued)

115 of 178

ProgExperteBHR5.2 09.03.00 en

ANIN ON value = Factor * Signal name �± offset�

Using

ANIN OFF Signal name

the cyclical monitoring is ended. The meaning of the arguments can be found in Table 13.

Argument Data type Meaning

Value REAL The value can be a variable or an (output) signal name.
The result of the cyclical reading is stored in value.

Signal name REAL Signal variable which specifies the analog input (must be
declaredwithSIGNAL). Direct specification of$ANIN[No]
is not permissible.

Factor REAL Any factor, which can be a variable, signal name or
constant.

Offset REAL An offset can optionally be programmed. The offset can be
a constant, variable or signal name.

Table 13 Arguments in the ANIN statement

The instructions relating to analog inputs and outputs are illustrated in the followingexample.
By means of the system variable $TECHIN[1] and a path tracking sensor connected to an
analog input, a path correction, for example, can be carried out during themotion. If weighted
with the relevant factors, the variable $VEL_ACT, which always contains the current path
velocity, can be used as a velocity--proportional analog output, for example, to control the
amount of adhesive dispensed in bonding applications.

ANIN ON

ANIN OFF

Expert Programming

116 of 178

ProgExperteBHR5.2 09.03.00 en

DEF ANSIG ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
INT I
SIGNAL ADHESIVE $ANOUT[1] ;Open nozzle for adhesive
SIGNAL CORRECTION $ANIN[5] ;Path tracking sensor

;---------- Initialization ---------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 0,A6 0}

FOR I=1 TO 16
$ANOUT[I]=0 ;Set all outputs to 0V
ENDFOR

;------------- Main section ------------
PTP HOME ;BCO run

$ANOUT[3] = 0.7 ;Analog output 3 to 7 V

IF $ANIN[1] >= 0 THEN ;Adhesive process only if analog input
1

;has a positive voltage
PTP POS1
;Path correction according to sensor signal with the aid of
;system variable $TECHIN
ANIN ON $TECHIN[1] = 1 * CORRECTION + 0.1
;Velocity-proportional analog output;System variable $VEL_ACT

contains the current path velocity
ANOUT ON ADHESIVE = 0.5 * $VEL_ACT + 0.2 DELAY = -0.12
LIN POS2
CIRC INTERMEDPOS,POS3
ANOUT OFF ADHESIVE
ANIN OFF CORRECTION

PTP POS4
ENDIF
PTP HOME
END

5 Input/output instructions (continued)

117 of 178

ProgExperteBHR5.2 09.03.00 en

5.6 Predefined digital inputs

The controller has 6 digital inputs available, which can be read using the signal variables
$DIGIN1�$DIGIN6. The inputs are included in the normal user inputs. They can be 32 bits
long and have a corresponding strobe output.

The inputs are configured in the machine data: “/mada/steu/$machine.dat”. A signal
declaration defines, firstly, the range and size of a digital input:

SIGNAL $DIGIN3 $IN[1000] TO $IN[1011]

Sign interpretations, corresponding strobe outputs and the type of strobe signal are defined
using the additional system variables $DIGIN1CODE�$DIGIN6CODE,
$STROBE1�$STROBE6 and $STROBE1LEV�$STROBE6LEV :

DECL DIGINCODE $DIGIN3CODE = #UNSIGNED ;Not preceded by a sign

SIGNAL $STROBE3 $OUT[1000] ;Define strobe output

BOOL $STROBE3LEV = TRUE ;Strobe is a High pulse

A strobe output is a KRC output with a specified pulse which freezes the signal from an
external device (e.g. rotary encoder) so that it can be read.

Whereas more than one digital input can access the same input, strobe signals may NOT

define the same output.

The range of values for $DIGIN1�$DIGIN6 depends on the defined bit length as well as
on the sign interpretation (#SIGNED or #UNSIGNED):

12 bits with sign (#SIGNED) Range of values: --2048�2047

12 bits without sign (#UNSIGNED) Range of values: 0�4095

The digital inputs can either be read statically by means of the usual value assignment, or
cyclically using a DIGIN statement:

INT NUMBER
⋮
NUMBER = $DIGIN2

INT NUMBER
⋮
DIGIN ON NUMBER = FACTOR * $DIGIN2 +
OFFSET
⋮
DIGIN OFF $DIGIN2

DIGINValue assign-
ment

A total of 6 DIGIN ON instructions are allowed at the same time. Analog input signals can
also be accessed in the DIGIN ON statement (e.g. as FACTOR). The syntax is fully
analogous with that for the ANIN ON statement:

DIGIN ON value = Factor * Signal name �± offset�

DIGIN OFF Signal name

The meaning of the individual arguments is described in Table 14.

DIGIN ON

DIGIN OFF

Expert Programming

118 of 178

ProgExperteBHR5.2 09.03.00 en

Argument Data type Meaning

Value REAL The value can be a variable or an (output) signal name.
The result of the cyclical reading is stored in value.

Signal name REAL Signal variable which specifies the digital input. Only
$DIGIN1�$DIGIN6 are permissible.

Factor REAL Any factor, which can be a variable, signal name or
constant.

Offset REAL An offset can optionally be programmed. The offset can be
a constant, variable or signal name.

Table 14 Arguments in the DIGIN statement

6 Subprograms and functions

119 of 178

ProgExperteBHR5.2 09.03.00 en

6 Subprograms and functions
In order to reduce the amount of typing and the program length when dealing with similar,
often repeated program sections, subprograms and functions have been introduced as
language constructs.

One effect of subprograms and functions that should not be underestimated with large
programs is the possibility of re--using, in other programs, algorithms that have already been
written, and in particular the use of subprograms for structuring theprogram. This structuring
process can bring about a hierarchical configuration so that individual subprograms, called
up by a higher--level program, can process tasks completely and pass on the results.

6.1 Declaration

A subprogram or function is a separate program section, with its own program descriptor,
declaration section and instruction section, which can be called from any position in themain
program. After execution of the subprogram or function, the program jumps back to the next
command after the subprogram call.

Further subprograms and/or functions can be called from within a subprogram or function.
The maximum permissible nesting depth is 20. If this is exceeded, the error message
“Program stack overflow” is generated. Recurrent calling of subprograms and functions is
allowed. In other words, a subprogram or function can recall itself.

All subprograms are declared in exactly the same way as the main program, with the DEF
declaration plus name, and concluded with END, e.g.:

DEF UNTERPR()
�
END

DEF PROG() ;Main program
�
SUBPR() ;Subprogram call
�
SUBPR() ;Subprogram call
�
END ;End main program

DEF SUBPR() ;Subprogram
�
END ;End subprogram

PROG.SRC

Fig. 39 Subprogram call and return to main program

DEF

Expert Programming

120 of 178

ProgExperteBHR5.2 09.03.00 en

Unlike a subprogram, a function sends back a return value. A function begins with the
keyword “DEFFCT”. The data type of the return value is specified directly after the keyword
“DEFFCT”. The return value itself is transferred via “RETURN”. The function is terminated
using the keyword “ENDFCT”.

DEFFCT INT Function()
DECL INT Sample
Sample = 11
RETURN Sample

ENDFCT

If the “RETURN” statement is missing, a runtime error is signaled.

A fundamental distinction is made between local and global subprograms or functions.

In the case of local subprograms or functions, the main program and the subprograms/
functions are found in the same SRC file. The file bears the name of the main program. The
main program is always situated at the head of the source text, and can be followed by any
quantity of subprograms and functions in any order. Local subprograms/functions can only
be called from within the SRC file in which they were programmed.

If it is necessary to be able to call subprograms/functions from other programs they must be
global, i.e. saved in a separate SRC file. Alternatively, a local subprogram can be preceded
by the keyword “GLOBAL”.
Every program becomes a subprogram as soon as it is called by another program (main
program, subprogram or function).

G All variables declared in the data list of the main program are recognized in local
subprograms and functions. Variables whichhave beendeclared in themain program
(SRC file) are so--called “runtime variables” and may only be used in the main
program. Attempting to use these variables in the subprogram causes a
corresponding error message to be generated.
Variables declared in the main program are not recognized in global subprograms or
functions.

G Variables declared in global subprograms or functions are not recognized in themain
program.

G A main program cannot access the local subprograms or functions of another main
program.

G The maximum length of local subprogram/function names is 24 characters. The
maximum length with global subprograms/functions is 24 characters (because of the
file extensions).

In order for the global subprogram to be known to the main program, it needs simply to be
called in the main program (e.g. PROG_2()).
Example:

PROG_3()
VAR = Function()

The difference between local and global subprograms/functions is illustrated in Fig. 40:
PROG.SRC, PROG_1.SRC and PROG_3.SRC are each independent main programs,
while PROG_2FUN.SRC is a function. Calling a program (e.g. PROG_1.SRC) from
PROG.SRC automatically turns it into a global subprogram. LOCAL() is a local subprogram,
LOCALFUN() is a local function of PROG.SRC.

DEFFCT

Local

Global

6 Subprograms and functions (continued)

121 of 178

ProgExperteBHR5.2 09.03.00 en

DEF PROG()
EXT PROG_1()
EXT PROG_3()
�
A=A*LOCALFUN()
LOCAL()
�
PROG_3()
PROG_1()
�
END

DEF LOCAL()
EXTFCT PROG_2FUN()
PROG_2FUN()
G=PROG_2FUN()
H=5+LOCALFUN()
END

PROG.SRC

DEFFCT INT LOCALFUN()
INT INTVAR
RETURN INTVAR
ENDFCT

DEF PROG_1()
�
END

DEFFCT INT PROG_2FUN()
INT A
EXT PROG_1()
PROG_1()
PROG_1()
�
ENDFCT

DEF PROG_3()
�
END

PROG_1.SRC

PROG_2FUN.SRC

PROG_3.SRC

Fig. 40 Difference between local and global subprograms

The keyword “EXT” is not required if the corresponding subprogram or function call is
entered in the editor.

6.2 Subprogram and function call and parameter transfer

A subprogram is called by entering the subprogram name plus round brackets. In this way
it looks like an instruction, e.g.:

SUBPROG1()

A function call is a special kind of value assignment. A function can thus never stand alone;
instead, the function value must constantly be assigned within the framework of a variable
expression of the same data type, e.g.:

INTVAR = 5 * INTFUNCTION() + 1
REALVAR = REALFUNCTION()

All variables declared in the data list of the main program are recognized in local
subprograms and functions. In global subprograms, on the other hand, these variables are
not recognized. Values can also be transferred to global subprograms and functions,
however, using a parameter list.

Transfer using parameter lists is also often useful in local subprograms and functions, as a
clear distinction can be made in this way between the main program and the subprogram/
function. All variables declared in the main program (SRC file) are only used there; all
transfers to subprograms and functions (local and global) are carried out using parameter
lists. Programming in this structured way significantly reduces programming errors.

Parameter list

Expert Programming

122 of 178

ProgExperteBHR5.2 09.03.00 en

There are two different mechanisms for transferring parameters:

G Call by value (IN)
With this kind of transfer, a value from the main program is transferred to a variable in
the subprogram or function. The transferred value can be a constant, a variable, a
function call or an expression. Where different data types are involved, type matching
is carried out where possible.

G Call by reference (OUT)
With “Call by reference”, only the address of a variable from the main program is
transferred to the subprogram or function. The subprogram or function called can now
overwrite the memory area using a variable name of its own and in this way also alter
the value of the variable in the main program. The data types must therefore be
identical; type matching is not possible in this case.

