
Magelis SCU

EIO0000001512 02/2014
E
IO

00
00

00
15

12
.0

4

www.schneider-electric.com

Magelis SCU
HMI Controller
HSC Library Guide

02/2014

The information provided in this documentation contains general descriptions and/or technical
characteristics of the performance of the products contained herein. This documentation is not
intended as a substitute for and is not to be used for determining suitability or reliability of these
products for specific user applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products with respect to the
relevant specific application or use thereof. Neither Schneider Electric nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. If you
have any suggestions for improvements or amendments or have found errors in this publication,
please notify us.

No part of this document may be reproduced in any form or by any means, electronic or
mechanical, including photocopying, without express written permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when installing and
using this product. For reasons of safety and to help ensure compliance with documented system
data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant
instructions must be followed.

Failure to use Schneider Electric software or approved software with our hardware products may
result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2014 Schneider Electric. All rights reserved.
2 EIO0000001512 02/2014

Table of Contents
Safety Information . 7
About the Book. 9

Part I High Speed Counter Overview 13
Chapter 1 Embedded Functions . 15

HSC Embedded Function . 16
HSC I/O Mapping . 18
Simple Type Overview . 19
Main Type Overview . 20
Choosing your HSC. 21

Part II HSC Modes . 23
Chapter 2 One-shot Mode Principle . 25

One-shot Mode Principle Description . 25
Chapter 3 One-shot with a Simple Type . 27

Synopsis Diagram . 28
Configuration of the Simple Type in One-shot Mode. 29
Programming the Simple Type . 31
Adjusting Parameters . 33

Chapter 4 One-shot With a Main Type . 35
Synopsis Diagram . 36
Configuration of the Main Type in One-shot Mode 37
Programming the Main Type. 39
Adjusting Parameters . 42

Chapter 5 Modulo-loop Principle . 43
Modulo-loop Mode Principle Description . 43

Chapter 6 Modulo-loop with a Simple Type. 45
Synopsis Diagram . 46
Configuration of the Simple Type in Modulo-loop Mode 47
Programming the Simple Type . 49
Adjusting Parameters . 51

Chapter 7 Modulo-loop With a Main Type 53
Synopsis Diagram . 54
Configuration of the Main Type in Modulo-loop Mode. 55
Programming the Main Type. 57
Adjusting Parameters . 60
EIO0000001512 02/2014 3

Chapter 8 Free-large With a Main Type . 61
Free-large Mode Principle Description. 62
Limits Management . 65
Synopsis Diagram . 66
Configuration of the Main Type in Free-Large Mode 67
Programming the Main Type . 69
Adjusting Parameters. 72

Chapter 9 Event Counting With a Main Type 73
Event Counting Mode Principle Description. 74
Synopsis Diagram . 76
Configuration of the Main Type in Event Counting Mode 77
Programming the Main Type . 79
Adjusting Parameters. 82

Chapter 10 Frequency Meter Type . 83
Description . 84
Synopsis Diagram . 85
Configuration of the Main Type in Frequency Meter Mode 86
Programming the Main Type . 88
Adjusting Parameters. 91

Part III Optional Functions . 93
Chapter 11 Comparison Function . 95

Comparison Principle with a Main Type . 96
Configuration of the Comparison on a Main Type 99
External Event Configuration . 100

Chapter 12 Capture Function . 101
Capture Principle with a Main Type . 102
Configuration of the Capture on a Main Type 103

Chapter 13 Synchronization and Enable Functions. 105
Synchronization Function. 106
Enable Function . 107

Appendices . 109
Appendix A General Information . 111

Dedicated Features . 112
General Information on Administrative and Motion Function Block
Management . 113
4 EIO0000001512 02/2014

Appendix B Data Types . 115
HSC_ERR_TYPE: HSC Variable Detected Error Type. 116
HSC_PARAMETER_TYPE: Type for Parameters to Get or to Set on
HSC Variable. 117
HSC_REF: HSC Reference Value . 118
HSC_TIMEBASE_TYPE: Type for HSC Time Base Variable 119

Appendix C Function Blocks . 121
HSCGetCapturedValue: Returns Content of Capture Registers 122
HSCGetDiag: Provides Detail of Detected Error on HSC 124
HSCGetParam: Returns Parameters of HSC 126
HSCSetParam: Adjust Parameters of a HSC 128

Appendix D Function and Function Block Representation 131
Differences Between a Function and a Function Block 132
How to Use a Function or a Function Block in IL Language 133
How to Use a Function or a Function Block in ST Language 137

Glossary . 141
Index . 145
EIO0000001512 02/2014 5

6 EIO0000001512 02/2014

Safety Information
Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device
before trying to install, operate, or maintain it. The following special messages may appear
throughout this documentation or on the equipment to warn of potential hazards or to call attention
to information that clarifies or simplifies a procedure.
EIO0000001512 02/2014 7

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only by qualified
personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of
the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation
of electrical equipment and its installation, and has received safety training to recognize and avoid
the hazards involved.
8 EIO0000001512 02/2014

About the Book
At a Glance

Document Scope

This documentation will acquaint you with the High Speed Counter (HSC) functions and variables
offered within the HMI SCU controller.

This documentation describes the functions and variables of the HMI SCU HSC library.

In order to use this manual, you must:
 Have a thorough understanding of the HMI SCU, including its design, functionality, and

implementation within control systems.
 Be proficient in the use of the following IEC 61131-3 PLC programming languages:
 Function Block Diagram (FBD)
 Ladder Diagram (LD)
 Structured Text (ST)
 Instruction List (IL)
 Sequential Function Chart (SFC)

NOTE: Read and understand this document and all related documents before installing, operating,
or maintaining your HMI SCU.

The HMI SCU users should read through the entire document to understand all features.

Validity Note

This document has been updated with the release of SoMachine V4.1.
EIO0000001512 02/2014 9

Related Documents

You can download these technical publications and other technical information from our website
at www.schneider-electric.com.

Title of Documentation Reference Number

Magelis SCU HMI Controller Programming Guide EIO0000001240 (eng),
EIO0000001241 (fre),
EIO0000001242 (ger),
EIO0000001243 (spa),
EIO0000001244 (ita),
EIO0000001245 (chs)

Magelis SCU HMI Controller PLCSystem Library Guide EIO0000001246 (eng),
EIO0000001247 (fre),
EIO0000001248 (ger),
EIO0000001249 (spa),
EIO0000001250 (ita),
EIO0000001251 (chs)

Magelis SCU HMI Controller PTO/PWM Library Guide EIO0000001518 (eng),
EIO0000001519 (fre),
EIO0000001520 (ger),
EIO0000001521 (spa),
EIO0000001522 (ita),
EIO0000001523 (chs)

PLCCommunication Library Guide EIO0000000361 (eng),
EIO0000000742 (fre),
EIO0000000743 (ger),
EIO0000000744 (spa),
EIO0000000745 (ita),
EIO0000000746 (chs)

Magelis SCU HMI Controller Hardware Guide EIO0000001232 (eng),
EIO0000001233 (fre),
EIO0000001234 (ger),
EIO0000001235 (spa),
EIO0000001236 (ita),
EIO0000001237 (chs),
EIO0000001238 (por)
10 EIO0000001512 02/2014

Product Related Information

1 For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the
Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest
edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of
Adjustable-Speed Drive Systems" or their equivalent governing your particular location.

WARNING
LOSS OF CONTROL

 The designer of any control scheme must consider the potential failure modes of control paths
and, for certain critical control functions, provide a means to achieve a safe state during and
after a path failure. Examples of critical control functions are emergency stop and overtravel
stop, power outage and restart.

 Separate or redundant control paths must be provided for critical control functions.
 System control paths may include communication links. Consideration must be given to the

implications of unanticipated transmission delays or failures of the link.

 Observe all accident prevention regulations and local safety guidelines.1

 Each implementation of this equipment must be individually and thoroughly tested for proper
operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.

WARNING
UNINTENDED EQUIPMENT OPERATION

 Only use software approved by Schneider Electric for use with this equipment.
 Update your application program every time you change the physical hardware configuration.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
EIO0000001512 02/2014 11

12 EIO0000001512 02/2014

Magelis SCU

High Speed Counter Overview

EIO0000001512 02/2014
High Speed Counter Overview

Part I
High Speed Counter Overview
EIO0000001512 02/2014 13

High Speed Counter Overview
14 EIO0000001512 02/2014

Magelis SCU

Embedded Functions

EIO0000001512 02/2014
Embedded Functions

Chapter 1
Embedded Functions

Overview

This chapter describes how to configure the embedded functions of the Magelis SCU HMI
Controller.

The number of inputs and outputs dedicated to the embedded function depends on the HMI
controller reference (see Magelis SCU, HMI Controller, Programming Guide).

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

HSC Embedded Function 16

HSC I/O Mapping 18

Simple Type Overview 19

Main Type Overview 20

Choosing your HSC 21
EIO0000001512 02/2014 15

Embedded Functions
HSC Embedded Function

Overview

The HSC function can execute fast counts of pulses from sensors, encoders, switches, and so on,
that are connected to the dedicated fast inputs.

There are 2 types of HSC:
 Simple type: a single input counter (see page 19).
 Main type: a counter that uses up to 4 inputs (2 fast inputs and 2 standard inputs) and 2 reflex

outputs (see page 20).

Accessing the HSC Configuration Window

Follow these steps to access the embedded HSC configuration window:

Step Description

1 In the Devices tree, double-click HMISCUxx5 → Embedded Functions → HSC.
Result: The HSC Configuration window is displayed.
16 EIO0000001512 02/2014

Embedded Functions
HSC Configuration Window

The figure shows a sample HSC configuration window used to configure the HSC:

The table describes the areas of the HSC configuration window:

For detailed information on configuration parameters, refer to HMI SCU HSC choice matrix
(see page 21).

Number Action

1 If necessary, select the HSC tab to access the HSC configuration Windows.

2 Select a specific HSC • tab to access the HSC channel you need to configure.

3 Choose the type of HSC (Simple or Main) you want. The global variable name representing the
channel instance can be defined here. Default for HSC 0 is HSC00, and for HSC 1 is HSC01.

4 Expand each parameter by clicking the plus sign next to it to access its settings.

5 Configuration window where the HSC parameters are set depending on the mode used.

6 When you click the IO Summarize button, the IO Summary window appears. It allows you to
check your configured physical I/O mapping.
EIO0000001512 02/2014 17

Embedded Functions
HSC I/O Mapping

HSC I/O Mapping

The table shows the availability of the simple type HSC functions according to the inputs:

NOTE: You cannot configure both a Simple and Main HSC.

The table shows the availability of the main type HSC functions according to the inputs and
outputs:

(1) A and B input signal usage depends on the configuration of Main HSC mode (see page 20).

(2) Optional according to the configuration of Main HSC mode.

Function HSC

Type Simple

Channel 0 1

Fast Input
FI0 A –

FI1 – A

A Input counting signal

Function HSC

Type Main

Channel 0

Fast Input
FI0 A

FI1 B(1)(2)

Regular Input
DI0 Sync(2)

DI1 Cap(2)

Fast Output
FQ0 HSC0 reflex Output0(2)

FQ1 HSC0 reflex Output1(2)

A Input counting signal
B Input counting signal (optionally used depending on

configuration of HSC Mode)
Sync Reset and start counting
Cap Capture current counter value
18 EIO0000001512 02/2014

Embedded Functions
Simple Type Overview

Overview

The Simple type is a single input counter.

A Simple type HSC can count-up/count-down to/from a predefined value.

You can program the actions when the count is reached. These actions are done in the context of
the programmed task.

Simple Type Modes

The Simple type supports 2 configurable counting modes, only on single-phase pulses:

One-shot (see page 27): In this mode, the counter current value register decrements (from a user-
defined value) for each pulse applied to A input, until the counter reaches 0.

Modulo-loop (see page 45): In this mode, the counter repeatedly counts from 0 to a user-defined
modulo value then returns to 0 and restarts counting.

Performance

The maximum frequency for the Simple type is 100 kHz.

NOTE:

The maximum counting frequency depends on the filter setting:
 4 µs filter: 100 kHz
 40 µs filter: 14.5 kHz
EIO0000001512 02/2014 19

Embedded Functions
Main Type Overview

Overview

The Main type is a counter that uses up to 2 fast inputs, 2 regular inputs, and 2 fast outputs.

Main Type Modes

The Main type supports the following counting modes on single (1 input) or dual-phase (2 inputs)
pulses:

One-shot (see page 35): In this mode, the counter current value register decrements (from a user-
defined value) for each pulse applied to A input until the counter reaches a 0.

Modulo-loop (see page 53): In this mode, the counter repeatedly counts from 0 to a user-defined
modulo value then returns to 0 and restarts counting. In reverse, the counter counts down from the
modulo value to 0 and then presets to the modulo value and restarts counting. You can also use
Modulo-loop mode with an encoder.

Free-large (see page 61): In this mode, the counter behaves like a high range up and down
counter and can be used with an encoder.

Event Counting (see page 73): In this mode, the counter accumulates a number of events that
are received during a user-configured time base.

Frequency meter (see page 83): In this mode, the counter measures the frequency of events
during a user-configured time base. Frequency is the number of events per second (Hz).

Optional Features

Optional features can be configured depending on the selected mode:
 hardware inputs to operate the counter (enable, sync) or capture the current counting value
 up to 2 thresholds
 up to 2 reflex outputs

Performance

The maximum frequency with a Main type is 50 kHz.

NOTE:

The maximum counting frequency depends on the filter setting:
 4 µs filter: 50 kHz
 40 µs filter: 14.5 kHz
20 EIO0000001512 02/2014

Embedded Functions
Choosing your HSC

Overview

This section provides an overview of all the HSC and their functions to help you choose the
appropriate HSC for your system.

HSC Choice Matrix

The table provides an overview of all the HSC available with their specifications according to the
mode requested:

Mode Feature Simple Type Main Type

One-shot Counting mode Count down Count down

Maximum rated counting
frequency

100 kHz 50 kHz

Enable with an HSC physical
input

No Yes

Synchronization / Preset with
an HSC physical input

No Yes

Compare function No Yes, 2 thresholds, 2 reflex outputs,
and 2 external event triggers

Capture function No Yes, 1 capture register

Modulo-loop Counting mode Count down Count up
Normal Quadrature (X2 and X4)
Reverse Quadrature (X2 and X4)

Maximum counting frequency 100 kHz 50 kHz

Enable with an HSC physical
input

No Yes, exclusive with second counting
input

Synchronization / Modulo with
an HSC physical input

No Yes

Compare function No Yes, 2 thresholds, 2 reflex outputs,
and 2 external event triggers

Capture function No Yes, 1 capture register
EIO0000001512 02/2014 21

Embedded Functions
Free-large Counting mode – Normal Quadrature (X2 and X4)
Reverse Quadrature (X2 and X4)

Maximum counting frequency – 50 kHz

Enable with an HSC physical
input

– No

Synchronization / Preset with
an HSC physical input

– Yes

Compare function – Yes, 2 thresholds, 2 reflex outputs,
and 2 external event triggers

Capture function – Yes, 1 capture register

Event Counting Counting mode – Single phase pulse counting during
user-defined time base.

Maximum counting frequency – 50 kHz

Enable with an HSC physical
input

– No

Synchronization / Preset with
an HSC physical input

– Yes

Compare function – No

Capture function – No

Frequency Meter Counting mode – Single phase pulse counting during
user-defined time base

Maximum counting frequency – 50 kHz

Enable with an HSC physical
input

– No

Mode Feature Simple Type Main Type
22 EIO0000001512 02/2014

Magelis SCU

HSC Modes

EIO0000001512 02/2014
HSC Modes

Part II
HSC Modes

Overview

This part describes the use the modes of a HSC.

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

2 One-shot Mode Principle 25

3 One-shot with a Simple Type 27

4 One-shot With a Main Type 35

5 Modulo-loop Principle 43

6 Modulo-loop with a Simple Type 45

7 Modulo-loop With a Main Type 53

8 Free-large With a Main Type 61

9 Event Counting With a Main Type 73

10 Frequency Meter Type 83
EIO0000001512 02/2014 23

HSC Modes
24 EIO0000001512 02/2014

Magelis SCU

One-shot Mode Principle

EIO0000001512 02/2014
One-shot Mode Principle

Chapter 2
One-shot Mode Principle

One-shot Mode Principle Description

Overview

The counter value is set by a synchronization edge, which loads the configured preset value.

When counting is enabled, each pulse applied to the input decrements the current value. The
counter stops when its current value reaches 0.

The counter value remains at 0 even if new pulses are applied to the input.

A new synchronization is needed to activate the counter again.

Principle Diagram

0

A

Co
un

ter
 C

ur
re

nt
Va

lue

Preset Value

Sync Condition

Enable Condition

1

2

3

4

Time
EIO0000001512 02/2014 25

One-shot Mode Principle
This table explains the stages from the preceding graphic:

NOTE: Enable and Sync conditions depends on configuration. These are described in the Enable
(see page 107) and Synchronization (see page 106) function.

Stage Action

1 On the rising edge of the Sync condition, the preset value is loaded in the counter
(regardless of the current value) and the counter value is set.

2 When Enable condition = TRUE, the current counter value decrements on each
pulse on input A until it reaches 0.

3 The counter waits until the next rising edge of the Sync condition.
Note: At this point, pulses on input A have no effect on the counter.

4 When Enable condition = FALSE, the counter ignores the pulses from input A and
retains its current value until the Enable condition again = TRUE. The counter
resumes counting pulses from input A on the rising edge of the Enable input from
the held value.
26 EIO0000001512 02/2014

Magelis SCU

One-shot With a Simple Type

EIO0000001512 02/2014
One-shot with a Simple Type

Chapter 3
One-shot with a Simple Type

Overview

This chapter describes how to implement a High Speed Counter in One-shot mode using a Simple
type.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Synopsis Diagram 28

Configuration of the Simple Type in One-shot Mode 29

Programming the Simple Type 31

Adjusting Parameters 33
EIO0000001512 02/2014 27

One-shot With a Simple Type
Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Simple type in One-shot mode:

A is the counting input of the High Speed Counter. Simple type counting for One-shot mode
only counts up.
28 EIO0000001512 02/2014

One-shot With a Simple Type
Configuration of the Simple Type in One-shot Mode

Configuration Procedure

Follow this procedure to configure a Simple type in One-shot mode:

IO Summary

 Click the IO Summarize... button to display the input and output assignments.

NOTE: Any physical I/O conflicts (for example, the same input or output pin shared by two different
functions) will be highlighted in red in the IO Summary.

Refer to the hardware guide for wiring details (see Magelis SCU, HMI Controller, Hardware Guide).

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Select a HSC • tab.

3 Set the value of HSC • → Type to Simple.

4 The instance of the Simple type is created, you can rename it from the Variable field.

5 If necessary, set the HSC • → Parameters → Mode to One-shot.

6 Set the preset value for Parameters → Preset/Modulo.
In One-shot mode, this field represents the initial Modulo Value parameter.

7 Set the anti-bounce filter value of the HSC • → Clock Inputs → A Filter parameter.
EIO0000001512 02/2014 29

One-shot With a Simple Type
Programmable Filter

The filtering value on the Simple type input determines the counter maximum frequency as shown
in the table:

Input Filter value Maximum counter frequency

A 4 µs 50 kHz

40 µs 14.5 kHz
30 EIO0000001512 02/2014

One-shot With a Simple Type
Programming the Simple Type

Overview

A Simple type is always managed by an HSCSimple (see page 19) function block.

NOTE: At build, an error is detected if the HSCSimple function block is used to manage a different
HSC type.

Adding a HSCSimple Function Block

I/O Variables Usage

The tables describe how the different pins of the function block are used in One-shot mode.

The table describes the input variables:

Step Description

1 Drag the Libraries → Controller → HMISCU → HMISCU_HSC → HSCSimple FB to the
Application tree → HMISCUxx5 → POU and drop it on the Start Here box in the lower
window.

2 The instance name is located in the Variable field at the Device tree → HMISCU••5 →
Embedded Functions → HSC → HSC0• with the HSC0• → Type that is set to Simple.

NOTE: This method is for ST, LD, or FBD languages.

Input Type Comment

EN_Enable BOOL TRUE = authorizes changes to the current
counter value.

Sync BOOL On rising edge, sets the counter value with the
configured preset

ACK_Modulo BOOL Not used
EIO0000001512 02/2014 31

One-shot With a Simple Type
The table describes the output variables:

Output Type Comment

HSC_REF HSC_REF
(see page 118)

Reference to the HSC.
To be used with the HSC_REF_IN input pin of
the function blocks.

Validity BOOL TRUE = indicates that the output values on the
function block are valid.

HSC_Err BOOL TRUE = indicates that an error was detected.
Use the HSCGetDiag (see page 124) function
block to get more information about this
detected error.

Run BOOL TRUE = counter is running.
Switches to FALSE when CurrentValue
reaches 0. A rising edge on Sync is needed to
restart the counter.

CurrentValue DWORD Current count value of the counter.

Modulo_Flag BOOL Not used
32 EIO0000001512 02/2014

One-shot With a Simple Type
Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the HSCGetParam
(see page 126) or HSCSetParam (see page 128) function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC
configuration. Initial configuration parameters are restored on cold or warm start.

Adjustable Parameters

This table provides the list of parameters from the HSC_PARAMETER_TYPE (see page 117) that
can be read or modified while the program is running:

Parameter Description

HSC_PRESET To get or set the Preset value of the HSC.
EIO0000001512 02/2014 33

One-shot With a Simple Type
34 EIO0000001512 02/2014

Magelis SCU

One-shot With a Main Type

EIO0000001512 02/2014
One-shot With a Main Type

Chapter 4
One-shot With a Main Type

Overview

This chapter describes how to implement a High Speed Counter in One-shot mode using a Main
type.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Synopsis Diagram 36

Configuration of the Main Type in One-shot Mode 37

Programming the Main Type 39

Adjusting Parameters 42
EIO0000001512 02/2014 35

One-shot With a Main Type
Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in One-shot mode:

A is the counting input of the counter.

EN is the enable input of the counter.

CAP is the capture input of the counter.

SYNC is the synchronization input of the counter.

Optional Function

In addition to the One-shot mode, the Main type can provide the following functions:
 Comparison function (see page 95)
 Capture function (see page 101)
 Synchronization function (see page 106)
 Enable function (see page 107)
36 EIO0000001512 02/2014

One-shot With a Main Type
Configuration of the Main Type in One-shot Mode

Configuration Procedure

Follow this procedure to configure a Main type in One-shot mode:

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Set the type to Main from the HSC0• → Type drop down menu.

3 The instance of the Main type is created, you can rename it from the Variable field.

4 If necessary, set the mode to One-shot from the HSC0• → Parameters → Mode drop down
menu.

5 Set the preset value from Parameters → Preset/Modulo
In One-shot mode, this field represents the initial Modulo Value.

6 Set the anti-bounce filtering value from the HSC0• → Clock Inputs → A Filter drop down
menu.

7 Optionally, enable the SYNC, EN and CAP auxiliary inputs from the HSC0• → Auxiliary Inputs
drop down menu to enable the Synchronization function (see page 106), Enable function
(see page 107) and Capture function (see page 101) on a physical input.

8 Optionally, enable the thresholds from the drop down menu, by selecting HSC0• →
Thresholds → Threshold 0 → Enable/Disabled to authorize the Compare function and to
configure the Reflex Outputs (see page 95).
Threshold 1 can also be Enabled after Threshold 0 is Enabled.

NOTE: For the One-shot mode, configured values must follow this rule:

0 < Threshold 0 Value < Threshold 1 Value < (Preset - 1)
EIO0000001512 02/2014 37

One-shot With a Main Type
IO Summary

Click the IO Summarize... button to display the input and output assignments.

Refer to the hardware guide for wiring details (see Magelis SCU, HMI Controller, Hardware Guide).

Programmable Filter

The filtering value on the Main type input determines the counter maximum frequency as shown
in the table:

Input Filter value Maximum counter frequency

A 4 µs 50 kHz

40 µs 14.5 kHz
38 EIO0000001512 02/2014

One-shot With a Main Type
Programming the Main Type

Overview

Main type is always managed by an HSCMain function block.

NOTE: At build, an error is detected if the HSCMain function block is used to manage a different
HSC type.

Adding the HSCMain Function Block

Step Description

1 Drag the Libraries → Controller → HMISCU → HMISCU_HSC → HSCMain FB
to the Application tree → HMISCUxx5 → POU and drop it on the Start Here
box in the lower window.

2 The instance name is located in the Variable field at the Device tree →
HMISCU••5 → Embedded Functions → HSC → HSC0• with the HSC0• → Type
that is set to Main.
Using the input assistant, the HSC instance can be selected at the following
path: Embedded Functions → HSC

NOTE: This method is for ST, LD, or FBD languages.
EIO0000001512 02/2014 39

One-shot With a Main Type
I/O Variables Usage

The tables describe how the different pins of the function block are used in One-shot mode.

The table describes the input variables:

Input Type Description

EN_Enable BOOL When EN input is configured: if TRUE, authorizes the
counter enable via the Enable input (see page 107).

EN_Sync BOOL When SYNC input is configured: if TRUE, authorizes the
counter synchronization and start via the Sync input
(see page 105).

EN_Cap BOOL When CAP input is configured: if TRUE, enables the
Capture input (see page 101).

EN_Compare BOOL TRUE = enables the comparator operation (see page 95)
(using Thresholds 0, 1):
 basic comparison (TH0, TH1 output bits)
 reflex (Reflex0, Reflex1 output bits)
 events (to trigger external tasks on threshold crossing)

EN_Out0 BOOL TRUE = enables physical output Output0 to echo the
Reflex0 value (if configured).

EN_Out1 BOOL TRUE = enables physical output Output1 to echo the
Reflex1 value (if configured).

F_Enable BOOL Forces the Enable condition (see page 107).

F_Sync BOOL Forces the Sync condition (see page 106)

F_Out0 BOOL TRUE = forces Output0 to TRUE (if Reflex0 is
configured).

F_Out1 BOOL TRUE = forces Output1 to TRUE (if Reflex1 is
configured).

ACK_Modulo BOOL On rising edge, resets Modulo-Flag.

ACK_Sync BOOL On rising edge, resets Sync_Flag.

ACK_Cap BOOL On rising edge, resets Cap_Flag.