The difference between these two methods is shown in Fig. 41. Whereas, with “Call by
value”, variable X remains unchanged in themain program because of the separatememory
areas, in “Call by reference” it is overwritten with the variable NUMBER in the function.

DEF PROG()
INT X,Y,E
�
X=5*3
Y=SQUARE(X) ;Y=225
E=Y/X
�
END

GLOBAL DEFFCT INT
SQUARE(NUMBER:IN)
INT NUMBER
NUMBER=NUMBER*NUMBER
RETURN(NUMBER)
ENDFCT

GLOBAL DEFFCT INT
SQUARE(NUMBER:OUT)
INT NUMBER
NUMBER=NUMBER*NUMBER
RETURN(NUMBER)
ENDFCT

X

NUM-
BER

15
225

15

15

X,NUM-
BER

� X=15
Y= 225
E=15

15

15

225

225

Call by value

Call by reference

225

� X=225
Y= 225
E=1

Fig. 41 Difference between “Call by value” and “Call by reference”

“Call by value” is entered in the subprogram or function by the keyword IN after every
variable in the parameter list. “Call by reference” is obtained by entering the word OUT. OUT
is also the default setting. Example:

DEF CALCULATE(X:OUT,Y:IN,Z:IN,B)

If the global subprogramor function to be called has not beendeclared asGLOBAL, the exter-
nal declaration in themain programmust specify what data type the respective variables are
and which transfer mechanism is to be used. The default setting is again OUT. Example:

EXTFCT REAL FUNCT1(REAL:IN,BOOL:OUT,REAL,CHAR:IN)

6 Subprograms and functions (continued)

123 of 178

ProgExperteBHR5.2 09.03.00 en

The use of IN and OUT is illustrated in the following example. The subprogram and the
function are global.

DEF PROG()
CALCULATE (INT:OUT,INT:IN,INT:IN)
FUNCT1(REAL:IN,REAL:OUT,REAL:OUT,REAL:IN,REAL:OUT)
INT A,B,C
REAL D,E,F,G,H,X

A = 1
B = 2
C = 3
D = 1
E = 2
F = 3
G = 4
H = 5

CALCULATE (A,B,C)
;A is now 11
;B remains 2
;C remains 3

X = FUNCT1(H,D,E,F,G)
;D is now 3
;E is now 8
;F remains 3
;G is now 24
;H remains 5
;X is now 15

END

DEF CALCULATE(X1:OUT,X2:IN,X3:IN) ;Global SP
INT X1,X2,X3
X1=X1+10
X2=X2+10
X3=X3+10
END

DEFFCT REAL FUNCT1(X1:IN,X2:OUT,X3:OUT,X4:IN,X5:OUT);Global fct.
REAL X1,X2,X3,X4,X5
X1 = X1*2
X2 = X2*3
X3 = X3*4
X4 = X4*5
X5 = X5*6
RETURN(X4)
ENDFCT

When transferring an array, the array in the subprogram or function must also be declared
again, but without an index. For this, please refer to the followingexample inwhich the values
of an array X[] are doubled (the function is global):

Expert Programming

124 of 178

ProgExperteBHR5.2 09.03.00 en

DEF ARRAY ()
EXT BAS (BAS_COMMAND:IN,REAL:IN)
INT X[5] ;Array declaration
INT I

BAS (#INITMOV,0)

FOR I=1 TO 5
X[I]=I ;Initialize array X[]

ENDFOR ;X[1]=1,X[2]=2,X[3]=3,X[4]=4,x[5]=5

DOUBLE (X[]) ;Call subprogram with array parameters
;X[1]=2,X[2]=4,X[3]=6,X[4]=8,X[5]=10

END

DEF DOUBLE (A[]:OUT)
INT A[] ;Repeat declaration of the array
INT I
FOR I=1 TO 5

A[I]=2*A[I] ;Doubling of the array values
ENDFOR
END

Similarly, no indices are specified when transferring multi--dimensional arrays; however, the
dimensions of the array must be specified by entering commas. Examples:

A[,] for two--dimensional arrays

A[,,] for three--dimensional arrays

7 Interrupt handling

125 of 178

ProgExperteBHR5.2 09.03.00 en

7 Interrupt handling
Whenusing robots in complexmanufacturing systems, it is necessary for the robot to beable
to react specifically and immediately to certain external or internal events and for the
execution of other actions parallel to the robot process to be possible. In other words, a
running robot program must be interrupted and a program or function started. After the
subprogram has been executed, and if nothing further is declared, the interrupted robot
program should be resumed.

This specific interruption or starting of a program ismadepossible by the interrupt statement.
In this way the user has the possibility of reacting by program to an event which does not
occur synchronously with execution of the program.

Interrupts can be triggered by

G equipment such as sensors, peripheral units, etc.,

G error messages,

G the user, or

G safety circuits.

For example, an interrupt routine which resets certain output signals (prepared program
IR_STOPM.SRC) can be called when an Emergency Stop button is pressed.

7.1 Declaration

The possible causes of interruption, and the respective ways the system should react to
them, must be defined before an interrupt can be activated.

This is done using the interrupt declaration, in which every interrupt must be assigned a
priority, an event and the interrupt routine to be called. The complete syntax is:

INTERRUPT DECL Priority WHEN Event DO Subprogram

For the meaning of the arguments, see Table 15.

Argument Data
type

Meaning

Priority INT Arithmetic expression specifying the priority of the
interrupt. Priority levels 1�39 and 81�128 are available.
The values 40...80 are reserved for automatic priority
allocation by the robot system.

A level 1 interrupt has the highest priority.

Event BOOL Logic expression defining the interrupt event. The
following are permissible:

S a Boolean constant

S a Boolean variable

S a signal name

S a comparison

Subprogram The name of the interrupt program to be executed when
the event occurs.

Table 15 Arguments in the interrupt declaration

INTERRUPT

Expert Programming

126 of 178

ProgExperteBHR5.2 09.03.00 en

The instruction

INTERRUPT DECL 4 WHEN $IN[3]==TRUE DO SP1()

declares a priority 4 interrupt, for example, which is called by the subprogramSP1() as soon
as input 3 is set to High.

The interrupt declaration is an instruction. It must not, therefore, be located in the declara-

tion section!

An interrupt is only recognized at, or below, the programming level in which it is declared.
At higher programming levels, despite being activated, the interrupt is not recognized. In
other words, an interrupt declared in a subprogram is not recognized in the main program.

If, on the other hand, the interrupt is declared as GLOBAL, it can be declared in any
subprogram and does not lose its validity when this level is left.

GLOBAL INTERRUPT DECL 4 WHEN $IN[3]==TRUE DO SP1()

G A declaration may be overwritten by another at any time.

G A GLOBAL interrupt differs from a normal interrupt in that it remains valid even after
the subprogram in which it was declared has been left.

G Up to 32 interrupts may be declared at any one time.

G Structure variables and components may not be accessed in the interrupt condition.

G Runtime variables may not be transferred as interrupt routine parameters, apart from
GLOBAL variables or variables declared in the data list.

Main program

DEF MAIN()
⋮
INTERRUPT DECL 1 �
INTERRUPT DECL 3 �
⋮
SP()
⋮
END

DEF SP()
⋮
GLOBAL INTERRUPT DECL 23
�
INTERRUPT DECL 2 �
⋮
END

Subprogram

Validity of interrupts 1,3,23

Validity of interrupt 2

Fig. 42 Validity range for an interrupt dependent on location and type of declaration

GLOBAL

7 Interrupt handling (continued)

127 of 178

ProgExperteBHR5.2 09.03.00 en

7.2 Activating interrupts
When first declared, an interrupt is switched off. Using the instruction

INTERRUPT ON 4

the interrupt with priority 4 is switched on, whereas

INTERRUPT ON

switches all interrupts on. No reaction to thedefined interrupt can takeplaceuntil the interrupt
has been switched on. The interrupt event is now cyclically monitored.

This checking is edge--triggered, i.e. an interrupt is only triggered if the logic condition
changes from the FALSE state to the TRUE state, and not, however, if the condition is already
TRUE when the interrupt is switched on.

For reasons of runtime, only 16 interrupts can be switched on at any one time. Bear this

particularly in mind in the case of global activation of all interrupts.

In the same way as they are switched on, interrupts can also be switched off either individu-
ally or all together:

INTERRUPT OFF 4

or

INTERRUPT OFF

Using the keywords ENABLE and DISABLE, interrupts that have been switched on can be
enabled or disabled, individually or globally.

The disable command makes it possible to protect certain sections of the program before
it is interrupted. A disabled interrupt will be recognized and saved but not executed. The
interrupts that have occurred are executed in order of their priority, but not until they have
been enabled.

DISABLE 4

or

DISABLE

There is no further reaction to an event that has been saved if the interrupt is switched off
before triggering. If an interrupt occurs several times while it is disabled, it is only executed
once on being enabled.

The preconditions for triggering an interrupt are:

S The interrupt must be declared (INTERRUPT DECL �)

S The interrupt must be switched on (INTERRUPT ON)

S The interrupt must not be disabled

S The corresponding event must have occurred (edge--triggered)

If several interrupts occur at the same time, the interrupt with the highest priority is processed
first, then those of lower priority. Priority level 1 here has the highest priority and level 128
the lowest.

When an event is recognized, the current actual position of the robot is saved and the
interrupt routine called. The interrupt that has occurred is disabled throughout the time it is
being executed along with all those of lower priority. When returning from the interrupt
program, this so--called implicit disabling is cancelled, including that of the current interrupt.

The interrupt can now be executed again if the event recurs (even during the interrupt
program). If this is prevented, the interrupt must be explicitly disabled or switched off before
returning to the main program.

Switch
interrupt on

Edge--
triggered

Switch
interrupt off

Disable /
enable

Priority

Expert Programming

128 of 178

ProgExperteBHR5.2 09.03.00 en

At any point after the first command in the interrupt program, an interrupt can itself be
interrupted by an interrupt with a higher priority. In the first command, the programmer has
the possibility of preventing this by disabling or switching off one or all of the interrupts. If an
interrupt switches itself off in the interrupt program, the interrupt program is, of course,
executed through to the end.

When a higher--priority interrupt is terminated, the interrupted interrupt program is resumed
at the point at which it was interrupted.

G IN parameters can be transferred to an interrupt program.

G If a local interrupt program is to send back a parameter, the variablemust be declared
in the data list of the main program. In the case of global interrupt programs, the data
list $CONFIG.DAT must be used.

G Changes to von $TOOL and $BASE in the interrupt program are only effective there
(command mode).

G There is no computer advance run in the interrupt program because it runs at
command level, i.e. it is executed block by block ($ADVANCE assignments are not
permissible). Approximate positioning is thus not possible.

Special cases:

S Interrupts to the system variables $ALARM_STOP and $STOPMESS are also executed

in the event of an error, i.e. the interrupt statements are executed despite the robot

being stopped (motion instructions are disregarded).

S Each declared and activated interrupt can be detected during an operator stop. Once

theprogram is restarted, interrupts that haveoccurredare executed in order of priority

(if enabled) and the program then continues.

A robot motion that is already being executed is not interrupted by an interrupt program call.
Even while the interrupt program is being processed, all motions already prepared in the
interrupted program are still executed. If the interrupt program is completely executed during
this time, the program that was interrupted is resumed without any pause betweenmotions,
i.e. without the processing time being lengthened. If, on the other hand, the interrupt action
is not yet complete, the robot remains motionless until the next motion is prepared and
continued after returning to the main program.

If the interrupt program itself contains motion instructions, it stops at the first motion
instruction until the advance run in the main program has been executed.

The following example is designed to explain the use of interrupt statements and the use of
specific system variables. Two sensors (at inputs 1 and 2) are constantly monitored here
during a linear motion. As soon as a sensor detects a part (is set to High), an interrupt
subprogram is called which saves the position of the part and sets the corresponding output
as an indicator. The robot motion is not interrupted here. The robot then moves again to the
parts that have been detected.

7 Interrupt handling (continued)

129 of 178

ProgExperteBHR5.2 09.03.00 en

DEF INTERRUP ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
INT I

;----------- Initialization ----------
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 30,A6 0}
FOR I=1 TO 16

$OUT[I]=FALSE ;Reset all outputs
ENDFOR
INTERRUPT DECL 10 WHEN $IN[1]==TRUE DO SAVEPOS (1)
INTERRUPT DECL 11 WHEN $IN[2]==TRUE DO SAVEPOS (2)

;----------- Main section ----------
PTP HOME ;BCO run
PTP {X 1320,Y 100,Z 1000,A -13,B 78,C -102}
INTERRUPT ON ;Activate all interrupts
LIN {X 1320,Y 662,Z 1000,A -13,B 78,C -102} ;Search path
INTERRUPT OFF 10 ;Switch off interrupt 10
INTERRUPT OFF 11 ;Switch off interrupt 11
PTP HOME
FOR I=1 TO 2

IF $OUT[I] THEN
LIN PART[I] ; Move to detected part
$OUT[I]=FALSE
PTP HOME

ENDIF
ENDFOR
END

;----------- Interrupt program ----------
DEF SAVEPOS (NO :IN) ;Part detected
INT NO
$OUT[NO]=TRUE ;Set flag
PART[NO]=$POS_INT ;Save position
END

Along with the basic package (BAS.SRC), another file, IR_STOPM(), comes as standard
in the controller. This subprogram executes a number of fundamental instructions in the
event of an error. These include several technology--specific procedures and the
repositioning of the robot on the motion path. This is because whereas the robot stays on
the path when the EMERGENCY STOP button is pressed, hardware--triggered stops for
safeguards directly affecting the operator (e.g. safety gate) are not true to the path.
You should, therefore, always implement the following sequence in the initialization section
of your program (located as standard in the BAS INI):

INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ()
INTERRUPT ON 3

The PTP $POS_RET instruction in the file IR_STOPM() brings about the repositioning and
thus re--establishes BCO.

Further system variables useful for working with interrupts are shown in Table 16. The
positions are always related to the current coordinate systems in the main run.

Expert Programming

130 of 178

ProgExperteBHR5.2 09.03.00 en

Joint (axis--
specific)

Cartesian Description

$AXIS_INT $POS_INT Position at which the interrupt was triggered

$AXIS_ACT $POS_ACT Current actual position

$AXIS_RET $POS_RET Position at which the robot left the path

$AXIS_BACK $POS_BACK Position of the start point of the path

$AXIS_FOR $POS_FOR Position of the end point of the path

Table 16 Useful system variables for interrupt handling

In motions with approximate positioning, the positions�_BACK and�_FOR are dependent
on the location of the main run.

P1

P2

P3

$POS_BACK
$AXIS_BACK

$POS_ACT
$AXIS_ACT

$POS_RET
$AXIS_RET$POS_INT

$AXIS_INT

$POS_FOR
$AXIS_FOR

Fig. 43 Interrupt system variables with exact positioning points

P1

P2

P3

$POS_BACK
$AXIS_BACK

$POS_RET
$AXIS_RET

$POS_ACT
$AXIS_ACT

$POS_INT
$AXIS_INT

$POS_FOR
$AXIS_FOR

Fig. 44 Interrupt system variables in the event of interrupt in anapproximate positioning range

7 Interrupt handling (continued)

131 of 178

ProgExperteBHR5.2 09.03.00 en

7.3 Stopping active motions

If it is necessary, in the event of an interrupt, to be able to stop robot motions that are already
being executed, the BRAKE statement is used in the interrupt program. Programmingwithout

BRAKE

parameters causes themotion to be braked using the programmed path or axis acceleration
values. The reaction is the same as that when the STOP key is pressed. The robot does not
leave the programmed motion path.

Using the instruction

BRAKE F

(brake fast) a shorter braking distance is achieved. The robot stops in the shortest time
possible while remaining true to the path.

The BRAKE instruction must only be placed in an interrupt program. In other programs it

leads to an error--induced stop.

The BRAKE instruction does not have to come straight after the call, but can be situated at
any position in the interrupt program. The effect it has depends on whether or not a motion
is still being carried out in the interrupted program when it is executed. If the robot is station-
ary, the instruction has no effect. A motion still in progress in the interrupted program is
stopped using the programmed braking mode. The BRAKE command is no substitute for the
HALT statement, however, if program execution is to be stopped. Processing of the interrupt
program only continues with the following instruction once the robot has come to a standstill.

After returning to the interrupted program, a motion stopped by means of
BRAKE or BRAKE F in the interrupt program is resumed!

7.4 Canceling interrupt routines

During the robot motion in example 8.1, proximity switches detect up to 2 objects and record
their positions so the robot can move to them again later.

Even if both objects are already known, the robot nonetheless moves along the complete
search path. In order to save time, it is desirable to terminate the movement as soon as the
maximum number of parts have been detected.

Cancellation of a robot motion is possible with the KR C... using the

RESUME

statement. RESUME cancels all running interrupt programs and subprograms up to the level
at which the current interrupt was declared.

Just like the BRAKE statement, RESUME is only permissible in an interrupt program.

When the RESUME statement is activated, the advance run pointer must not be at the level

where the interrupt was declared, but at least one level lower.

SinceRESUME is intended to cancel the searchpath, the searchmotionmust beprogrammed
in a subprogram. In the following example, this is accomplished in MOVEP(); the interrupt
subprogram is called IR_PROG().

It is important for the advance run to be stopped before the last line in subprograms that are
to be canceled using RESUME. Only then is it possible to ensure that, when the RESUME
statement is activated, the advance runpointer will not beat the level where the interrupt was
declared. In MOVEP(), this was done using the $ADVANCE=0 assignment.

BRAKE

RESUME

Expert Programming

132 of 178

ProgExperteBHR5.2 09.03.00 en

In the interrupt program itself, the search path is stopped using the BRAKE statement, as
soon as a sensor at input 1 has detected 4 parts, and then canceledbymeans of theRESUME
statement (since MOVEP() is also terminated along with IR_PROG()). Without the BRAKE
statement, the search motion would still be executed in the advance run.

After the RESUME statement, the main program is resumed at the instruction following the
subprogram call, i.e. $ADVANCE=3 (reset advance run).

DEF SEARCH ()
;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
;----------- Initialization ----------
INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ()
INTERRUPT ON 3 ;standard fault service functions
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 30,A6 0}
INTERRUPT DECL 11 WHEN $IN[1] DO IR_PROG ()
I[1]=0 ;Set predefined counter to 0
;----------- Main section ----------
PTP HOME ;BCO run
INTERRUPT ON 11
MOVEP () ;Motion along the search path
$ADVANCE=3 ;Reset advance run
INTERRUPT OFF 11
GRIP ()
PTP HOME
END
;---------- Subprogram --------------
DEF MOVEP () ;Subprogram for search path motion
PTP {X 1232,Y -263,Z 1000,A 0,B 67,C -90}
LIN {X 1232,Y 608,Z 1000,A 0,B 67,C -90}
$ADVANCE=0 ;Stop advance run
END ;
;--------- Interrupt program --------
DEF IR_PROG () ;Save position of parts
;INTERRUPT OFF 11
I[1]=I[1]+1
POSITION[I]=$POS_INT ;Position saved
IF I[1]==4 THEN ;4 parts detected

BRAKE ;Motion stopped
RESUME ;IR_PROG & MOVE canceled

ENDIF
;INTERRUPT ON 11
END

;---------- Subprogram --------------l
DEF GRIP () ;Grip detected parts
INT POS_NO ;Counter variable
FOR POS_NO=I[1] TO 1 STEP -1
POSITION[POS_NO].Z=POSITION[POS_NO].Z+200
LIN POSITION[POS_NO] ;Move to 200 mm above part
LIN_REL {Z -200} ;Move vertically to part
; Pick up part
LIN POSITION[POS_NO] ;Move back up
LIN {X 634,Y 1085,Z 1147,A 49,B 67,C -90}
; Set down part
ENDFOR
END

7 Interrupt handling (continued)

133 of 178

ProgExperteBHR5.2 09.03.00 en

If there is a risk of an interrupt being incorrectly triggered twice because of sensitive
sensors (“contact bouncing”), you can prevent this by switching off the interrupt in the first
line of the interrupt program. However, a genuine interrupt arising during interrupt
processing can now no longer be recognized. If the interrupt is to remain active, it must be
switched back on before returning to the main program.

If amotion is canceledusing theRESUME statement, as in the example above, the following
motion should not be a CIRCmotion because the start point will be different every time (
different circles).

In the search action programmed in example , the inputs are polled at the interpolation cycle
rate (currently 12ms). The maximum degree of inaccuracy is thus around 12 ms times the
path velocity.

If you wish to avoid this degree of inaccuracy, you must not connect the proximity switch to
the user inputs; instead, you must use the 4 special inputs on the peripheral connector X11.
These inputs can be addressed via the system variables
$MEAS_PULSE[1]�MEAS_PULSE[4] (reaction time 125 �s).

The measurement pulse must not currently be applied when the interrupt is switched on or
the corresponding error message appears.

7.5 Use of cyclical flags

No logic operations are permissible in the interrupt declaration instruction.

In order, therefore, to be able to define complex events, you must work with cyclical flags,
as only these make constant updating possible.

With the program sequence

...
$CYCFLAG[3] = $IN[1] AND ([$IN[2] OR $IN[3])
INTERRUPT DECL 10 WHEN $CYCFLAG[3] DO IR_PROG()
INTERRUPT ON 10
...

you can simultaneously monitor and logically combine 3 inputs.

Further information can be found in the chapter [Variables and declarations], section
[System variables and system files].

“Fast measu-
rement”

Expert Programming

134 of 178

ProgExperteBHR5.2 09.03.00 en

8 Trigger -- path--related switching actions

135 of 178

ProgExperteBHR5.2 09.03.00 en

8 Trigger -- path--related switching actions

Unlike the interrupt functions, which are independent of robot motion, some applications also
require switching actions which are triggered depending on the motion path. Such
applications include, e.g.:

G Closing or opening the welding gun during spot welding

G Switching the welding current on/off during arc welding

G Starting or stopping the flow of adhesive in bonding or sealing applications.

In the KR C..., these path--related switching actions are possible using the TRIGGER
statement. Parallel to the next robot motion, it is possible, by means of TRIGGER, and in
accordance with a path criterion, to execute a subprogram, assign a value to a variable or
PULSE statement, or set an output.

8.1 Switching action at the start or end point of the path

If a switching action relating to the start or end point of a motion path is required, program
a TRIGGER statement before the relevant motion instruction (PTP, LIN or CIRC) using the
following syntax:

TRIGGER WHEN DISTANCE=Switching point DELAY=Time DO Instruction

<PRIO=Priority>

The arguments are described in greater detail in the following table.

Argument Data type Meaning

Switching
point

INT In the case of individual blocks, DISTANCE=0 desig-
nates the start point and DISTANCE=1 the end point of the
followingmotion. In the caseof approximatepositioning
blocks, DISTANCE=1 signifies the middle of the following
approximate positioning arc.
If the previous block is already an approximate positioning
block, DISTANCE=0 signifies the end point of the preced-
ing approximate positioning arc.