SuspendCompare BOOL TRUE = compare results are suspended:
 Physical Outputs FQ0 and FQ1 maintain their last

value.
 Events are masked.

NOTE: EN_Compare, EN_Out0, EN_Out1, F_Out0,
F_Out1 remain operational while SuspendCompare is
set.
40 EIO0000001512 02/2014

One-shot With a Main Type
The table describes the output variables:

Output Type Comment

HSC_REF HSC_REF
(see page 118)

Reference to the HSC.
To be used with the HSC_REF_IN input pin of the
function blocks.

Validity BOOL TRUE = indicates that output values on the function
block are valid.

Error BOOL TRUE = indicates that an error was detected.
Use the HSCGetDiag (see page 124) function block to
get more information about this detected error.

CurrentValue DINT Current count value of the counter.

Run BOOL TRUE = counter is running.
Switches to 0 when CurrentValue reaches 0. A rising
edge on Sync is needed to restart the counter.

TH0 BOOL [Counting Up] TRUE when CurrentValue ≥
Threshold 0.
[Counting Down] FALSE when CurrentValue ≤
Threshold 0.

TH1 BOOL [Counting Up] TRUE when CurrentValue ≥
Threshold 1.
[Counting Down] FALSE when CurrentValue ≤
Threshold 1.

Modulo_Flag BOOL Set to TRUE when counter reaches 0.

Sync_Flag BOOL Set to TRUE by the synchronization of the counter
(see page 106).

Cap_Flag BOOL Set to TRUE when a new capture value is stored in the
Capture register (see page 101).
This flag must be reset before a new capture can
occur.

Reflex0 BOOL State of Reflex0. (see page 95)

Reflex1 BOOL State of Reflex1. (see page 95)

Out0 BOOL State of physical output Output0 (if Reflex0
configured).

Out1 BOOL State of physical output Output1 (if Reflex1
configured).
EIO0000001512 02/2014 41

One-shot With a Main Type
Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the HSCGetParam
(see page 126) or HSCSetParam (see page 128) function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC
configuration. Initial configuration parameters are restored on cold or warm start.

Adjustable Parameters

This table provides the list of parameters from the HSC_PARAMETER_TYPE (see page 117) which
can be read or modified while the program is running:

NOTE: For the One-shot mode, configured values must follow the rule:

0 < Threshold 0 Value < Threshold 1 Value < (Preset - 1)

For example:

If the current configured values are:
 Threshold 0 Value = 100
 Threshold 1 Value = 200
 Preset = 300

And if the desired configuration values are:
 Threshold 0 Value = 50
 Threshold 1 Value = 120
 Preset = 150

Set the value of Threshold 1 before Preset.

If the Preset is set to 150 first, HSCSetParam returns a parameter error because the desired
Preset (150) is less than the current Threshold 1 Value (200).

Parameter Description

HSC_PRESET To get or set the Preset value of an HSC.

HSC_THRESHOLD0 To get or set the Threshold 0 value of an HSC.

HSC_THRESHOLD1 To get or set the Threshold 1 value of an HSC.
42 EIO0000001512 02/2014

Magelis SCU

Modulo-loop Principle

EIO0000001512 02/2014
Modulo-loop Principle

Chapter 5
Modulo-loop Principle

Modulo-loop Mode Principle Description

Overview

The Modulo-loop type can be used for repeated actions on a series of moving objects, such as
packaging and labeling applications.

Principle

On a rising edge of the Sync condition (see page 106), the counter is activated and the current
value is reset to 0.

When counting is enabled (see page 107):
Incrementing direction: the counter increments until it reaches the modulo value. At the next

pulse, the counter is reset to 0, a modulo flag is set to TRUE, and the counting continues.
Decrementing direction: the counter decrements until it reaches 0. At the next pulse, the counter

is set to the modulo value, a modulo flag is set to TRUE, and the counting continues.

Principle Diagram
EIO0000001512 02/2014 43

Modulo-loop Principle
NOTE: Enable and Sync conditions depends on configuration. These are described in the Enable
(see page 107) and Synchronization (see page 106) function.

Stage Action

1 On the rising edge of Sync condition, the current value is reset to 0 and the counter
is activated.

2 As long as Enable condition = TRUE, each pulse on A (for single phase) or each
pulse pair with leading edge on signal A (for normal quadrature) increments the
counter value.

3 When the counter reaches the (modulo-1) value, the counter loops to 0 at the next
pulse and the counting continues. Modulo_Flag is set to TRUE.

4 On the rising edge of Sync condition, the current counter value is reset to 0.

5 As long as Enable condition = TRUE, each pulse pair with a leading edge from signal
B (for normal quadrature) decrements the counter.

6 When the counter reaches 0, the counter loops to (modulo-1) at the next pulse pair
and the counting continues.

7 When Enable condition = FALSE, the pulses on the inputs are ignored.

8 On the rising edge of Sync condition, the current counter value is reset to 0.
44 EIO0000001512 02/2014

Magelis SCU

Modulo-loop with a Simple Type

EIO0000001512 02/2014
Modulo-loop with a Simple Type

Chapter 6
Modulo-loop with a Simple Type

Overview

This chapter describes how to implement a High Speed Counter in Modulo-loop mode using a
Simple type.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Synopsis Diagram 46

Configuration of the Simple Type in Modulo-loop Mode 47

Programming the Simple Type 49

Adjusting Parameters 51
EIO0000001512 02/2014 45

Modulo-loop with a Simple Type
Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Simple type in Modulo-loop mode:

A is the counting input of the High Speed Counter.

A Simple type can only count up. Simple type counting for Modulo-loop mode only counts down.
Simple type counting for One-shot mode only counts up.
46 EIO0000001512 02/2014

Modulo-loop with a Simple Type
Configuration of the Simple Type in Modulo-loop Mode

Configuration Procedure

Follow this procedure to configure a Simple type in Modulo-loop mode:

IO Summary

Click the IO Summary... button to display the input and output assignments:

Refer to the hardware guide for wiring details (see Magelis SCU, HMI Controller, Hardware Guide).

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Set the type to Simple from the HSC0• → Type drop down menu.

3 The instance of the Simple type is created, you can rename it from the Variable field.

4 Set the mode to Modulo-loop from the HSC0• → Parameters → Mode drop down menu.

5 Set the modulo value from Parameters → Preset/Modulo.

6 Set the anti-bounce filtering value from the HSC0• → Clock Inputs → A Filter drop down menu.
EIO0000001512 02/2014 47

Modulo-loop with a Simple Type
Programmable Filter

The filtering value on the Simple type input determines the counter maximum frequency as shown
in the table:

Input Filter value Maximum counter frequency

A 4 µs 50 kHz

40 µs 14.5 kHz
48 EIO0000001512 02/2014

Modulo-loop with a Simple Type
Programming the Simple Type

Overview

A Simple type is always managed by an HSCSimple (see page 19) function block.

NOTE: At build, an error is detected if the HSCSimple function block is used to manage a different
HSC type.

Adding a HSCSimple Function Block

Step Description

1 Drag the Libraries → Controller → HMISCU → HMISCU_HSC → HSCSimple FB to the
Application tree → HMISCUxx5 → POU and drop it on the Start Here box in the lower
window.

2 The instance name is located in the Variable field at the Device tree → HMISCU••5 →
Embedded Functions → HSC → HSC0• with the HSC0• → Type that is set to Simple.

NOTE: This method is for ST, LD, or FBD languages.
EIO0000001512 02/2014 49

Modulo-loop with a Simple Type
I/O Variables Usage

The tables describe how the different pins of the function block are used in Modulo-loop mode.

The table describes the input variables:

The table describes the output variables:

Input Type Comment

EN_Enable BOOL TRUE = authorizes changes to the current
counter value.

Sync BOOL On rising edge, sets the counter value to 0.

ACK_Modulo BOOL On rising edge, resets Modulo_Flag.

Output Type Comment

HSC_REF HSC_REF
(see page 118)

Reference to the HSC.
To be used with the HSC_REF_IN input pin of
the function blocks.

Validity BOOL TRUE = indicates that the output values on the
function block are valid.

HSC_Err BOOL TRUE = indicates that an error was detected.
HSCGetDiag (see page 124) function block
may be used to get more information about this
detected error.

Run BOOL TRUE = indicates counter is running.

CurrentValue DWORD Current count value of the counter.

Modulo_Flag BOOL Set to TRUE when the counter value rolls over
the Modulo Value when counting up, or rolls
over 0 when counting down.
50 EIO0000001512 02/2014

Modulo-loop with a Simple Type
Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the HSCGetParam
(see page 126) or HSCSetParam (see page 128) function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC
configuration. Initial configuration parameters are restored on cold or warm start.

Adjustable Parameters

This table provides the list of parameters from the HSC_PARAMETER_TYPE (see page 117) that
can be read or modified while the program is running:

Parameter Description

HSC_MODULO To get or set the modulo value of an HSC.
EIO0000001512 02/2014 51

Modulo-loop with a Simple Type
52 EIO0000001512 02/2014

Magelis SCU

Modulo-loop With a Main Type

EIO0000001512 02/2014
Modulo-loop With a Main Type

Chapter 7
Modulo-loop With a Main Type

Overview

This chapter describes how to implement a High Speed Counter in Modulo-loop mode using a
Main type.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Synopsis Diagram 54

Configuration of the Main Type in Modulo-loop Mode 55

Programming the Main Type 57

Adjusting Parameters 60
EIO0000001512 02/2014 53

Modulo-loop With a Main Type
Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Modulo-loop mode:

A and B are the counting inputs of the counter.

EN is the enable input of the counter.

CAP is the capture input of the counter.

SYNC is the synchronization input of the counter.

Optional Function

In addition to the Modulo-loop mode, the Main type can provide the following functions:
 Comparison function (see page 95)
 Capture function (see page 101)
 Synchronization function (see page 106)
 Enable function (see page 107)
54 EIO0000001512 02/2014

Modulo-loop With a Main Type
Configuration of the Main Type in Modulo-loop Mode

Configuration Procedure

Follow this procedure to configure a Main type:

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Set the type to Main from the HSC0• → Type drop down menu.

3 The instance of the Main type is created, you can rename it from the Variable field.

4 Set the mode to Modulo-loop from the HSC0• → Parameters → Mode drop down menu.

5 Set the modulo value for Parameters → Preset/Modulo

6 Select an input mode value from the HSC0• → Clock Inputs → Input mode drop down menu.
This enables the A Filter (and B Filter, depending on the Input mode used).

7 Set the anti-bounce filtering value from the Clock Inputs → A Filter (and B Filter, when
applicable) drop down menu.

8 Optionally, enable the SYNC, EN (only if input mode = Single Phase) and CAP auxiliary
inputs from the HSC0• → Auxiliary Inputs → SYNC or EN or CAP drop down menus, to
enable the Synchronization function (see page 106), Enable function (see page 107) and
Capture function (see page 102) on a physical input.

9 Optionally, enable the thresholds from the drop down menu, by selecting HSC0• →
Thresholds → Threshold 0 → Enable/Disabled to authorize the Compare function and to
configure the Reflex Outputs (see page 95).

NOTE: For the Modulo-Loop mode, configured values must follow the rule:

0 < Threshold 0 Value < Threshold 1 Value < (Modulo - 1)
EIO0000001512 02/2014 55

Modulo-loop With a Main Type
IO Summary

 Click the IO Summarize... button to display the input and output assignments.

Refer to the hardware guide for wiring details (see Magelis SCU, HMI Controller, Hardware Guide).

Programmable Filter

The filtering value on the Main type input determines the counter maximum frequency as shown
in the table:

Input Filter value Maximum counter frequency

A, B 4 µs 50 kHz

40 µs 14.5 kHz
56 EIO0000001512 02/2014

Modulo-loop With a Main Type
Programming the Main Type

Overview

Main type is always managed by an HSCMain function block.

NOTE: At build, an error is detected if the HSCMain function block is used to manage a different
HSC type.

Adding the HSCMain Function Block

Step Description

1 Drag the Libraries → Controller → HMISCU → HMISCU_HSC → HSCMain FB
to the Application tree → HMISCUxx5 → POU and drop it on the Start Here
box in the lower window.

2 The instance name is located in the Variable field at the Device tree →
HMISCU••5 → Embedded Functions → HSC → HSC0• with the HSC0• → Type
that is set to Main.
Using the input assistant, the HSC instance can be selected at the following path:
Embedded Functions → HSC

NOTE: This method is for ST, LD, or FBD languages.
EIO0000001512 02/2014 57

Modulo-loop With a Main Type
I/O Variables Usage

The tables describe how the different pins of the function block are used in Modulo-loop type.

The table describes the input variables:

Input Type Description

EN_Enable BOOL When EN input is configured: if TRUE, authorizes the counter
enable via the Enable input (see page 107).

EN_Sync BOOL When SYNC input is configured: if TRUE, authorizes the
counter synchronization and start via the Sync input
(see page 106).

EN_Cap BOOL When CAP input is configured: if TRUE, enables the Capture
input (see page 102).

EN_Compare BOOL TRUE = enables the comparator operation (see page 95)
(using Thresholds 0, 1):
 basic comparison (TH0, TH1 output bits)
 reflex (Reflex0, Reflex1 output bits)
 events (to trigger external tasks on threshold crossing)

EN_Out0 BOOL TRUE = enables physical output Output0 to echo the
Reflex0 value (if configured).