Time INT Using the specification DELAY, it is possible to delay or
advance the switching point by a certain amount of time.
The switching point can, however, only be delayed or
advanced in so far as it still remains in the block
concerned.
The unit is milliseconds.

Instruction The instruction can be
S a subprogram call
S the assignment of a value to a variable
S an OUTPUT instruction (also Pulse).

Priority INT EveryTRIGGER statement with a subprogramcallmust be
assigned a priority. Values from 1�39 and 81�128 are
permissible. The priorities are thus the same as those for
interrupts (see Section 7).
The values 40�80 are reserved for automatic priority
allocation by the robot system. For this, program
PRIO=--1.

Table 17 Arguments in the TRIGGER statement

TRIGGER

Priority

Expert Programming

136 of 178

ProgExperteBHR5.2 09.03.00 en

Using the instruction sequence

⋮
LIN POINT2
⋮
TRIGGER WHEN DISTANCE = 0 DELAY=20 DO $OUT[4]=TRUE
TRIGGER WHEN DISTANCE = 1 DELAY=-25 DO SP1() PRIO=-1
LIN POINT3
⋮
LIN POINT4
⋮

output 4 is set 20 milliseconds after the start of the linear motion to POINT3, and the
subprogram SP1() is called 25 milliseconds before the end point is reached. Priorities are
automatically allocated by the system. The different effects of the specification DISTANCE
on individual blocks and approximate positioning blocks are illustrated in the following
diagrams.

+

--

0

1

DISTANCE Switching range DELAY

0 0 -- 1 +
1 1 -- 0 --

POINT2

POINT3

Fig. 45 Switching ranges and possible delay values if start and end points are exact
positioning points

+

--

0 DISTANCE Switching range DELAY

0 0 -- 1a +

1 1a -- 1b �

+

1b

1a

1

POINT2

POINT4POINT3

Fig. 46 Switching ranges and possible delay values if the start point is an exact
positioning point and the end point is an approximate positioning point

8 Trigger -- path--related switching actions (continued)

137 of 178

ProgExperteBHR5.2 09.03.00 en

+

--

0

DISTANCE Switching range DELAY

0 0 -- 1a +

1 1a -- 1b �

+

1
1b

1a

POINT2

POINT3 POINT4

Fig. 47 Switching ranges and possible delay values if start and end points are
approximate positioning points

+ --

0

1

DISTANCE Switching range DELAY

0 0 -- 1 +
1 1 -- 0 --

POINT2

POINT3

Fig. 48 Switching ranges and possible delay values if the start point is an approximate
positioning point and the end point is an exact positioning point

Expert Programming

138 of 178

ProgExperteBHR5.2 09.03.00 en

8.2 Switching action at any point on the path

If you are using the path--related TRIGGER statement, you can trigger the switching action
at any position along the path by specifying a distance. As with switching actions at the start
or end points, this again can additionally be delayed or brought forward.

The path--related switching action is only allowed with continuous--path motions (LIN or
CIRC). The TRIGGER statement refers here to the next programmed motion block and has
the following syntax:

TRIGGER WHEN PATH = Distance DELAY = Time DO Instruction

�PRIO=Priority�

The arguments are described in greater detail in the following table.

Argument Data type Meaning

Distance INT With Distance you can specify the desired distance from
the end point programmed after the trigger.
If this end point is an approximated point, Distance
specifies the desired distance of the switching action from
the position in the approximate positioning range closest to
the end point.
The switching point can be shifted back as far as the start
point by entering a negative value for Distance. If the
start point is an approximate positioning point, the
switching point can be shifted as far as the start of the
approximate positioning range.
By entering a positive value for Distance, a shift as far as
the next exact positioning point programmed after the
trigger is possible.
The unit is millimeters.

Time INT Using the specification DELAY, it is possible to delay (+) or
advance (--) the switching point relative to the PATH
specification by a certain amount of time.
The switching point can only be delayed or advanced,
however, in the switching range given above (as far as the
next exact positioning point). With approximate positioning
motions, the switching point can be advanced, at most, as
far as the start of approximate positioning of the start point.
The unit is milliseconds.

Instruction The instruction can be
S a subprogram call
S the assignment of a value to a variable
S an OUTPUT instruction (also PULSE).

Priority INT Every TRIGGER statement with a subprogram call must be
assigned a priority. Values from 1�39 and 81�128 are
permissible. The priorities are thus the same as those for
interrupts (see Section 7).
The values 40�80 are reserved for automatic priority
allocation by the robot system. For this, programPRIO=--1.

Table 18 Arguments in the TRIGGER statement

Priority

8 Trigger -- path--related switching actions (continued)

139 of 178

ProgExperteBHR5.2 09.03.00 en

Instruction sequence:

⋮
LIN POINT2 C_DIS
TRIGGER WHEN PATH = Y DELAY= X DO $OUT[2]=TRUE
LIN POINT3 C_DIS
LIN POINT4 C_DIS
LIN POINT5
⋮

Since the switching point can be shifted from the motion point before which it was
programmed, past all subsequent approximate positioning points, as far as the next exact
positioning point, it is possible to shift the switching point from the approximate positioning
start point POINT2 to POINT5. If POINT2 was not approximated in this sequence of
instructions, the switching point could only be shifted as far as the exact positioning point
POINT2.

+

-- +
DELAY X

POINT4POINT3

POINT2

-- POINT5

PATH=0 PATH Y>0

DELAY=0

--

+

DELAY X

PATH Y<0

POINT4
POINT3

POINT2

POINT5

PATH =
-20

Switching point

DELAY = -10

Numeric example:

X= --10, Y= --20

Fig. 49 Switching ranges if the start point is an approximate positioning point

Expert Programming

140 of 178

ProgExperteBHR5.2 09.03.00 en

Special cases:

G BCO run

If block selection is carried out to a continuous--path motion, this movement is performed
as a BCO run. Since the start point for this BCO run is entirely arbitrary, it can be of no use
as the start point for a distance specification. Therefore, if TRIGGER commands with PATH
specification are programmed before such a motion, and if a block selection is made to
these commands, they will all be executed at the end point.

G Approximation not possible

If approximation is not possible; an exact positioning motion is carried out at this position.
In this context, however, it is treated in the samewayas anapproximate positioningmotion.
Switching actions further along the path remain saved and are triggered at the relevant
position. Generally speaking, however, they will no longer be exactly as programmed,
since the path, and thus the path length, are now different. Switching actions set in the first
half of the approximate positioning range by means of a negative PATH value cannot now
be triggered before the exact positioning point:
⋮
LIN P1 C_DIS
TRIGGER WHEN PATH=-120 DELAY=0 DO SP1() PRIO=-1
TRIGGER WHEN PATH=-70 DELAY=0 DO $OUT[2]=TRUE
LIN P2 C_DIS
⋮
In the above example, the distance between the start and end points should be 100 mm.
If approximation is possible for P1, the subprogram call SP1() is executed 20 mm before
the point on the path nearest to the approximate positioning point P1 is reached. Output
2 is set 30 mm after this point on the path. If it was not possible to carry out approximation
for P1, the path runs through P1, where exact positioning takes place. The subprogramcall
SP1() is now executed immediately after leaving P1 and output 2 is set at a distance of
30 mm from P1.

G Canceling a motion

If a motion is canceled, by block selection or reset, for example, and not subsequently
completed, switchingactions that havenot yet beenexecutedwill bedeleted, not executed,
in the event of a DISTANCE specification.

G Path--related TRIGGER statement for a PTP motion

If a PATH-TRIGGER statement with path specification is programmed for a PTP motion,
this will be refused by the interpreter when the motion is executed.

G PTP--CP approximate positioning

If a PATH-TRIGGER statement is programmed for amotion whose start point is a PTP--CP
approximate positioning point, the switching action can take place, at the earliest, at the
end of this approximate positioning range, since the whole approximate positioning range
is now covered using a PTP motion.
In the event of a CP--PTP approximate positioning range, all TRIGGER statements which
are still active, but have not yet been switched on, are triggered at the start point of the
approximate positioning range. This is because the motion is continued as PTP from this
point and path assignment is no longer possible.

8 Trigger -- path--related switching actions (continued)

141 of 178

ProgExperteBHR5.2 09.03.00 en

In the next example, switching actions with DISTANCE specifications and also with PATH
specifications are programmed. The individual switching points and the motion path are
illustrated in Fig. 52.

DEF TRIG ()

;------- Declaration section -------
EXT BAS (BAS_COMMAND :IN,REAL :IN)
DECL AXIS HOME
INT I
SIGNAL ADHESIVE $OUT[3]

;----------- Initialization ----------
INTERRUPT DECL 3 WHEN $STOPMESS==TRUE DO IR_STOPM ()
INTERRUPT ON 3
BAS (#INITMOV,0) ;Initialization of velocities,

;accelerations, $BASE, $TOOL, etc.
$APO.CDIS=35 ;Define approximation distance
HOME={AXIS: A1 0,A2 -90,A3 90,A4 0,A5 30,A6 0}
POS0={POS: X 1564,Y -114,Z 713,A 128,B 85,C 22,S 6,T 50}
POS1={X 1383,Y -14,Z 713,A 128,B 85,C 22}
POS2={X 1383,Y 200,Z 713,A 128,B 85,C 22}
POS3={X 1527,Y 200,Z 713,A 128,B 85,C 22}
POS4={X 1527,Y 352,Z 713,A 128,B 85,C 22}
FOR I=1 TO 16

$OUT[I]=FALSE
ENDFOR

;----------- Main section ----------
PTP HOME ;BCO run
LIN POS0
TRIGGER WHEN DISTANCE=0 DELAY=40 DO $OUT[1]=TRUE
TRIGGER WHEN PATH=-30 DELAY=0 DO SP1(2) PRIO=-1
LIN POS1
TRIGGER WHEN DISTANCE=1 DELAY=-50 DO ADHESIVE=TRUE
TRIGGER WHEN PATH=180 DELAY=55 DO PULSE($OUT[4],TRUE,0.9)
TRIGGER WHEN PATH=0 DELAY=40 DO $OUT[6]=TRUE
LIN POS2 C_DIS
TRIGGER WHEN DISTANCE=0 DELAY=40 DO PULSE ($OUT[5],TRUE,1.4)
TRIGGER WHEN PATH=-20 DELAY=-15 DO $OUT[8]
LIN POS3 C_DIS
TRIGGER WHEN DISTANCE=1 DELAY=-15 DO SP1 (7) PRIO=-1
LIN POS4
PTP HOME
END
DEF SP1 (NO :IN)

INT NO
IF $IN[1]==TRUE THEN
$OUT[NO]=TRUE
ENDIF
END

Expert Programming

142 of 178

ProgExperteBHR5.2 09.03.00 en

18
08

POS 2POS 1

POS 4
POS 3

POS 0

2’B

2’

2’E

3’B

3’E3’

$OUT[1]

$OUT[2]

$OUT[3]

$OUT[6]

$OUT[5]

$OUT[8]

$OUT[4] $OUT[7]

20

30

Fig. 50 Switching points and motion path for the above example

9 Data lists

143 of 178

ProgExperteBHR5.2 09.03.00 en

9 Data lists

9.1 Local data lists

Data lists are used for preparing program--specific and higher--level declarations. These
include information about points, e.g. coordinates:

G One data list may be drawn up for each SRC file. This has the same name as the SRC
file and ends with the extension “.DAT”.

G The data list is local even though it is a separate file in its own right.

G A data list may only consist of declarations and initializations.

G A single line can consist of declarations and initializations.