EN_Out1 BOOL TRUE = enables physical output Output1 to echo the
Reflex1 value (if configured).

F_Enable BOOL Forces the Enable condition (see page 107). Takes priority
over EN_Enable input.

F_Sync BOOL Forces the Sync condition (see page 106). Takes priority over
the EN_Sync input.

F_Out0 BOOL TRUE = forces Output0 to TRUE (if Reflex0 is configured).
Takes priority over EN_Out0.

F_Out1 BOOL TRUE = forces Output1 to TRUE (if Reflex1 is configured).
Takes priority over EN_Out1.

ACK_Modulo BOOL On rising edge, resets Modulo_Flag.

ACK_Sync BOOL On rising edge, resets Sync_Flag.

ACK_Cap BOOL On rising edge, resets Cap_Flag.

SuspendCompare BOOL TRUE = compare results are suspended:
 Physical Outputs FQ0 and FQ1 maintain their last value.
 Events are masked.

NOTE: EN_Compare, EN_Out0, EN_Out1, F_Out0, F_Out1
remain operational while SuspendCompare is set.
58 EIO0000001512 02/2014

Modulo-loop With a Main Type
The table describes the output variables:

Output Type Comment

HSC_REF HSC_REF
(see page 118)

Reference to the HSC.
To be used with the HSC_REF_IN input pin of the
function blocks.

Validity BOOL TRUE = indicates that output values on the function
block are valid.

Error BOOL TRUE = indicates that an error was detected.
Use the HSCGetDiag (see page 124) function block
used to get more information about this detected error.

Run BOOL TRUE = counter is running.

CurrentValue DINT Current count value of the counter.

TH0 BOOL [Counting Up] TRUE when CurrentValue ≥
Threshold 0.
[Counting Down] FALSE when CurrentValue ≤
Threshold 0.

TH1 BOOL [Counting Up] TRUE when CurrentValue ≥
Threshold 1.
[Counting Down] FALSE when CurrentValue ≤
Threshold 1.

Modulo_Flag BOOL Set to TRUE when the counter value rolls over the
Modulo Value when counting up, or rolls over 0 when
counting down.

Sync_Flag BOOL Set to TRUE by the synchronization of the counter
(see page 106).

Cap_Flag BOOL Set to TRUE when a new capture value is stored in the
Capture register (see page 102).
This flag must be reset before a new capture can
occur.

Reflex0 BOOL State of Reflex0 (see page 95).

Reflex1 BOOL State of Reflex1 (see page 95).

Out0 BOOL State of physical output Output0 (if Reflex0
configured in SoMachine HSC Embedded Functions,
otherwise FALSE if not configured).

Out1 BOOL State of physical output Output1 (if Reflex1
configured in SoMachine HSC Embedded Functions,
otherwise FALSE if not configured).
EIO0000001512 02/2014 59

Modulo-loop With a Main Type
Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the HSCGetParam
(see page 126) or HSCSetParam (see page 128) function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC
configuration. Initial configuration parameters are restored on cold or warm start.

Adjustable Parameters

This table provides the list of parameters from the HSC_PARAMETER_TYPE (see page 117) that
can be read or modified while the program is running:

Parameter Description

HSC_MODULO To get or set the Modulo value of an HSC.

HSC_THRESHOLD0 To get or set the Threshold 0 value of an HSC.

HSC_THRESHOLD1 To get or set the Threshold 1 value of an HSC.
60 EIO0000001512 02/2014

Magelis SCU

Free-large With a Main Type

EIO0000001512 02/2014
Free-large With a Main Type

Chapter 8
Free-large With a Main Type

Overview

This chapter describes how to implement a High Speed Counter in Free-large mode using a Main
type.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Free-large Mode Principle Description 62

Limits Management 65

Synopsis Diagram 66

Configuration of the Main Type in Free-Large Mode 67

Programming the Main Type 69

Adjusting Parameters 72
EIO0000001512 02/2014 61

Free-large With a Main Type
Free-large Mode Principle Description

Overview

The Free-large mode can be used for axis monitoring or labeling in cases where the incoming
position of each part has to be known.

Principle

In the Free-large mode, quadrature is supported.

When counting is enabled (see page 107), the counter counts as follows in:
Incrementing direction: the counter increments.
Decrementing direction: the counter decrements.

With a Main type, on the rising edge of the Sync condition (see page 106), the counter is activated
and the current value is set to the preset value.

The current counter is stored in the capture register by using the Capture (see page 101) function.

If the counter reaches the counting limits, the counter will react according to the Limits
Management (see page 65) configuration.

Input Modes

The table shows the 4 types of input modes available:

Input Mode Comment

Normal Quadrature X2 A physical encoder always provides 2 signals 90° shift that
first allows the counter to count pulses and detect direction:
 X2: 2 counts by Encoder cycle
 X4: 4 counts by Encoder cycle

Normal Quadrature X4

Reverse Quadrature X2

Reverse Quadrature X4
62 EIO0000001512 02/2014

Free-large With a Main Type
Quadrature Principle Diagram

The encoder signal is counted according to the input mode selected, as shown below:
EIO0000001512 02/2014 63

Free-large With a Main Type
The figures shows the affect of the inputs on the counter value for Normal Quadrature:

Stage Action

1 On the rising edge of Sync input, the current value is set to the configured preset
value.

2 When Enable condition = TRUE, each pulse pair with leading edge on A increments
the counter value.

3 On the rising edge of Preset condition, the current value is set to the configured
preset value.

4 When Enable condition = TRUE, each pulse pair with leading edge on B decrements
the counter value.

5 When Enable condition = FALSE, the all further pulses are ignored.

6 On the rising edge of Sync input, the current value is set to the configured preset
value.

7 When Enable condition = TRUE, the pulse pair with leading edge on B decrements
the counter value.
64 EIO0000001512 02/2014

Free-large With a Main Type
Limits Management

Overview

When the counter limit is reached, the counter behaves as Rollover.

Rollover

In the case of overflow or underflow of the counter, the current counter value goes automatically
to the opposite limit value. Modulo_Flag output is set to TRUE.

+ 2M

Count Value

- 2M

0

EIO0000001512 02/2014 65

Free-large With a Main Type
Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Free-large mode:

A and B are the counting inputs of the counter.

CAP is the capture input of the counter.

SYNC is the synchronization input of the counter.

Optional Function

In addition to the Free-large mode, the Main type can provide the following function:
 Compare (see page 95)
 Capture (see page 101)
 Synchronize by a physical input (see page 106)
66 EIO0000001512 02/2014

Free-large With a Main Type
Configuration of the Main Type in Free-Large Mode

Configuration Procedure

Follow this procedure to configure a Main type in Free-large mode:

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC node.

2 Set the type to Main from the HSC0• → Type drop down menu.

3 The instance of the Main type is created, you can rename it from the Variable field.

4 Set the mode to Free-large from the HSC0• → Parameters → Mode drop down menu.

5 Set the preset value from Parameters → Preset/Modulo
For the Free-Large, this parameter is the Preset Value.

6 Set the anti-bounce filtering value from the HSC0• → Clock Inputs → A Filter and B Filter → drop
down menus.

7 Optionally, enable the SYNC and CAP auxiliary inputs from the HSC0• → Auxiliary Inputs →
SYNC or CAP drop down menus, to enable the Synchronization function (see page 106), and
Capture function (see page 101) on a physical input.

8 Optionally, enable the thresholds from the drop down menu, by selecting HSC0• → Thresholds →
Threshold 0 to authorize the Compare function and to configure the Reflex Outputs
(see page 95).

NOTE: For the Free-large mode, configured values must follow the rule:

0 < Threshold 0 Value < Threshold 1 Value

Threshold values are not restricted by the Preset value for the Free-large mode.
EIO0000001512 02/2014 67

Free-large With a Main Type
IO Summary

Click the IO Summarize... button to display the input and output assignments.

Refer to the hardware guide for wiring details (see Magelis SCU, HMI Controller, Hardware Guide).

Programmable Filter

The filtering value on the Main type input determines the counter maximum frequency as shown
in the table:

Input Filter value Maximum counter frequency

A, B 4 µs 50 kHz

40 µs 14.5 kHz
68 EIO0000001512 02/2014

Free-large With a Main Type
Programming the Main Type

Overview

Main type is always managed by an HSCMain function block.

NOTE: At build, an error is detected if the HSCMain function block is used to manage a different
HSC type.

Adding the HSCMain Function Block

Step Description

1 Drag the Libraries → Controller → HMISCU → HMISCU_HSC → HSCMain FB
to the Application tree → HMISCUxx5 → POU and drop it on the Start Here
box in the lower window.

2 The instance name is located in the Variable field at the Device tree →
HMISCU••5 → Embedded Functions → HSC → HSC0• with the HSC0• → Type
that is set to Main.
Using the input assistant, the HSC instance can be selected at the following
path: Embedded Functions → HSC

NOTE: This method is for ST, LD, or FBD languages.
EIO0000001512 02/2014 69

Free-large With a Main Type
I/O Variables Usage

The tables describe how the different pins of the function block are used in Free-large mode.

The table describes the input variables:

Input Type Description

EN_Enable BOOL Not used

EN_Sync BOOL When SYNC input is configured: if TRUE, authorizes the
counter synchronization and start via the Sync input
(see page 106).

EN_Cap BOOL When CAP input is configured: if TRUE, enables the Capture
input (see page 101).

EN_Compare BOOL TRUE = enables the comparator operation (see page 95)
(using Thresholds 0, 1):
 basic comparison (TH0, TH1 output bits)
 reflex (Reflex0, Reflex1 output bits)
 events (to trigger external tasks on threshold crossing)

EN_Out0 BOOL TRUE = enables physical output Output0 to echo the
Reflex0 value (if configured).

EN_Out1 BOOL TRUE = enables physical output Output1 to echo the
Reflex1 value (if configured).

F_Enable BOOL Forces the Enable condition (see page 107).

F_Sync BOOL Forces the Sync condition (see page 106)

F_Out0 BOOL TRUE = forces Output0 to TRUE (if Reflex0 is configured).

F_Out1 BOOL TRUE = forces Output1 to TRUE (if Reflex1 is configured).

ACK_Modulo BOOL On rising edge, resets Modulo_Flag.

ACK_Sync BOOL On rising edge, resets Sync_Flag.

ACK_Cap BOOL On rising edge, resets Cap_Flag.

SuspendCompare BOOL TRUE = compare results are suspended:
 TH0, TH1, Reflex0, Reflex1, Out0, Out1 output bits of

the block maintain their last value.
 Physical outputs FQ0 and FQ1 maintain their last value
 Events are masked

NOTE: EN_Compare, EN_Out0, EN_Out1, F_Out0, F_Out1
remain operational while SuspendCompare is set.
70 EIO0000001512 02/2014

Free-large With a Main Type
The table describes the output variables:

Outputs Type Comment

HSC_REF HSC_REF
(see page 118)

Reference to the HSC.
To be used with the HSC_REF_IN input pin of the
function blocks.

Validity BOOL TRUE = indicates that output values on the function
block are valid.

Error BOOL TRUE = indicates that an error was detected.
Use the HSCGetDiag (see page 124) function block
used to get more information about this detected error.

CurrentValue DINT Current count value of the counter.

Run BOOL TRUE = counter is running.

TH0 BOOL [Counting Up] TRUE when CurrentValue ≥
Threshold 0.
[Counting Down] FALSE when CurrentValue ≤
Threshold 0.

TH1 BOOL [Counting Up] TRUE when CurrentValue ≥
Threshold 1.
[Counting Down] FALSE when CurrentValue ≤
Threshold 1.

Modulo_Flag BOOL Set to TRUE when the counter rollovers its limits

Sync_Flag BOOL Set to TRUE by the synchronization of the counter
(see page 106)

Cap_Flag BOOL Set to TRUE when a new capture value is stored in the
Capture register (see page 101).
This flag must be reset before a new capture can
occur.

Reflex0 BOOL State of Reflex0. (see page 95)

Reflex1 BOOL State of Reflex1. (see page 95)

Out0 BOOL State of physical outputs Output0 (if Reflex0
configured).

Out1 BOOL State of physical outputs Output1 (if Reflex1
configured).
EIO0000001512 02/2014 71

Free-large With a Main Type
Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the HSCGetParam
(see page 126) or HSCSetParam (see page 128) function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC
configuration. Initial configuration parameters are restored on cold or warm start.

Adjustable Parameters

This table provides the list of parameters from the HSC_PARAMETER_TYPE (see page 117) which
can be read or modified while the program is running:

NOTE: For the Free-large mode, configured values must follow the rule:

0 < Threshold 0 Value < Threshold 1 Value

Threshold values are not restricted by the Preset value

For example:

If the current configured values are:
 Threshold 0 Value = 100
 Threshold 1 Value = 200
 Preset = 300

And if the desired configuration values are:
 Threshold 0 Value = 50
 Threshold 1 Value = 120
 Preset = 150

Unlike, the One-shot and Modulo-loop modes, the value of Threshold 1 does not need to be set
before the Preset. Even if the Preset is set to 150 first, HSCSetParam does NOT return a
parameter error because the desired Preset (150) is less than the current Threshold 1 (200).

Parameter Description

HSC_PRESET To get or set the Preset value of an HSC.

HSC_THRESHOLD0 To get or set the Threshold 0 value of an HSC.