G System variables are not accepted.

The declaration of data lists is analogous to that of SRC files: The declaration is introduced
using the keyword DEFDAT and the program name and concludedwith the keyword ENDDAT.

Variables are initialized by assigning a value directly to the variable concerned in thedeclara-
tion line.

After program execution
OTTO = 25

DEF PROG_1()
�
HALT
�
OTTO = 25
�
HALT
END

DEFDAT PROG_1
INT OTTO = 0
ENDDAT

OTTO is initially “0”

PROG_1.SRC PROG_1.DAT

DEFDAT PROG_1
INT OTTO = 25
ENDDAT

Fig. 51 Initialization and assignment of values to variables declared in data lists

Declaration and initialization in the data list eliminates the need for this in the main program.
If the variable OTTO in the main program is assigned a new value, this is also entered in the
data list and remains permanently stored there.

The “new” value is therefore used after the controller has been switched off/on. This is
essential for online correction and other program modifications.

If a main program always starts with the same value, the relevant variable in the main
program must be preset with the desired value.

The following declarations are allowed in data lists:

G External declarations for subprograms and functions which are used in the SRC file.

G Import declarations for imported variables.

G Declarations and initializations of variables which are used in the SRC file.

G Declarations of signal and channel names which are used in the SRC file.

G Declarations of data and enumeration types (Struc, Enum) which are used in the data
list or in the SRC file.

DEFDAT

Expert Programming

144 of 178

ProgExperteBHR5.2 09.03.00 en

9.2 Global data lists

Variables defined in a data list can be made accessible to a “foreign” main program.

To do this, the data list must be defined as “publicly accessible” with the keyword PUBLIC
in the header line. There are now two possible ways of declaring variables:

G A variable is defined in the data list, e.g. as INT OTTO = 0, and must be imported into
the “foreign” main program using the command Import in order to be accessible.

An imported variable can be given a different name in the main program from the one
it had in the data list from which it was imported.

If youwant to use the variable OTTO, taken from the abovedata listPROG_1, in program
PROG_2(), you thus program the following import declaration in PROG_2(), as well as
the keyword PUBLIC in the data list:

IMPORT INT OTTO_2 IS /R1/PROG_1..OTTO

The variable OTTO from the data list PROG_1.DAT in the directory /R1 is now also
known as OTTO_2 in the program PROG_2().

DEF PROG_1()
�
HALT
�
OTTO = 25
�
END

DEFDAT PROG_1 PUBLIC
INT OTTO = 0
ENDDAT

DEF PROG_2()
IMPORT INT OTTO_2 IS /R1/PROG_1..OTTO
�
�
END

PROG_1.SRC PROG_1.DAT

PROG_2.SRC

Fig. 52 Importing variables from “foreign” data lists with Import

G The variable is declared as a “global variable”, e.g. DECL GLOBAL INT OTTO = 0,
and is accessible to all foreign main programs without the need for the Import
command.

If a global variable has been declared, it is not possible to change the name of the
variable in a foreign main program.

9 Data lists (continued)

145 of 178

ProgExperteBHR5.2 09.03.00 en

DEF PROG_1()
�
HALT
�
OTTO = 25
�
END

DEFDAT PROG_1 PUBLIC
DECL GLOBAL INT OTTO = 0
ENDDAT

DEF PROG_2()
�
�
END

PROG_1.SRC PROG_1.DAT

PROG_2.SRC

Fig. 53 Importing variables from “foreign” data lists without Import

The declaration of a global variable is only permissible in data lists; if it is used in SRC or
SUB files, an error message is generated.

Variables, structures, channels and signals which are valid over a long time and are of
general significance for a lot of programs can be defined in the predefined, global system
data list $CONFIG.DAT. Variables in $CONFIG.DAT do not need to be declaredwithIMPORT
since they are automatically known in all application programs.

Further information about $CONFIG.DAT can be found in the chapter [Variables and
declarations], section [System variables and system files].

Expert Programming

146 of 178

ProgExperteBHR5.2 09.03.00 en

10 External editor

147 of 178

ProgExperteBHR5.2 09.03.00 en

10 External editor
This additional program enhances the robot software by adding a range of functions which
are not available in the user interface.

Clean program

Non--referencedmotion path points andmotion parameters are deleted from the data
list.

Setting and offsetting limit switches

Block manipulation

-- Select and copy, delete or cut blocks.

-- Reverse thepath of the robot in the selectedarea, i.e. the robot nowmoves to thepoint
previously programmed as the first point in the selected path section last of all and to
the point that was programmed as the last point first.

-- Reflect the path of the robot in the selected area in the X--Z plane of the world
coordinate system.

-- Modify the motion parameters (velocity, acceleration, etc.) in the selected area.

-- Offset all points within the selected section of the path in the BASE, TOOL or WORLD
coordinate system. The offset or rotation can be carried out by manually entering an
offset in the respective coordinate system or by teaching reference points.

-- Axis--specific offset of all points in the selected area.

Adapt points on the path

-- to a different tool coordinate system, or

-- to a different base coordinate system

Adapt points on the path

-- Point coordinates can be offset in the Tool, Base and World coordinate systems while
a program is running in the controller.

Expert Programming

148 of 178

ProgExperteBHR5.2 09.03.00 en

10.1 Starting the external editor

The external editor is not available below the user group “Expert”.

Activate the external editor via the
menu “Setup” and the option “Service”
contained in this menu.

Setup Measure
Master
UnMaster
Software Update
Service
Robot Data

DSE--RDW
Load data determination
External Editor
Axisconfigurator
Long text

The “Setup” menu is not available if a
program is selected. In this case, use
the menu command “Program” -->
“Modify”, which is available in the user
group “Expert” and higher.

FOLD
Copy
Paste
Cut
Delete
Find
Replace
Cancel program
Reset program
Modify

Program

Point

This opens the external editor in which the necessary corrections can be made.

As soon as the editor is started, the “select files” dialog appears. Use the arrow
keys “�” and “�” to select the file that is to be edited. All SRC files in the directory
R1areavailable apart from “R1\MADA\”, “R1\SYSTEM\” and “R1\TP\”. Standard files,
which are also not displayed, can also be defined (”C:\KRC\UTIL\HOTEDIT.INI”).

If the “external editor” is startedas anoffline program, theKRCsoftware is startedautomat-
ically.

10 External editor (continued)

149 of 178

ProgExperteBHR5.2 09.03.00 en

Once youhave selected thedesired file in thisway andpressed thecorrespond-
ing softkey or Enter, the file is loaded into the editor. The time taken to load the
file depends on the size of the file.

If the message “ *.DAT file not found” appears, you have attempted to load into the editor
a program which does not have a data list.

When the file has been successfully loaded, the program is displayed in a similar way to that
in the editor in the user interface.

The status line of the editor indicates whether it was started via the Setup menu or via
“Program” --> “Modify”.

Expert Programming

150 of 178

ProgExperteBHR5.2 09.03.00 en

10.2 Operator control

The elements of the normal user interface are also to be found in the external editor. These
include menu keys, status keys, softkeys, a program window, a message window and a
status line.

Menus can also be opened by first holding down the “ALT” key and then pressing the letter
underlined in the menu key. Menu commands are selected in the same way.

Status keys

Using the status keys “Last” and “Next”, you can move the colored highlight
(focus) line by line towards the start or end of the list. The arrow keys “"” and
“#” and the “PGUP” and “PGDN” keys can be used to carry out the same
function.

Focus

Focus

The keys “PgUp” and “PgDn” can be used to scroll up or down a page at a time. To do this,
it is necessary to disable the “NUM” function or use an external keyboard.

The contents of the message window are deleted.

If you press the status key “KRL”, the program is displayed in the same way as in
expert mode with the settings “All FOLDs open” and “ASCII Mode”.

Thehighlighted command is displayed in the section “FOLD” (”SRC” file). Thedata belonging
to the highlighted command are displayed in the section “Data” (”DAT” file).

10 External editor (continued)

151 of 178

ProgExperteBHR5.2 09.03.00 en

Pressing the “Zoom --” status key returns you to the display of the entire program.

Softkey bar

This softkey corresponds to the menu command “Close file”, which closes
the current program, but leaves the editor running.

Message window

Themessages that are relevant for the external editor are displayed in the messagewindow.

003
002
001

7:51:36
7:51:32
7:51:32

Loading...
File Open
ExtEdit Start

OK
OK
OK

No. Time Message Result

No.: Message type and number

Time: The time the message was generated

Message: The message itself

Result: Gives the result of an operation

Status line

Additional information is displayed in the status line.

NUM: The numeric keypad is activated for numerical entry

CAPS: The Caps Lock key is deactivated

ExtEdit: The “External Editor” module is active and was opened via the menu “Setup”
--> “Service”.

Bahn: The name of the program currently open

4:33 PM: The current system time

Expert Programming

152 of 178

ProgExperteBHR5.2 09.03.00 en

10.3 “File” menu

A range of functions for working with
files is available in this menu.

File Open
Save
Print
Close file
Exit

actual program
All user programs

10.3.1 Open

When this option is
activated, thewindow “select
files” appears as described
in the previous section 10.2.

10.3.2 Save

If the contents of the file loaded in theeditor havebeen
changed using the functions available, before saving
the new version of the file, or on closing the editor, you
are asked if you wish to save the changes.

If you wish to save the changes that have been made, simply press the Enter key to confirm
the selected option.

The contents of the existing version of the edited file are then, at least partially, deleted
irretrievably.

To cancel the operation, press one of the arrow keys to move the focus to the “No” button.
This selection can then be confirmed by pressing the Enter key. The existing version of the
edited file then remains unchanged.

10.3.3 Print

This command enables you to print
programs to the medium that has
been set under “Options” --> “Output
setting”.

File Open
Save
Print
Close file
Exit

actual program
All user programs

The following functions are available here:

Actual program

The file displayed in the external editor is printed as shown in the editor window.

10 External editor (continued)

153 of 178

ProgExperteBHR5.2 09.03.00 en

KRC:\Palette.SRC

INI
1:PTP HOME Vel=100 % DEFAULT

2:PTP P1 CONT Vel=100 % PDAT1 Tool[1] Base[0]
3:LIN P2 CONT Vel=1.5 m/s CPDAT1 Tool[1] Base[0]
4:CIRC P3 P4 Vel=2 m/s % CPDAT2 Tool[1] Base[0]

5:PTP HOME Vel=100 % DEFAULT
END

All user programs

All application programs are printed.

If no output path has yet been defined using “set Path”, outputs of types “Printer” and “File”
are stored by default in the directory “C:\USERPROG”.

The option “Print” is not available if “Editor” has been set as the print medium.
Depending on the files being printed, printing using the option “all users” can take a long
time!

10.3.4 Close file

If the file in the editor has beenmodified since it was opened, the changes can be saved (as
described in Section 10.3.2).

Once the file in the editor has been closed, a different file can be loaded into the editor via
the menu item “File” and the option “Open” contained therein (see also Section 10.3.1).

10.3.5 Exit

If the file in the editor has beenmodified since it was opened, the changes can be saved (as
described in Section 10.3.2).

The editor window is closed and the robot software user interface reappears.

Expert Programming

154 of 178

ProgExperteBHR5.2 09.03.00 en

10.4 “Edit” menu

This menu contains a range of block functions.Edit Cut
Copy
Paste as
Delete
Select all

original path
reverse path

To select a section, hold down the “SHIFT” key and press one of the two
status keys “Last” or “Next” or the corresponding arrow key.

Marked area
(block selection)

A selected block can be deselected again using the “Escape” key.