HSC_THRESHOLD1 To get or set the Threshold 1 value of an HSC.
72 EIO0000001512 02/2014

Magelis SCU

Event Counting With a Main Type

EIO0000001512 02/2014
Event Counting With a Main Type

Chapter 9
Event Counting With a Main Type

Overview

This chapter describes how to implement a High Speed Counter in Event Counting mode using
a Main type.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Event Counting Mode Principle Description 74

Synopsis Diagram 76

Configuration of the Main Type in Event Counting Mode 77

Programming the Main Type 79

Adjusting Parameters 82
EIO0000001512 02/2014 73

Event Counting With a Main Type
Event Counting Mode Principle Description

Overview

The Event Counting mode allows you to count a sequence of events during a given period of time.

Principle

The counter assesses the number of pulses applied to the input for a predefined period of time.
The counting register is updated at the end of each period with the number of events received.

The synchronization can be used over the time period. This restarts the counting event for a new
predefined time period. The counting restarts at the edge Sync condition (see page 106)

Principle Diagram

Stage Action

1 When Enable condition = TRUE, the counter accumulates the number of events
(pulses) on the physical input during a predefined period of time.
If Validity = 0, the current value is not used.

2 Once the first period of time has elapsed, the counter value is set to the number of
events counted over the period and Validity is set to TRUE.
The counting restarts for a new period of time.

3 On the rising edge of the Sync condition:
 the accumulated input pulse value is reset to 0
 the current value is not updated
 the counting restarts for a new period of time

4 Once the period of time has elapsed, the counter value is set to the number of
events counted over the period.
The counting restarts for a new period of time.
74 EIO0000001512 02/2014

Event Counting With a Main Type
NOTE:

On the Main type, when the Enable condition is:
 Set to FALSE: the current counting is aborted and CurrentValue is maintained to the previous

valid value.
 Set to TRUE: the accumulated value is reset to 0, the CurrentValue remains unchanged, and

the counting restarts for a new period of time.
EIO0000001512 02/2014 75

Event Counting With a Main Type
Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Event Counting mode.

A is the counting input of the counter.

SYNC is the synchronization input of the counter.

Optional Function

In addition to the Event Counting mode, the Main type provides the Synchronization function
(see page 106).
76 EIO0000001512 02/2014

Event Counting With a Main Type
Configuration of the Main Type in Event Counting Mode

Configuration Procedure

Follow this procedure to configure a Main type in Event Counting mode:

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Select value Main in the HSC0• → Type field.

3 The instance of the Main type is created, you can rename it from the Variable field.

4 Set the preset condition value in HSC0• → Preset /Modulo.

5 Set the mode to Event from the HSC0• → Parameters → Mode drop down menu for the counting
mode.

6 Define the time base from the Parameters → Time drop down menu, by selecting

7 Set the anti-bounce filtering value from the HSC0• → Clock Inputs → A Filter drop down menu.

8 Optionally, enable the SYNC auxiliary inputs from the HSC0• → Auxiliary Inputs → SYNC drop
down menu to enable the Synchronization function (see page 106) on a physical input.
If SYNC is enabled, set the SYNC Filter and SYNC Edge values.
EIO0000001512 02/2014 77

Event Counting With a Main Type
IO Summary

Click the I/O Summarize... button to display the input and output assignments.

Refer to the hardware guide for wiring details (see Magelis SCU, HMI Controller, Hardware Guide).

Programmable Filter

The filtering value on the Main type input determines the counter maximum frequency as shown
in the table:

Input Filter value Maximum counter frequency

A 4 µs 50 kHz

40 µs 14.5 kHz
78 EIO0000001512 02/2014

Event Counting With a Main Type
Programming the Main Type

Overview

Main type is always managed by an HSCMain function block.

NOTE: At build, an error is detected if the HSCMain function block is used to manage a different
HSC type.

Adding the HSCMain Function Block

Step Description

1 Drag the Libraries → Controller → HMISCU → HMISCU_HSC → HSCMain FB
to the Application tree → HMISCUxx5 → POU and drop it on the Start Here
box in the lower window.

2 The instance name is located in the Variable field at the Device tree →
HMISCU••5 → Embedded Functions → HSC → HSC0• with the HSC0• → Type
that is set to Main.
Using the input assistant, the HSC instance can be selected at the following
path: Embedded Functions → HSC

NOTE: This method is for ST, LD, or FBD languages.
EIO0000001512 02/2014 79

Event Counting With a Main Type
I/O Variables Usage

These table describes how the different pins of the function block are used in the mode Event.

The table describes the input variables:

The table describes the output variables:

Input Type Description

EN_Enable BOOL Not used

EN_Sync BOOL When SYNC input is configured: if TRUE, allows the
setting of the counter value to 0.

EN_Cap BOOL Not used

EN_Compare BOOL Not used

EN_Out0 BOOL Not used

EN_Out1 BOOL Not used

F_Enable BOOL Forces the Enable condition (see page 107).

F_Sync BOOL Forces the Sync condition (see page 106)

F_Out0 BOOL Not used

F_Out1 BOOL Not used

ACK_Modulo BOOL Not used

ACK_Sync BOOL On rising edge, resets Sync_Flag.

ACK_Cap BOOL Not used

SuspendCompare BOOL Not used

Outputs Type Comment

HSC_REF HSC_REF
(see page 118)

Reference to the HSC.
To be used with the HSC_REF_IN input pin of the
function blocks.

Validity BOOL TRUE = indicates that output values on the function
block are valid.

Error BOOL TRUE = indicates that an error was detected.
HSCGetDiag (see page 124) function block may be
used to get more information about this detected error.

CurrentValue DINT Current count value of the counter.

Run BOOL TRUE = Counter is running.

TH0 BOOL Not used

TH1 BOOL Not used

Modulo_Flag BOOL Not used

Sync_Flag BOOL Set to TRUE by the synchronization of the counter
(see page 106)
80 EIO0000001512 02/2014

Event Counting With a Main Type
Cap_Flag BOOL Not used

Reflex0 BOOL Not used

Reflex1 BOOL Not used

Out0 BOOL Not used

Out1 BOOL Not used

Outputs Type Comment
EIO0000001512 02/2014 81

Event Counting With a Main Type
Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the HSCGetParam
(see page 126) or HSCSetParam (see page 128) function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC
configuration. Initial configuration parameters are restored on cold or warm start.

Adjustable Parameters

This table provides the list of parameters from the HSC_PARAMETER_TYPE (see page 117) which
can be read or modified while the program is running:

Parameter Description

HSC_TIMEBASE To get or set the Timebase value of the HSC.
82 EIO0000001512 02/2014

Magelis SCU

Frequency Meter Type

EIO0000001512 02/2014
Frequency Meter Type

Chapter 10
Frequency Meter Type

Overview

This chapter describes how to implement a High Speed Counter in Frequency meter type.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Description 84

Synopsis Diagram 85

Configuration of the Main Type in Frequency Meter Mode 86

Programming the Main Type 88

Adjusting Parameters 91
EIO0000001512 02/2014 83

Frequency Meter Type
Description

Overview

The Frequency meter type measures an event frequency in Hz.

The measured frequency is a mean frequency: number of events in a user configured time interval
which is then converted to the mean number of events per second (Hz).
84 EIO0000001512 02/2014

Frequency Meter Type
Synopsis Diagram

Synopsis Diagram

This diagram provides an overview of the Main type in Frequency meter mode:

The Frequency meter counts the number of pulses on the physical input A over a predefined
period of time. The value is stored in the counting register in Hz.
EIO0000001512 02/2014 85

Frequency Meter Type
Configuration of the Main Type in Frequency Meter Mode

Configuration Procedure

Follow this procedure to configure a Main type in Frequency meter mode:

IO Summary

Click the IO Summarize... button to display the input and output assignments.

Refer to the hardware guide for wiring details (see Magelis SCU, HMI Controller, Hardware Guide).

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Select value Main in the HSC0• → Type field.

3 The instance of the Main type is created, you can rename it from the Variable field.

4 Set the mode to Frequency meter from the HSC0• → Parameters → Mode drop down menu.

5 Set the time base value from Parameters → Time drop down menu.

6 Set the anti-bounce filter value from the HSC0• → Clock Inputs → A Filter drop down menu.
86 EIO0000001512 02/2014

Frequency Meter Type
Programmable Filter

The filtering value on the Main type input determines the counter maximum frequency as shown
in the table:

Input Filter value Maximum counter frequency

A 4 µs 50 kHz

40 µs 14.5 kHz
EIO0000001512 02/2014 87

Frequency Meter Type
Programming the Main Type

Overview

Main type is always managed by an HSCMain function block.

NOTE: At build, an error is detected if the HSCMain function block is used to manage a different
HSC type.

Adding a HSCMain Function Block

Step Description

1 Drag the Libraries → Controller → HMISCU → HMISCU_HSC → HSCMain FB
to the Application tree → HMISCUxx5 → POU and drop it on the Start Here
box in the lower window.

2 The instance name is located in the Variable field at the Device tree →
HMISCU••5 → Embedded Functions → HSC → HSC0• with the HSC0• → Type
that is set to Main.
Using the input assistant, the HSC instance can be selected at the following
path: Embedded Functions → HSC

NOTE: This method is for ST, LD, or FBD languages.
88 EIO0000001512 02/2014

Frequency Meter Type
I/O Variables Usage

The tables describe how the different pins of the function block are used in Frequency meter type.

The table describes the input variables:

The table describes the output variables:

Input Type Description

EN_Enable BOOL Not used

EN_Sync BOOL Not used

EN_Cap BOOL Not used

EN_Compare BOOL Not used

EN_Out0 BOOL Not used

EN_Out1 BOOL Not used

F_Enable BOOL Forces the Enable condition (see page 107).

F_Sync BOOL Forces the Sync condition (see page 106)

F_Out0 BOOL Not used

F_Out1 BOOL Not used

ACK_Modulo BOOL Not used

ACK_Sync BOOL On rising edge, resets Sync_Flag.

ACK_Cap BOOL Not used

SuspendCompare BOOL Not used

Outputs Type Comment

HSC_REF HSC_REF
(see page 118)

Reference to the HSC.
To be used with the HSC_REF_IN input pin of the
function blocks.

Validity BOOL TRUE = indicates that output values on the function
block are valid.

Error BOOL TRUE = indicates that an error was detected.
Use the HSCGetDiag (see page 124) function block to
get more information about this detected error.

CurrentValue DINT Current count value of the counter.

Run BOOL TRUE = counter is running.

TH0 BOOL Not used

TH1 BOOL Not used

Modulo_Flag BOOL Not used

Sync_Flag BOOL Set to TRUE by the synchronization of the counter

Cap_Flag BOOL Not used
EIO0000001512 02/2014 89

Frequency Meter Type
Reflex0 BOOL Not used

Reflex1 BOOL Not used

Out0 BOOL Not used

Out1 BOOL Not used

Outputs Type Comment
90 EIO0000001512 02/2014

Frequency Meter Type
Adjusting Parameters

Overview

The list of parameters described in the table can be read or modified by using the HSCGetParam
(see page 126) or HSCSetParam (see page 128) function blocks.

NOTE: Parameters set via the program override the parameters values configured in the HSC
configuration. Initial configuration parameters are restored on cold or warm start.

Adjustable Parameters

This table provides the list of parameters from the HSC_PARAMETER_TYPE (see page 117) which
can be modified while the program is running:

Parameter Description

HSC_TIMEBASE To get or set the Time value of the HSC.
EIO0000001512 02/2014 91

Frequency Meter Type
92 EIO0000001512 02/2014

Magelis SCU

Optional Functions

EIO0000001512 02/2014
Optional Functions

Part III
Optional Functions

Overview

This part provides information on optional functions for HSC.

What Is in This Part?

This part contains the following chapters:

Chapter Chapter Name Page

11 Comparison Function 95

12 Capture Function 101

13 Synchronization and Enable Functions 105
EIO0000001512 02/2014 93

Optional Functions
94 EIO0000001512 02/2014

Magelis SCU

Comparison Function

EIO0000001512 02/2014
Comparison Function

Chapter 11
Comparison Function

Overview

This chapter provides information on the comparison function for the HSC.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Comparison Principle with a Main Type 96

Configuration of the Comparison on a Main Type 99

External Event Configuration 100
EIO0000001512 02/2014 95

Comparison Function
Comparison Principle with a Main Type

Overview

The compare block with the Main type manages Thresholds, Reflex outputs and Events in the
following modes:
 One-shot (see page 35)
 Modulo-loop (see page 53)
 Free-Large (see page 61)

Comparison is configured in the Configuration screen (see page 99) by activating at least one
threshold.

Comparison can be used to trigger:
 programming action on thresholds (see page 97)
 an event on threshold associated with an external task (see page 97)
 reflex outputs (see page 97)

Principle of a Comparison

The Main type can manage up to 2 thresholds.

A threshold is a configured value that is compared to the current counting value. Thresholds are
used to define up to 3 zones or to react to a value crossing.

They are defined by configuration and can also be adjusted in the application program by using the
HSCSetParam (see page 128) function block.

If Thresholdx (x= 0, 1) is configured and comparison is enabled (EN_Compare = TRUE), output pin
THx of the function block is:
 Option 1:

Counting Up – Reflex Output x is TRUE when value < TH0 (reset when value = TH0).
Counting Down – Reflex Output x is TRUE when value ≤ TH0 (set when value = TH0).