10.4.1 Cut (“CTRL”--“X”)

Removes the selected section of the path from the program and copies it to the clipboard
ready for subsequent pasting.

10.4.2 Copy (“CTRL”--“C”)

Copies the selected section of the path to the clipboard where it is retained ready for
subsequent pasting.

10.4.3 Paste as ...

Original path (“CTRL”--“V”)

Pastes the contents of the clipboard the same way round as they were cut/copied.

Reverse path

Pastes the contents of the clipboard in reverse sequence.

The last point in the selected and cut or copied path section is placed at the start of the pasted
block and the first point in the path is placed at the end. If, for example, the path to a fixture
has been taught, this path can be inserted as a reverse path simply by pasting it. In this way
the reverse path does not need to be taught separately.

10.4.4 Delete

The selected section of path is deleted without being saved in the clipboard.

The deletion of a selected section of path cannot be undone. If you accidentally delete
sections of a program, close the file without saving the changes and then reopen it.

10.4.5 Select all (“CTRL”--“A”)

The whole of the program loaded in the editor is selected.

CSE

10 External editor (continued)

155 of 178

ProgExperteBHR5.2 09.03.00 en

10.5 “Util” menu

Thismenucontains options for thegeometric
manipulation of the program.

Util Mirror
Manual entry
Block change
Clean file list
TCP adjust
Frame adjust

Base
TCP
World
Joint

You canmove the insertion mark between the input boxes using the “�” and
“�” arrow keys.

Pressing this softkey saves the values entered.

This softkey is used to terminate the entry without saving the values.

10.5.1 Mirror

ROBROOT

This function is used to reflect
the positions of the
programmed points on the
motion path in the X--Z plane
of the $ROBROOT coordinate
system. A prerequisite for this
is that at least one motion
block is selected.

+Z

--Y

+X

P1

P1’

P2

P2’

P3

P3’

Once this option has been selected,
a dialog window is opened; in this
window you must enter the name of
the file in which the loaded program
with reflectedmotion path points is to
be saved.

Pressing the Enter key starts the procedure and saves the program with the name
specified. This program can then be loaded into the editor.

Expert Programming

156 of 178

ProgExperteBHR5.2 09.03.00 en

If you wish to cancel the procedure, press the “Escape” key.

10.5.2 Manual entry

You can use this function to offset the positions of the selected motion path points in:

-- the BASE coordinate system

-- the tool coordinate system (TCP)

-- the world coordinate system (WORLD) or

-- the axis--specific coordinate system (Joint)

Once one of the possible options has been selected, a window is activated, in which the
desired values can be entered. Depending on the coordinate system used, enter either the
offset and rotation or the axis angle.

BASE

A Cartesian Base point offset means a relative offset of any point in space in the original
coordinate system (WORLD), which is locatedat the robot base. CartesianBASEpoint offset
is explained with the help of the example illustrated here.

Y+

Z+

X+

Pnew

Pold --Xr--Yr
XoldYold

A+

Input values=relative values
--Y [mm]; --X [mm]; A+[
]

In this example a
negative relative offset in
X,Y and a positive relative rotation
about Z would occur.

The offset vector is entered numerically in the corresponding input box. You
canmove between the input boxes by means of the “�” and “�” arrow keys.
The offset is started with “Cmd Ok” and can be canceled at any time by
means of “Cancel” or “Escape”.

CSE

CSE

10 External editor (continued)

157 of 178

ProgExperteBHR5.2 09.03.00 en

Enter the values for the offset (X,
Y, Z) in [mm] and the rotation (A,
B, C) in [_] in the input boxes.

TCP

A Cartesian TCP point offset means a relative offset of any point in space in relation to the
TOOL coordinate system. Cartesian TCP point offset is explained with the help of the
example illustrated here.

Z+

Y+

X+Pold

Pnew

C

Yold

--Yr
--Zr

Zold

C
r

Input values=relative values
--Y [mm]; --Z [mm]; C+[
]

In this example a negative relative
offset in Y,Z and a positive relative
rotation about X [
] would occur.
A relative offset inXwill be disregarded.

The offset vector is entered numerically in the corresponding input box.
You canmove between the input boxes with the Cursor UP/Down keys. The offset is started
with “Cmd Ok” and can be canceled at any time by means of “Cancel” or “Escape”.

Enter the values for the offset
(X, Y, Z) in [mm] and the rotation
(A, B, C) in [_] in the input boxes.

Expert Programming

158 of 178

ProgExperteBHR5.2 09.03.00 en

WORLD

A WORLD point offset means a relative offset of the original coordinate system, which is
located as standard at the robot base. WORLD point offset is explained with the help of the
example illustrated here.

Y+

Z+

X+

Porg

Pnew +Xr

+Yr A--

Input values=relative values
+Y [mm]; +X [mm]; A--[
]

In this example a
positive relative offset in
X,Y and a negative relative rotation
about Z would occur.

X+new

Y+new

Z+new

Enter the values for the offset
(X, Y, Z) in [mm] and the rotation
(A, B, C) in [_] in the input boxes

10 External editor (continued)

159 of 178

ProgExperteBHR5.2 09.03.00 en

Joint

An axis--specific point offset occurs when any point in space is reached by a relative motion
of the axes. This diagram illustrates a relative offset of axis 5.

Pnew

Pold

Input values=relative values
+A5 [
]In this example a positive relative

rotation of A5 [
].
A relative rotation of the other axes
will be disregarded.

� A5
new

� A5 old

Theaxis rotation is entered in degrees or in increments for theaxis concerned. You canmove
between the input boxes with the Cursor Up/Down keys. The offset is started with “CmdOk”
and can be canceled at any time by means of “Cancel” or “Escape”.

Enter the values for the axis
angle (A1 ... A6) in [
].

Entries can also be made incrementally (E1--E6)[Inc].

Increments = angular momentum from the axis drives.

Expert Programming

160 of 178

ProgExperteBHR5.2 09.03.00 en

10.5.3 Block change

Using this function, motion data can be changed in selected program sections. Blocks are
selected by pressing one of the status keys “Last” or “Next” while holding the “SHIFT” key
down.

The window shown below is opened after the function has been called:

You canmove the insertionmark between the input boxes using the “�” and “�” arrowkeys.

List boxes are opened using the keyboard shortcut “ALT”+“�”, or “ALT”+“�”.

When you have entered the desired changes, press the softkey “Change”.

You can exit the function at any time by pressing the softkey “Cancel”.

10.5.4 Clean file list

When this function is activated, non--referenced motion path points and motion parameters
are deleted from the data list (*.DAT) belonging to the program.

Change

Cancel

10 External editor (continued)

161 of 178

ProgExperteBHR5.2 09.03.00 en

10.5.5 TCP and Frame adjust

Youcanuse this function to adapt theprogram loaded in theeditor to adifferentTOOLorBASE
coordinate system.

Thewindow shown below is opened after the function has been called. TCP adjust has been
selected here by way of example.

All programs affected by the adaptation of the TCP or BASE are displayed with their
respective points.

In order to be able to move the insertion mark from box to box, the cursor control functions
of thenumeric keypadmust beactivated. Todo this, press the “NUM” key. You can thenmove
the insertion mark from box to box using the “SHIFT” key.

List boxes are opened using the keyboard shortcut “ALT”+”�”, or “ALT”+”�”.

From the list box in the section “Target TCPData”, select the tool towhich the loadedprogram
is to be adapted. The new tool data can also be entered manually in the input boxes “X=”,
“Y=”, “Z=”, “A=”, “B=” and “C=”.

When you have entered the desired changes, press the softkey “Change”. You can exit the
function at any time by pressing the softkey “End”.

Expert Programming

162 of 178

ProgExperteBHR5.2 09.03.00 en

10.6 “HotEdit” menu

Themenu “HotEdit” allows point coordinates
to be offset in the Tool, Base, and World
coordinate systemsonlinewhile a program is
running. The menu item “Limits” makes it
possible to limit the offset.

HotEdit Base
TCP
World
TTS
Limits

Limits -- Base/World
Limits -- TTS

Online point correction is only taken into consideration if the advance run pointer or main run
pointer has not yet reached the motion command.

The maximum offset values are defined via the menu “Limits”.

The menu command “HotEdit” --> “TCP” is only available if the editor was started via the
Setup menu.

10.6.1 Base, TCP and World

Select the motion block or blocks to be offset. Once one of the options Base, TCP or World
has been selected, a dialog window appears at the bottom of the display; in which the offset
(X, Y, Z) and rotation (A, B, C), relative to the respective coordinate system, can be entered.

If more than one motion block is selected, they will be corrected in the WORLD or BASE
coordinate system.

The dialogwindow depictedhere
is merely an example and
represents all the possible dialog
windows.

You can move the insertion mark between the input boxes using the “�” and “�” arrow keys.

Once you have made all the entries necessary for the offset, press the
softkey “OK”.

If you wish to cancel the procedure, without executing a program offset,
press the softkey “Cancel”.

The dialog window is deactivated and two additional softkeys are activated.

10 External editor (continued)

163 of 178

ProgExperteBHR5.2 09.03.00 en

You can use the softkey “Cancel” to cancel the input at any time without
saving the changes.

You can now assign the values entered by pressing the corresponding
softkey. The changes to the data are not yet saved and can thus still be
undone.

If you change your mind, you can undo the assignment. This is done using
the adjacent softkey. This key is only available once the values have been
assigned. This function is particularly useful if a program is running and you
wish to follow the effect of the offset directly.

If the offset meets your requirements, themodified point coordinates can be
saved in the “DAT” file.

If one of the entered values falls outside the permissible tolerances, a notification or error
message appears in the “Move program” window warning that the value exceeds the
tolerances.

Expert Programming

164 of 178

ProgExperteBHR5.2 09.03.00 en

10.6.2 TTS (correction coordinate system)

This function is used for optimizing points in space with the aid of the tool--based moving
frame (TTS) and can be used with technology commands (e.g. arc welding or adhesive
application). TTS correction is available in the user group “Expert” or above and can be used
in all operating modes.

With TTS, the Cartesian coordinates of a point can be corrected using KUKA technology or
customer technology. Correction is carried out along the tool direction.

The tool direction is usually the X axis of the calibrated tool. Depending on the
configuration, the Z axis of the tool may also be used as the tool direction.

003
002
001

9:50:04
9:50:03
9:49:50

Hotedit
Hotedit
Hotedit

Position S1R1P11 calculated
Direction Z = True
Shifting: TTS

No. Time Message Result

Each time point correction is carried out, a search is made in the local data list (*.DAT) for
the required points with Cartesian coordinates. If one of the required points is not found, an
error message is generated.

The search for the point specifying the direction of thepath is always carried out starting from
the position in the program at which the point to be corrected is situated. An exception is
made here for the end point of a weld or adhesive application contour where the search is
carried out in the preceding lines.

The following exceptions must be taken into consideration:

G A change of base coordinate system between two motion commands is ignored;

G CIRC commands with a circular angle specification (CA) are not corrected;

G When correcting an auxiliary point, the orientation used for the tool is the orientation at
the start point;

G The coordinates of a point are a simple data list variable or a component thereof
(imported variables and machine data variables are not allowed).

10 External editor (continued)

165 of 178

ProgExperteBHR5.2 09.03.00 en

10.6.2.1 Position TTS

Mark the desired motion
command in the external editor
and select the command “HotEdit”
--> “TTS”. The window illustrated
here is then opened in the display.

The option “TTS” is only available if a welding or adhesive application motion command
is selected.

If more than one motion command is selected, the correction is always applied to the first
selected command.