 Option 2:
Counting Up – Reflex Output x is TRUE when TH0 ≤ value < TH1 (set when value= TH0 and
reset when value = TH1).
Counting Down – Reflex Output x is TRUE when TH0 < value ≤ TH1 (set when value = TH1 and
reset when value = TH0).

 Option 3:
Counting Up – Reflex Output x is TRUE when value ≥TH1 (set when value = TH1).
Counting Down – Reflex Output x is TRUE when value > TH1 (reset when value =TH1).

NOTE: When EN_Compare is set to FALSE on function block, comparison functions are disabled,
including external tasks triggered by a threshold event and Reflex outputs.
96 EIO0000001512 02/2014

Comparison Function
This diagram shows the state of the Reflex Output (fast digital output) for each individual option:

Threshold Behavior

TH0 and TH1 are managed by the task and are updated at the rate of the task cycle time.

Configuring Event

Configuring an event on threshold crossing allows to trigger an external task (see page 100). You
can choose to trigger an event when a configured threshold is crossed downward, upward, or both
ways.

When the HSC is counting:
 up, the configured External Event Task is triggered when the counting value = Threshold value

+ 1
 down, the configured External Event Task is triggered when the counting value = Threshold

value - 1

If overflow or underflow, no External Event Task is triggered.

Reflex Output Behavior

Configuring reflex outputs allows to trigger physical reflex outputs.

These outputs are not controlled in the task context, reducing the reaction time to a minimum. This
is convenient for operations that need fast execution.

Outputs used by the High Speed Counter can only be accessed through the function block. They
cannot be read or written directly within the application.

NOTE: The state of the reflex outputs depends on the configuration (see page 99).
EIO0000001512 02/2014 97

Comparison Function
Changing the Threshold Values

The TH0, TH1, Reflex0, Reflex1, Out0 and Out1 as well as physical outputs will operate with
respect to the threshold values, even when the threshold values are dynamically changed as long
as SuspendCompare= TRUE.

Therefore, care must be exercised when threshold compares are active to avoid unintended or
unexpected results from the physical reflex outputs and HSCMain function block outputs. If the
compare function is disabled, threshold values can be modified without worry of unintended
outputs. However, if the compare function is enabled, you must, at least, suspend the threshold
compare function while modifying the threshold values.

While EN_Compare = TRUE, the comparison is active, and it is necessary to follow this procedure:

WARNING
UNINTENDED EQUIPMENT OPERATION

 Do not change the Threshold values without using the SuspendCompare input if
EN_Compare = 1.

 Ensure that TH0 is less than TH1 before reactivating the threshold compare function.

Failure to follow these instructions can result in death, serious injury, or equipment
damage.

Step Action

1 Set SuspendCompare to TRUE.
The comparison is frozen at the current value:
 TH0, TH1, Reflex0, Reflex1, Out0, Out1 output bits of the block maintain their last value.
 Physical Outputs 0, 1 maintain their last value

NOTE: EN_Compare, EN_Out0, EN_Out1, F_Out0, F_Out1 remain operational while
SuspendCompare is set.

2 Modify the Threshold values as needed using the HSCSetParam (see page 128) function block.
NOTE:

Follow these rules to configure the threshold values:
 For the One-shot mode:

0 < Threshold 0 Value < Threshold 1 Value < (Preset - 1)
 For the Modulo-Loop mode:

0 < Threshold 0 Value < Threshold 1 Value < (Modulo - 1)
 For the Free-large mode:

0 < Threshold 0 Value < Threshold 1 Value
The threshold values are not restricted by the Preset value for Free-large mode.

3 Set SuspendCompare to FALSE.
The new Threshold values are applied and the comparison is resumed.
98 EIO0000001512 02/2014

Comparison Function
Configuration of the Comparison on a Main Type

Configuration Window

Follow this procedure to configure the comparison function on a Main type:

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Set the mode to Main in the HSC0• → Type → Value drop down menu.

3 Enable the Thresholds by selecting the One-shot, Modulo-loop, or Free-large value in the
Parameters → Mode → Value drop down menu.

4 Enable Threshhold 0 and Threshhold 1 in their Value drop down menus.

5 Provide the threshold values.
Follow these rules to configure the threshold values:
 For the One-shot mode:

0 < Threshold 0 Value < Threshold 1 Value < (Preset - 1)
 For the Modulo-Loop mode:

0 < Threshold 0 Value < Threshold 1 Value < (Modulo - 1)
 For the Free-large mode:

0 < Threshold 0 Value < Threshold 1 Value
The threshold values are not restricted by the Preset value for Free-large mode.

6 Optionally, provide an event condition (see page 96).

7 Optionally, configure the Reflex Outputs behavior (see page 96):
 Reflex Output 0:

Counting Up – Reflex Output x is TRUE when value < TH0 (reset when value = TH0).
Counting Down – Reflex Output x is TRUE when value ≤ TH0 (set when value = TH0).

 Reflex Output 0:
Counting Up – Reflex Output x is TRUE when TH0 ≤ value < TH1 (set when value= TH0 and
reset when value = TH1).
Counting Down – Reflex Output x is TRUE when TH0 < value ≤ TH1 (set when value = TH1
and reset when value = TH0).

 Reflex Output 0:
Counting Up – Reflex Output x is TRUE when value ≥ TH1 (set when value = TH1).
Counting Down – Reflex Output x is TRUE when value > TH1 (reset when value =TH1).

 Reflex Output 1:
Counting Up – Reflex Output x is TRUE when value < TH0 (reset when value = TH0).
Counting Down – Reflex Output x is TRUE when value ≤ TH0 (set when value = TH0).

 Reflex Output 1:
Counting Up – Reflex Output x is TRUE when TH0 ≤ value < TH1 (set when value= TH0 and
reset when value = TH1).
Counting Down – Reflex Output x is TRUE when TH0 < value ≤ TH1 (set when value = TH1
and reset when value = TH0).

 Reflex Output 1:
Counting Up – Reflex Output x is TRUE when value ≥TH1 (set when value = TH1).
Counting Down – Reflex Output x is TRUE when value > TH1 (reset when value =TH1).
EIO0000001512 02/2014 99

Comparison Function
External Event Configuration

Procedure

The following procedure describes how to configure an external event (see the Magelis SCU
SoMachine Programming Guide) to activate a task:

External Events

This table provides a description of the possible external events to associate to a task:

Step Action

1 Add a task by left clicking the Task Configuration node.

2 In the Program window, double click the task to associate it to an External Event.

3 In the Type drop-down menu, select External.

4 Select in the External Event drop-down menu the event to associate it to the task.

Event Name Description

FI0 This task is activated when the input FI0 signal detected a rising edge, falling edge, or both
edges.
The type of signal detection can be configured in the I/O Configuration tab.

FI1 This task is activated when the input FI1 signal detected a rising edge, falling edge, or both
edges.
The type of signal detection can be configured in the I/O Configuration tab.

HSC0_TH0 This task is activated when the Threshold 0 Value of the HSC0 is crossed.
Task activation can be triggered when counting up, counting down, or both. This depends
on the user’s configuration of HSC.

HSC0_TH1 This task is activated when the Threshold 1 Value of the HSC0 is crossed.
Task activation can be triggered when counting up, counting down, or both. This depends
on the user’s configuration of HSC.
100 EIO0000001512 02/2014

Magelis SCU

Capture Function

EIO0000001512 02/2014
Capture Function

Chapter 12
Capture Function

Overview

This chapter provides information on capture function for HSC.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Capture Principle with a Main Type 102

Configuration of the Capture on a Main Type 103
EIO0000001512 02/2014 101

Capture Function
Capture Principle with a Main Type

Overview

The capture function stores the current counter value upon an external input signal.

The capture function is available in Main type with the following modes:
 One-shot (see page 35)
 Modulo-loop (see page 53)
 Free-large (see page 61)

Using this function requires to:
 configure the optional Capture input: CAP
 use HSCGetCapturedValue (see page 122) function block to retrieve the captured value in

your application.

Principle of a Capture

This graphic illustrates how the capture works in Modulo-loop mode:

Stage Action

1 When EN_Cap = 0, the function is not operational.

2 When EN_Cap = 1, the edge on CAP captures the current counter value and puts it into the Capture
register, and triggers the rising edge of Cap_Flag.

3 Get the stored value using HSCGetCapturedValue (see page 122).

4 While Cap_Flag = 1, any new edge on the physical input CAP is ignored.

5 The rising edge of HSCMain function block input ACK_Cap triggers the falling edge Cap_Flag output.
A new capture is authorized.

t

Counting

sample valueCaptureRegister

Cap_Flag

ACK_Cap

EN_Cap

CAP
1 2 4

5

102 EIO0000001512 02/2014

Capture Function
Configuration of the Capture on a Main Type

Configuration Procedure

Follow this procedure to configure the capture function on a Main type:

Step Action

1 In the Devices tree, double-click Embedded Functions → HSC.

2 Enable the Capture input in the HSC0• → Auxiliary Inputs → CAP drop down menu.

3 Select a filtering value in the Auxiliary Inputs → CAP Filter drop down menu.

4 Define the triggering edge in the Auxiliary Inputs → CAP Filter drop down menu.
EIO0000001512 02/2014 103

Capture Function
104 EIO0000001512 02/2014

Magelis SCU

Synchronization, Enable Functions

EIO0000001512 02/2014
Synchronization and Enable Functions

Chapter 13
Synchronization and Enable Functions

Overview

This chapter provides information on synchronization and enable functions for a HSC.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Synchronization Function 106

Enable Function 107
EIO0000001512 02/2014 105

Synchronization, Enable Functions
Synchronization Function

Overview

The synchronization function is used to set/reset the counter operation.

Description

This function is used to synchronize the counter depending on the status and the configuration of
the optional SYNC physical input and the function block inputs F_Sync and EN_Sync.

This diagram illustrates the synchronization conditions:

EN_Sync input of the HSC function block
F_Sync input of the HSC function block
SYNC physical input SYNC

The function block output Sync_Flag is set to 1 when the Sync condition is reached.

The Sync condition operates on a rising edge.

Simple Type Specifications

Sync condition for a Simple type corresponds to the function block inputs Sync.

The synchronization function can be used in the following counting modes:
 One shot counter: to preset and start the counter
 Modulo loop counter: to reset and start the counter

Main Type Specifications

The SYNC input can be enabled in the configuration.

The synchronization function can be used in the following counting modes:
 One shot counter: to preset and start the counter
 Modulo loop counter: to reset and start the counter
 Free large counter: to preset and start the counter
 Event counting: to restart the internal timer relative to the time base
 Frequency meter: to restart the internal timer relative to the time base

NOTE: In the Frequency meter mode, the synchronization function can only be activated with the
function block pin F_Sync.
106 EIO0000001512 02/2014

Synchronization, Enable Functions
Enable Function

Overview

The enable function is used to authorize the counting operation.

This function is used in the following counting modes:

 One shot counter
 Modulo loop counter

Description

This function is used to authorize changes to the current counter value depending on the status of
the optional EN physical input and the function block inputs F_Enable and EN_Enable.

The diagrams illustrates the enable conditions:

EN_Enable input of the HSC function block
F_Enable input of the HSC function block
EN physical input Enable

As long as the function is not enabled, the counting pulses are ignored.

NOTE: Enable condition for a Simple type corresponds to the function block inputs Enable.

Configuration

This procedure describes how to configure an enable function:

Step Action

1 In the Devices tree, double-click HMISCUxx5 → Embedded Functions → HSC.

2 Select the HSC• tab.

3 Set the value of the HSC → HSC0• → Auxiliary Inputs → EN parameter to Enabled.

4 Select the value of the HSC → HSC0• → Auxiliary Inputs → EN Filter parameter.
EIO0000001512 02/2014 107

Synchronization, Enable Functions
108 EIO0000001512 02/2014

Magelis SCU

EIO0000001512 02/2014
Appendices
E

Overview

The appendices provides an overview of data types, function blocks and general information about
the function blocks used.

What Is in This Appendix?

The appendix contains the following chapters:

Chapter Chapter Name Page

A General Information 111

B Data Types 115

C Function Blocks 121

D Function and Function Block Representation 131
IO0000001512 02/2014 109

110 EIO0000001512 02/2014

Magelis SCU

General Information

EIO0000001512 02/2014
General Information

Appendix A
General Information

Overview

The information described in this chapter is common for PTO and HSC features.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Dedicated Features 112

General Information on Administrative and Motion Function Block Management 113
EIO0000001512 02/2014 111

General Information
Dedicated Features

Dedicated Outputs

Outputs used by the Pulse Train Output, Pulse Width Modulation, and High Speed Counters can
only be accessed through the function block. They cannot be read or written directly within the
application.

WARNING
UNINTENDED EQUIPMENT OPERATION

 Do not use the same instance of a function block in more than 1 task.
 Do not modify function block references (••_REF_IN) while the function block is active

(executing).

Failure to follow these instructions can result in death, serious injury, or equipment
damage.
112 EIO0000001512 02/2014

General Information
General Information on Administrative and Motion Function Block Management

Management of Input Variables

At the Execute input rising edge, the function block starts.

Any further modifications of the input variables are not taken into account.