Use the “�” and “�” arrowkeys tomove the focus to thedesiredposition. Enter thenewvalues
using the keys on the numeric keypad.
X--axis
The X--axis in the TTS coordinate system corresponds to a unit vector along the path
tangent.

+X

+X

+Z

+Z

+Y

+Y

P1

P2

In the LIN command, the
X--axis runs along the
motion path

+X
+X

+Z

+Z

+Y

+Y

P1

P2

In the CIRC command, the
X--axis runs along the path
tangent

The X--axis of the tool coordinate system may not run parallel to the path tangent as the
correction coordinate system cannot otherwise be generated. In this case a corresponding
error message will be generated.

Expert Programming

166 of 178

ProgExperteBHR5.2 09.03.00 en

Y--axis

A plane is formed by the unit vector along the path tangent (+X) and the X--axis of the tool
coordinate system (+XTool). The Y--axis is perpendicular to this plane.

+Z
+Y

P1

The Y--axis is perpendicular to
the plane formed by “+X” and
“+XTool”.

+XTool

+X

P2

Z--axis

A plane is formed by the unit vector along the path tangent (+X) and the Y--axis (+Y). The
Z--axis is perpendicular to this plane.

+Z
+Y

P1

The Z--axis is perpendicular to
the plane formed by “+X” and
“+Y”.

P2

+X

Point correction PTP, LIN

The entry can be canceled at any time by pressing this softkey.

When you have entered the changes in the input boxes, press this softkey.

You can now assign the values entered by pressing the corresponding
softkey. The changes to the data are not yet saved and can thus still be
undone.

If you change your mind, you can undo the assignment. This is done using
the adjacent softkey. This key is only available once the values have been
assigned.

Save the changes.

10 External editor (continued)

167 of 178

ProgExperteBHR5.2 09.03.00 en

Point correction CIRC

You can use this softkey to cancel the input at any time without saving the
changes.

Once you have entered the changes, assign the corrections to the auxiliary
point (Aux).

With this softkey, select the end point (End) once you have entered the
changes in the input boxes.

You can now assign the values entered by pressing the corresponding
softkey. The changes to the data are not yet saved and can thus still be
undone.

If you change your mind, you can undo the assignment. This is done using
the adjacent softkey. This key is only available once the values have been
assigned.

If the offset meets your requirements, save the point coordinates.

10.6.3 Limits

Online correction is only permissible up to the maximum values that can be set via “Limits
-- Base/World” or “Limits -- TTS”.

The maximum permitted tolerances are defined in the file “C:\KRC\UTIL\HOTEDIT.INI”. If a
larger value is entered, an error message is generated.

Limit values greater than 5 mm for TTS correction are not sensible.

Use the “�” and “�” arrow keys to move the focus to the desired position. Enter the new
tolerance using the keys on the numeric keypad.

The values that have been entered are not saved.

Saves the tolerance values that have been entered.

10.6.3.1 Limits -- Base/World

When this menu item is selected,
a window appears in which the
maximum offset values are
entered and can be modified.

The entry can be canceled at any time by pressing this softkey.

Press this softkey to save the values and close the window.

Expert Programming

168 of 178

ProgExperteBHR5.2 09.03.00 en

10.6.3.2 Limits -- TTS

Here you can define the limit values of the TTS
correction. These limit values are automatically
monitored during point correction.

10.7 “ExtExtras” menu

This menu contains mirror and offset
functions and functions for setting the
software limit switches.

Ext. Util File -- Mirror
File -- Shift
Limit set

2 Point
6 Point

It is only available if no program has been loaded into the external editor.

10.7.1 File -- Mirror

Unlike the “Mirror” function, which is used to mirror selected motion path points in selected
motion blocks, the “File -- Mirror” functionmakes it possible tomirror entiremotionprograms.

After starting the function, specify the source file to be mirrored.

10 External editor (continued)

169 of 178

ProgExperteBHR5.2 09.03.00 en

Select a file to mirror using the “"” and “#” arrow keys.

The function can be terminated at any time by means of the softkey
“Cancel”.

Once you have selected the desired file, press the “Right arrow” softkey.

Enter a name for the mirrored file, with a maximum length of 8 characters.

This softkey takes you back to the previous page, where you can select a
different source file.

Once you have entered the desired file name, press this softkey.

Expert Programming

170 of 178

ProgExperteBHR5.2 09.03.00 en

It is now possible to enter a comment which will then be displayed in the Navigator.

This softkey takes you back to the previous page where you can enter the
name of the (mirrored) file to be created.

Once you have entered the desired comment, press this softkey. The
corresponding program is then created.

10.7.2 File -- Manual entry

This function allows you to offset the positions of the selected motion path points using a
vector (2 point), or simultaneously offset the points and rotate the reference coordinate
system (6 point).

2--point offset

For the 2--point offset function, a reference file (any name; .src, .dat) must be taught. Two
points are stored in this reference file. These points define the offset vector (X, Y, C) for the
offset of the selected motion path points.

6--point offset

The 6--point offset function works using the same principle. A total of six points must be
taught in the corresponding reference file. The first three points define the source base, the
last three define a destination base. Identical points must be taught for both the source and
the destination. These values are used to calculate the bases. The offset and rotation
between the source and destination bases define the amount by which the selected points
are offset.

The vector must already have been saved in a file before the function is activated.

The motion blocks to be offset must also be selected.

10 External editor (continued)

171 of 178

ProgExperteBHR5.2 09.03.00 en

Once the option 2--Point or 6--Point offset has been selected, the program requires the
specification of the corresponding reference file.

The function can be terminated at any time by means of the softkey
“Cancel”.

10.7.2.1 Use existing reference file

This softkey can be used to specify a reference file and a file to be offset.

First select the reference file using the arrow keys, then press the “Right
arrow” softkey.

Expert Programming

172 of 178

ProgExperteBHR5.2 09.03.00 en

This softkey takes you back to the previous page.

Use the arrow keys again to select the file to be offset. Then press the
softkey “Right arrow” again.

This softkey takes you back to the previous page.

The program to be offset can then be loaded into the editor. Select here the motion
commands to be offset.

10 External editor (continued)

173 of 178

ProgExperteBHR5.2 09.03.00 en

Press the “Right arrow” softkey again. The selected points are then offset
in the file. Progress is shown by means of a progress indicator bar in the
message window.

This softkey takes you back to the previous page.

The result of the operation is displayed in the message window.

004
003
002
001

13:30:53
13:30:40
13:30:37
13:30:37

2 Point Shift
2 Point Shift
File Open
ExtEdit Start

Position XP1 was moved to XP4
OK
OK
OK

No. Time Message Result

10.7.2.2 Create new reference file

This softkey is used to create a new
reference file. This new reference program
is then selected ready for the operator to
teach the necessary points.

After teaching the points, deselect the program and restart the external editor. Use the
procedure described in Section 10.7.2.1.

Expert Programming

174 of 178

ProgExperteBHR5.2 09.03.00 en

10.7.3 Setting the software limit switches

The software limit switches of the individual axes can be adapted to the motion programs
using this function.

To do this, call the “Set software limit switches” function and then switch back to the robot
controller user interface by pressing the window selection key. Now start the motion
programs whose axis values are to be monitored in the background. Once all the relevant
programs have been executed, call the function again. The values thus calculated can be
set as software limit switches.

The axis positions are monitored in the background for as long as the “Set software limit
switches” function remains active.

The minimum/maximum values that arise and the current axis positions of axes 1 to 6 are
entered in the corresponding boxes.

The axes for which the limit switches are to be set can be indicated by means
of a check box. Use the arrow keys to select the desired axes. The individual
axes can be activated/deactivated using the space bar. A check sign means
that the software limit switches can be set for this axis.

The software limit switches can be reset to their original values by pressing
“Reset”.

Pressing the softkey “Set” sets the software limit switches of the selected axes
with their new values. This action can be undone, at any time, by pressing the
softkey “Reset”.

A buffer of 5
 is added to the measured axis values.

10 External editor (continued)

175 of 178

ProgExperteBHR5.2 09.03.00 en

10.8 “Options” menu

The “Options” menu is used for
defining certain basic settings of the
external editor.

Options

Output setting

Printer
Editor
File
set Path

10.8.1 Output setting

This menu can be used to set the desired print medium which will be used in the case of
“Print” --> “actual program” or “Print” --> “All user programs”.

As long as no output medium has been set, data are always output as a text file to the path
set in “set Path”. If no output path has yet been set, the default path “C:\USERPROG” is used.

Printer

If a printer has been configured for the operating system, this will be used for the output. If,
on the other hand, no printer has been installed, a corresponding message is displayed in
the message window.

005
004
003
002

16:54:58
16:54:49
16:54:44
16:54:42

Output to printer
Select: to printer
Loading...
File Open

OK: C:\USERPROG\Beispiel.txt
OK
OK
OK

No. Time Message Result

Editor

The selected program is loaded for editing in the “WordPad” editor provided with the
operating system.

Expert Programming

176 of 178

ProgExperteBHR5.2 09.03.00 en

File

If the current program is output by selecting the command “Print”, it is saved as a text file
under the path or file name set in “set Path”.

If all application programs are output via the command “Print”, the subdirectory
“USERPROG” is created in the folder defined in “set Path” and the programs are saved here
as text files.

Each of the saved programs can be viewed or modified using a text editor.

set Path

This option is only necessary if programs are to be saved to the hard drive as files. The target
directory and the file name of the file to be printed can be specified in the dialog window. If
all application programs are output using the menu option “File”, the subdirectory
“USERPROG” is created (if it does not already exist) and the text files are saved here.

10 External editor (continued)

177 of 178

ProgExperteBHR5.2 09.03.00 en

10.9 “Help” menu

Help
Version
Stay on top

This menu contains version information and a display
option.

10.9.1 Version

The version number of the external editor is displayed in the message window.

003
002
001

17:16:31
17:16:27
17:16:27

Version
File Open
ExtEdit Start

5.0.26
OK
OK

No. Time Message Result

Version number

10.9.2 Stay on top

Once this option has been selected, the robot software user interface will no longer come
to the foreground until the editor has been closed.