Following the IEC 61131-3 standards, if any variable input to a function block is missing, that is,
left open or unconnected, then the value from the previous invocation of the instance of the function
block will be used. In the first invocation, the initial, configured value is applied in this case.
Therefore, it is best that a function block always has known values attributed to its inputs to help
avoid difficulties in debugging your program. For HSC and PTO function blocks, it is best to use
the instance only once, and preferably the instance be in the main task.

Management of Output Variables

The Done, InVelocity, or InFrequency output is mutually exclusive with Busy,
CommandAborted, and Error outputs: only one of them can be TRUE on one function block. If
the Execute input is TRUE, one of these outputs is TRUE.

At the rising edge of the Execute input, the Busy output is set. This Busy output remains set
during the function block execution, and is reset at the rising edge of one of the other outputs
(Done, InVelocity, InFrequency, CommandAborted, and Error).

The Done, InVelocity, or InFrequency output is set when the function block execution has
been completed successfully.

When a function block execution is interrupted by another one, the CommandAborted output is set
instead.

When a function block execution ends due to a detected error, the Error output is set and the
detected error number is given through the ErrId output.

The Done, InVelocity, InFrequency, Error, ErrID, and CommandAborted outputs are
reset with the falling edge of Execute. If Execute input is reset before the execution is finished,
then the outputs are set for one task cycle at the execution ending.

When an instance of a function block receives a new Execute before it is finished, the function
block does not return any feedback, such as Done, for the previous action.

Handling a Detected Error

All blocks have 2 outputs that can report a detected error during the execution of the function block:
 Error = TRUE when an error is detected.
 ErrID When Error = TRUE, returns the detected error ID.
EIO0000001512 02/2014 113

General Information
114 EIO0000001512 02/2014

Magelis SCU

Data Types

EIO0000001512 02/2014
Data Types

Appendix B
Data Types

Overview

This chapter describes the data types of the HSC Library.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

HSC_ERR_TYPE: HSC Variable Detected Error Type 116

HSC_PARAMETER_TYPE: Type for Parameters to Get or to Set on HSC Variable 117

HSC_REF: HSC Reference Value 118

HSC_TIMEBASE_TYPE: Type for HSC Time Base Variable 119
EIO0000001512 02/2014 115

Data Types
HSC_ERR_TYPE: HSC Variable Detected Error Type

Enumerated Type Description

The enumeration data type ENUM contains the different types of detected error with the following
values:

Enumerator Value Description

HSC_NO_ERROR 00 hex No error detected.

HSC_UNKNOWN 01 hex The value assigned to the HSC_REF input pin is
incorrect or not configured.

HSC_UNKNOWN_PARAMETER 02 hex The parameter reference is incorrect.
See PARAMETER_TYPE section for valid
parameters (see page 117).

HSC_INVALID_PARAMETER 03 hex The value of the parameter is incorrect.
For example, Preset Value is <TH1 or <TH0.

HSC_COM_ERROR 04 hex Communication error was detected with the HSC
module.

HSC_CAPTURE_NOT_CONFIGURED 05 hex Capture is not configured.
It is impossible to get a captured value.
116 EIO0000001512 02/2014

Data Types
HSC_PARAMETER_TYPE: Type for Parameters to Get or to Set on HSC Variable

Enumerated Type Description

The enumeration data type ENUM contains the following values:

Enumerator Value Description

HSC_PRESET 00 hex To get or set the Preset value of an HSC
embedded used for One-Shot and Free-Large
mode.

HSC_MODULO 01 hex To get or set the Modulo value of an HSC
embedded used for Modulo-Loop mode.

HSC_TIMEBASE 02 hex To get or set the Timebase value (see page 119)
of an HSC embedded used for Event Counting
and Frequency mode.

HSC_THRESHOLD0 04 hex To get or set the Threshold 0 value of an HSC
embedded mode.

HSC_THRESHOLD1 05 hex To get or set the Threshold 0 value of an HSC
embedded mode.
EIO0000001512 02/2014 117

Data Types
HSC_REF: HSC Reference Value

Data Type Description

The HSC_REF is a byte used to identify the HSC function associated with the administrative block.
118 EIO0000001512 02/2014

Data Types
HSC_TIMEBASE_TYPE: Type for HSC Time Base Variable

Enumerated Type Description

The enumeration data type ENUM contains the different time base values allowed for use with an
HSC function block:

Name Value

HSC_100ms 00 hex

HSC_1s 01 hex

HSC_10s 02 hex

HSC_60s 03 hex
EIO0000001512 02/2014 119

Data Types
120 EIO0000001512 02/2014

Magelis SCU

Function Blocks

EIO0000001512 02/2014
Function Blocks

Appendix C
Function Blocks

Overview

This chapter describes the functions and the function blocks of the HSC Library.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

HSCGetCapturedValue: Returns Content of Capture Registers 122

HSCGetDiag: Provides Detail of Detected Error on HSC 124

HSCGetParam: Returns Parameters of HSC 126

HSCSetParam: Adjust Parameters of a HSC 128
EIO0000001512 02/2014 121

Function Blocks
HSCGetCapturedValue: Returns Content of Capture Registers

Function Description

This administrative function block returns the content of a capture register.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the Function and Function Block
Representation (see page 131) chapter.

I/O Variables Description

This table describes the input variables:

Inputs Type Comment

HSC_REF_IN HSC_REF
(see page 118)

Reference to the HSC.
Must not be changed during block execution.

Execute BOOL On rising edge, starts the function block execution.
On falling edge, resets the outputs of the function
block when its execution terminates.

CaptureNumber BYTE Index of the capture register:
 for Main type counter: always 0
122 EIO0000001512 02/2014

Function Blocks
This table describes the output variables:

NOTE: In case of detected error, variables take the last value captured.

NOTE: For more information about Done, Busy and Execution pins, refer to General Information
on Function Block Management (see page 113).

Adding the HSCGetCapturedValue Function Block

Outputs Type Comment

HSC_REF_OUT HSC_REF
(see page 118)

Reference to the HSC.

Done BOOL TRUE = indicates that CaptureValue is valid.
Function block execution is finished.

Busy BOOL TRUE = indicates that the function block execution
is in progress.

Error BOOL TRUE = indicates that an error was detected.
Function block execution is finished.

ErrID HSC_ERR_TYPE
(see page 116)

When Error is TRUE: type of the detected error.

CaptureValue DINT When Done is TRUE: Capture register value is
valid.

Step Description

1 Select the Libraries tab in the Software Catalog and click Libraries.
Select Controller → HMISCU → HMISCU HSC → HSCGetCapturedValue in the list, drag-
and-drop the item onto the POU window.

2 Link the HSC_REF_IN input to the HSC_REF output of the HSC.
EIO0000001512 02/2014 123

Function Blocks
HSCGetDiag: Provides Detail of Detected Error on HSC

Function Description

This administrative function block returns the details of a detected HSC error.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the Function and Function Block
Representation (see page 131) chapter.

I/O Variables Description

This table describes the input variables:

Inputs Type Comment

HSC_REF_IN HSC_REF
(see page 118)

Reference to the HSC.
Must not be changed during block execution.

Execute BOOL On rising edge, starts the function block execution.
On falling edge, resets the outputs of the function
block when its execution terminates.
124 EIO0000001512 02/2014

Function Blocks
This table describes the output variables:

NOTE: For more information about Done, Busy and Execution pins, refer to General Information
on Function Block Management (see page 113).

Adding the HSCGetdiag Function Block

Outputs Type Comment

HSC_REF_OUT HSC_REF
(see page 118)

Reference to the HSC.

Done BOOL TRUE = indicates that HSCDiag is valid.
Function block execution is finished.

Busy BOOL TRUE = indicates that the function block execution
is in progress.

Error BOOL TRUE = indicates that an error was detected.
Function block execution is finished.

ErrID HSC_ERR_TYPE
(see page 116)

When Error is TRUE: type of the detected error.

HSCDiag DWORD When Done is TRUE, the diagnostic value is output
to this pin in the function block. When Bit 7 of the
DWORD = TRUE, a configuration error is detected.
The Bits 0...6 and 8...15 are not used.

Step Description

1 Select the Libraries tab in the Software Catalog and click Libraries.
Select Controller → HMISCU → HMISCU HSC → HSCGetDiag in the list, drag-and-drop the
item onto the POU window.

2 Link the HSC_REF_IN input to the HSC_REF output of the HSC.
EIO0000001512 02/2014 125

Function Blocks
HSCGetParam: Returns Parameters of HSC

Function Description

This administrative function block returns a parameter value of an HSC.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the Function and Function Block
Representation (see page 131) chapter.

I/O Variables Description

This table describes the input variables:

Inputs Type Comment

HSC_REF_IN HSC_REF
(see page 118)

Reference to the HSC.
Must not be changed during block
execution.

Execute BOOL On rising edge, starts the function block
execution.
On falling edge, resets the outputs of the
function block when its execution
terminates.

Param HSC_PARAMETER_TYPE
(see page 117)

Parameter to read.
126 EIO0000001512 02/2014

Function Blocks
This table describes the output variables:

NOTE: For more information about Done, Busy and Execution pins, refer to General Information
on Function Block Management (see page 113).

Adding the HSCGetParam Function Block

Outputs Type Comment

HSC_REF_OUT HSC_REF
(see page 118)

Reference to the HSC.

Done BOOL TRUE = indicates that ParamValue is
valid.
Function block execution is finished.

Busy BOOL TRUE = indicates that the function block
execution is in progress.

Error BOOL TRUE = indicates that an error was
detected.
Function block execution is finished.

ErrID HSC_ERR_TYPE
(see page 116)

When Error is TRUE: type of the
detected error.

ParamValue DINT Value of the parameter that has been
read.

Step Description

1 Select the Libraries tab in the Software Catalog and click Libraries.
Select Controller → HMISCU → HMISCU HSC → HSCGetParam in the list, drag-and-drop
the item onto the POU window.

2 Link the HSC_REF_IN input to the HSC_REF output of the HSC.
EIO0000001512 02/2014 127

Function Blocks
HSCSetParam: Adjust Parameters of a HSC

Function Description

This administrative function block modifies the value of a parameter of an HSC.

Graphical Representation

IL and ST Representation

To see the general representation in IL or ST language, refer to the Function and Function Block
Representation (see page 131) chapter.

I/O Variables Description

This table describes the input variables:

Inputs Type Comment

HSC_REF_IN HSC_REF (see page 118) Reference to the HSC.
Must not be changed during block execution.

Execute BOOL On rising edge, starts the function block
execution.
On falling edge, resets the outputs of the function
block when its execution terminates.

Param HSC_PARAMETER_TYPE
(see page 117)

Parameter to read.

ParamValue DINT Parameter value to write.
128 EIO0000001512 02/2014

Function Blocks
This table describes the output variables:

NOTE: For more information about Done, Busy, and Execution pins, refer to General
Information on Function Block Management (see page 113).

Adding the HSCSetParam Function Block

Outputs Type Comment

HSC_REF_OUT HSC_REF
(see page 118)

Reference to the HSC.

Done BOOL TRUE = indicates that the parameter was
successfully written.
Function block execution is finished.

Busy BOOL TRUE = indicates that the function block execution
is in progress.

Error BOOL TRUE = indicates that an error was detected.
Function block execution is finished.

ErrID HSC_ERR_TYPE
(see page 116)

When Error is TRUE: type of the detected error.

Step Description

1 Select the Libraries tab in the Software Catalog and click Libraries.
Select Controller → HMISCU → HMISCU HSC → HSCSetParam in the list, drag-and-drop
the item onto the POU window.

2 Link the HSC_REF_IN input to the HSC_REF output of the HSC.
EIO0000001512 02/2014 129

Function Blocks
130 EIO0000001512 02/2014

Magelis SCU

Function and Function Block Representation

EIO0000001512 02/2014
Function and Function Block Representation

Appendix D
Function and Function Block Representation

Overview

Each function can be represented in the following languages:
 IL: Instruction List
 ST: Structured Text
 LD: Ladder Diagram
 FBD: Function Block Diagram
 CFC: Continuous Function Chart

This chapter provides functions and function blocks representation examples and explains how to
use them for IL and ST languages.

What Is in This Chapter?

This chapter contains the following topics:

Topic Page

Differences Between a Function and a Function Block 132

How to Use a Function or a Function Block in IL Language 133

How to Use a Function or a Function Block in ST Language 137
EIO0000001512 02/2014 131

Function and Function Block Representation
Differences Between a Function and a Function Block

Function

A function:
 is a POU (Program Organization Unit) that returns one immediate result.
 is directly called with its name (not through an instance).
 has no persistent state from one call to the other.
 can be used as an operand in other expressions.

Examples: boolean operators (AND), calculations, conversion (BYTE_TO_INT)

Function Block

A function block:
 is a POU (Program Organization Unit) that returns one or more outputs.
 needs to be called by an instance (function block copy with dedicated name and variables).
 each instance has a persistent state (outputs and internal variables) from one call to the other

from a function block or a program.

Examples: timers, counters

In the example, Timer_ON is an instance of the function block TON:
132 EIO0000001512 02/2014

Function and Function Block Representation
How to Use a Function or a Function Block in IL Language

General Information

This part explains how to implement a function and a function block in IL language.

Functions IsFirstMastCycle and SetRTCDrift and Function Block TON are used as
examples to show implementations.