NOTES:

Expert Programming

178 of 178

ProgExperteBHR5.2 09.03.00 en

1

Index

Index -- i

Symbols
.ERR, 10
! sign, 92
sign, 32
#BASE, 56, 72
#CONSTANT, 70
#CSTEP, 18
#GO, 18
#INITMOV, 70, 72
#ISTEP, 18
#JOINT, 71
#MSTEP, 18
#PATH, 74
#PSTEP, 18
#TCP, 56
#VAR, 70
$ sign, 43
$ACC.CP, 69
$ACC.ORI1, 69
$ACC.ORI2, 69
$ACC_AXIS, 57, 69
$ADVANCE, 79
$ALARM_STOP, 44
$APO.CDIS, 84, 86
$APO.CORI, 84, 86
$APO.CPTP, 82
$APO.CVEL, 84, 86
$APO_DIS_PTP, 82
$BASE, 54, 60
$CIRC_TYPE, 72, 75
$CONFIG.DAT, 8, 45
$CUSTOM.DAT, 44
$CYCFLAG, 43
$FLAG, 42
$IBUS_ON, 45
$IPO_MODE, 56
$MACHINE.DAT, 44
$MASCHINE.DAT, 7
$NULLFRAME, 60
$NUM_AX, 44
$ORI_TYPE, 70, 75
$OUT_C, 108
$POS_ACT, 55, 56
$PRO_MODE, 18
$PSER, 45
$ROBCOR.DAT, 7, 45
$ROBROOT, 54, 60
$SET_IO_SIZE, 108

$SINGUL_POS[3], 66, 68
$TIMER, 42
$TIMER_FLAG, 43
$TIMER_STOP, 42
$TOOL, 54, 60
$VEL.CP, 68
$VEL.ORI1, 68
$VEL.ORI2, 68
$VEL_AXIS, 57, 68
$WORLD, 54, 60

Numbers
2D arrays, 28
3D arrays, 28

A
a1 position, 66
a2 position, 67
a5 position, 67
ABS(X), 40
Absolute value, 41
Acceleration, 68
ACOS(X), 41
Advance run, 79
Advance run stop, 80, 103
Aggregate, 30
All FOLDs close, 16
All FOLDs open, 16
Altering programs, 11
Ambiguity, 63
Ambiguous robot kinematics, 63
Analog inputs, 114
Analog outputs, 112
ANDing, 39
ANIN, 114
ANIN OFF, 115
ANIN ON, 115
ANIN/ANOUT, 112
ANOUT OFF, 112
ANOUT ON, 112
Approximate positioning, 81
Approximate positioning contour, 81
Arc cosine, 41
Arc sine, 41
Arc tangent, 41
Arithmetic operators, 32
Array index, 27
Arrays, 27

Index

Index -- ii

ATAN2(Y,X), 41
Automatic advance run stop, 80
AXIS, 31, 52
Axis acceleration, 58
Axis reflection (Mirror), 155
Axis velocity, 58

B
B_AND, 39, 40
B_EXOR, 39, 40
B_NOT, 39, 40
B_OR, 39, 40
BAS.SRC, 8, 62
BASE, 56
Base coordinate system, 55
Base--related interpolation, 55
Basic area, 64
BCO, 62
Bin Dec, 26
Binary inputs/outputs, 103
Binary system, 26
Bit operators, 38
Block change, 160
Block coincidence, 62
Block functions, 12
Block identifier, 94
BOOL, 25, 27
BRAKE, 131

C
C_DIS, 84, 86
C_ORI, 84, 86
C_PTP, 82
C_VEL, 84, 86
CA, 77
Cartesian coordinate transformation, 52
CELL.SRC, 7
CHAR, 25, 27
Character strings, 29
CIRC, 77
CIRC !, 92
CIRC--CIRC approximate positioning, 86
CIRC--LIN approximate positioning, 86
CIRC_REL, 77
Circular motions, 77
Circular_Angle, 77
Clean file list, 160

Comments, 22
Compiler, 10
Compiling, 10
Computer advance run, 79
Conditional branch, 93
CONFIRM, 102
Constant + path--related, 74
Constant + space--related, 72
Continous Path, 68
CONTINUE, 81
Coordinate systems, 51, 60
Coordinate transformation, 52
Copy, 12
Correction coordinate system, 164
COS(X), 41
Counting loop, 95
CP -- PTP approximate positioning, 89
CP motions, 68
Creating a new program, 9
Creating and editing programs, 9
CSTEP, 18
CTRL--C, 12
CTRL--V, 12
CTRL--X, 13
Current FOLD open/close, 15
Cut, 13
Cyclical flags, 43

D
Data list, 9
Data lists, 143
Data manipulation, 32
Data objects, 24
Data type, 24
Decimal system, 26
DECL, 24
Declaration, 9
Declaration section, 8
DEF, 8, 119
DEFDAT, 143
DEFFCT, 120
Delete, 13
DIGIN OFF, 117
DIGIN ON, 117
Digital inputs, 117
Digital inputs/outputs, 105
Disable / enable, 127
DISTANCE, 136

Index

Index -- iii

Distance criterion, 84

E
E6AXIS, 31
Edge--triggered, 127
Editing, 10
Editor, 11, 12
ELSE, 93
END, 8
ENDFOLD, 15
ENDFOR, 95
Endless loop, 98
ENDLOOP, 98
ENDWHILE, 96
ENUM, 32
Enumeration types, 31
Error treatment, 20
Exclusive ORing, 39
EXIT, 98
EXT, 62
Extended position, 67
External editor, 147

F
File concept, 8
File list, 9
File structure, 8
Filtering out bits, 39
Fixed tool, 55
Flags, 43, 133
FOLD, 15
FOR, 95
Forward transformation, 52
FRAME, 31
Frame adjust, 161
Frame linkage, 33
Functions, 8, 119

G
Geometric data types, 31
Geometric operator, 33
GET_SIG_INF, 107
GLOBAL, 144
Global, 120
Global data lists, 144
Global variable, 144
GO, 18

GOTO, 93
Gripper--related interpolation, 56

H
HALT, 102
Hex Dec, 26
Hexadecimal system, 26
Hiding program sections, 15
Higher motion profile, 57
Home run, 63

I
IF, 93
In--process measurement, 133
Index, 27
INI, 62
Input/output instructions, 103
Instruction section, 8
INT, 25
INTERRUPT, 125
Interrupt handling, 125
Inversion, 39
IR_STOPM.SRC, 8
ISTEP, 18

J
Joint coordinate system, 51
Jump instruction, 93

K
Kinematic sequence, 55, 56
Kinematic singularity, 62
KSD, 7

L
Limits -- Base/World, 167
Limits -- TTS, 168
LIN, 75
LIN !, 92
LIN--CIRC approximate positioning, 87
LIN--LIN approximate positioning, 84
LIN_REL, 75
Linear motions, 75
Linkage editor, 10
Linking, 10
Local, 120

Index

Index -- iv

Local data lists, 143
Logic operations, 37
Logic operators, 37
LOOP, 98
Loops, 95

M
Machine language, 10
Main run, 79
Manual entry, 156
Masking out bits, 39
Mechanical zero position, 58
MERKER, 93
Motion instructions, 51
Motion programming, 51
Motions with approximate positioning, 81
MSTEP, 18

N
Names, 23
Non--rejecting loop, 97

O
One--dimensional array, 27
Operand, 32
Operator, 32
Orientation control, 70
Orientation criterion, 84
ORing, 39
Overhead area, 64
Overhead singularity, 66

P
P00.DAT, 8
P00.SRC, 8
Parameter list, 121
Parameter transfer, 121
Paste, 12
Point separator, 29
Point--to--point motions, 57
POS, 31
Predefined structures, 31
Priority, 40, 127, 135, 138
Priority of operators, 40
PROCOR, 11
Program branches, 93

Program correction, 11
Program execution control, 93
Program run mode, 17
PSTEP, 18
PTP, 57, 59
PTP !, 92
PTP -- CP approximate positioning, 88
PTP--CP approximate positioning, 88
PTP--PTP approximate positioning, 82
PTP_REL, 59
PUBLIC, 144
PULSE, 110
Pulse outputs, 110

R
REAL, 25, 26
Rejecting loop, 96
Relational operators, 37
REPEAT, 97
Replace, 14
RESUME, 131
Reverse transformation, 52
Robot coordinate system, 54

S
S and T, 62
Service life, 23
Setting bits, 39
SIGNAL, 104
Simple data types, 25
SIN(X), 41
Sine, Cosine, Tangent, 41
Singularities, 66
Speed, 68
SPS.SUB, 8
SQRT(X), 40
Square root, 41
Start of approximate positioning, 84
State, 60, 63
Statement, 9
Status, 63
STRUC, 29
Structure and creation of programs, 7
Structures, 29
Subprograms, 8, 119
SWITCH, 94
Switch interrupt off, 127
Switch interrupt on, 127

Index

Index -- v

Switching action, 138
Synchronous PTP, 57
System files, 42
System variables, 42

T
TAN(X), 41
TCP, 56
TCP adjust, 161
Teaching points, 92
Three--dimensional array, 29
Timer, 42
Tool Center Point, 57
Tool change, 91
Tool coordinate system, 54
Tool--based moving frame, 164
Translations, 53
TRIGGER, 135
Trigger, 135
TTS, 164
Turn, 60, 63
Two--dimensional array, 28

U
UNTIL, 97

V
Value assignment, 23
Variable + path--related, 74
Variable + space--related, 73
Variables and declarations, 23
Variables and names, 23
Velocity criterion, 84

W
WAIT, 99
Wait statements, 99
WHILE, 96
World coordinate system, 54
Wrist axis singularity, 67
Wrist root point, 64, 66

	General information on KRL programs
	Structure and creation of programs
	Program interface
	File concept
	File structure

	Creating and editing programs
	Creating a new program
	Editing, compiling and linking a program

	Altering programs
	Program correction
	Editor
	Block functions
	Copy (CTRL--C)
	Paste (CTRL--V)
	Cut (CTRL--X)
	Delete
	Find
	Replace

	Hiding program sections
	FOLD
	Example program

	Program run mode
	Selecting the program run mode
	Changing program run mode

	Error treatment
	Comments

	Variables and declarations
	Variables and names
	Data objects
	Declaration and initialization of data objects
	Simple data types
	Arrays
	Character strings
	Structures
	Enumeration types

	Data manipulation
	Operators
	Arithmetic operators
	Geometric operator
	Relational operators
	Logic operators
	Bit operators
	Priority of operators

	Standard functions

	System variables and system files
	Manipulating a string variable
	String variable length in the declaration
	String variable length after initialization
	Deleting the contents of a string variable
	Extending a string variable
	Searching a string variable
	Comparing the contents of string variables
	Copying a string variable

	Motion programming
	Application of the various coordinate systems
	Point--to--point motions (PTP)
	General (Synchronous PTP)
	Higher motion profile
	Motion commands
	Singularities

	CP motions
	Velocity and acceleration
	Orientation control
	Linear motions
	Circular motions

	Computer advance run
	Motions with approximate positioning
	PTP--PTP approximate positioning
	LIN--LIN approximate positioning
	CIRC--CIRC and CIRC--LIN approximate positioning
	PTP--CP approximate positioning
	Tool change during approximate positioning

	Teaching points

	Program execution control
	Program branches
	Jump instruction
	Conditional branch
	Switch

	Loops
	Counting loop
	Rejecting loop
	Non--rejecting loop
	Endless loop
	Premature termination of loop execution

	Wait instructions
	Waiting for an event
	Wait times

	Stopping the program
	Confirming messages

	Input/output instructions
	General
	Binary inputs/outputs
	Digital inputs/outputs
	Signal declaration
	Reading signal numbers
	Setting outputs at the end point

	Pulse outputs
	Analog inputs/outputs
	Analog outputs
	Analog inputs

	Predefined digital inputs

	Subprograms and functions
	Declaration
	Subprogram and function call and parameter transfer

	Interrupt handling
	Declaration
	Activating interrupts
	Stopping active motions
	Canceling interrupt routines
	Use of cyclical flags

	Trigger -- path--related switching actions
	Switching action at the start or end point of the path
	Switching action at any point on the path

	Data lists
	Local data lists
	Global data lists

	External editor
	Starting the external editor
	Operator control
	“File” menu
	Open
	Save
	Print
	Close file
	Exit

	“Edit” menu
	Cut (“CTRL”--“X”)
	Copy (“CTRL”--“C”)
	Paste as ...
	Delete
	Select all (“CTRL”--“A”)

	“Util” menu
	Mirror
	Manual entry
	Block change
	Clean file list
	TCP and Frame adjust

	“HotEdit” menu
	Base, TCP and World
	TTS (correction coordinate system)
	Position TTS

	Limits
	Limits -- Base/World
	Limits -- TTS

	“ExtExtras” menu
	File -- Mirror
	File -- Manual entry
	Use existing reference file
	Create new reference file

	Setting the software limit switches

	“Options” menu
	Output setting

	“Help” menu
	Version
	Stay on top