Using a Function in IL Language

This procedure describes how to insert a function in IL language:

To illustrate the procedure, consider the Functions IsFirstMastCycle (without input parameter)
and SetRTCDrift (with input parameters) graphically presented below:

Step Action

1 Open or create a new POU in Instruction List language.

NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding
and Calling POUs (see SoMachine, Programming Guide).

2 Create the variables that the function requires.

3 If the function has 1 or more inputs, start loading the first input using LD instruction.

4 Insert a new line below and:
 type the name of the function in the operator column (left field), or
 use the Input Assistant to select the function (select Insert Box in the context menu).

5 If the function has more than 1 input and when Input Assistant is used, the necessary number of lines
is automatically created with ??? in the fields on the right. Replace the ??? with the appropriate
value or variable that corresponds to the order of inputs.

6 Insert a new line to store the result of the function into the appropriate variable: type ST instruction
in the operator column (left field) and the variable name in the field on the right.

Function Graphical Representation

without input parameter:
IsFirstMastCycle

with input parameters:
SetRTCDrift
EIO0000001512 02/2014 133

Function and Function Block Representation
In IL language, the function name is used directly in the operator column:

Function Representation in SoMachine POU IL Editor

IL example of a function
without input parameter:
IsFirstMastCycle

IL example of a function
with input parameters:
SetRTCDrift
134 EIO0000001512 02/2014

Function and Function Block Representation
Using a Function Block in IL Language

This procedure describes how to insert a function block in IL language:

To illustrate the procedure, consider this example with the TON Function Block graphically
presented below:

Step Action

1 Open or create a new POU in Instruction List language.

NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding and
Calling POUs (see SoMachine, Programming Guide).

2 Create the variables that the function block requires, including the instance name.

3 Function Blocks are called using a CAL instruction:
 Use the Input Assistant to select the FB (right-click and select Insert Box in the context menu).
 Automatically, the CAL instruction and the necessary I/O are created.

Each parameter (I/O) is an instruction:
 Values to inputs are set by ":=".
 Values to outputs are set by "=>".

4 In the CAL right-side field, replace ??? with the instance name.

5 Replace other ??? with an appropriate variable or immediate value.

Function Block Graphical Representation

TON
EIO0000001512 02/2014 135

Function and Function Block Representation
In IL language, the function block name is used directly in the operator column:

Function Block Representation in SoMachine POU IL Editor

TON
136 EIO0000001512 02/2014

Function and Function Block Representation
How to Use a Function or a Function Block in ST Language

General Information

This part explains how to implement a Function and a Function Block in ST language.

Function SetRTCDrift and Function Block TON are used as examples to show implementations.

Using a Function in ST Language

This procedure describes how to insert a function in ST language:

To illustrate the procedure, consider the function SetRTCDrift graphically presented below:

The ST language of this function is the following:

Step Action

1 Open or create a new POU in Structured Text language.

NOTE: The procedure to create a POU is not detailed here. For more information, refer to Adding
and Calling POUs (see SoMachine, Programming Guide).

2 Create the variables that the function requires.

3 Use the general syntax in the POU ST Editor for the ST language of a function. The general
syntax is:
FunctionResult:= FunctionName(VarInput1, VarInput2,.. VarInputx);

Function Graphical Representation

SetRTCDrift

Function Representation in SoMachine POU ST Editor

SetRTCDrift PROGRAM MyProgram_ST
VAR myDrift: SINT(-29..29) := 5;
myDay: DAY_OF_WEEK := SUNDAY;
myHour: HOUR := 12;
myMinute: MINUTE;
myRTCAdjust: RTCDRIFT_ERROR;
END_VAR

myRTCAdjust:= SetRTCDrift(myDrift, myDay, myHour, myMinute);
EIO0000001512 02/2014 137

Function and Function Block Representation
Using a Function Block in ST Language

This procedure describes how to insert a function block in ST language:

To illustrate the procedure, consider this example with the TON function block graphically
presented below:

Step Action

1 Open or create a new POU in Structured Text language.

NOTE: The procedure to create a POU is not detailed here. For more information on
adding, declaring and calling POUs, refer to the related documentation
(see SoMachine, Programming Guide).

2 Create the input and output variables and the instance required for the function block:
 Input variables are the input parameters required by the function block
 Output variables receive the value returned by the function block

3 Use the general syntax in the POU ST Editor for the ST language of a Function
Block. The general syntax is:
FunctionBlock_InstanceName(Input1:=VarInput1,
Input2:=VarInput2,... Ouput1=>VarOutput1,
Ouput2=>VarOutput2,...);

Function Block Graphical Representation

TON
138 EIO0000001512 02/2014

Function and Function Block Representation
This table shows examples of a function block call in ST language:

Function Block Representation in SoMachine POU ST Editor

TON
EIO0000001512 02/2014 139

Function and Function Block Representation

140 EIO0000001512 02/2014

Magelis SCU

Glossary

EIO0000001512 02/2014
Glossary
A

application
A program including configuration data, symbols, and documentation.

B

BOOL
(boolean) A basic data type in computing. A BOOL variable can have one of these values: 0
(FALSE), 1 (TRUE). A bit that is extracted from a word is of type BOOL; for example, %MW10.4 is a
fifth bit of memory word number 10.

byte
A type that is encoded in an 8-bit format, ranging from 16#00 to 16#FF in hexadecimal
representation.

C

CFC
(continuous function chart) A graphical programming language (an extension of the IEC 61131-3
standard) based on the function block diagram language that works like a flowchart. However, no
networks are used and free positioning of graphic elements is possible, which allows feedback
loops. For each block, the inputs are on the left and the outputs on the right. You can link the block
outputs to the inputs of other blocks to create complex expressions.

F

FB
(function block) A convenient programming mechanism that consolidates a group of programming
instructions to perform a specific and normalized action, such as speed control, interval control, or
counting. A function block may comprise configuration data, a set of internal or external operating
parameters and usually 1 or more data inputs and outputs.

function block diagram
One of the 5 languages for logic or control supported by the standard IEC 61131-3 for control
systems. Function block diagram is a graphically oriented programming language. It works with a
list of networks where each network contains a graphical structure of boxes and connection lines
representing either a logical or arithmetic expression, the call of a function block, a jump, or a return
instruction.
EIO0000001512 02/2014 141

Glossary
H

HSC
(high-speed counter)

I

ID
(identifier/identification)

IEC 61131-3
Part 3 of a 3-part IEC standard for industrial automation equipment. IEC 61131-3 is concerned with
controller programming languages and defines 2 graphical and 2 textual programming language
standards. The graphical programming languages are ladder diagram and function block diagram.
The textual programming languages include structured text and instruction list.

IL
(instruction list) A program written in the language that is composed of a series of text-based
instructions executed sequentially by the controller. Each instruction includes a line number, an
instruction code, and an operand (refer to IEC 61131-3).

INT
(integer) A whole number encoded in 16 bits.

L

LD
(ladder diagram) A graphical representation of the instructions of a controller program with symbols
for contacts, coils, and blocks in a series of rungs executed sequentially by a controller (refer to
IEC 61131-3).

P

POU
(program organization unit) A variable declaration in source code and a corresponding instruction
set. POUs facilitate the modular re-use of software programs, functions, and function blocks. Once
declared, POUs are available to one another.

program
The component of an application that consists of compiled source code capable of being installed
in the memory of a logic controller.

PTO
(pulse train outputs) a fast output that oscillates between off and on in a fixed 50-50 duty cycle,
producing a square wave form. The PTO is especially well suited for applications such as stepper
motors, frequency converters, and servo motor control, among others.
142 EIO0000001512 02/2014

Glossary
S

ST
(structured text) A language that includes complex statements and nested instructions (such as
iteration loops, conditional executions, or functions). ST is compliant with IEC 61131-3.

V

variable
A memory unit that is addressed and modified by a program.
EIO0000001512 02/2014 143

Glossary
144 EIO0000001512 02/2014

Magelis SCU

Index

EIO0000001512 02/2014
Index
A
adjusting functions

HSCGetParam, 126
HSCSetParam, 128

allocation, I/Os, 18

B
Busy

management of status variables, 113

C
Capture

HSCMain, 102
CommandAborted

management of status variables, 113
Comparison

HSCMain, 96

D
Data Types

HSC_ERR_TYPE, 116
HSC_PARAMETER_TYPE, 117
HSC_REF, 118
HSC_TIMEBASE_TYPE, 119

dedicated features, 112
diagnostic functions

HSCGetDiag, 124
digital I/O assignment

HSC, 18
Done

management of status variables, 113

E
Embedded Functions Configuration

Embedded HSC Configuration, 16
EIO0000001512 02/2014
Enable
Function, 107

ErrID
handling a detected error, 113
management of status variables, 113

Error
handling a detected error, 113
management of status variables, 113

Event Counting
HSC Modes of Embedded HSC, 74

Execute
management of status variables, 113

external event, 100

F
Free-large

HSC Modes of Embedded HSC, 62
frequency meter

description, 84
synopsis, 85

Function
Enable, 107
Synchronization, 106

Function Blocks
HSCGetCapturedValue, 122
HSCGetDiag, 124
HSCGetParam, 126
HSCSetParam, 128

functions
differences between a function and a
function block, 132
how to use a function or a function block
in IL language, 133
how to use a function or a function block
in ST language, 137
145

Index
H
handling a detected error

ErrID, 113
Error, 113

HSC main type configuration
Event mode, 77
Free-Large mode, 67

HSC Main type configuration
Frequency Meter mode, 86

HSC main type configuration
Modulo-loop mode, 55
One-shot mode, 37

HSC Modes of Embedded HSC
Event Counting, 74
Free-large, 62
Modulo-loop, 43

HSC simple type configuration
Modulo-loop mode, 47
One-shot mode, 29

HSC_ERR_TYPE
Data Types, 116

HSC_PARAMETER_TYPE
Data Types, 117

HSC_REF
Data Types, 118

HSC_TIMEBASE_TYPE
Data Types, 119

HSCGetCapturedValue
Function Blocks, 122

HSCGetDiag
Function Blocks, 124

HSCGetParam
Function Blocks, 126

HSCMain
Capture, 102
Comparison, 96

HSCSetParam
Function Blocks, 128

I
I/O allocation

HSC, 18
146
M
management of status variables

Busy, 113
CommandAborted, 113
Done, 113
ErrID, 113
Error, 113
Execute, 113

Modulo-loop
HSC Modes of Embedded HSC, 43

S
Synchronization

Function, 106

T
task

external event, 100
EIO0000001512 02/2014

	Magelis SCU
	Table of Contents
	Safety Information
	About the Book
	High Speed Counter Overview
	Embedded Functions
	HSC Embedded Function
	HSC I/O Mapping
	Simple Type Overview
	Main Type Overview
	Choosing your HSC

	HSC Modes
	One-shot Mode Principle
	One-shot Mode Principle Description

	One-shot with a Simple Type
	Synopsis Diagram
	Configuration of the Simple Type in One-shot Mode
	Programming the Simple Type
	Adjusting Parameters

	One-shot With a Main Type
	Synopsis Diagram
	Configuration of the Main Type in One-shot Mode
	Programming the Main Type
	Adjusting Parameters

	Modulo-loop Principle
	Modulo-loop Mode Principle Description

	Modulo-loop with a Simple Type
	Synopsis Diagram
	Configuration of the Simple Type in Modulo-loop Mode
	Programming the Simple Type
	Adjusting Parameters

	Modulo-loop With a Main Type
	Synopsis Diagram
	Configuration of the Main Type in Modulo-loop Mode
	Programming the Main Type
	Adjusting Parameters

	Free-large With a Main Type
	Free-large Mode Principle Description
	Limits Management
	Synopsis Diagram
	Configuration of the Main Type in Free-Large Mode
	Programming the Main Type
	Adjusting Parameters

	Event Counting With a Main Type
	Event Counting Mode Principle Description
	Synopsis Diagram
	Configuration of the Main Type in Event Counting Mode
	Programming the Main Type
	Adjusting Parameters

	Frequency Meter Type
	Description
	Synopsis Diagram
	Configuration of the Main Type in Frequency Meter Mode
	Programming the Main Type
	Adjusting Parameters

	Optional Functions
	Comparison Function
	Comparison Principle with a Main Type
	Configuration of the Comparison on a Main Type
	External Event Configuration

	Capture Function
	Capture Principle with a Main Type
	Configuration of the Capture on a Main Type

	Synchronization and Enable Functions
	Synchronization Function
	Enable Function

	Appendices
	General Information
	Dedicated Features
	General Information on Administrative and Motion Function Block Management

	Data Types
	HSC_ERR_TYPE: HSC Variable Detected Error Type
	HSC_PARAMETER_TYPE: Type for Parameters to Get or to Set on HSC Variable
	HSC_REF: HSC Reference Value
	HSC_TIMEBASE_TYPE: Type for HSC Time Base Variable

	Function Blocks
	HSCGetCapturedValue: Returns Content of Capture Registers
	HSCGetDiag: Provides Detail of Detected Error on HSC
	HSCGetParam: Returns Parameters of HSC
	HSCSetParam: Adjust Parameters of a HSC

	Function and Function Block Representation
	Differences Between a Function and a Function Block
	How to Use a Function or a Function Block in IL Language
	How to Use a Function or a Function Block in ST Language

	Glossary
	Index

